1
|
Götze JP, Lokstein H. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 2. Chlorophyll b is a B Band Excitation Trap. ACS OMEGA 2023; 8:40015-40023. [PMID: 37929150 PMCID: PMC10620878 DOI: 10.1021/acsomega.3c05896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Chlorophylls (Chls) are known for fast, subpicosecond internal conversion (IC) from ultraviolet/blue absorbing ("B" or "Soret" states) to the energetically lower, red light-absorbing Q states. Consequently, excitation energy transfer (EET) in photosynthetic pigment-protein complexes involving the B states has so far not been considered. We present, for the first time, a theoretical framework for the existence of B-B EET in tightly coupled Chl aggregates such as photosynthetic pigment-protein complexes. We show that according to a Förster resonance energy transport (FRET) scheme, unmodulated B-B EET has an unexpectedly high range. Unsuppressed, it could pose an existential threat-the damage potential of blue light for photochemical reaction centers (RCs) is well-known. This insight reveals so-far undescribed roles for carotenoids (Crts, cf. previous article in this series) and Chl b (this article) of possibly vital importance. Our model system is the photosynthetic antenna pigment-protein complex (CP29). The focus of the study is on the role of Chl b for EET in the Q and B bands. Further, the initial excited pigment distribution in the B band is computed for relevant solar irradiation and wavelength-centered laser pulses. It is found that both accessory pigment classes compete efficiently with Chl a absorption in the B band, leaving only 40% of B band excitations for Chl a. B state population is preferentially relocated to Chl b after excitation of any Chls, due to a near-perfect match of Chl b B band absorption with Chl a B state emission spectra. This results in an efficient depletion of the Chl a population (0.66 per IC/EET step, as compared to 0.21 in a Chl a-only system). Since Chl b only occurs in the peripheral antenna complexes of plants and algae, and RCs contain only Chl a, this would automatically trap potentially dangerous B state population in the antennae, preventing forwarding to the RCs.
Collapse
Affiliation(s)
- Jan P. Götze
- Institut
für Chemie und Biochemie, Fachbereich Biologie Chemie Pharmazie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Heiko Lokstein
- Department
of Chemical Physics and Optics, Charles
University, Ke Karlovu
3, 121 16 Prague
2, Czech Republic
| |
Collapse
|
2
|
Götze JP, Lokstein H. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 1. Carotenoids Intercept and Remove B Band Excitations. ACS OMEGA 2023; 8:40005-40014. [PMID: 37929138 PMCID: PMC10620780 DOI: 10.1021/acsomega.3c05895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Chlorophylls (Chls) are known for fast, subpicosecond internal conversion (IC) from ultraviolet/blue-absorbing ("B" or "Soret" states) to the energetically lower, red light-absorbing Q states. Consequently, excitation energy transfer (EET) in photosynthetic pigment-protein complexes involving the B states has so far not been considered. We present, for the first time, a theoretical framework for the existence of B-B EET in tightly coupled Chl aggregates such as photosynthetic pigment-protein complexes. We show that according to a Förster resonance energy transport (FRET) scheme, unmodulated B-B EET has an unexpectedly high range. Unsuppressed, it could pose an existential threat: the damage potential of blue light for photochemical reaction centers (RCs) is well-known. This insight reveals so far undescribed roles for carotenoids (Crts, this article) and Chl b (next article in this series) of possibly vital importance. Our model system is the photosynthetic antenna pigment-protein complex (CP29). Here, we show that the B → Q IC is assisted by the optically allowed Crt state (S2): The sequence is B → S2 (Crt, unrelaxed) → S2 (Crt, relaxed) → Q. This sequence has the advantage of preventing ∼39% of Chl-Chl B-B EET since the Crt S2 state is a highly efficient FRET acceptor. The B-B EET range and thus the likelihood of CP29 to forward potentially harmful B excitations toward the RC are thus reduced. In contrast to the B band of Chls, most Crt energy donation is energetically located near the Q band, which allows for 74/80% backdonation (from lutein/violaxanthin) to Chls. Neoxanthin, on the other hand, likely donates in the B band region of Chl b, with 76% efficiency. Crts thus act not only in their currently proposed photoprotective roles but also as a crucial building block for any system that could otherwise deliver harmful "blue" excitations to the RCs.
