1
|
Turčin V, Nemirovich T, Jungwirth P. From unbound to bound states: Ab initio molecular dynamics of ammonia clusters with an excess electron. J Chem Phys 2024; 161:144302. [PMID: 39378163 DOI: 10.1063/5.0224249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Ab initio molecular dynamics simulations of negatively charged clusters of 2-48 ammonia molecules were performed to elucidate the electronic stability of the excess electron as a function of cluster size. We show that while the electronic stability of finite temperature clusters increases with cluster size, as few as 5-7 ammonia molecules can bind an excess electron, reaching a vertical binding energy slightly less than half of the bulk value for the largest system studied. These results, which are in agreement with previous studies wherever available, allowed us to analyze the excess electron binding patterns in terms of its radius of gyration and shape anisotropy and provide a qualitative interpretation based on a particle-in-a-spherical-well model.
Collapse
Affiliation(s)
- Vít Turčin
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Tatiana Nemirovich
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
2
|
Wang X, Krause P, Kirschbaum T, Palczynski K, Dzubiella J, Bande A. Photo-excited charge transfer from adamantane to electronic bound states in water. Phys Chem Chem Phys 2024; 26:8158-8176. [PMID: 38380443 DOI: 10.1039/d3cp04602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Aqueous nanodiamonds illuminated by UV light produce free solvated electrons, which may drive high-energy reduction reactions in water. However, the influence of water conformations on the excited-state electron-transfer mechanism are still under debate. In this work, we offer a theoretical study of charge-transfer states in adamantane-water structures obtained by linear-response time-dependent density-functional theory. Small water clusters with broken hydrogen bonds are found to efficiently bind the electron from adamantane. A distinction is made with respect to the nature of the water clusters: some bind the electron in a water cavity, others along a strong permanent total dipole. These two types of bound states are more strongly binding, the higher their electron affinity and their positive electrostatic potential, the latter being dominated by the energy of the lowest unoccupied molecular orbital of the isolated water clusters. Structural sampling in a thermal equilibrium at room temperature via molecular dynamics snapshots confirms under which conditions the underlying waters clusters can occur and verifies that broken hydrogen bonds in the water network close to adamantane can create traps for the solvated electron.
Collapse
Affiliation(s)
- Xiangfei Wang
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Pascal Krause
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Thorren Kirschbaum
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institute of Mathematics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Karol Palczynski
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Joachim Dzubiella
- Applied Theoretical Physics - Computational Physics, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, 79104 Freiburg, Germany.
| | - Annika Bande
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167 Hannover, Germany
| |
Collapse
|
3
|
Tyagi R, Voora VK. Single-Pole Polarization Models: Rapid Evaluation of Electron Affinities of Solvated-Electron and Superatomic Molecular Anionic States. J Phys Chem Lett 2024; 15:1218-1226. [PMID: 38276789 DOI: 10.1021/acs.jpclett.3c03392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We propose a single-parameter effective one-particle potential, termed the single-pole exchange-correlation (1p-XC), to rapidly evaluate electron affinities (EAs) of nonvalence electronic states of molecular clusters and nanoassemblies. The model combines exact-exchange and the random phase approximation (RPA) correlation potential with a single-pole approximation to model the frequency-dependent polarization function. It captures long-range static and dynamic-frequency effects in the correlation potential, with mean absolute errors of 0.06 eV for EAs of hydrated- and ammoniated-electron clusters with EA values in the range 0.24-1.77 eV. The 1p-XC approximation enables EA estimation with a computational wall-time similar to that of hybrid functionals. The model also provides a compressed-basis, which significantly reduces the rank of higher-level parameter-free one-particle Hamiltonians and further simplifies the computation of EAs. The compressed-basis approach is used to model the hybridization of superatomic molecular states of (C60)2- and (C60)3-, thereby verifying previous model Hamiltonian studies.
Collapse
Affiliation(s)
- Ritaj Tyagi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Vamsee K Voora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
4
|
Liu X, Humeniuk A, Glover WJ. Conical Intersections in Solution with Polarizable Embedding: Integral-Exact Direct Reaction Field. J Chem Theory Comput 2022; 18:6826-6839. [PMID: 36251342 DOI: 10.1021/acs.jctc.2c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A common strategy to exploring the properties and reactivity of complex systems is to use quantum mechanics/molecular mechanics (QM/MM) embedding, wherein a QM region is defined and treated with electronic structure theory, and the remainder of the system is treated with a force field. Important to the description of electronic excited states, especially those of charge-transfer character, is the treatment of the coupling between the QM and MM subsystems. The state of the art is to use a polarizable force field for the MM region and mutually couple the QM wavefunction and MM induced dipoles, in addition to the usual electrostatic embedding, yielding a polarizable embedding (QM/MM-Pol) approach. However, we showed previously that current popular QM/MM-Pol approaches exhibit issues of root flipping and/or incorrect descriptions of electronic crossings in multistate calculations [J. Chem. Theory Comput. 14, 2137 (2018)]. Here, we demonstrate a solution to these problems with an integral-exact reformulation of the direct reaction field approach of Thole and Van Duijnen (QM/MM-IEDRF). The resulting embedding potential includes one- and two-electron operators and many-body dipole-induced dipole interactions and thus includes a natural description of the screening of electron-electron interactions by the MM induced dipoles. Pauli repulsion from the environment is mimicked by effective core potentials on the MM atoms. Inherent to the DRF approach is the assumption that MM dipoles respond instantaneously to the positions of the QM electrons; therefore, dispersion interactions are captured approximately. All electronic states are eigenfunctions of the same Hamiltonian, while the polarization induced in the environment and the associated energetic stabilization are unique to each state. This allows for a consistent definition of transition properties and state crossings. We demonstrate QM/MM-IEDRF by exploring the influence of a (polarizable) inert xenon matrix environment on the conical intersection underlying the photoisomerization of ethylene.
