1
|
Castillo Cruz B, Chinapen Barletta S, Ortiz Muñoz BG, Benitez-Reyes AS, Amalbert Perez OA, Cardona Amador AC, Vivas-Mejia PE, Barletta GL. Effect of Cyclodextrins Formulated in Liposomes and Gold and Selenium Nanoparticles on siRNA Stability in Cell Culture Medium. Pharmaceuticals (Basel) 2024; 17:1344. [PMID: 39458985 PMCID: PMC11510567 DOI: 10.3390/ph17101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Encapsulation of siRNA fragments inside liposome vesicles has emerged as an effective method for delivering siRNAs in vitro and in vivo. However, the liposome's fluid-phospholipid bilayer of liposomes allows siRNA fragments to diffuse out of the liposome, decreasing the dose concentration and therefore the effectiveness of the carrier. We have previously reported that β-cyclodextrins formulated in liposomes help increase the stability of siRNAs in cell culture medium. Here, we continued that study to include α, γ, methyl-β-cyclodextrins and β-cyclodextrin-modified gold and selenium nanoparticles. METHODS We used Isothermal Titration Calorimetry to study the binding thermodynamics of siRNAs to the cyclodextrin-modified nanoparticles and to screen for the best adamantane derivative to modify the siRNA fragments, and we used gel electrophoresis to study the stabilization effect of siRNA by cyclodextrins and the nanoparticles. RESULTS We found that only β- and methyl-β-cyclodextrins increased siRNA serum stability. Cyclodextrin-modified selenium nanoparticles also stabilize siRNA fragments in serum, and siRNAs chemically modified with an adamantane moiety (which forms inclusion complexes with the cyclodextrin-modified-nanoparticles) show a strong stabilization effect. CONCLUSIONS β-cyclodextrins are good additives to stabilize siRNA in cell culture medium, and the thermodynamic data we generated of the interaction between cyclodextrins and adamantane analogs (widely used in drug delivery studies), should serve as a guide for future studies where cyclodextrins are sought for the delivery and solvation of small organic molecules.
Collapse
Affiliation(s)
- Betzaida Castillo Cruz
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Sandra Chinapen Barletta
- Department of Physiology/Pathology, San Juan Bautista School of Medicine, Caguas 00725, Puerto Rico;
| | - Bryan G. Ortiz Muñoz
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Adriana S. Benitez-Reyes
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Omar A. Amalbert Perez
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Alexander C. Cardona Amador
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Pablo E. Vivas-Mejia
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 0035, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - Gabriel L. Barletta
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| |
Collapse
|
2
|
Alešković M, Šekutor M. Overcoming barriers with non-covalent interactions: supramolecular recognition of adamantyl cucurbit[ n]uril assemblies for medical applications. RSC Med Chem 2024; 15:433-471. [PMID: 38389878 PMCID: PMC10880950 DOI: 10.1039/d3md00596h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
Adamantane, a staple in medicinal chemistry, recently became a cornerstone of a supramolecular host-guest drug delivery system, ADA/CB[n]. Owing to a good fit between the adamantane cage and the host cavity of the cucurbit[n]uril macrocycle, formed strong inclusion complexes find applications in drug delivery and controlled drug release. Note that the cucurbit[n]uril host is not solely a delivery vehicle of the ADA/CB[n] system but rather influences the bioactivity and bioavailability of drug molecules and can tune drug properties. Namely, as host-guest interactions are capable of changing the intrinsic properties of the guest molecule, inclusion complexes can become more soluble, bioavailable and more resistant to metabolic conditions compared to individual non-complexed molecules. Such synergistic effects have implications for practical bioapplicability of this complex system and provide a new viewpoint to therapy, beyond the traditional single drug molecule approach. By achieving a balance between guest encapsulation and release, the ADA/CB[n] system has also found use beyond just drug delivery, in fields like bioanalytics, sensing assays, bioimaging, etc. Thus, chemosensing in physiological conditions, indicator displacement assays, in vivo diagnostics and hybrid nanostructures are just some recent examples of the ADA/CB[n] applicability, be it for displacements purposes or as cargo vehicles.
Collapse
Affiliation(s)
- Marija Alešković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| |
Collapse
|
3
|
Andrade B, Chen A, Gilson MK. Host-guest systems for the SAMPL9 blinded prediction challenge: phenothiazine as a privileged scaffold for binding to cyclodextrins. Phys Chem Chem Phys 2024; 26:2035-2043. [PMID: 38126539 PMCID: PMC10832227 DOI: 10.1039/d3cp05347d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Model systems are widely used in biology and chemistry to gain insight into more complex systems. In the field of computational chemistry, researchers use host-guest systems, relatively simple exemplars of noncovalent binding, to train and test the computational methods used in drug discovery. Indeed, host-guest systems have been developed to support the community-wide blinded SAMPL prediction challenges for over a decade. While seeking new host-guest systems for the recent SAMPL9 binding prediction challenge, which is the focus of the present PCCP Themed Collection, we identified phenothiazine as a privileged scaffold for guests of β cyclodextrin (βCD) and its derivatives. Building on this observation, we used calorimetry and NMR spectroscopy to characterize the noncovalent association of native βCD and three methylated derivatives of βCD with five phenothiazine drugs. The strongest association observed, that of thioridazine and one of the methyl derivatives, exceeds the well-known high affinity of rimantidine with βCD. Intriguingly, however, methylation of βCD at the 3 position abolished detectible binding for all of the drugs studied. The dataset has a clear pattern of entropy-enthalpy compensation. The NMR data show that all of the drugs position at least one aromatic proton at the secondary face of the CD, and most also show evidence of deep penetration of the binding site. The results of this study were used in the SAMPL9 blinded binding affinity-prediction challenge, which are detailed in accompanying papers of the present Themed Collection. These data also open the phenothiazines and, potentially, chemically similar drugs, such as the tricyclic antidepressants, as relatively potent binders of βCD, setting the stage for future SAMPL challenge datasets and for possible applications as drug reversal agents.
Collapse
Affiliation(s)
- Brenda Andrade
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9255 Pharmacy Lane, La Jolla, CA 92093, USA.
| | - Ashley Chen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9255 Pharmacy Lane, La Jolla, CA 92093, USA.
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9255 Pharmacy Lane, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Abdelkader J, Alelyani M, Alashban Y, Alghamdi SA, Bakkour Y. Modification of Dispersin B with Cyclodextrin-Ciprofloxacin Derivatives for Treating Staphylococcal. Molecules 2023; 28:5311. [PMID: 37513185 PMCID: PMC10386341 DOI: 10.3390/molecules28145311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
To address the high tolerance of biofilms to antibiotics, it is urgent to develop new strategies to fight against these bacterial consortia. An innovative antibiofilm nanovector drug delivery system, consisting of Dispersin B-permethylated-β-cyclodextrin/ciprofloxacin adamantyl (DspB-β-CD/CIP-Ad), is described here. For this purpose, complexation assays between CIP-Ad and (i) unmodified β-CD and (ii) different derivatives of β-CD, which are 2,3-O-dimethyl-β-CD, 2,6-O-dimethyl-β-CD, and 2,3,6-O-trimethyl-β-CD, were tested. A stoichiometry of 1/1 was obtained for the β-CD/CIP-Ad complex by NMR analysis. Isothermal Titration Calorimetry (ITC) experiments were carried out to determine Ka, ΔH, and ΔS thermodynamic parameters of the complex between β-CD and its different derivatives in the presence of CIP-Ad. A stoichiometry of 1/1 for β-CD/CIP-Ad complexes was confirmed with variable affinity according to the type of methylation. A phase solubility study showed increased CIP-Ad solubility with CD concentration, pointing out complex formation. The evaluation of the antibacterial activity of CIP-Ad and the 2,3-O-dimethyl-β-CD/CIP-Ad or 2,3,6-O-trimethyl-β-CD/CIP-Ad complexes was performed on Staphylococcus epidermidis (S. epidermidis) strains. The Minimum Inhibitory Concentration (MIC) studies showed that the complex of CIP-Ad and 2,3-O-dimethyl-β-CD exhibited a similar antimicrobial activity to CIP-Ad alone, while the interaction with 2,3,6-O-trimethyl-β-CD increased MIC values. Antimicrobial assays on S. epidermidis biofilms demonstrated that the synergistic effect observed with the DspB/CIP association was partly maintained with the 2,3-O-dimethyl-β-CDs/CIP-Ad complex. To obtain this "all-in-one" drug delivery system, able to destroy the biofilm matrix and release the antibiotic simultaneously, we covalently grafted DspB on three carboxylic permethylated CD derivatives with different-length spacer arms. The strategy was validated by demonstrating that a DspB-permethylated-β-CD/ciprofloxacin-Ad system exhibited efficient antibiofilm activity.