Collapse
Affiliation(s)
- Jan P. Götze
- Institut
für Chemie und Biochemie, Fachbereich Biologie Chemie Pharmazie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Heiko Lokstein
- Department
of Chemical Physics and Optics, Charles
University, Ke Karlovu
3, 121 16 Prague, Czech Republic
| |
Collapse
|
3
|
Nagao R, Ueno Y, Furutani M, Kato K, Shen JR, Akimoto S. Biochemical and spectroscopic characterization of PSI-LHCI from the red alga Cyanidium caldarium. PHOTOSYNTHESIS RESEARCH 2023; 156:315-323. [PMID: 36781711 DOI: 10.1007/s11120-023-00999-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/12/2023] [Indexed: 05/23/2023]
Abstract
Light-harvesting complexes (LHCs) have been diversified in oxygenic photosynthetic organisms, and play an essential role in capturing light energy which is transferred to two types of photosystem cores to promote charge-separation reactions. Red algae are one of the groups of photosynthetic eukaryotes, and their chlorophyll (Chl) a-binding LHCs are specifically associated with photosystem I (PSI). In this study, we purified three types of preparations, PSI-LHCI supercomplexes, PSI cores, and isolated LHCIs, from the red alga Cyanidium caldarium, and examined their properties. The polypeptide bands of PSI-LHCI showed characteristic PSI and LHCI components without contamination by other proteins. The carotenoid composition of LHCI displayed zeaxanthins, β-cryptoxanthins, and β-carotenes. Among the carotenoids, zeaxanthins were enriched in LHCI. On the contrary, both zeaxanthins and β-cryptoxanthins could not be detected from PSI, suggesting that zeaxanthins and β-cryptoxanthins are bound to LHCI but not PSI. A Qy peak of Chl a in the absorption spectrum of LHCI was shifted to a shorter wavelength than those in PSI and PSI-LHCI. This tendency is in line with the result of fluorescence-emission spectra, in which the emission maxima of PSI-LHCI, PSI, and LHCI appeared at 727, 719, and 677 nm, respectively. Time-resolved fluorescence spectra of LHCI represented no 719 and 727-nm fluorescence bands from picoseconds to nanoseconds. These results indicate that energy levels of Chls around/within LHCIs and within PSI are changed by binding LHCIs to PSI. Based on these findings, we discuss the expression, function, and structure of red algal PSI-LHCI supercomplexes.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama-shi, Okayama, 700-8530, Japan.
- Faculty of Agriculture, Shizuoka University, Shizuoka-shi, Shizuoka, 422-8529, Japan.
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe-shi, Hyogo, 657-8501, Japan
- Institute of Arts and Science, Tokyo University of Science, Shinjyuku-ku, Tokyo, 162-8601, Japan
| | - Miyu Furutani
- Graduate School of Science, Kobe University, Kobe-shi, Hyogo, 657-8501, Japan
| | - Koji Kato
- Structural Biology Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-Gun, Hyogo, 679-5198, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama-shi, Okayama, 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe-shi, Hyogo, 657-8501, Japan.
| |
Collapse
|
4
|
Kagatani K, Nagao R, Shen JR, Yamano Y, Takaichi S, Akimoto S. Excitation relaxation dynamics of carotenoids constituting the diadinoxanthin cycle. PHOTOSYNTHESIS RESEARCH 2022; 154:13-19. [PMID: 35951151 DOI: 10.1007/s11120-022-00944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Carotenoids (Cars) exhibit two functions in photosynthesis, light-harvesting and photoprotective functions, which are performed through the excited states of Cars. Therefore, increasing our knowledge on excitation relaxation dynamics of Cars is important for understanding of the functions of Cars. In light-harvesting complexes, there exist Cars functioning by converting the π-conjugation number in response to light conditions. It is well known that some microalgae have a mechanism controlling the conjugation number of Cars, called as the diadinoxanthin cycle; diadinoxanthin (10 conjugations) is accumulated under low light, whereas diatoxanthin (11 conjugations) appears under high light. However, the excitation relaxation dynamics of these two Cars have not been clarified. In the present study, we investigated excitation relaxation dynamics of diadinoxanthin and diatoxanthin in relation to their functions, by the ultrafast fluorescence spectroscopy. After an excitation to the S2 state, the intramolecular vibrational redistribution occurs, followed by the internal conversion to the S1 state. The S2 lifetimes were analyzed to be 175 fs, 155 fs, and 140 fs in diethyl ether, ethanol, and acetone, respectively, for diadinoxanthin, and 155 fs, 135 fs, and 125 fs in diethyl ether, ethanol, and acetone, respectively for diatoxanthin. By converting diadinoxanthin to diatoxanthin, the absorption spectra shift to longer wavelengths by 5-7 nm, and lifetimes of S2 and S1 states decrease by 11-13% and 52%, respectively. Differences in levels and lifetimes of excited states between diadinoxanthin and diatoxanthin are small; therefore, it is suggested that changes in the energy level of chlorophyll a are necessary to efficiently control the functions of the diadinoxanthin cycle.