Collapse
Affiliation(s)
- Xiao Liu
- NYU Shanghai, 1555 Century Avenue, Shanghai200122, China
| | - Alexander Humeniuk
- NYU Shanghai, 1555 Century Avenue, Shanghai200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai200062, China
| | - William J Glover
- NYU Shanghai, 1555 Century Avenue, Shanghai200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai200062, China.,Department of Chemistry, New York University, New York, New York10003, United States
| |
Collapse
|
5
|
Moreno N, Hadad CZ, Restrepo A. Microsolvation of electrons by a handful of ammonia molecules. J Chem Phys 2022; 157:134301. [PMID: 36209021 DOI: 10.1063/5.0107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Microsolvation of electrons in ammonia is studied here via anionic NH3 n - clusters with n = 2-6. Intensive samplings of the corresponding configurational spaces using second-order perturbation theory with extended basis sets uncover rich and complex energy landscapes, heavily populated by many local minima in tight energy windows as calculated from highly correlated coupled cluster methods. There is a marked energetical preference for structures that place the excess electron external to the molecular frame, effectively coordinating it with the three protons from a single ammonia molecule. Overall, as the clusters grow in size, the lowest energy dimer serves as the basic motif over which additional ammonia molecules are attached via unusually strong charge-assisted hydrogen bonds. This is a priori quite unexpected because, on electrostatic grounds, the excess electron would be expected to be in contact with as many protons as possible. Accordingly, a full quantum mechanical treatment of the bonding interactions under the tools provided by the quantum theory of atoms in molecules is carried out in order to dissect and understand the nature of intermolecular contacts. Vertical detachment energies reveal bound electrons even for n = 2.
Collapse
Affiliation(s)
- Norberto Moreno
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Cacier Z Hadad
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
6
|
Rana B, Coons MP, Herbert JM. Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT. J Phys Chem Lett 2022; 13:5275-5284. [PMID: 35674719 DOI: 10.1021/acs.jpclett.2c01187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree-Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results.
Collapse
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Marc P Coons
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Zhu Y, Herbert JM. High harmonic spectra computed using time-dependent Kohn-Sham theory with Gaussian orbitals and a complex absorbing potential. J Chem Phys 2022; 156:204123. [PMID: 35649850 DOI: 10.1063/5.0079910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High harmonic spectra for H2 and H2 + are simulated by solving the time-dependent Kohn-Sham equation in the presence of a strong laser field using an atom-centered Gaussian representation of the density and a complex absorbing potential. The latter serves to mitigate artifacts associated with the finite extent of the basis functions, including spurious reflection of the outgoing electronic wave packet. Interference between the outgoing and reflected waves manifests as peak broadening in the spectrum as well as the appearance of spurious high-energy peaks after the harmonic progression has terminated. We demonstrate that well-resolved spectra can be obtained through the use of an atom-centered absorbing potential. As compared to grid-based algorithms, the present approach is more readily extensible to larger molecules.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Chemistry and Biochemistry, and Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, and Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
8
|
Fabian MD, Shpiro B, Baer R. Linear Weak Scalability of Density Functional Theory Calculations without Imposing Electron Localization. J Chem Theory Comput 2022; 18:2162-2170. [PMID: 35343234 PMCID: PMC9009081 DOI: 10.1021/acs.jctc.1c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marcel D. Fabian
- Fritz Haber Research Center for Molecular Dynamics and the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ben Shpiro
- Fritz Haber Research Center for Molecular Dynamics and the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Roi Baer
- Fritz Haber Research Center for Molecular Dynamics and the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Jong GC, Pak GI, Pak NJ, Jong RJ, Jon Y. Classification of small water clusters (SWCs) by (K, J, nO0)-X notation and study on conductive-like screening model (COSMO) densities of SWCs. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Ahmadi S. Hydrated electrons and cluster science. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Shen Z, Peng S, Glover WJ. Flexible boundary layer using exchange for embedding theories. II. QM/MM dynamics of the hydrated electron. J Chem Phys 2021; 155:224113. [PMID: 34911320 DOI: 10.1063/5.0067861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The FlexiBLE embedding method introduced in Paper I [Z. Shen and W. J. Glover, J. Chem. Phys. 155, 224112 (2021)] is applied to explore the structure and dynamics of the aqueous solvated electron at an all-electron density functional theory Quantum Mechanics/Molecular Mechanics level. Compared to a one-electron mixed quantum/classical description, we find the dynamics of the many-electron model of the hydrated electron exhibits enhanced coupling to water OH stretch modes. Natural bond orbital analysis reveals this coupling is due to significant population of water OH σ* orbitals, reaching 20%. Based on this, we develop a minimal frontier orbital picture of the hydrated electron involving a cavity orbital and important coupling to 4-5 coordinating OH σ* orbitals. Implications for the interpretation of the spectroscopy of this interesting species are discussed.