Collapse
Affiliation(s)
- Jinan Abdelkader
- Laboratory of Applied Chemistry (LAC), Department of Chemistry, Faculty of Sciences III, Lebanese University Mont Michel, El Koura 826, Lebanon
| | - Magbool Alelyani
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Yazeed Alashban
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Sami A Alghamdi
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Youssef Bakkour
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
5
|
Nilam M, Karmacharya S, Nau WM, Hennig A. Proton‐Gradient‐Driven Sensitivity Enhancement of Liposome‐Encapsulated Supramolecular Chemosensors. Angew Chem Int Ed Engl 2022; 61:e202207950. [PMID: 35687027 PMCID: PMC9543936 DOI: 10.1002/anie.202207950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/06/2022]
Abstract
An overarching challenge in the development of supramolecular sensor systems is to enhance their sensitivity, which commonly involves the synthesis of refined receptors with increased affinity to the analyte. We show that a dramatic sensitivity increase by 1–2 orders of magnitude can be achieved by encapsulating supramolecular chemosensors inside liposomes and exposing them to a pH gradient across the lipid bilayer membrane. This causes an imbalance of the influx and efflux rates of basic and acidic analytes leading to a significantly increased concentration of the analyte in the liposome interior. The utility of our liposome‐enhanced sensors was demonstrated with various host–dye reporter pairs and sensing mechanisms, and we could easily increase the sensitivity towards multiple biologically relevant analytes, including the neurotransmitters serotonin and tryptamine.
Collapse
Affiliation(s)
- Mohamed Nilam
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry Universität Osnabrück Barbarastraße 7 49069 Osnabrück Germany
- School of Science Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Shreya Karmacharya
- School of Science Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Werner M. Nau
- School of Science Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry Universität Osnabrück Barbarastraße 7 49069 Osnabrück Germany
| |
Collapse
|
6
|
Current Status of Quantum Chemical Studies of Cyclodextrin Host-Guest Complexes. Molecules 2022; 27:molecules27123874. [PMID: 35744998 PMCID: PMC9229288 DOI: 10.3390/molecules27123874] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
This article aims to review the application of various quantum chemical methods (semi-empirical, density functional theory (DFT), second order Møller-Plesset perturbation theory (MP2)) in the studies of cyclodextrin host-guest complexes. The details of applied approaches such as functionals, basis sets, dispersion corrections or solvent treatment methods are analyzed, pointing to the best possible options for such theoretical studies. Apart from reviewing the ways that the computations are usually performed, the reasons for such studies are presented and discussed. The successful applications of theoretical calculations are not limited to the determination of stable conformations but also include the prediction of thermodynamic properties as well as UV-Vis, IR, and NMR spectra. It has been shown that quantum chemical calculations, when applied to the studies of CD complexes, can provide results unobtainable by any other methods, both experimental and computational.
Collapse
|
7
|
Nilam M, Karmacharya S, Nau WM, Hennig A. Proton‐Gradient‐Driven Sensitivity Enhancement of Liposome‐Encapsulated Supramolecular Chemosensors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohamed Nilam
- Universität Osnabrück: Universitat Osnabruck Fachbereich Biologie/Chemie GERMANY
| | - Shreya Karmacharya
- Jacobs University Bremen gGmbH Department of Life Sciences and Chemistry GERMANY
| | - Werner M. Nau
- Jacobs University Bremen gGmbH Department of Life Sciences and Chemistry GERMANY
| | - Andreas Hennig
- Universität Osnabrück: Universitat Osnabruck Institute of Chemistry of New Materials Barbarastr. 7 49069 Osnabrück GERMANY
| |
Collapse
|
8
|
Gibson HW, Rouser MA, Schoonover DV. Synthesis of Bottlebrush Copolymers Using a Polypseudorotaxane Intermediate. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Harry W. Gibson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Mason A. Rouser
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Daniel V. Schoonover
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
9
|
Alešković M, Roca S, Jozepović R, Bregović N, Šekutor M. Unravelling binding effects in cyclodextrin inclusion complexes with diamondoid ammonium salt guests. NEW J CHEM 2022. [DOI: 10.1039/d2nj00938b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrophobic tornado – complexation of diamondoid ammonium salts with cyclodextrins in water.
Collapse
Affiliation(s)
- Marija Alešković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10 000 Zagreb, Croatia
| | - Sunčica Roca
- NMR Center, Ruđer Bošković Institute, Bijenička 54, 10 000 Zagreb, Croatia
| | - Ruža Jozepović
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10 000 Zagreb, Croatia
| | - Nikola Bregović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10 000 Zagreb, Croatia
| |
Collapse
|
10
|
Abstract
Due to their unique structural, physical and chemical properties, cyclodextrins and their derivatives have been of great interest to scientists and researchers in both academia and industry for over a century. Many of the industrial applications of cyclodextrins have arisen from their ability to encapsulate, either partially or fully, other molecules, especially organic compounds. Cyclodextrins are non-toxic oligopolymers of glucose that help to increase the solubility of organic compounds with poor aqueous solubility, can mask odors from foul-smelling compounds, and have been widely studied in the area of drug delivery. In this review, we explore the structural and chemical properties of cyclodextrins that give rise to this encapsulation (i.e., the formation of inclusion complexes) ability. This review is unique from others written on this subject because it provides powerful insights into factors that affect cyclodextrin encapsulation. It also examines these insights in great detail. Later, we provide an overview of some industrial applications of cyclodextrins, while emphasizing the role of encapsulation in these applications. We strongly believe that cyclodextrins will continue to garner interest from scientists for many years to come, and that novel applications of cyclodextrins have yet to be discovered.