Collapse
Affiliation(s)
- Kohei Kagatani
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yumiko Yamano
- Comprehensive Education and Research Center, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Shinichi Takaichi
- Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
5
|
Kishida H, Mikkelsen MH. Ultrafast Lifetime and Bright Emission from Graphene Quantum Dots Using Plasmonic Nanogap Cavities. NANO LETTERS 2022; 22:904-910. [PMID: 35044773 DOI: 10.1021/acs.nanolett.1c03419] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graphene quantum dots (GQDs) are quasi-zero-dimensional, carbon-based luminescent nanomaterials that possess desirable physical properties, such as high photostability, low cytotoxicity, good biocompatibility, and excellent water solubility; however, their long radiative lifetimes significantly limit their use in, e.g., light emitting devices where a fast spontaneous emission rate is essential. Despite a few reports on GQD fluorescence enhancements using metal nanostructures, studies of enhanced spontaneous emission rate remain outstanding. Here, we report fast and bright luminescence by coupling gap plasmon modes to nanoparticle emitters. Through precise control over the nanoparticle's local density of states (LDOS), we achieved a 220-fold increase in the PL intensity. The shortest radiative lifetime obtained was below 8.0 ps and limited by the instrument response, which is over 288-fold shorter than the lifetime of uncoupled GQDs. These findings may benefit the future development of rapid displays and open the possibility of constructing high-frequency classical or quantum telecommunication systems.
Collapse
Affiliation(s)
- Hiroyuki Kishida
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Maiken H Mikkelsen
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Nagao R, Kato K, Suzuki T, Ifuku K, Uchiyama I, Kashino Y, Dohmae N, Akimoto S, Shen JR, Miyazaki N, Akita F. Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII supercomplex. NATURE PLANTS 2019; 5:890-901. [PMID: 31358960 DOI: 10.1038/s41477-019-0477-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/13/2019] [Indexed: 05/07/2023]
Abstract
Light-harvesting antenna systems in photosynthetic organisms harvest solar energy and transfer it to the photosynthetic reaction centres to initiate charge-separation and electron-transfer reactions. Diatoms are one of the important groups of oxyphototrophs and possess fucoxanthin chlorophyll a/c-binding proteins (FCPs) as light harvesters. The organization and association pattern of FCP with the photosystem II (PSII) core are unknown. Here we solved the structure of PSII-FCPII supercomplexes isolated from a diatom, Chaetoceros gracilis, by single-particle cryoelectron microscopy. The PSII-FCPII forms a homodimer. In each monomer, two FCP homotetramers and three FCP monomers are associated with one PSII core. The structure reveals a highly complicated protein-pigment network that is different from the green-type light-harvesting apparatus. Comparing these two systems allows the identification of energy transfer and quenching pathways. These findings provide structural insights into not only excitation-energy transfer mechanisms in the diatom PSII-FCPII, but also changes of light harvesters between the red- and green-lineage oxyphototrophs during evolution.
Collapse
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ikuo Uchiyama
- National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
| | - Yasuhiro Kashino
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Hyogo, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| | - Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, Osaka, Japan.
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan.
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
- Japan Science and Technology Agency, PRESTO, Saitama, Japan.