Collapse
Affiliation(s)
- Zhuofan Shen
- NYU Shanghai, 1555 Century Ave., Shanghai 200122, China
| | - Shaoting Peng
- NYU Shanghai, 1555 Century Ave., Shanghai 200122, China
| | | |
Collapse
|
12
|
Assessment of DFT methods for the prediction of detachment energies and electronic structures of complex and multiply charged anions. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Moreno N, Restrepo A, Hadad CZ. Structure, energy, and bonding in anionic water tetramers obtained by exhaustive search. J Chem Phys 2021; 155:044304. [PMID: 34340390 DOI: 10.1063/5.0056378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An analysis of the structures, some energy related properties, and key aspects of the bonding nature of the microsolvated electron with four water molecules is presented. The study is based on an exhaustive potential energy surface scan of the ground state of (H2O)4 - at the UCCSD(T)/6-311(3+,4+)G(d,p)//UMP2/6-311(3+,4+)G(d,p) level. A total of 18 structures, most of them not reported before, spanning in an energy range of 8.8 kcal mol-1 were found. The energetic stability of the clusters is dictated by the effect of the excess electron on their structures, on their partial fragmentation, and on the hydrogen bonds' framework. Vertical detachment energies depend on the number of water molecules holding the excess electron in "direct contact" to their two protons at the same time and, to a lesser extent, also depend on the hydrogen bond sequence in the rest of the structure. In general, hydrogen bonds in (H2O)4 - are of closed shell character, and there are other less common interactions assisted by the excess electron.
Collapse
Affiliation(s)
- Norberto Moreno
- Instituto de Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Cacier Z Hadad
- Instituto de Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
14
|
Harb H, Hratchian HP. ΔSCF Dyson orbitals and pole strengths from natural ionization orbitals. J Chem Phys 2021; 154:084104. [DOI: 10.1063/5.0040454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Hassan Harb
- Department of Chemistry and Chemical Biology and Center for Chemical Computation and Theory, University of California, Merced, California 95343, USA
| | - Hrant P. Hratchian
- Department of Chemistry and Chemical Biology and Center for Chemical Computation and Theory, University of California, Merced, California 95343, USA
| |
Collapse
|
15
|
Baranyi B, Turi L. Ab Initio Molecular Dynamics Simulations of Solvated Electrons in Ammonia Clusters. J Phys Chem B 2020; 124:7205-7216. [PMID: 32697593 PMCID: PMC7458421 DOI: 10.1021/acs.jpcb.0c03908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated excess electron solvation dynamics in (NH3)n- ammonia clusters in the n = 8-32 size range by performing finite temperature molecular dynamics simulations. In particular, we focused on three possible scenarios. The first case is designed to model electron attachment to small neutral ammonia clusters (n ≤ ∼10) that form hydrogen-bonded chains. The excess electron is bound to the clusters via dipole bound states, and persists with a VDE of ∼160 meV at 100 K for the n = 8 cluster. The coupled nuclear and electronic relaxation is fast (within ∼100 fs) and takes place predominantly by intermolecular librational motions and the intramolecular umbrella mode. The second scenario illustrates the mechanism of excess electron attachment to cold compact neutral clusters of medium size (8 ≤ n ≤ 32). The neutral clusters show increasing tendency with size to bind the excess electron on the surface of the clusters in weakly bound, diffuse, and highly delocalized states. Anionic relaxation trajectories launched from these initial states provide no indication for excess electron stabilization for sizes n < 24. Excess electrons are likely to autodetach from these clusters. The two largest investigated clusters (n = 24 and 32) can accommodate the excess electron in electronic states that are mainly localized on the surface, but they may be partly embedded in the cluster. In the last 500 fs of the simulated trajectories, the VDE of the solvated electron fluctuates around ∼200 meV for n = 24 and ∼500 meV for n = 32, consistent with the values extrapolated from the experimentally observed linear VDE-n-1/3 trend. In the third case, we prepared neutral ammonia cluster configurations, including an n = 48 cluster, that contain possible electron localization sites within the interior of the cluster. Excess electrons added to these clusters localize in cavities with high VDEs up to 1.9 eV for n = 48. The computed VDE values for larger clusters are considerably higher than the experimentally observed photoelectric threshold energy for the solvated electron in bulk ammonia (∼1.4 eV). Molecular dynamics simulations launched from these initial cavity states strongly indicate, however, that these cavity structures exist only for ∼200 fs. During the relaxation the electron leaves the cavity and becomes delocalized, while the cluster loses its initial compactness.
Collapse
Affiliation(s)
- Bence Baranyi
- Eötvös Loránd University, Institute of Chemistry, P.O. Box 32, Budapest 112 H-1518, Hungary
| | - László Turi
- Eötvös Loránd University, Institute of Chemistry, P.O. Box 32, Budapest 112 H-1518, Hungary
| |
Collapse
|
16
|
Buttersack T, Mason PE, McMullen RS, Schewe HC, Martinek T, Brezina K, Crhan M, Gomez A, Hein D, Wartner G, Seidel R, Ali H, Thürmer S, Marsalek O, Winter B, Bradforth SE, Jungwirth P. Photoelectron spectra of alkali metal–ammonia microjets: From blue electrolyte to bronze metal. Science 2020; 368:1086-1091. [DOI: 10.1126/science.aaz7607] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Tillmann Buttersack
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0482, USA
| | - Philip E. Mason
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Ryan S. McMullen
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0482, USA
| | - H. Christian Schewe
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Tomas Martinek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Krystof Brezina
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Martin Crhan
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Axel Gomez
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Département de Chimie, École Normale Supérieure, PSL University, 75005 Paris, France
| | - Dennis Hein
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Garlef Wartner
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Robert Seidel
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Hebatallah Ali
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Stephan Thürmer
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Ondrej Marsalek
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Bernd Winter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0482, USA
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
17
|
Shi R, Zhao Z, Liang X, Su Y, Sai L, Zhao J. Structures and vertical detachment energies of water cluster anions (H2O)−n with n = 6–11. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-2567-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Lehtola S. Curing basis set overcompleteness with pivoted Cholesky decompositions. J Chem Phys 2020; 151:241102. [PMID: 31893881 DOI: 10.1063/1.5139948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The description of weakly bound electronic states is especially difficult with atomic orbital basis sets. The diffuse atomic basis functions that are necessary to describe the extended electronic state generate significant linear dependencies in the molecular basis set, which may make the electronic structure calculations ill-convergent. We propose a method where the overcomplete molecular basis set is pruned by a pivoted Cholesky decomposition of the overlap matrix, yielding an optimal low-rank approximation that is numerically stable, the pivot indices determining a reduced basis set that is complete enough to describe all the basis functions in the original overcomplete basis. The method can be implemented either by a simple modification to the usual canonical orthogonalization procedure, which hides the excess functions and yields fewer efficiency benefits, or by generating custom basis sets for all the atoms in the system, yielding significant cost reductions in electronic structure calculations. The pruned basis sets from the latter choice allow accurate calculations to be performed at a lower cost even at the self-consistent field level, as illustrated on a solvated (H2O)24 - anion. Our results indicate that the Cholesky procedure allows one to perform calculations with accuracies close to standard augmented basis sets with cost savings which increase with the size of the basis set, ranging from 9% fewer functions in single-ζ basis sets to 28% fewer functions in triple-ζ basis sets.