Collapse
|
11
|
Prasad PK, Motiei L, Margulies D. Steps toward enhancing the fluorescence of small-molecule-based protein labels using supramolecular hosts. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
12
|
Fraga López F, Válcarcel J, Soto VH, Martínez Ageitos JM, Rodríguez E, Vázquez Tato J. Analysis of curing of diglycidyl ether of bisphenol A (
BADGE
n = 0) with 2‐adamantylethanamine. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Francisco Fraga López
- Facultad de Ciencias, Departamentos de Física Aplicada, Química Física y Ingeniería Química Campus de Lugo, Universidad de Santiago de Compostela Lugo Spain
| | - Javier Válcarcel
- Facultad de Ciencias, Departamentos de Física Aplicada, Química Física y Ingeniería Química Campus de Lugo, Universidad de Santiago de Compostela Lugo Spain
| | - Victor H. Soto
- Escuela de Química, Departamento de Química Orgánica Universidad de Costa Rica San Pedro Costa Rica
| | - José M. Martínez Ageitos
- Facultad de Ciencias, Departamentos de Física Aplicada, Química Física y Ingeniería Química Campus de Lugo, Universidad de Santiago de Compostela Lugo Spain
| | - Eugenio Rodríguez
- Facultad de Ciencias, Departamentos de Física Aplicada, Química Física y Ingeniería Química Campus de Lugo, Universidad de Santiago de Compostela Lugo Spain
| | - José Vázquez Tato
- Facultad de Ciencias, Departamentos de Física Aplicada, Química Física y Ingeniería Química Campus de Lugo, Universidad de Santiago de Compostela Lugo Spain
| |
Collapse
|
13
|
Amezcua M, El Khoury L, Mobley DL. SAMPL7 Host-Guest Challenge Overview: assessing the reliability of polarizable and non-polarizable methods for binding free energy calculations. J Comput Aided Mol Des 2021; 35:1-35. [PMID: 33392951 PMCID: PMC8121194 DOI: 10.1007/s10822-020-00363-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
The SAMPL challenges focus on testing and driving progress of computational methods to help guide pharmaceutical drug discovery. However, assessment of methods for predicting binding affinities is often hampered by computational challenges such as conformational sampling, protonation state uncertainties, variation in test sets selected, and even lack of high quality experimental data. SAMPL blind challenges have thus frequently included a component focusing on host-guest binding, which removes some of these challenges while still focusing on molecular recognition. Here, we report on the results of the SAMPL7 blind prediction challenge for host-guest affinity prediction. In this study, we focused on three different host-guest categories-a familiar deep cavity cavitand series which has been featured in several prior challenges (where we examine binding of a series of guests to two hosts), a new series of cyclodextrin derivatives which are monofunctionalized around the rim to add amino acid-like functionality (where we examine binding of two guests to a series of hosts), and binding of a series of guests to a new acyclic TrimerTrip host which is related to previous cucurbituril hosts. Many predictions used methods based on molecular simulations, and overall success was mixed, though several methods stood out. As in SAMPL6, we find that one strategy for achieving reasonable accuracy here was to make empirical corrections to binding predictions based on previous data for host categories which have been studied well before, though this can be of limited value when new systems are included. Additionally, we found that alchemical free energy methods using the AMOEBA polarizable force field had considerable success for the two host categories in which they participated. The new TrimerTrip system was also found to introduce some sampling problems, because multiple conformations may be relevant to binding and interconvert only slowly. Overall, results in this challenge tentatively suggest that further investigation of polarizable force fields for these challenges may be warranted.
Collapse
Affiliation(s)
- Martin Amezcua
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Léa El Khoury
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
14
|
Khalak Y, Tresadern G, de Groot BL, Gapsys V. Non-equilibrium approach for binding free energies in cyclodextrins in SAMPL7: force fields and software. J Comput Aided Mol Des 2020; 35:49-61. [PMID: 33230742 PMCID: PMC7862541 DOI: 10.1007/s10822-020-00359-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/07/2020] [Indexed: 11/24/2022]
Abstract
In the current work we report on our participation in the SAMPL7 challenge calculating absolute free energies of the host–guest systems, where 2 guest molecules were probed against 9 hosts-cyclodextrin and its derivatives. Our submission was based on the non-equilibrium free energy calculation protocol utilizing an averaged consensus result from two force fields (GAFF and CGenFF). The submitted prediction achieved accuracy of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${1.38}\,\hbox {kcal}/\hbox {mol}$$\end{document}1.38kcal/mol in terms of the unsigned error averaged over the whole dataset. Subsequently, we further report on the underlying reasons for discrepancies between our calculations and another submission to the SAMPL7 challenge which employed a similar methodology, but disparate ligand and water force fields. As a result we have uncovered a number of issues in the dihedral parameter definition of the GAFF 2 force field. In addition, we identified particular cases in the molecular topologies where different software packages had a different interpretation of the same force field. This latter observation might be of particular relevance for systematic comparisons of molecular simulation software packages. The aforementioned factors have an influence on the final free energy estimates and need to be considered when performing alchemical calculations.
Collapse
Affiliation(s)
- Yuriy Khalak
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Vytautas Gapsys
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
15
|
Kellett K, Slochower DR, Schauperl M, Duggan BM, Gilson MK. Experimental characterization of the association of β-cyclodextrin and eight novel cyclodextrin derivatives with two guest compounds. J Comput Aided Mol Des 2020; 35:95-104. [PMID: 33037548 DOI: 10.1007/s10822-020-00350-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022]
Abstract
We investigate the binding of native β-cyclodextrin (β-CD) and eight novel β-CD derivatives with two different guest compounds, using isothermal calorimetry and 2D NOESY NMR. In all cases, the stoichiometry is 1:1 and binding is exothermic. Overall, modifications at the 3' position of β-CD, which is at the secondary face, weaken binding by several kJ/mol relative to native β-CD, while modifications at the 6' position (primary face) maintain or somewhat reduce the binding affinity. The variations in binding enthalpy are larger than the variations in binding free energy, so entropy-enthalpy compensation is observed. Characterization of the bound conformations with NOESY NMR shows that the polar groups of the guests may be situated at either face, depending on the host molecule, and, in some cases, both orientations are populated. The present results were used in the SAMPL7 blinded prediction challenge whose results are detailed in the same special issue of JCAMD.
Collapse
Affiliation(s)
- K Kellett
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0751, USA
| | - D R Slochower
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0751, USA
| | - M Schauperl
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0751, USA
| | - B M Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0751, USA
| | - M K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0751, USA.
| |
Collapse
|
16
|
Kost B, Brzeziński M, Socka M, Baśko M, Biela T. Biocompatible Polymers Combined with Cyclodextrins: Fascinating Materials for Drug Delivery Applications. Molecules 2020; 25:E3404. [PMID: 32731371 PMCID: PMC7435941 DOI: 10.3390/molecules25153404] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclodextrins (CD) are a group of cyclic oligosaccharides with a cavity/specific structure that enables to form inclusion complexes (IC) with a variety of molecules through non-covalent host-guest interactions. By an elegant combination of CD with biocompatible, synthetic and natural polymers, different types of universal drug delivery systems with dynamic/reversible properties have been generated. This review presents the design of nano- and micro-carriers, hydrogels, and fibres based on the polymer/CD supramolecular systems highlighting their possible biomedical applications. Application of the most prominent hydrophobic aliphatic polyesters that exhibit biodegradability, represented by polylactide and polycaprolactone, is described first. Subsequently, particular attention is focused on materials obtained from hydrophilic polyethylene oxide. Moreover, examples are also presented for grafting of CD on polysaccharides. In summary, we show the application of host-guest interactions in multi-component functional biomaterials for controlled drug delivery.
Collapse
Affiliation(s)
- Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.S.); (M.B.); (T.B.)
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.S.); (M.B.); (T.B.)
| | | | | | | |
Collapse
|
17
|
Banjare MK, Behera K, Banjare RK, Pandey S, Ghosh KK. Multi-spectroscopic investigation on the inclusion complexation of α-cyclodextrin with long chain ionic liquid. Carbohydr Res 2020; 491:107982. [DOI: 10.1016/j.carres.2020.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
|
18
|
Banjare MK, Behera K, Banjare RK, Pandey S, Ghosh KK. Multi-spectroscopic investigation on the inclusion complexation of α-cyclodextrin with long chain ionic liquid. Carbohydr Res 2020; 491:107982. [DOI: https:/doi.org/10.1016/j.carres.2020.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
19
|
Ooi HW, Kocken JMM, Morgan FLC, Malheiro A, Zoetebier B, Karperien M, Wieringa PA, Dijkstra PJ, Moroni L, Baker MB. Multivalency Enables Dynamic Supramolecular Host-Guest Hydrogel Formation. Biomacromolecules 2020; 21:2208-2217. [PMID: 32243138 PMCID: PMC7284802 DOI: 10.1021/acs.biomac.0c00148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Supramolecular
and dynamic biomaterials hold promise to recapitulate
the time-dependent properties and stimuli-responsiveness of the native
extracellular matrix (ECM). Host–guest chemistry is one of
the most widely studied supramolecular bonds, yet the binding characteristics
of host–guest complexes (β-CD/adamantane) in relevant
biomaterials have mostly focused on singular host–guest interactions
or nondiscrete multivalent pendent polymers. The stepwise synergistic
effect of multivalent host–guest interactions for the formation
of dynamic biomaterials remains relatively unreported. In this work,
we study how a series of multivalent adamantane (guest) cross-linkers
affect the overall binding affinity and ability to form supramolecular
networks with alginate-CD (Alg-CD). These binding constants of the
multivalent cross-linkers were determined via NMR titrations and showed
increases in binding constants occurring with multivalent constructs.