| |
Collapse
|
7
|
Nagao R, Kagatani K, Ueno Y, Shen JR, Akimoto S. Ultrafast Excitation Energy Dynamics in a Diatom Photosystem I-Antenna Complex: A Femtosecond Fluorescence Upconversion Study. J Phys Chem B 2019; 123:2673-2678. [DOI: 10.1021/acs.jpcb.8b12086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kohei Kagatani
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
8
|
Smith HL, McAusland L, Murchie EH. Don't ignore the green light: exploring diverse roles in plant processes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2099-2110. [PMID: 28575474 DOI: 10.1093/jxb/erx098] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The pleasant green appearance of plants, caused by their reflectance of wavelengths in the 500-600 nm range, might give the impression that green light is of minor importance in biology. This view persists to an extent. However, there is strong evidence that these wavelengths are not only absorbed but that they also drive and regulate physiological responses and anatomical traits in plants. This review details the existing evidence of essential roles for green wavelengths in plant biology. Absorption of green light is used to stimulate photosynthesis deep within the leaf and canopy profile, contributing to carbon gain and likely crop yield. In addition, green light also contributes to the array of signalling information available to leaves, resulting in developmental adaptation and immediate physiological responses. Within shaded canopies this enables optimization of resource-use efficiency and acclimation of photosynthesis to available irradiance. In this review, we suggest that plants may use these wavelengths not just to optimize stomatal aperture but also to fine-tune whole-canopy efficiency. We conclude that all roles for green light make a significant contribution to plant productivity and resource-use efficiency. We also outline the case for using green wavelengths in applied settings such as crop cultivation in LED-based agriculture and horticulture.
Collapse
Affiliation(s)
- Hayley L Smith
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Leicestershire LE12 5JS, UK
| | - Lorna McAusland
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Leicestershire LE12 5JS, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Leicestershire LE12 5JS, UK
| |
Collapse
|
9
|
Tanaka K, Iida S, Takaichi S, Mimuro M, Murakami A, Akimoto S. Excitation relaxation dynamics and energy transfer in pigment-protein complexes of a dinoflagellate, revealed by ultrafast fluorescence spectroscopy. PHOTOSYNTHESIS RESEARCH 2016; 130:183-191. [PMID: 26942582 DOI: 10.1007/s11120-016-0238-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Photosynthetic light-harvesting complexes, found in aquatic photosynthetic organisms, contain a variety of carotenoids and chlorophylls. Most of the photosynthetic dinoflagellates possess two types of light-harvesting antenna complexes: peridinin (Peri)-chlorophyll (Chl) a/c-protein, as an intrinsic thylakoid membrane complex protein (iPCP), and water-soluble Peri-Chl a-protein, as an extrinsic membrane protein (sPCP) on the inner surface of the thylakoid. Peri is a unique carotenoid that has eight C=C bonds and one C=O bond, which results in a characteristic absorption band in the green wavelength region. In the present study, excitation relaxation dynamics of Peri in solution and excitation energy transfer processes of sPCP and the thylakoid membranes, prepared from the photosynthetic dinoflagellate, Symbiodinium sp., are investigated by ultrafast time-resolved fluorescence spectroscopy. We found that Peri-to-Chl a energy transfer occurs via the Peri S1 state with a time constant of 1.5 ps or 400 fs in sPCP or iPCP, respectively, and that Chl c-to-Chl a energy transfer occurs in the time regions of 350-400 fs and 1.8-2.6 ps.
Collapse
Affiliation(s)
- Kazunori Tanaka
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Satoko Iida
- Kobe University Research Center for Inland Seas, Awaji, 656-2401, Japan
| | - Shinichi Takaichi
- Department of Biology, Nippon Medical School, Musashino, 180-0023, Japan
| | - Mamoru Mimuro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Akio Murakami
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
- Kobe University Research Center for Inland Seas, Awaji, 656-2401, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
- Molecular Photoscience Research Center, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
10
|
Hamada F, Murakami A, Akimoto S. Comparative Analysis of Ultrafast Excitation Energy-Transfer Pathways in Three Strains of Divinyl Chlorophyll a/b-Containing Cyanobacterium, Prochlorococcus marinus. J Phys Chem B 2015; 119:15593-600. [DOI: 10.1021/acs.jpcb.5b10073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fumiya Hamada
- Graduate
School of Science, Kobe University, Kobe 657-8501, Japan
| | - Akio Murakami
- Graduate
School of Science, Kobe University, Kobe 657-8501, Japan
- Kobe University Research Center for Inland Seas, Awaji 656-2401, Japan
| | - Seiji Akimoto
- Graduate
School of Science, Kobe University, Kobe 657-8501, Japan
- Molecular
Photoscience Research Center, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
11
|
Akimoto S, Shinoda T, Chen M, Allakhverdiev SI, Tomo T. Energy transfer in the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, analyzed by time-resolved fluorescence spectroscopies. PHOTOSYNTHESIS RESEARCH 2015; 125:115-122. [PMID: 25648637 DOI: 10.1007/s11120-015-0091-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
We prepared thylakoid membranes from Halomicronema hongdechloris cells grown under white fluorescent light or light from far-red (740 nm) light-emitting diodes, and observed their energy-transfer processes shortly after light excitation. Excitation-relaxation processes were examined by steady-state and time-resolved fluorescence spectroscopies. Two time-resolved fluorescence techniques were used: time-correlated single photon counting and fluorescence up-conversion methods. The thylakoids from the cells grown under white light contained chlorophyll (Chl) a of different energies, but were devoid of Chl f. At room temperature, the excitation energy was equilibrated among the Chl a pools with a time constant of 6.6 ps. Conversely, the thylakoids from the cells grown under far-red light possessed both Chl a and Chl f. Two energy-transfer pathways from Chl a to Chl f were identified with time constants of 1.3 and 5.0 ps, and the excitation energy was equilibrated between the Chl a and Chl f pools at room temperature. We also examined the energy-transfer pathways from phycobilisome to the two photosystems under white-light cultivation.
