1
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
3
|
Raczyńska ED. Quantum-chemical studies of the consequences of one-electron oxidation and one-electron reduction for imidazole in the gas phase and water. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.05.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Kaila VRI, Oksanen E, Goldman A, Bloch DA, Verkhovsky MI, Sundholm D, Wikström M. A combined quantum chemical and crystallographic study on the oxidized binuclear center of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:769-78. [PMID: 21211513 DOI: 10.1016/j.bbabio.2010.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 12/20/2010] [Accepted: 12/26/2010] [Indexed: 01/12/2023]
Abstract
Cytochrome c oxidase (CcO) is the terminal enzyme of the respiratory chain. By reducing oxygen to water, it generates a proton gradient across the mitochondrial or bacterial membrane. Recently, two independent X-ray crystallographic studies ((Aoyama et al. Proc. Natl. Acad. Sci. USA 106 (2009) 2165-2169) and (Koepke et al. Biochim. Biophys. Acta 1787 (2009) 635-645)), suggested that a peroxide dianion might be bound to the active site of oxidized CcO. We have investigated this hypothesis by combining quantum chemical calculations with a re-refinement of the X-ray crystallographic data and optical spectroscopic measurements. Our data suggest that dianionic peroxide, superoxide, and dioxygen all form a similar superoxide species when inserted into a fully oxidized ferric/cupric binuclear site (BNC). We argue that stable peroxides are unlikely to be confined within the oxidized BNC since that would be expected to lead to bond splitting and formation of the catalytic P intermediate. Somewhat surprisingly, we find that binding of dioxygen to the oxidized binuclear site is weakly exergonic, and hence, the observed structure might have resulted from dioxygen itself or from superoxide generated from O(2) by the X-ray beam. We show that the presence of O(2) is consistent with the X-ray data. We also discuss how other structures, such as a mixture of the aqueous species (H(2)O+OH(-) and H(2)O) and chloride fit the experimental data.
Collapse
Affiliation(s)
- Ville R I Kaila
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
5
|
Mukherjee A, Angeles-Boza AM, Huff GS, Roth JP. Catalytic mechanism of a heme and tyrosyl radical-containing fatty acid α-(di)oxygenase. J Am Chem Soc 2010; 133:227-38. [PMID: 21166399 DOI: 10.1021/ja104180v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The steady-state catalytic mechanism of a fatty acid α-(di)oxygenase is examined, revealing that a persistent tyrosyl radical (Tyr379(•)) effects O(2) insertion into C(α)-H bonds of fatty acids. The initiating C(α)-H homolysis step is characterized by apparent rate constants and deuterium kinetic isotope effects (KIEs) that increase hyperbolically upon raising the concentration of O(2). These results are consistent with H(•) tunneling, transitioning from a reversible to an irreversible regime. The limiting deuterium KIEs increase from ∼30 to 120 as the fatty acid chain is shortened from that of the native substrate. In addition, activation barriers increase in a manner that reflects decreased fatty acid binding affinities. Anaerobic isotope exchange experiments provide compelling evidence that Tyr379(•) initiates catalysis by H(•) abstraction. C(α)-H homolysis is kinetically driven by O(2) trapping of the α-carbon radical and reduction of a putative peroxyl radical intermediate to a 2(R)-hydroperoxide product. These findings add to a body of work which establishes large-scale hydrogen tunneling in proteins. This particular example is novel because it involves a protein-derived amino acid radical.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | | | | | |
Collapse
|
6
|
Oztürk M, Watmough NJ. Mutagenesis of tyrosine residues within helix VII in subunit I of the cytochrome cbb₃ oxidase from Rhodobacter capsulatus. Mol Biol Rep 2010; 38:3319-26. [PMID: 21107730 DOI: 10.1007/s11033-010-0437-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
The cbb (3)-type oxidases are members of the heme-copper oxidase superfamily, distant by sequence comparisons, but sharing common functional characteristics. The cbb (3) oxidases are missing an active-site tyrosine residue that is absolutely conserved in all A and B-type heme-copper oxidases. This tyrosine is known to play a critical role in the catalytic mechanisms of A and B-type oxidases. The absence of this tyrosine in the cbb (3) oxidases raises the possibility that the cbb (3) oxidases utilize a different catalytic mechanism from that of the other members of the superfamily, or have this conserved residue in different helices. Recently sequence comparisons indicate that, a tyrosine residues that might be analogous to the active-site tyrosine in other oxidases are present in the cbb (3) oxidases but these tyrosines originates from a different transmembrane helix within the protein. In this research, three conserved tyrosine residues, Y294, Y308 and Y318, in helix VII were substituted for phenylalanine. Y318F mutant in the Rhodobacter capsulatus oxidase resulted in a fully assembled enzyme with nativelike structure and activity, but Y294F mutant is not assembled and have a catalytic activity. On the other hand, Y308F mutant is fully assembled enzyme with nativelike structure, but lacking catalytic activity. This result indicates that Y308 should be crucial in catalytic activity of the cbb (3) oxidase of R. capsulatus. These findings support the assumption that all of the heme-copper oxidases utilize the same catalytic mechanism and provide a residue originates from different places within the primary sequence for different members of the same superfamily.