The higher multivalent cross-linkers enabled hydrogel formation; furthermore,
an increase in binding and gelation was observed with the inclusion
of a phenyl spacer to the cross-linker. A preliminary screen shows
that only cross-linking Alg-CD with an 8-arm-multivalent guest results
in robust gel formation. These cytocompatible hydrogels highlight
the importance of multivalent design for dynamically cross-linked
hydrogels. These materials hold promise for development toward cell-
and small molecule-delivery platforms and allow discrete and fine-tuning
of network properties.
Collapse
Affiliation(s)
- Huey Wen Ooi
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Jordy M M Kocken
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Francis L C Morgan
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Afonso Malheiro
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Bram Zoetebier
- Department of Developmental BioEngineering, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Paul A Wieringa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Pieter J Dijkstra
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
20
|
Leko K, Hanževački M, Brkljača Z, Pičuljan K, Ribić R, Požar J. Solvophobically Driven Complexation of Adamantyl Mannoside with β‐Cyclodextrin in Water and Structured Organic Solvents. Chemistry 2020; 26:5208-5219. [DOI: 10.1002/chem.202000282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Katarina Leko
- Department of ChemistryFaculty of ScienceUniversity of Zagreb Horvatovac 102a 10000 Zagreb Croatia
| | - Marko Hanževački
- Division of Physical ChemistryRuđer Bošković Institute Bijenička 54 10000 Zagreb Croatia
- Department of Chemical and Environmental EngineeringThe University of Nottingham University Park Nottingham NG7 2RD UK
| | - Zlatko Brkljača
- Division of Organic Chemistry and BiochemistryRuđer Bošković Institute Bijenička 54 10000 Zagreb Croatia
| | - Katarina Pičuljan
- Department of ChemistryFaculty of ScienceUniversity of Zagreb Horvatovac 102a 10000 Zagreb Croatia
| | - Rosana Ribić
- Department of ChemistryFaculty of ScienceUniversity of Zagreb Horvatovac 102a 10000 Zagreb Croatia
- University Center VaraždinUniversity North Jurja Križanića 31b 42000 Varaždin Croatia
| | - Josip Požar
- Department of ChemistryFaculty of ScienceUniversity of Zagreb Horvatovac 102a 10000 Zagreb Croatia
| |
Collapse
|
21
|
Tkachenko IM, Mankova PA, Rybakov VB, Golovin EV, Klimochkin YN. Wagner-Meerwein type rearrangement in 5-oxohomoadamantane series. Org Biomol Chem 2020; 18:465-478. [PMID: 31845947 DOI: 10.1039/c9ob02060h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Efficient methods for introducing various substituents into the α-position of ethyl 5-oxohomoadamantyl-4-carboxylate are reported. An unexpected acid-catalysed 1,2-alkyl shift in the series of synthesized α,α-bis-substituted 5-oxohomoadamantanes, and also in the hydroxy derivatives of homoadamantane was found. Such a retropinacol-like rearrangement leads to tetra- or pentacyclic mono- or bis-lactones containing a homoadamantane moiety. This new transformation opens access to the synthesis of previously unknown 2,4-di and 2,3,4-trisubstituted derivatives of homoadamantane. The resulting caged γ-butyro- and δ-valerolactones could be considered as potential synthetic or metabolic precursors of conformationally restricted GABA and δ-aminovaleric acid analogues.
Collapse
Affiliation(s)
- Ilya M Tkachenko
- Samara State Technical University, 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation.
| | | | | | | | | |
Collapse
|
22
|
Erdős M, Hartkamp R, Vlugt TJH, Moultos OA. Inclusion Complexation of Organic Micropollutants with β-Cyclodextrin. J Phys Chem B 2020; 124:1218-1228. [PMID: 31976678 PMCID: PMC7037149 DOI: 10.1021/acs.jpcb.9b10122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Recently, β-cyclodextrin
(βCD)-based polymers with
enhanced adsorption kinetics and high removal capacity of organic
micropollutants (OMPs) and uptake rates have been synthesized and
tested experimentally. Although the exact physical–chemical
mechanisms via which these polymers capture the various types of OMPs
are not yet fully understood, it is suggested that the inclusion complex
formation of OMPs with βCD is very important. In this study,
the inclusion complex formation of OMPs with βCD in an aqueous
solution is investigated by using the well-established attach–pull–release
method in force field-based molecular dynamics simulations. A representative
set of OMPs is selected based on the measured occurrences in surface
and ground waters and the directives published by the European Union.
To characterize the formation of the inclusion complex, the binding
free energies, enthalpies, and entropies are computed and compared
to experimental values. It is shown that computations using the q4md-CD/GAFF/Bind3P
force field combination yield binding free energies that are in reasonable
agreement with the experimental results for all OMPs studied. The
binding enthalpies are decomposed into the main contributing interaction
types. It is shown that, for all studied OMPs, the van der Waals interactions
are favorable for the inclusion complexion and the hydrogen bond formation
of the guest with the solvent and βCD plays a crucial role in
the binding mechanism. Our findings show that MD simulations can adequately
describe the inclusion complex formation of βCD with OMPs, which
is the first step toward understanding the underlying mechanisms via
which the βCD-based polymers capture OMPs.
Collapse
Affiliation(s)
- Máté Erdős
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , Netherlands
| | - Remco Hartkamp
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering , Delft University of Technology , Leeghwaterstraat 39 , 2628CB Delft , Netherlands
| |
Collapse
|
23
|
Pandey S, Kankanamalage DVW, Zhou X, Hu C, Isaacs L, Jayawickramarajah J, Mao H. Chaperone-Assisted Host-Guest Interactions Revealed by Single-Molecule Force Spectroscopy. J Am Chem Soc 2019; 141:18385-18389. [PMID: 31679339 PMCID: PMC7007810 DOI: 10.1021/jacs.9b09019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The recent discovery of ultra-high binding affinities in cucurbit[7]uril (CB7)-based host-guest pairs in an aqueous environment has rendered CB7 a rather attractive material in analytical and biomedical applications. Due to the lack of a molecular platform that can follow the same host-guest complex during repetitive mechanical measurements, however, mechanical stabilities of the CB7 system have not been revealed, hindering its potential to rival widely used conjugation pairs, such as streptavidin-biotin. Here, we assembled a DNA template in which a flexible DNA linker was exploited to keep the host (CB7) and guest (adamantane) in proximity. This platform not only increased the efficiency of the single-molecule characterization in optical tweezers but also clearly revealed mechanical features of the same host-guest complex. We found that positively charged adamantane guest demonstrated higher mechanical stability (49 pN) than neutral adamantane (44 pN), a trend consistent with the chemical affinity between guest molecules and the CB7 host. Surprisingly, we found that a hexyl group adjacent to the adamantane served as a chaperone to assist the formation of the adamantane-CB7 pairs. The discovery of an unprecedented chaperone-assisted interaction mechanism provides new approaches to efficiently assemble host-guest-based supramolecules with increased mechanical stabilities, which can be exploited in various biomedical, biosensing, and materials fields.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | | | - Xiao Zhou
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, USA
| | - Changpeng Hu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | | | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, 44242, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio, 44242, USA
| |
Collapse
|
24
|
Couturaud B, Houston ZH, Cowin GJ, Prokeš I, Foster JC, Thurecht KJ, O’Reilly RK. Supramolecular Fluorine Magnetic Resonance Spectroscopy Probe Polymer Based on Passerini Bifunctional Monomer. ACS Macro Lett 2019; 8:1479-1483. [PMID: 35651191 DOI: 10.1021/acsmacrolett.9b00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A water-soluble fluorine magnetic resonance spectroscopy host-guest probe, P(HPA-co-AdamCF3A), was successfully constructed from the facile synthesis of a bifunctional monomer via a quantitative Passerini reaction. Supramolecular complexation with (2-hydroxypropyl)-β-cyclodextrin promoted a change in the chemical environment, leading to modulation of both the relaxation properties as well as chemical shift of the fluorine moieties. This change was used to probe the supramolecular interaction by 19F MRI spectroscopy and give insight into fluorine probe formulation. This work provides a fundamental basis for an 19F MR imaging tracer capable of assessing host-guest inclusion and a potential model to follow the fate of a drug delivery system in vivo.