Collapse
Affiliation(s)
- Seiji Akimoto
- Molecular Photoscience Research Center, Kobe University, Kobe, 657-8501, Japan,
| | | | | | | | | |
Collapse
|
12
|
Araki M, Akimoto S, Mimuro M, Tsuchiya T. Artificially acquired chlorophyll b is highly acceptable to the thylakoid-lacking cyanobacterium, Gloeobacter violaceus PCC 7421. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:155-162. [PMID: 24508456 DOI: 10.1016/j.plaphy.2014.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Unicellular cyanobacterium Gloeobacter violaceus is an only known oxygenic photosynthetic organism that lacks thylakoid membrane. Molecular phylogenetic analyses indicate that G. violaceus is an early-branching cyanobacterium within cyanobacterial clade. Therefore, the photosynthetic system of G. violaceus is considered to be partly similar to that of the ancestral cyanobacteria that would lack thylakoid membrane. G. violaceus possesses chlorophyll (Chl) a as the only chlorophyll species like most cyanobacteria. It was proposed that the ancestral oxygenic photosynthetic organism had not only Chl a and phycobilins but also Chl b. However, no organism which contains both Chl a and Chl b and lacks thylakoid membrane has been found in nature. Therefore, we introduced the chlorophyllide a oxygenase gene responsible for Chl b biosynthesis into G. violaceus. In the resultant transformant, Chl b accumulated at approximately 11% of total Chl independent of growth phase. Photosystem I complexes isolated from the transformant contained Chl b at 9.9% of total Chl. The presence of Chl b in the photosystem I complexes did not inhibit trimer formation. Furthermore, time-resolved fluorescence spectrum demonstrated that Chl b transferred energy to Chl a in the photosystem I complexes and did not disturb the energy transfer among the Chl a molecules. These results show that G. violaceus is tolerant to artificially produced Chl b and suggest the flexibility of photosystem for Chl composition in the ancestral oxygenic photosynthetic organism.
Collapse
Affiliation(s)
- Mie Araki
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Seiji Akimoto
- Molecular Photoscience Research Center, Kobe University, Kobe, 657-8501, Japan; Japan Science and Technology Agency, CREST, Kobe 657-8501, Japan
| | - Mamoru Mimuro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Tohru Tsuchiya
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
13
|
Akimoto S, Teshigahara A, Yokono M, Mimuro M, Nagao R, Tomo T. Excitation relaxation dynamics and energy transfer in fucoxanthin-chlorophyll a/c-protein complexes, probed by time-resolved fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1514-21. [PMID: 24530875 DOI: 10.1016/j.bbabio.2014.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 01/10/2023]
Abstract
In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx-Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300fs. Chl c transferred excitation energy to Chl a with time constants of 500-600fs (intra-complex transfer), 600-700fs (intra-complex transfer), and 4-6ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Seiji Akimoto
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan; Graduate School of Science, Kobe University, Kobe 657-8501, Japan; CREST, Japan Science and Technology Agency (JST), Kobe 657-8501, Japan.