Collapse
Affiliation(s)
- Susi Lehtola
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), FI-00014 Helsinki, Finland
| |
Collapse
|
19
|
Vargas J, Ufondu P, Baruah T, Yamamoto Y, Jackson KA, Zope RR. Importance of self-interaction-error removal in density functional calculations on water cluster anions. Phys Chem Chem Phys 2020; 22:3789-3799. [DOI: 10.1039/c9cp06106a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Removing self-interaction errors in density functional approximations results in significantly improved vertical detachment energies of water anions and is essential for obtaining orbital energies consistent with electron binding energies.
Collapse
Affiliation(s)
- Jorge Vargas
- Department of Physics
- The University of Texas at El Paso
- El Paso
- USA
| | - Peter Ufondu
- Department of Physics
- The University of Texas at El Paso
- El Paso
- USA
| | - Tunna Baruah
- Department of Physics
- The University of Texas at El Paso
- El Paso
- USA
- Computational Science Program
| | - Yoh Yamamoto
- Department of Physics
- The University of Texas at El Paso
- El Paso
- USA
| | - Koblar A. Jackson
- Physics Department and Science of Advanced Materials Program
- Central Michigan University
- USA
| | - Rajendra R. Zope
- Department of Physics
- The University of Texas at El Paso
- El Paso
- USA
- Computational Science Program
| |
Collapse
|
20
|
Rana B, Herbert JM. Role of hemibonding in the structure and ultraviolet spectroscopy of the aqueous hydroxyl radical. Phys Chem Chem Phys 2020; 22:27829-27844. [DOI: 10.1039/d0cp05216g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of a two-center, three-electron hemibond in the solvation structure of the aqueous hydroxl radical has long been debated, as its appearance can be sensitive to self-interaction error in density functional theory.
Collapse
Affiliation(s)
- Bhaskar Rana
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| | - John M. Herbert
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
21
|
Abstract
We performed a combination of quantum chemical calculations and molecular dynamics simulations to assess the stability of various size NH3 n - ammonia cluster anions up to n = 32 monomers. In the n = 3-8 size range, cluster anions are optimized and the vertical detachment energy of the excess electron (VDE) from increasing size clusters is computed using various level methods including density functional theory, MP2, and coupled-cluster singles doubles with perturbative triples. These clusters bind the electrons in nonbranched hydrogen bonding chains in dipole bound states. The VDE increases with size from a few millielectron volt up to ∼200 meV. The electron binding energy is weaker than that in water clusters but comparable to small methanol cluster VDEs. We located the first branched hydrogen bonding cluster that binds the excess electron at n = 7. For larger (n = 8-32) clusters, we generated cold, neutral clusters by semiempirical and ab initio molecular dynamics simulations and added an extra electron to selected neutral configurations. VDE calculations on the adiabatic and the relaxed anionic structures suggest that the n = 12-32 neutral clusters weakly bind the excess electron. Electron binding energies for these clusters (∼100 meV) appear to be significantly weaker than those extrapolated from experimental data. The observed excess electron states are diffuse and localized outside the molecular frame (surface states) with minor (∼1%) penetration to the nitrogen frontier orbitals. Stable minima with excess electron states surrounded by solvent molecules (cavity states) were not found in this size regime.