Collapse
Affiliation(s)
- Benoit Couturaud
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
- Université Paris-Est, East Paris Institute of Chemistry & Materials Science (ICMPE), UMR 7182 CNRS-UPEC, 2 rue Henri Dunant, 94320 Thiais, France
| | - Zachary H. Houston
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gary J. Cowin
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ivan Prokeš
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Jeffrey C. Foster
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K
| |
Collapse
|
25
|
Willems SB, Bunschoten A, Wagterveld RM, van Leeuwen FW, Velders AH. On-Flow Immobilization of Polystyrene Microspheres on β-Cyclodextrin-Patterned Silica Surfaces through Supramolecular Host-Guest Interactions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36221-36231. [PMID: 31487143 PMCID: PMC6778913 DOI: 10.1021/acsami.9b11069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Species-specific isolation of microsized entities such as microplastics and resistant bacteria from waste streams is becoming a growing environmental challenge. By studying the on-flow immobilization of micron-sized polystyrene particles onto functionalized silica surfaces, we ascertain if supramolecular host-guest chemistry in aqueous solutions can provide an alternative technology for water purification. Polystyrene particles were modified with different degrees of adamantane (guest) molecules, and silica surfaces were patterned with β-cyclodextrin (β-CD, host) through microcontact printing (μCP). The latter was exposed to solutions of these particles flowing at different speeds, allowing us to study the effect of flow rate and multivalency on particle binding to the surface. The obtained binding profile was correlated with Comsol simulations. We also observed that particle binding is directly aligned with particle's ability to form host-guest interactions with the β-CD-patterned surface, as particle binding to the functionalized glass surface increased with higher adamantane load on the polystyrene particle surface. Because of the noncovalent character of these interactions, immobilization is reversible and modified β-CD surfaces can be recycled, which provides a positive outlook for their incorporation in water purification systems.
Collapse
Affiliation(s)
- Stan B.J. Willems
- Laboratory
of BioNanoTechnology, Wageningen University
and Research, Axis, Bornse
Weilanden 9, 6708 WG Wageningen, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333
ZA Leiden, The Netherlands
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Anton Bunschoten
- Laboratory
of BioNanoTechnology, Wageningen University
and Research, Axis, Bornse
Weilanden 9, 6708 WG Wageningen, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333
ZA Leiden, The Netherlands
| | - R. Martijn Wagterveld
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Fijs W.B. van Leeuwen
- Laboratory
of BioNanoTechnology, Wageningen University
and Research, Axis, Bornse
Weilanden 9, 6708 WG Wageningen, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333
ZA Leiden, The Netherlands
| | - Aldrik H. Velders
- Laboratory
of BioNanoTechnology, Wageningen University
and Research, Axis, Bornse
Weilanden 9, 6708 WG Wageningen, The Netherlands
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333
ZA Leiden, The Netherlands
| |
Collapse
|
26
|
Nayak N, Gopidas KR. Self-Assembly of a β-Cyclodextrin Bis-Inclusion Complex into a Highly Crystalline Fiber Network. An Effective Strategy for Null Aggregate Design. J Phys Chem B 2019; 123:8131-8139. [DOI: 10.1021/acs.jpcb.9b05430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nagaraj Nayak
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| | - Karical Raman Gopidas
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| |
Collapse
|
27
|
Trifonov A, Stemmer A, Tel-Vered R. Power Generation by Selective Self-Assembly of Biocatalysts. ACS NANO 2019; 13:8630-8638. [PMID: 31310711 DOI: 10.1021/acsnano.9b03013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Through a careful chemical and bioelectronic design we have created a system that uses self-assembly of enzyme-nanoparticle hybrids to yield bioelectrocatalytic functionality and to enable the harnessing of electrical power from biomass. Here we show that mixed populations of hybrids acting as catalyst carriers for clean energy production can be efficiently stored, self-assembled on functionalized stationary surfaces, and magnetically re-collected to make the binding sites on the surfaces available again. The methodology is based on selective interactions occurring between chemically modified surfaces and ligand-functionalized hybrids. The design of a system with minimal cross-talk between the particles, outstanding selective binding of the hybrids at the electrode surfaces, and direct anodic and cathodic electron transfer pathways leads to mediator-less bioelectrocatalytic transformations which are implemented in the construction of a fast self-assembling, membrane-less fructose/O2 biofuel cell.
Collapse
Affiliation(s)
- Alexander Trifonov
- Nanotechnology Group , ETH Zürich , Säumerstrasse 4 , CH - 8803 Rüschlikon , Switzerland
| | - Andreas Stemmer
- Nanotechnology Group , ETH Zürich , Säumerstrasse 4 , CH - 8803 Rüschlikon , Switzerland
| | - Ran Tel-Vered
- Nanotechnology Group , ETH Zürich , Säumerstrasse 4 , CH - 8803 Rüschlikon , Switzerland
| |
Collapse
|
28
|
Schönbeck C, Holm R. Exploring the Origins of Enthalpy–Entropy Compensation by Calorimetric Studies of Cyclodextrin Complexes. J Phys Chem B 2019; 123:6686-6693. [DOI: 10.1021/acs.jpcb.9b03393] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Christian Schönbeck
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - René Holm
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
29
|
Lim WQ, Yang G, Phua SZF, Chen H, Zhao Y. Self-Assembled Oxaliplatin(IV) Prodrug-Porphyrin Conjugate for Combinational Photodynamic Therapy and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16391-16401. [PMID: 31002492 DOI: 10.1021/acsami.9b04557] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanomedicine has emerged as a promising strategy for effective cancer treatment. A useful approach is to develop carrier-free nanodrugs via a facile supramolecular self-assembly process. To achieve high therapeutic effect, integrating photodynamic therapy with chemotherapy has been sought after. In this work, we designed a nanocarrier (PEG-Por-CD: oxliPt(IV)-ada) assembled with oxaliplatin prodrug (oxliPt(IV)-ada) and porphyrin photosensitizer (PEG-Por-CD) through host-guest interaction to achieve stimulus-responsive combination therapy. Contributed by excellent spatial control of the binding ratio between host and guest molecules, porphyrin and oxaliplatin were separately modified with β-cyclodextrin and adamantane to prepare the amphiphilic host-guest complex for subsequent self-assembly into therapeutic nanoparticles. The obtained PEG-Por-CD: oxliPt(IV)-ada nanoparticles exhibited good colloidal stability with an average hydrodynamic size of 164 nm while undergoing the disassembly under reductive environment to release active therapeutic species. Confocal imaging demonstrated the ability of PEG-Por-CD: oxliPt(IV)-ada to effectively accumulate in the cells and produce reactive oxygen species in vitro upon 630 nm light irradiation. As compared with the monotherapy, the PEG-Por-CD: oxliPt(IV)-ada nanoparticles exhibited 3-fold enhanced cytotoxicity and 2-fold increase in the apoptosis. In vivo experiments using 4T1 tumor-bearing mice confirmed that the nanoparticles were efficient in suppressing the tumor growth without eliciting systemic toxicity. The present self-delivery nanosystem constructed from the self-assembly approach not only allows precise control over the drug and photosensitizer loading ratio but also eliminates systemic toxicity concern of the drug carriers, providing a solution for further development of combinational cancer treatment.