| | | | - Makio Yokono
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan; CREST, Japan Science and Technology Agency (JST), Kobe 657-8501, Japan
| | - Mamoru Mimuro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tatsuya Tomo
- Faculty of Science, Tokyo University of Science, Tokyo 162-8601 Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
14
|
Šlouf V, Fuciman M, Dulebo A, Kaftan D, Koblížek M, Frank HA, Polívka T. Carotenoid charge transfer states and their role in energy transfer processes in LH1-RC complexes from aerobic anoxygenic phototrophs. J Phys Chem B 2012; 117:10987-99. [PMID: 23130956 DOI: 10.1021/jp309278y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Light-harvesting complexes ensure necessary flow of excitation energy into photosynthetic reaction centers. In the present work, transient absorption measurements were performed on LH1-RC complexes isolated from two aerobic anoxygenic phototrophs (AAPs), Roseobacter sp. COL2P containing the carotenoid spheroidenone, and Erythrobacter sp. NAP1 which contains the carotenoids zeaxanthin and bacteriorubixanthinal. We show that the spectroscopic data from the LH1-RC complex of Roseobacter sp. COL2P are very similar to those previously reported for Rhodobacter sphaeroides, including the transient absorption spectrum originating from the intramolecular charge-transfer (ICT) state of spheroidenone. Although the ICT state is also populated in LH1-RC complexes of Erythrobacter sp. NAP1, its appearance is probably related to the polarity of the bacteriorubixanthinal environment rather than to the specific configuration of the carotenoid, which we hypothesize is responsible for populating the ICT state of spheroidenone in LH1-RC of Roseobacter sp. COL2P. The population of the ICT state enables efficient S1/ICT-to-bacteriochlorophyll (BChl) energy transfer which would otherwise be largely inhibited for spheroidenone and bacteriorubixanthinal due to their low energy S1 states. In addition, the triplet states of these carotenoids appear well-tuned for efficient quenching of singlet oxygen or BChl-a triplets, which is of vital importance for oxygen-dependent organisms such as AAPs.
Collapse
Affiliation(s)
- Václav Šlouf
- Faculty of Science, University of South Bohemia , Branišovská 31, 370 05 České Budějovice, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
15
|
Fuciman M, Enriquez MM, Polívka T, Dall'Osto L, Bassi R, Frank HA. Role of xanthophylls in light harvesting in green plants: a spectroscopic investigation of mutant LHCII and Lhcb pigment-protein complexes. J Phys Chem B 2012; 116:3834-49. [PMID: 22372667 DOI: 10.1021/jp210042z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spectroscopic properties and energy transfer dynamics of the protein-bound chlorophylls and xanthophylls in monomeric, major LHCII complexes, and minor Lhcb complexes from genetically altered Arabidopsis thaliana plants have been investigated using both steady-state and time-resolved absorption and fluorescence spectroscopic methods. The pigment-protein complexes that were studied contain Chl a, Chl b, and variable amounts of the xanthophylls, zeaxanthin (Z), violaxanthin (V), neoxanthin (N), and lutein (L). The complexes were derived from mutants of plants denoted npq1 (NVL), npq2lut2 (Z), aba4npq1lut2 (V), aba4npq1 (VL), npq1lut2 (NV), and npq2 (LZ). The data reveal specific singlet energy transfer routes and excited state spectra and dynamics that depend on the xanthophyll present in the complex.