Collapse
Affiliation(s)
- Bence Baranyi
- Eötvös Loránd University, Institute of Chemistry, P.O. Box 32, Budapest 112 H-1518, Hungary
| | - László Turi
- Eötvös Loránd University, Institute of Chemistry, P.O. Box 32, Budapest 112 H-1518, Hungary
| |
Collapse
|
22
|
Dasgupta S, Rana B, Herbert JM. Ab Initio Investigation of the Resonance Raman Spectrum of the Hydrated Electron. J Phys Chem B 2019; 123:8074-8085. [PMID: 31442044 DOI: 10.1021/acs.jpcb.9b04895] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
According to the conventional picture, the aqueous or "hydrated" electron, e-(aq), occupies an excluded volume (cavity) in the structure of liquid water. However, simulations with certain one-electron models predict a more delocalized spin density for the unpaired electron, with no distinct cavity structure. It has been suggested that only the latter (non-cavity) structure can explain the hydrated electron's resonance Raman spectrum, although this suggestion is based on calculations using empirical frequency maps developed for neat liquid water, not for e-(aq). All-electron ab initio calculations presented here demonstrate that both cavity and non-cavity models of e-(aq) afford significant red-shifts in the O-H stretching region. This effect is nonspecific and arises due to electron penetration into frontier orbitals of the water molecules. Only the conventional cavity model, however, reproduces the splitting of the H-O-D bend (in isotopically mixed water) that is observed experimentally and arises due to the asymmetric environments of the hydroxyl moieties in the electron's first solvation shell. We conclude that the cavity model of e-(aq) is more consistent with the measured resonance Raman spectrum than is the delocalized, non-cavity model, despite previous suggestions to the contrary. Furthermore, calculations with hybrid density functionals and with Hartree-Fock theory predict that non-cavity liquid geometries afford only unbound (continuum) states for an extra electron, whereas in reality this energy level should lie more than 3 eV below vacuum level. As such, the non-cavity model of e-(aq) appears to be inconsistent with available vibrational spectroscopy, photoelectron spectroscopy, and quantum chemistry.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Bhaskar Rana
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - John M Herbert
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
23
|
Holden ZC, Rana B, Herbert JM. Analytic gradient for the QM/MM-Ewald method using charges derived from the electrostatic potential: Theory, implementation, and application to ab initio molecular dynamics simulation of the aqueous electron. J Chem Phys 2019; 150:144115. [DOI: 10.1063/1.5089673] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Zachary C. Holden
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Bhaskar Rana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
24
|
Wilhelm J, VandeVondele J, Rybkin VV. Dynamics of the Bulk Hydrated Electron from Many-Body Wave-Function Theory. Angew Chem Int Ed Engl 2019; 58:3890-3893. [PMID: 30776181 PMCID: PMC6594240 DOI: 10.1002/anie.201814053] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 11/10/2022]
Abstract
The structure of the hydrated electron is a matter of debate as it evades direct experimental observation owing to the short life time and low concentrations of the species. Herein, the first molecular dynamics simulation of the bulk hydrated electron based on correlated wave‐function theory provides conclusive evidence in favor of a persistent tetrahedral cavity made up by four water molecules, and against the existence of stable non‐cavity structures. Such a cavity is formed within less than a picosecond after the addition of an excess electron to neat liquid water, with less regular cavities appearing as intermediates. The cavities are bound together by weak H−H bonds, the number of which correlates well with the number of coordinated water molecules, each type of cavity leaving a distinct spectroscopic signature. Simulations predict regions of negative spin density and a gyration radius that are both in agreement with experimental data.
Collapse
Affiliation(s)
- Jan Wilhelm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Current address: BASF SE, Ludwigshafen, Germany
| | - Joost VandeVondele
- Scientific Software & Libraries unit, CSCS, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093, Zurich, Switzerland
| | - Vladimir V Rybkin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
25
|
Wilhelm J, VandeVondele J, Rybkin VV. Dynamics of the Bulk Hydrated Electron from Many‐Body Wave‐Function Theory. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jan Wilhelm
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
- Current address: BASF SE Ludwigshafen Germany
| | - Joost VandeVondele
- Scientific Software & Libraries unit, CSCSETH Zurich Wolfgang-Pauli-Strasse 27 CH-8093 Zurich Switzerland
| | - Vladimir V. Rybkin
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
26
|
Dubosq C, Zanuttini D, Gervais B. RASPT2 Analysis of the F–(H2O)n=1–7 and OH–(H2O)n=1–7 CTTS States. J Phys Chem A 2018; 122:7033-7041. [DOI: 10.1021/acs.jpca.8b04970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Dubosq
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, UMR 6252, BP 5133, F-14070 Caen Cedex 05, France
| | - D. Zanuttini
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, UMR 6252, BP 5133, F-14070 Caen Cedex 05, France
| | - B. Gervais
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, UMR 6252, BP 5133, F-14070 Caen Cedex 05, France
| |
Collapse
|
27
|
Debiossac M, Schätti J, Kriegleder M, Geyer P, Shayeghi A, Mayor M, Arndt M, Köhler V. Tailored photocleavable peptides: fragmentation and neutralization pathways in high vacuum. Phys Chem Chem Phys 2018; 20:11412-11417. [PMID: 29645042 PMCID: PMC5932999 DOI: 10.1039/c8cp01058g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/23/2018] [Indexed: 01/31/2023]
Abstract
Photocleavable tags (PCTs) have the potential for excellent spatio-temporal control over the release of subunits of complex molecules. Here, we show that electrosprayed oligopeptides, functionalized by a tailored ortho-nitroarylether can undergo site-specific photo-activated cleavage under UV irradiation (266 nm) in high vacuum. The comparison of UV photodissociation (UVPD) and collision-induced dissociation (CID) points to the thermal nature of the cleavage mechanism, a picture corroborated by the temperature dependence of the process. Two competing photodissociation pathways can be identified. In one case a phenolate anion is separated from a neutral zwitterion. In the other case a neutral phenol derivative leaves a negatively charged peptide behind. To understand the factors favoring one channel over the other, we investigate the influence of the peptide length, the nature of the phenolic group and the position of the nitro-group (ortho vs. para). The observed gas phase cleavage of a para-nitro benzylic ether markedly differs from the established behavior in solution.