Collapse
Affiliation(s)
- Wei Qi Lim
- NTU-Northwestern Institute for Nanomedicine, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Guangbao Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Yanli Zhao
- NTU-Northwestern Institute for Nanomedicine, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| |
Collapse
|
30
|
Redondo-Gómez C, Abdouni Y, Becer CR, Mata A. Self-Assembling Hydrogels Based on a Complementary Host–Guest Peptide Amphiphile Pair. Biomacromolecules 2019; 20:2276-2285. [DOI: 10.1021/acs.biomac.9b00224] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | - C. Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
31
|
Štimac A, Tokić M, Ljubetič A, Vuletić T, Šekutor M, PoŽar J, Leko K, HanŽevački M, Frkanec L, Frkanec R. Functional self-assembled nanovesicles based on β-cyclodextrin, liposomes and adamantyl guanidines as potential nonviral gene delivery vectors. Org Biomol Chem 2019; 17:4640-4651. [PMID: 31020307 DOI: 10.1039/c9ob00488b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multicomponent self-assembled supramolecular nanovesicles based on an amphiphilic derivative of β-cyclodextrin and phosphatidylcholine liposomes (PC-liposomes) functionalized with four structurally different adamantyl guanidines were prepared and characterized. Incorporation efficiency of the examined adamantyl guanidines as well as size and surface charge of the prepared supramolecular nanovesicles was determined. Changes in the surface charge of the prepared nanovesicles confirmed that guanidinium groups were exposed on the surface. ITC and 1H NMR spectroscopy complemented by molecular dynamics (MD) simulations were used to elucidate the structural data and stability of the inclusion complexes of β-cyclodextrin and adamantyl guanidines (AG1-5). The results are consistent and point to a significant contribution of the guanylhydrazone residue to the complexation process for AG1 and AG2 with β-cyclodextrin. In order to evaluate the potential of the self-assembled supramolecular nanomaterial as a nonviral gene delivery vector, fluorescence correlation spectroscopy was used. It showed that the prepared nanovesicles functionalized with adamantyl guanidines AG1-4 effectively recognize and bind the fluorescently labelled DNA. Furthermore, gel electrophoretic assay confirmed the formation of nanoplexes of functionalized nanovesicles and plasmid DNA. These findings together suggest that the designed supramolecular nanovesicles could be successfully applied as nonviral gene delivery vectors.
Collapse
Affiliation(s)
- Adela Štimac
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10 000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The construction and modulation of photoelectric functional hierarchical materials based on ionic self-assembly. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Ramesh K, Anugrah DSB, Lim KT. Supramolecular poly(N-acryloylmorpholine)-b-poly(d,l-lactide) pseudo-block copolymer via host-guest interaction for drug delivery. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Toward Expanded Diversity of Host–Guest Interactions via Synthesis and Characterization of Cyclodextrin Derivatives. J SOLUTION CHEM 2018. [DOI: 10.1007/s10953-018-0769-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Schönbeck C. Charge Determines Guest Orientation: A Combined NMR and Molecular Dynamics Study of β-Cyclodextrins and Adamantane Derivatives. J Phys Chem B 2018; 122:4821-4827. [DOI: 10.1021/acs.jpcb.8b02579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Schönbeck
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark
| |
Collapse
|
36
|
Kantonen SA, Henriksen NM, Gilson MK. Accounting for apparent deviations between calorimetric and van't Hoff enthalpies. Biochim Biophys Acta Gen Subj 2017; 1862:692-704. [PMID: 29221984 DOI: 10.1016/j.bbagen.2017.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/15/2017] [Accepted: 11/28/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND In theory, binding enthalpies directly obtained from calorimetry (such as ITC) and the temperature dependence of the binding free energy (van't Hoff method) should agree. However, previous studies have often found them to be discrepant. METHODS Experimental binding enthalpies (both calorimetric and van't Hoff) are obtained for two host-guest pairs using ITC, and the discrepancy between the two enthalpies is examined. Modeling of artificial ITC data is also used to examine how different sources of error propagate to both types of binding enthalpies. RESULTS For the host-guest pairs examined here, good agreement, to within about 0.4kcal/mol, is obtained between the two enthalpies. Additionally, using artificial data, we find that different sources of error propagate to either enthalpy uniquely, with concentration error and heat error propagating primarily to calorimetric and van't Hoff enthalpies, respectively. CONCLUSIONS With modern calorimeters, good agreement between van't Hoff and calorimetric enthalpies should be achievable, barring issues due to non-ideality or unanticipated measurement pathologies. Indeed, disagreement between the two can serve as a flag for error-prone datasets. A review of the underlying theory supports the expectation that these two quantities should be in agreement. GENERAL SIGNIFICANCE We address and arguably resolve long-standing questions regarding the relationship between calorimetric and van't Hoff enthalpies. In addition, we show that comparison of these two quantities can be used as an internal consistency check of a calorimetry study.
Collapse
Affiliation(s)
- Samuel A Kantonen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0736, USA
| | - Niel M Henriksen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0736, USA
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0736, USA.
| |
Collapse
|
37
|
Antoniuk I, Plazzotta B, Wintgens V, Volet G, Nielsen TT, Pedersen JS, Amiel C. Host–guest interaction and structural ordering in polymeric nanoassemblies: Influence of molecular design. Int J Pharm 2017; 531:433-443. [DOI: 10.1016/j.ijpharm.2017.02.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/08/2023]
|
38
|
Zhang J, Zhou H, Liu H, Hu J, Liu S. Fabrication of pH‐ and Thermoresponsive Three‐Layered Micelles via Host–Guest Interactions. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/03/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Jingyan Zhang
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleiChem (Collaborative Innovation Center of Chemistry for Energy Materials)Department of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei Anhui 230026 China
- School of Materials and Chemical EngineeringAnhui Jianzhu University Hefei Anhui 230022 China
| | - Haiou Zhou
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleiChem (Collaborative Innovation Center of Chemistry for Energy Materials)Department of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei Anhui 230026 China
- School of Materials and Chemical EngineeringAnhui Jianzhu University Hefei Anhui 230022 China
| | - Hao Liu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleiChem (Collaborative Innovation Center of Chemistry for Energy Materials)Department of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleiChem (Collaborative Innovation Center of Chemistry for Energy Materials)Department of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleiChem (Collaborative Innovation Center of Chemistry for Energy Materials)Department of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
39
|
Song X, Zhu JL, Wen Y, Zhao F, Zhang ZX, Li J. Thermoresponsive supramolecular micellar drug delivery system based on star-linear pseudo-block polymer consisting of β-cyclodextrin-poly(N-isopropylacrylamide) and adamantyl-poly(ethylene glycol). J Colloid Interface Sci 2016; 490:372-379. [PMID: 27914336 DOI: 10.1016/j.jcis.2016.11.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/25/2022]
Abstract
Chemotherapy is facing several limitations such as low water solubility of anticancer drugs and multidrug resistance (MDR) in cancer cells. To overcome these limitations, a thermoresponsive micellar drug delivery system formed by a non-covalently connected supramolecular block polymer was developed. The system is based on the host-guest interaction between a well-defined β-cyclodextrin (β-CD) based poly(N-isopropylacrylamide) star host polymer and an adamantyl-containing poly(ethylene glycol) (Ad-PEG) guest polymer. The structures of the host and guest polymers were characterized by 1H and 13C NMR, GPC and FTIR. Subsequently, they formed a pseudo-block copolymer via inclusion complexation between β-CD core and adamantyl-moiety, which was confirmed by 2D NMR. The thermoresponsive micellization of the copolymer was investigated by UV-vis spectroscopy, DLS and TEM. At 37°C, the copolymer at a concentration of 0.2mg/mL in PBS formed micelles with a hydrodynamic diameter of ca. 282nm. The anticancer drug, doxorubicin (DOX), was successfully loaded into the core of the micelles with a loading level of 6% and loading efficiency of 17%. The blank polymer micelles showed good biocompatibility in cell cytotoxicity studies. Moreover, the DOX-loaded micelles demonstrated superior therapeutic effects in AT3B-1-N (MDR-) and AT3B-1 (MDR+) cell lines as compared to free DOX control, overcoming MDR in cancer cells.