Collapse
Affiliation(s)
- Marcel Fuciman
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | | | | | | | | | | |
Collapse
|
16
|
Molecular environments of divinyl chlorophylls in Prochlorococcus and Synechocystis: Differences in fluorescence properties with chlorophyll replacement. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:471-81. [DOI: 10.1016/j.bbabio.2011.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 02/22/2011] [Accepted: 02/28/2011] [Indexed: 11/21/2022]
|
17
|
Martiskainen J, Kananavičius R, Linnanto J, Lehtivuori H, Keränen M, Aumanen V, Tkachenko N, Korppi-Tommola J. Excitation energy transfer in the LHC-II trimer: from carotenoids to chlorophylls in space and time. PHOTOSYNTHESIS RESEARCH 2011; 107:195-207. [PMID: 21287272 DOI: 10.1007/s11120-011-9626-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 01/17/2011] [Indexed: 05/30/2023]
Abstract
Exciton model for description of experimentally determined excitation energy transfer from carotenoids to chlorophylls in the LHC-II trimer of spinach is presented. Such an approach allows connecting the excitonic states to the spatial structure of the complex and hence descriptions of advancements of the initially created excitations in space and time. Carotenoids were excited at 490 nm and at 500 nm and induced absorbance changes probed in the Chl Q(y) region to provide kinetic data that were interpreted by using the results from exciton calculations. Calculations included the 42 chlorophylls and the 12 carotenoids of the complex, Soret, Q(x) and Q(y) states of the chlorophylls, and the main absorbing S(2) state of the carotenoids. According to the calculations excitation at 500 nm populates mostly a mixed Lut S(2) Chl a Soret state, from where excitation is transferred to the Q(x) and Q(y) states of the Chl a's on the stromal side. Internal conversion of the mixed state to a mixed Lut S(1) and Chl a Q(y) state provides a channel for Lut S(1) to Chl a Q(y) energy transfer. The results from the calculations support a picture where excitation at 490 nm populates primarily a mixed neoxanthin S(2) Chl b Soret state. From this state excitation from neoxanthin is transferred to iso-energetic Chl b Soret states or via internal conversion to S(1) Chl b Q(y) states. From the Soret states excitation proceeds via internal conversion to Q(y) states of Chl b's mostly on the lumenal side. A rapid Chl b to Chl a transfer and subsequent transfer to the stromal side Chl a's and to the final state completes the process after 490 nm excitation. The interpretation is further supported by the fact that excitation energy transfer kinetics after excitation of neoxanthin at 490 nm and the Chl b Q(y) band at 647 nm (Linnanto et al., Photosynth Res 87:267-279, 2006) are very similar.
Collapse
Affiliation(s)
- Jari Martiskainen
- Physical Chemistry Laboratory, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Polívka T, Frank HA. Molecular factors controlling photosynthetic light harvesting by carotenoids. Acc Chem Res 2010; 43:1125-34. [PMID: 20446691 DOI: 10.1021/ar100030m] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carotenoids are naturally occurring pigments that absorb light in the spectral region in which the sun irradiates maximally. These molecules transfer this energy to chlorophylls, initiating the primary photochemical events of photosynthesis. Carotenoids also regulate the flow of energy within the photosynthetic apparatus and protect it from photoinduced damage caused by excess light absorption. To carry out these functions in nature, carotenoids are bound in discrete pigment-protein complexes in the proximity of chlorophylls. A few three-dimensional structures of these carotenoid complexes have been determined by X-ray crystallography. Thus, the stage is set for attempting to correlate the structural information with the spectroscopic properties of carotenoids to understand the molecular mechanism(s) of their function in photosynthetic systems. In this Account, we summarize current spectroscopic data describing the excited state energies and ultrafast dynamics of purified carotenoids in solution and bound in light-harvesting complexes from purple bacteria, marine algae, and green plants. Many of these complexes can be modified using mutagenesis or pigment exchange which facilitates the elucidation of correlations between structure and function. We describe the structural and electronic factors controlling the function of carotenoids as energy donors. We also discuss unresolved issues related to the nature of spectroscopically dark excited states, which could play a role in light harvesting. To illustrate the interplay between structural determinations and spectroscopic investigations that exemplifies work in the field, we describe the spectroscopic properties of four light-harvesting complexes whose structures have been determined to atomic resolution. The first, the LH2 complex from the purple bacterium Rhodopseudomonas acidophila, contains the carotenoid rhodopin glucoside. The second is the LHCII trimeric complex from higher plants which uses the carotenoids lutein, neoxanthin, and violaxanthin to transfer energy to chlorophyll. The third, the peridinin-chlorophyll-protein (PCP) from the dinoflagellate Amphidinium carterae, is the only known complex in which the bound carotenoid (peridinin) pigments outnumber the chlorophylls. The last is xanthorhodopsin from the eubacterium Salinibacter ruber. This complex contains the carotenoid salinixanthin, which transfers energy to a retinal chromophore. The carotenoids in these pigment-protein complexes transfer energy with high efficiency by optimizing both the distance and orientation of the carotenoid donor and chlorophyll acceptor molecules. Importantly, the versatility and robustness of carotenoids in these light-harvesting pigment-protein complexes have led to their incorporation in the design and synthesis of nanoscale antenna systems. In these bioinspired systems, researchers are seeking to improve the light capture and use of energy from the solar emission spectrum.