Collapse
Affiliation(s)
- M. Debiossac
- Faculty of Physics, University of Vienna , VCQ, Boltzmanngasse 5 , A-1090 Vienna , Austria .
| | - J. Schätti
- Department of Chemistry, University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4058 Basel , Switzerland .
| | - M. Kriegleder
- Faculty of Physics, University of Vienna , VCQ, Boltzmanngasse 5 , A-1090 Vienna , Austria .
| | - P. Geyer
- Faculty of Physics, University of Vienna , VCQ, Boltzmanngasse 5 , A-1090 Vienna , Austria .
| | - A. Shayeghi
- Faculty of Physics, University of Vienna , VCQ, Boltzmanngasse 5 , A-1090 Vienna , Austria .
| | - M. Mayor
- Department of Chemistry, University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4058 Basel , Switzerland .
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University (SYSU) , Xingang Rd. W. , Guangzhou , China
| | - M. Arndt
- Faculty of Physics, University of Vienna , VCQ, Boltzmanngasse 5 , A-1090 Vienna , Austria .
| | - V. Köhler
- Department of Chemistry, University of Basel , Mattenstrasse 24a, BPR 1096 , CH-4058 Basel , Switzerland .
| |
Collapse
|
28
|
Ünal A, Bozkaya U. Anionic water pentamer and hexamer clusters: An extensive study of structures and energetics. J Chem Phys 2018; 148:124307. [DOI: 10.1063/1.5025233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Aslı Ünal
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Uğur Bozkaya
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
29
|
Mones L, Pohl G, Turi L. Ab initio molecular dynamics study of solvated electrons in methanol clusters. Phys Chem Chem Phys 2018; 20:28741-28750. [DOI: 10.1039/c8cp05052j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stable surface excess electronic states in small methanol cluster anions were identified and characterized in ab initio molecular dynamics simulations.
Collapse
Affiliation(s)
- Letif Mones
- Mathematics Institute
- University of Warwick
- Zeeman Building
- Coventry
- UK
| | - Gábor Pohl
- Department of Chemistry
- Hunter College
- CUNY
- New York
- USA
| | - László Turi
- Eötvös Loránd University
- Department of Physical Chemistry
- Hungary
| |
Collapse
|
30
|
Affiliation(s)
- John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Marc P. Coons
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
31
|
Zhang C, Bu Y. Efficient floating diffuse functions for accurate characterization of the surface-bound excess electrons in water cluster anions. Phys Chem Chem Phys 2017; 19:2816-2825. [PMID: 28067363 DOI: 10.1039/c6cp07628a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the effect of diffuse function types (atom-centered diffuse functions versus floating functions and s-type versus p-type diffuse functions) on the structures and properties of three representative water cluster anions featuring a surface-bound excess electron is studied and we find that an effective combination of such two kinds of diffuse functions can not only reduce the computational cost but also, most importantly, considerably improve the accuracy of results and even avoid incorrect predictions of spectra and the EE shape. Our results indicate that (a) simple augmentation of atom-centered diffuse functions is beneficial for the vertical detachment energy convergence, but it leads to very poor descriptions for the singly occupied molecular orbital (SOMO) and lowest unoccupied molecular orbital (LUMO) distributions of the water cluster anions featuring a surface-bound excess electron and thus a significant ultraviolet spectrum redshift; (b) the ghost-atom-based floating diffuse functions can not only contribute to accurate electronic calculations of the ground state but also avoid poor and even incorrect descriptions of the SOMO and the LUMO induced by excessive augmentation of atom-centered diffuse functions; (c) the floating functions can be realized by ghost atoms and their positions could be determined through an optimization routine along the dipole moment vector direction. In addition, both the s- and p-type floating functions are necessary to supplement in the basis set which are responsible for the ground (s-type character) and excited (p-type character) states of the surface-bound excess electron, respectively. The exponents of the diffuse functions should also be determined to make the diffuse functions cover the main region of the excess electron distribution. Note that excessive augmentation of such diffuse functions is redundant and even can lead to unreasonable LUMO characteristics.
Collapse
Affiliation(s)
- Changzhe Zhang
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| | - Yuxiang Bu
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
32
|
Pohl G, Mones L, Turi L. Excess electrons in methanol clusters: Beyond the one-electron picture. J Chem Phys 2016; 145:164313. [PMID: 27802653 DOI: 10.1063/1.4964845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, CH3OHn-. The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.
Collapse
Affiliation(s)
- Gábor Pohl
- Department of Physical Chemistry, Eötvös Loránd University, P. O. Box 32, Budapest 112 H-1518, Hungary
| | - Letif Mones
- Engineering Department, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - László Turi
- Department of Physical Chemistry, Eötvös Loránd University, P. O. Box 32, Budapest 112 H-1518, Hungary
| |
Collapse
|
33
|
Coons MP, You ZQ, Herbert JM. The Hydrated Electron at the Surface of Neat Liquid Water Appears To Be Indistinguishable from the Bulk Species. J Am Chem Soc 2016; 138:10879-86. [DOI: 10.1021/jacs.6b06715] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marc P. Coons
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhi-Qiang You
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
34
|
Zhang C, Bu Y. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions. Phys Chem Chem Phys 2016; 18:23812-21. [PMID: 27522987 DOI: 10.1039/c6cp04224d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.