Collapse
Affiliation(s)
- Xia Song
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Jing-Ling Zhu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Feng Zhao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Zhong-Xing Zhang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore.
| |
Collapse
|
40
|
Kantonen SA, Henriksen NM, Gilson MK. Evaluation and Minimization of Uncertainty in ITC Binding Measurements: Heat Error, Concentration Error, Saturation, and Stoichiometry. Biochim Biophys Acta Gen Subj 2016; 1861:485-498. [PMID: 27599357 DOI: 10.1016/j.bbagen.2016.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/27/2016] [Accepted: 09/02/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Isothermal titration calorimetry (ITC) is uniquely useful for characterizing binding thermodynamics, because it straightforwardly provides both the binding enthalpy and free energy. However, the precision of the results depends on the experimental setup and how thermodynamic results are obtained from the raw data. METHODS Experiments and Monte Carlo analysis are used to study how uncertainties in injection heat and concentration propagate to binding enthalpies in various scenarios. We identify regimes in which it is preferable to fix the stoichiometry parameter, N, and evaluate the reliability of uncertainties provided by the least squares method. RESULTS The noise in the injection heat is mainly proportional in character, with ~1% and ~3% uncertainty at 27C and 65C, respectively; concentration errors are ~1%. Simulations of experiments based on these uncertainties delineate how experimental design and curve fitting methods influence the uncertainty in the final results. CONCLUSIONS In most cases, experimental uncertainty is minimized by using more injections and by fixing N at its known value. With appropriate technique, the uncertainty in measured binding enthalpies can be kept below ~2% under many conditions, including low C values. GENERAL SIGNIFICANCE We quantify uncertainties in ITC data due to heat and concentration error, and identify practices to minimize these uncertainties. The resulting guidelines are important when ITC data are used quantitatively, such as to test computer simulations of binding. Reproducibility and further study are supported by free distribution of the new software developed here.
Collapse
Affiliation(s)
- Samuel A Kantonen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0736, USA
| | - Niel M Henriksen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0736, USA
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0736, USA.
| |
Collapse
|
41
|
Nayak N, Gopidas KR. Integrative Self-Sorting in a Three Component System Leading to Formation of Long Fibrous Structures. ChemistrySelect 2016. [DOI: 10.1002/slct.201600271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nagaraj Nayak
- Photosciences and Photonics section; Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum - 695019; India and Academy of Scientific and Innovative Research (AcSIR); New Delhi 110001 India
| | - Karical R. Gopidas
- Photosciences and Photonics section; Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum - 695019; India and Academy of Scientific and Innovative Research (AcSIR); New Delhi 110001 India
| |
Collapse
|
42
|
Yang G, Zhang X, Kochovski Z, Zhang Y, Dai B, Sakai F, Jiang L, Lu Y, Ballauff M, Li X, Liu C, Chen G, Jiang M. Precise and Reversible Protein-Microtubule-Like Structure with Helicity Driven by Dual Supramolecular Interactions. J Am Chem Soc 2016; 138:1932-7. [PMID: 26799414 DOI: 10.1021/jacs.5b11733] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein microtubule is a significant self-assembled architecture found in nature with crucial biological functions. However, mimicking protein microtubules with precise structure and controllable self-assembly behavior remains highly challenging. In this work, we demonstrate that by using dual supramolecular interactions from a series of well-designed ligands, i.e., protein-sugar interaction and π-π stacking, highly homogeneous protein microtubes were achieved from tetrameric soybean agglutinin without any chemical or biological modification. Using combined cryo-EM single-particle reconstruction and computational modeling, the accurate structure of protein microtube was determined. The helical protein microtube is consisted of three protofilaments, each of which features an array of soybean agglutinin tetramer linked by the designed ligands. Notably, the microtubes resemble the natural microtubules in their structural and dynamic features such as the shape and diameter and the controllable and reversible assembly behavior, among others. Furthermore, the protein microtubes showed an ability to enhance immune response, demonstrating its great potential for biological applications.
Collapse
Affiliation(s)
- Guang Yang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Xiang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
| | - Zdravko Kochovski
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin, Germany.,TEM Group, Institute of Physics, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
| | - Yufei Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Bin Dai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
| | - Fuji Sakai
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Lin Jiang
- Department of Neurology, Easton Center for Alzheimer's Disease Research, David Geffen School of Medicine, University of California , Los Angeles, California 90095, United States
| | - Yan Lu
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin, Germany
| | - Matthias Ballauff
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin, Germany
| | - Xueming Li
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Ming Jiang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| |
Collapse
|
43
|
Zhu JL, Liu KL, Wen Y, Song X, Li J. Host-guest interaction induced supramolecular amphiphilic star architecture and uniform nanovesicle formation for anticancer drug delivery. NANOSCALE 2016; 8:1332-1337. [PMID: 26692041 DOI: 10.1039/c5nr06744h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin.
Collapse
Affiliation(s)
- Jing-Ling Zhu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore.
| | - Kerh Li Liu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore.
| | - Xia Song
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore.
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore. and Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
44
|
Bazilin AV, Yashkina EA, Yashkin SN. Chromatographic study of complex formation of adamantane derivatives with β-cyclodextrin. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Bennevault V, Huin C, Guégan P, Evgeniya K, Qiu XP, Winnik FM. Temperature sensitive supramolecular self assembly of per-6-PEO-β-cyclodextrin and α,ω-di-(adamantylethyl)poly(N-isopropylacrylamide) in water. SOFT MATTER 2015; 11:6432-6443. [PMID: 26179328 DOI: 10.1039/c5sm01293g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The host/guest interactions in water of a star polymer consisting of a β-cyclodextrin (β-CD) core bearing six poly(ethylene oxide) arms linked to the C6 positions of β-CD (β-CD-PEO7, Mn 5000 g mol(-1)) and α,ω-di-(adamantylethyl)poly(N-isopropylacrylamide) (Ad-PNIPAM-12K, Mn 12,000 g mol(-1)) were studied by 1D and 2D (1)H and (13)C NMR spectroscopy, isothermal calorimetry (ITC), and light scattering (LS). In cold water (T < 26 °C) supramolecular "dumbbell" assemblies, consisting of PNIPAM chains with β-CD/Ad inclusion complexes at each end, formed viaβ-CD-insertion of the terminal Ads through the β-CD secondary face. Light scattering, microcalorimetry (DSC), and DOSY NMR studies indicated that mixed aqueous solutions of β-CD-PEO7 and Ad-PNIPAM-12K undergo a reversible heat-induced phase transition at ∼32 °C, accompanied by a release of a fraction of the Ad-bound β-CD-PEO7 into bulk solution and the formation of aggregated Ad-PNIPAM-12K stabilized by a β-CD-PEO7 shell.
Collapse
Affiliation(s)
- V Bennevault
- Université d'Evry Val d'Essonne, 91025 Evry Cedex, France
| | | | | | | | | | | |
Collapse
|
46
|
Nayak N, Gopidas KR. Unusual self-assembly of a hydrophilic β-cyclodextrin inclusion complex into vesicles capable of drug encapsulation and release. J Mater Chem B 2015; 3:3425-3428. [DOI: 10.1039/c4tb02114b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A hydrophilic β-cyclodextrin bis-inclusion complex forms supramolecular vesicles which can be loaded with the anti-cancer drug doxorubicin. The loaded drug can be released upon addition of a competitive inclusion binder such as adamantane carboxylate.