Collapse
Affiliation(s)
- Tomáš Polívka
- Institute of Physical Biology, University of South Bohemia, Zámek 136, 373 33 Nové Hrady, Czech Republic
- Biological Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Harry A. Frank
- Department of Chemistry, 55 North Eagleville Road, University of Connecticut, Storrs, Connecticut 06269-3060
| |
Collapse
|
19
|
Mimuro M, Yokono M, Akimoto S. Variations in Photosystem I Properties in the Primordial CyanobacteriumGloeobacter violaceusPCC 7421. Photochem Photobiol 2010; 86:62-9. [DOI: 10.1111/j.1751-1097.2009.00619.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R. Green Light Drives Leaf Photosynthesis More Efficiently than Red Light in Strong White Light: Revisiting the Enigmatic Question of Why Leaves are Green. ACTA ACUST UNITED AC 2009; 50:684-97. [DOI: 10.1093/pcp/pcp034] [Citation(s) in RCA: 441] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Akimoto S, Yokono M, Higuchi M, Tomo T, Takaichi S, Murakami A, Mimuro M. Solvent effects on excitation relaxation dynamics of a keto-carotenoid, siphonaxanthin. Photochem Photobiol Sci 2008; 7:1206-9. [PMID: 18846284 DOI: 10.1039/b802658k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvent effects on relaxation dynamics of a keto-carotenoid, siphonaxanthin, were investigated by means of the femtosecond time-resolved fluorescence spectroscopy. After excitation to the S2 state of siphonaxanthin, the S2-->1(n, pi*) internal conversion occurred with a time constant of 30-35 fs, followed by the 1(n, pi*)-->S1 internal conversion in 180-200 fs. Solvent dependence of the internal conversions was small, however intensities of the S1 fluorescence with its lifetime of longer than 10 ps were enhanced in methanol. These were explained by displacement of the potential surfaces and interaction through the hydrogen-bond between the C=O group of siphonaxanthin and solvents.
Collapse
Affiliation(s)
- Seiji Akimoto
- Molecular Photoscience Research Center, Kobe University, 657-8501, Kobe, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Energy transfer processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:55-65. [DOI: 10.1016/j.bbabio.2007.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 11/23/2022]
|
23
|
Akimoto S, Tomo T, Naitoh Y, Otomo A, Murakami A, Mimuro M. Identification of a New Excited State Responsible for the in vivo Unique Absorption Band of Siphonaxanthin in the Green AlgaCodium fragile. J Phys Chem B 2007; 111:9179-81. [PMID: 17629321 DOI: 10.1021/jp071766p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A marine green alga, Codium fragile, exhibits a characteristic in vivo absorption band of a specific keto-carotenoid, siphonaxanthin, at 535 nm. We examined the ultrafast fluorescence kinetics by direct excitation of this band after purification of light-harvesting complex II. On the basis of a high fluorescence anisotropy (0.39) up to 1 ps and a very short lifetime (60 fs), we identified the 535 nm band as a new electronically excited state (Sx) located between the S1 and S2 states. Excited-state dynamics of the Sx state were further discussed in relation to the energy transfer processes in the complexes.
Collapse
Affiliation(s)
- Seiji Akimoto
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Akimoto S, Mimuro M. Application of Time-resolved Polarization Fluorescence Spectroscopy in the Femtosecond Range to Photosynthetic Systems. Photochem Photobiol 2006; 83:163-70. [PMID: 16643087 DOI: 10.1562/2006-02-28-ir-825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Time-resolved polarization fluorescence spectroscopy in the femtosecond range was applied to a photosynthetic antenna system. Specific signals of excited states were obtained by simultaneous measurements of fluorescence rise and decay curves and polarized spectroscopy. Relaxation processes of carotenoids, energy transfer from carotenoids to chlorophyll (Chl) a, and energy migration among pigment pools of Chl a and Chl b were clearly resolved. Two new characteristics of carotenoid molecules were revealed only by anisotropy measurements. A new singlet excited state between the well known S2 (1Bu(+)) and S1 (2Ag(-)) states was resolved by an intermediary anisotropy (r(t) = 0.30) for siphonaxanthin in chloroplasts of Codium fragile. Time-dependent changes in anisotropy with an initial value of 0.52 (r(0) = 0.52) were recorded during the relaxation of lutein molecules in the light-harvesting complexes II of Arabidopsis thaliana, and this was interpreted as a strong interaction between two lutein molecules in the pigment-protein complexes. Other examples of the application of this method were also discussed.
Collapse
Affiliation(s)
- Seiji Akimoto
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|