Collapse
Affiliation(s)
- Changzhe Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
| | | |
Collapse
|
35
|
Turi L. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters. J Chem Phys 2016; 144:154311. [PMID: 27389224 DOI: 10.1063/1.4945780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- László Turi
- Department of Physical Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112, Hungary
| |
Collapse
|
36
|
Turi L. Hydrated Electrons in Water Clusters: Inside or Outside, Cavity or Noncavity? J Chem Theory Comput 2016; 11:1745-55. [PMID: 26889512 DOI: 10.1021/ct501160k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, we compare the applicability of three electron–water molecule pseudopotentials in modeling the physical properties of hydrated electrons. Quantum model calculations illustrate that the recently suggested Larsen–Glover–Schwartz (LGS) model and its modified m-LGS version have a too-attractive potential in the vicinity of the oxygen. As a result, LGS models predict a noncavity hydrated electron structure in clusters at room temperature, as seen from mixed one-electron quantum–classical molecular dynamics simulations of water cluster anions, with the electron localizing exclusively in the interior of the clusters. Comparative calculations using the cavity-preferring Turi–Borgis (TB) model predict interior-state and surface-state cluster isomers. The computed associated physical properties are also analyzed and compared to available experimental data. We find that the LGS and m-LGS potentials provide results that appear to be inconsistent with the size dependence of the experimental data. The simulated TB tendencies are qualitatively correct. Furthermore, ab initio calculations on static LGS noncavity structures indicate weak stabilization of the excess electron in regions where the LGS potential preferably and strongly binds the electron. TB calculations give stabilization energies that are in line with the ab initio results. In conclusion, we observe that the cavity-preferring pseudopotential model predicts cluster physical properties in better agreement with experimental data and ab initio calculations than the models predicting noncavity structures for the hydrated electron.
Collapse
|
37
|
Chaban VV, Prezhdo OV. Electron Solvation in Liquid Ammonia: Lithium, Sodium, Magnesium, and Calcium as Electron Sources. J Phys Chem B 2016; 120:2500-6. [PMID: 26886153 DOI: 10.1021/acs.jpcb.6b00412] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A free electron in solution, known as a solvated electron, is the smallest possible anion. Alkali and alkaline earth atoms serve as electron donors in solvents that mediate outer-sphere electron transfer. We report herein ab initio molecular dynamics simulations of lithium, sodium, magnesium, and calcium in liquid ammonia at 250 K. By analyzing the electronic properties and the ionic and solvation structures and dynamics, we systematically characterize these metals as electron donors and ammonia molecules as electron acceptors. We show that the solvated metal strongly modifies the properties of its solvation shells and that the observed effect is metal-specific. Specifically, the radius and charge exhibit major impacts. The single solvated electron present in the alkali metal systems is distributed more uniformly among the solvent molecules of each metal's two solvation shells. In contrast, alkaline earth metals favor a less uniform distribution of the electron density. Alkali and alkaline earth atoms are coordinated by four and six NH3 molecules, respectively. The smaller atoms, Li and Mg, are stronger electron donors than Na and Ca. This result is surprising, as smaller atoms in a column of the periodic table have higher ionization potentials. However, it can be explained by stronger electron donor-acceptor interactions between the smaller atoms and the solvent molecules. The structure of the first solvation shell is sharpest for Mg, which has a large charge and a small radius. Solvation is weakest for Na, which has a small charge and a large radius. Weak solvation leads to rapid dynamics, as reflected in the diffusion coefficients of NH3 molecules of the first two solvation shells and the Na atom. The properties of the solvated electrons established in the present study are important for radiation chemistry, synthetic chemistry, condensed-matter charge transfer, and energy sources.
Collapse
Affiliation(s)
- Vitaly V Chaban
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo , 12231-280 São José dos Campos, SP Brazil
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
38
|
Janesko BG, Scalmani G, Frisch MJ. Quantifying Electron Delocalization in Electrides. J Chem Theory Comput 2015; 12:79-91. [DOI: 10.1021/acs.jctc.5b00993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin G. Janesko
- Department
of Chemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Giovanni Scalmani
- Gaussian,
Inc., 340 Quinnipiac Street Building
40, Wallingford, Connecticut 06492, United States
| | - Michael J. Frisch
- Gaussian,
Inc., 340 Quinnipiac Street Building
40, Wallingford, Connecticut 06492, United States
| |
Collapse
|
39
|
Dale SG, Johnson ER. Counterintuitive electron localisation from density-functional theory with polarisable solvent models. J Chem Phys 2015; 143:184112. [DOI: 10.1063/1.4935177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Gong ZY, Duan S, Tian G, Jiang J, Xu X, Luo Y. Infrared spectra of small anionic water clusters from density functional theory and wavefunction theory calculations. Phys Chem Chem Phys 2015; 17:12698-707. [PMID: 25903989 DOI: 10.1039/c5cp01378j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We performed systematic theoretical studies on small anionic water/deuterated water clusters W/D(-)(N=2-6) at both density functional theory (B3LYP) and wavefunction theory (MP2) levels. The focus of the study is to examine the convergence of calculated infrared (IR) spectra with respect to the increasing number of diffuse functions. It is found that at the MP2 level for larger clusters (n = 4-6), only one extra diffuse function is needed to obtain the converged relative IR intensities, while two or three more sets of extra diffuse functions are needed for smaller clusters. Such behaviour is strongly associated with the convergence of the electronic structure of corresponding clusters at the MP2 level. It is striking to observe that at the B3LYP level, the calculated relative IR intensities for all the clusters under investigations are diverse and show no trend of convergence upon increasing the number of diffuse functions. Moreover, the increasing contribution from the extra diffuse functions to the dynamic IR dipole moment indicates that the B3LYP electronic structure also fails to converge. These results manifest that MP2 is a preferential theoretical method, as compared to the widely used B3LYP, for the IR intensity of dipole bounded electron systems.