Collapse
Affiliation(s)
- Nagaraj Nayak
- Photosciences and Photonics Section
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Council of Scientific and Industrial Research (CSIR)
- Trivandrum 695019
| | - Karical R. Gopidas
- Photosciences and Photonics Section
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Council of Scientific and Industrial Research (CSIR)
- Trivandrum 695019
| |
Collapse
|
47
|
Hamon F, Blaszkiewicz C, Buchotte M, Banaszak-Léonard E, Bricout H, Tilloy S, Monflier E, Cézard C, Bouteiller L, Len C, Djedaini-Pilard F. Synthesis and characterization of a new photoinduced switchable β-cyclodextrin dimer. Beilstein J Org Chem 2014; 10:2874-85. [PMID: 25550753 PMCID: PMC4273303 DOI: 10.3762/bjoc.10.304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/06/2014] [Indexed: 12/28/2022] Open
Abstract
This paper reports an efficient preparation of bridged bis-β-CD AZO-CDim 1 bearing azobenzene as a linker and exhibiting high solubility in water. The photoisomerization properties were studied by UV-vis and HPLC and supported by ab initio calculations. The cis/trans ratio of AZO-CDim 1 is 7:93 without irradiation and 37:63 after 120 min of irradiation at 365 nm; the reaction is reversible after irradiation at 254 nm. The photoinduced, switchable binding behavior of AZO-CDim 1 was evaluated by ITC, NMR and molecular modeling in the presence of a ditopic adamantyl guest. The results indicate that AZO-CDim 1 can form two different inclusion complexes with an adamantyl dimer depending on its photoinduced isomers. Both cavities of cis-AZO-CDim 1 are complexed simultaneously by two adamantyl units of the guest forming a 1:1 complex while trans-AZO-CDim 1 seems to lead to the formation of supramolecular polymers with an n:n stoichiometry.
Collapse
Affiliation(s)
- Florian Hamon
- Université de Picardie Jules Verne, Laboratoire de Glycochimie - Antimicrobiens et Agroressources, LG2A FRE CNRS 3517, F-80039 Amiens, France
| | - Claire Blaszkiewicz
- Université de Picardie Jules Verne, Laboratoire de Glycochimie - Antimicrobiens et Agroressources, LG2A FRE CNRS 3517, F-80039 Amiens, France ; Université d'Artois, Unité de Catalyse et de Chimie du Solide (UCCS), CNRS, UMR 8181, Rue Jean Souvraz, SP 18, F-62307 Lens, France
| | - Marie Buchotte
- Transformations Intégrées de la Matière Renouvelable, TIMR EA4295 UTC/ESCOM, F-60200 Compiègne, France
| | - Estelle Banaszak-Léonard
- Transformations Intégrées de la Matière Renouvelable, TIMR EA4295 UTC/ESCOM, F-60200 Compiègne, France
| | - Hervé Bricout
- Université d'Artois, Unité de Catalyse et de Chimie du Solide (UCCS), CNRS, UMR 8181, Rue Jean Souvraz, SP 18, F-62307 Lens, France
| | - Sébastien Tilloy
- Université d'Artois, Unité de Catalyse et de Chimie du Solide (UCCS), CNRS, UMR 8181, Rue Jean Souvraz, SP 18, F-62307 Lens, France
| | - Eric Monflier
- Université d'Artois, Unité de Catalyse et de Chimie du Solide (UCCS), CNRS, UMR 8181, Rue Jean Souvraz, SP 18, F-62307 Lens, France
| | - Christine Cézard
- Université de Picardie Jules Verne, Laboratoire de Glycochimie - Antimicrobiens et Agroressources, LG2A FRE CNRS 3517, F-80039 Amiens, France
| | - Laurent Bouteiller
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 8232, IPCM, Chimie des Polymères, F-75005, Paris, France ; CNRS, UMR 8232, IPCM, Chimie des Polymères, F-75005, Paris, France
| | - Christophe Len
- Transformations Intégrées de la Matière Renouvelable, TIMR EA4295 UTC/ESCOM, F-60200 Compiègne, France
| | - Florence Djedaini-Pilard
- Université de Picardie Jules Verne, Laboratoire de Glycochimie - Antimicrobiens et Agroressources, LG2A FRE CNRS 3517, F-80039 Amiens, France
| |
Collapse
|
48
|
Szillat F, Schmidt BVKJ, Hubert A, Barner-Kowollik C, Ritter H. Redox-Switchable Supramolecular Graft Polymer Formation via Ferrocene-Cyclodextrin Assembly. Macromol Rapid Commun 2014; 35:1293-300. [DOI: 10.1002/marc.201400122] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/19/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Florian Szillat
- Lehrstuhl für Präparative Polymerchemie; Institut für Organische Chemie und Makromolekulare Chemie; Heinrich-Heine Universität; Universitätsstraße 1, Geb. 26.33.00 40225 Düsseldorf Germany
| | - Bernhard V. K. J. Schmidt
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany and Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Artur Hubert
- Lehrstuhl für Präparative Polymerchemie; Institut für Organische Chemie und Makromolekulare Chemie; Heinrich-Heine Universität; Universitätsstraße 1, Geb. 26.33.00 40225 Düsseldorf Germany
| | - Christopher Barner-Kowollik
- Preparative Macromolecular Chemistry; Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76128 Karlsruhe, Germany and Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Helmut Ritter
- Lehrstuhl für Präparative Polymerchemie; Institut für Organische Chemie und Makromolekulare Chemie; Heinrich-Heine Universität; Universitätsstraße 1, Geb. 26.33.00 40225 Düsseldorf Germany
| |
Collapse
|
49
|
Xu W, Zhu X, Wang G, Sun C, Zheng Q, Yang H, Fu N. Host–guest assembly of adamantyl tethered squaraine in β-cyclodextrin for monitoring pH in living cells. RSC Adv 2014. [DOI: 10.1039/c4ra08506j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A host-guest assembly of adamantyl tethered squaraine in β-cyclodextrin has been designed as a sensitive near-infrared fluorescent probe for imaging intracellular pH in living cells.
Collapse
Affiliation(s)
- Wenjian Xu
- Research Institute of Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002, P. R. China
- Key Laboratory of Analysis and Detection for Food Safety
| | - Xiaochan Zhu
- Research Institute of Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002, P. R. China
- Key Laboratory of Analysis and Detection for Food Safety
| | - Guimei Wang
- Research Institute of Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002, P. R. China
- Key Laboratory of Analysis and Detection for Food Safety
| | - Chuanguo Sun
- Research Institute of Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002, P. R. China
- Key Laboratory of Analysis and Detection for Food Safety
| | - Qingfeng Zheng
- Research Institute of Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002, P. R. China
- Key Laboratory of Analysis and Detection for Food Safety
| | - Huanghao Yang
- Key Laboratory of Analysis and Detection for Food Safety
- Ministry of Education & Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou 350108, P. R. China
| | - Nanyan Fu
- Research Institute of Photocatalysis
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou 350002, P. R. China
- Key Laboratory of Analysis and Detection for Food Safety
| |
Collapse
|
50
|
Tran DN, Colesnic D, Adam de Beaumais S, Pembouong G, Portier F, Queijo ÁA, Vázquez Tato J, Zhang Y, Ménand M, Bouteiller L, Sollogoub M. Cyclodextrin-adamantane conjugates, self-inclusion and aggregation versus supramolecular polymer formation. Org Chem Front 2014. [DOI: 10.1039/c4qo00104d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-Cyclodextrin conjugated to adamantane forms self-inclusion complexes instead of supramolecular polymers.
Collapse
|