Collapse
Affiliation(s)
- Zu-Yong Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | | | | | | | | | | |
Collapse
|
41
|
Herbert JM. The Quantum Chemistry of Loosely-Bound Electrons. REVIEWS IN COMPUTATIONAL CHEMISTRY 2015. [DOI: 10.1002/9781118889886.ch8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
42
|
Janesko BG, Scalmani G, Frisch MJ. Quantifying solvated electrons' delocalization. Phys Chem Chem Phys 2015; 17:18305-17. [DOI: 10.1039/c5cp01967b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electron delocalization range EDR(r;uav) (left) captures the spin density (right) of an electron delocalized over uav = 5.77 Å on the surface of an (H2O)20− cluster.
Collapse
|
43
|
Gadre SR, Yeole SD, Sahu N. Quantum chemical investigations on molecular clusters. Chem Rev 2014; 114:12132-73. [PMID: 25341561 DOI: 10.1021/cr4006632] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shridhar R Gadre
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | | | | |
Collapse
|
44
|
Xu P, Gordon MS. Renormalized Coupled Cluster Approaches in the Cluster-in-Molecule Framework: Predicting Vertical Electron Binding Energies of the Anionic Water Clusters (H2O)n–. J Phys Chem A 2014; 118:7548-59. [DOI: 10.1021/jp5015498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Xu
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Mark S. Gordon
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
45
|
Uhlig F, Herbert JM, Coons MP, Jungwirth P. Optical Spectroscopy of the Bulk and Interfacial Hydrated Electron from Ab Initio Calculations. J Phys Chem A 2014; 118:7507-15. [DOI: 10.1021/jp5004243] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frank Uhlig
- Institute of Organic
Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - John M. Herbert
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Marc P. Coons
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pavel Jungwirth
- Institute of Organic
Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
46
|
Johnson ER, Otero-de-la-Roza A, Dale SG. Extreme density-driven delocalization error for a model solvated-electron system. J Chem Phys 2013; 139:184116. [DOI: 10.1063/1.4829642] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Chahkandi B, Tayyari SF, Bakhshaei M, Chahkandi M. Investigation of simple and water assisted tautomerism in a derivative of 1,3,4-oxadiazole: a DFT study. J Mol Graph Model 2013; 44:120-8. [PMID: 23792209 DOI: 10.1016/j.jmgm.2013.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 11/30/2022]
Abstract
Investigation of tautomerism and transition states in a derivative of 1,3,4-oxadiazole (A, B, C and D) in the gas phase and in solution and in a micro hydrated environment with 1-3 water molecules was performed by calculations at the DFT-B3LYP/6-311++G(d,p) level of theory. The solvent effect is taken into account via the self-consistent reaction field (SCRF) method. The geometries of four possible tautomers of 5-amino-1,3,4-oxadiazole-2(3H)-one were optimized in the gas phase and solution with polarized continuum model (PCM). It was found that in the gas phase and different solvents, A and C tautomers are the most stable and unstable forms, respectively. The results show that the tautomeric interconversion C to D has the lowest Gibbs free energy changes and so the highest equilibrium constant in the gas phase and solution. The equilibrium and rate constants of intermolecular tautomerism in the absence and presence of 1-3 molecules of water were also calculated. The calculated results show that the presence of water molecules considerably reduces the barrier energy of the various reactions. Therefore, this water-assisted tautomerism can be performed fast, especially, with the assistance of two molecules of water.
Collapse
Affiliation(s)
- Behzad Chahkandi
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| | | | | | | |
Collapse
|
48
|
Nakanishi R, Sato T, Yagi K, Nagata T. Hydrogen-Bond Network Transformation in Water-Cluster Anions Induced by the Complex Formation with Benzene. J Phys Chem Lett 2012; 3:3571-3575. [PMID: 26290990 DOI: 10.1021/jz301599f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report spectroscopic evidence of isomer interconversion in water cluster anions, (H2O)n(-), which occurs through the interaction with a benzene molecule. An anion complex composed of (H2O)6(-) and benzene, Bz·(H2O)6(-), is formed via the reaction of (H2O)6(-)Arm with benzene. The reaction proceeds as an Ar-mediated association process such that a rapid energy dissipation by sequential Ar evaporation efficiently suppresses the thermionic emission of e(-), H2O, or both, giving rise to the formation of Bz·(H2O)6(-). Photoelectron spectroscopy is employed to probe the electronic properties of the anionic species, which reveals that "type I → type II" isomer interconversion proceeds in the (H2O)6(-) moiety during the formation of Bz·(H2O)6(-). With the aid of ab initio calculations, we conclude that the interconversion is driven by preferential stabilization of the H-bond network of type II arrangement through the formation of a nonconventional O-H···π hydrogen bond between (H2O)6(-) and Bz.
Collapse
Affiliation(s)
- Ryuzo Nakanishi
- †Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Takeshi Sato
- ‡Photon Science Center, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kiyoshi Yagi
- §Fuel Cell Nanomaterials Center, University of Yamanashi, 6-43 Miyamae-cho, Kofu, Yamanashi 400-0021, Japan
| | - Takashi Nagata
- †Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
49
|
Turi L, Rossky PJ. Theoretical studies of spectroscopy and dynamics of hydrated electrons. Chem Rev 2012; 112:5641-74. [PMID: 22954423 DOI: 10.1021/cr300144z] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- László Turi
- Department of Physical Chemistry, Eötvös Loránd University, Budapest, Hungary.
| | | |
Collapse
|
50
|
Affiliation(s)
- Ryan M. Young
- Department of Chemistry, University of California, Berkeley, California 94720,
United States
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720,
United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
| |
Collapse
|