Collapse
Affiliation(s)
- Mehmet Oztürk
- Department of Biology, Faculty of Literature and Science, Abant İzzet Baysal University, 14280 Bolu, Turkey.
| | | |
Collapse
|
7
|
Kaila VRI, Verkhovsky MI, Wikström M. Proton-coupled electron transfer in cytochrome oxidase. Chem Rev 2010; 110:7062-81. [PMID: 21053971 DOI: 10.1021/cr1002003] [Citation(s) in RCA: 402] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ville R I Kaila
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Program, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
8
|
McDonald WJ, Einarsdóttir O. Solvent effects on the physicochemical properties of the cross-linked histidine-tyrosine ligand of cytochrome c oxidase. J Phys Chem B 2010; 114:6409-25. [PMID: 20415431 DOI: 10.1021/jp909574v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Density functional theory was used to explore the effects of aqueous solvation on the structure, vibrational frequencies, and the electronic absorption spectrum of 2-(4-methylimidazol-1-yl)-phenol (Me-ImPhOH), a chemical analogue of the cross-linked histidine-tyrosine Cu(B) ligand of cytochrome c oxidase. In addition, the phenolic-OH pK(a), the anodic redox potential for the biring radical/anion couple, and the phenolic-OH bond dissociation energy were calculated relative to phenol using a series of isodesmic reactions. In the gas phase, the imidazole moiety stabilizes the biring anion for all the models and greatly decreases the phenolic-OH pK(a) relative to phenol. Moreover, the conductor-like polarizable continuum model (C-PCM)-water-solvated reactions predict Delta pK(a) values that are five times smaller than the gas-phase reactions, in agreement with the proposed role of the cross-linked histidine-tyrosine as a proton donor in the enzyme. For the neutral biring radical solvation models, the imidazole moiety induces a high degree of asymmetry into the phenol ring when compared to unmodified phenoxyl radical. The biring radical pi-bonds of the imidazole ring are more localized when compared to unmodified 1-methylimidazole and Me-ImPhOH solvation models, suggesting reduced aromaticity for all biring radical solvation models. The C-PCM-water-solvated reactions predict relative biring radical reduction potentials that are an order of magnitude smaller than the gas-phase reactions. The biring O-H bond is weakened relative to phenol by less than 4 kcal/mol for all the reactions studied, suggesting that the imidazole moiety does not facilitate H-atom abstraction in the enzyme. Together, these results demonstrate the sensitive nature of the proton and electron donating ability of the histidine-tyrosine cross-linked ligand in cytochrome c oxidase and suggest that for quantitative predictions of reaction energies and thermodynamic properties, models of this ligand should take care to account for changes in environment and, more specifically, hydrogen bonding interactions.
Collapse
Affiliation(s)
- William J McDonald
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA.
| | | |
Collapse
|
9
|
Sharma V, Wikström M, Kaila VRI. Redox-coupled proton transfer in the active site of cytochrome cbb3. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1512-20. [PMID: 20214872 DOI: 10.1016/j.bbabio.2010.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/01/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
Cytochrome cbb3 is a distinct member of the superfamily of respiratory heme-copper oxidases, and is responsible for driving the respiratory chain in many pathogenic bacteria. Like the canonical heme-copper oxidases, cytochrome cbb3 reduces oxygen to water and couples the released energy to pump protons across the bacterial membrane. Homology modeling and recent electron paramagnetic resonance (EPR) studies on wild type and a mutant cbb3 enzyme [V. Rauhamäki et al. J. Biol. Chem. 284 (2009) 11301-11308] have led us to perform high-level quantum chemical calculations on the active site. These calculations bring molecular insight into the unique hydrogen bonding between the proximal histidine ligand of heme b3 and a conserved glutamate, and indicate that the catalytic mechanism involves redox-coupled proton transfer between these residues. The calculated spin densities give insight in the difference in EPR spectra for the wild type and a recently studied E383Q-mutant cbb3-enzyme. Furthermore, we show that the redox-coupled proton movement in the proximal cavity of cbb3-enzymes contributes to the low redox potential of heme b3, and suggest its potential implications for the high apparent oxygen affinity of these enzymes.
Collapse
Affiliation(s)
- Vivek Sharma
- Helsinki Bioenergetics Group, Structural Biology and Biophysics Programme, Institute of Biotechnology, PB 65 (Viikinkaari 1), University of Helsinki, FIN 00014, Helsinki, Finland
| | | | | |
Collapse
|
10
|
Voicescu M, El Khoury Y, Martel D, Heinrich M, Hellwig P. Spectroscopic Analysis of Tyrosine Derivatives: On the Role of the Tyrosine−Histidine Covalent Linkage in Cytochrome c Oxidase. J Phys Chem B 2009; 113:13429-36. [DOI: 10.1021/jp9048742] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariana Voicescu
- Laboratoire de Spectroscopie Vibrationnelle et Electrochimie des Biomolécules, UMR 7177, Institut de Chimie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France, and Laboratoire d’Electrochimie et de Chimie Physique du Corps Solide, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | - Youssef El Khoury
- Laboratoire de Spectroscopie Vibrationnelle et Electrochimie des Biomolécules, UMR 7177, Institut de Chimie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France, and Laboratoire d’Electrochimie et de Chimie Physique du Corps Solide, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | - David Martel
- Laboratoire de Spectroscopie Vibrationnelle et Electrochimie des Biomolécules, UMR 7177, Institut de Chimie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France, and Laboratoire d’Electrochimie et de Chimie Physique du Corps Solide, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | - Martine Heinrich
- Laboratoire de Spectroscopie Vibrationnelle et Electrochimie des Biomolécules, UMR 7177, Institut de Chimie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France, and Laboratoire d’Electrochimie et de Chimie Physique du Corps Solide, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de Spectroscopie Vibrationnelle et Electrochimie des Biomolécules, UMR 7177, Institut de Chimie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France, and Laboratoire d’Electrochimie et de Chimie Physique du Corps Solide, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
11
|
Offenbacher A, White KN, Sen I, Oliver AG, Konopelski JP, Barry BA, Einarsdóttir O. A spectroscopic investigation of a tridentate Cu-complex mimicking the tyrosine-histidine cross-link of cytochrome C oxidase. J Phys Chem B 2009; 113:7407-17. [PMID: 19438285 DOI: 10.1021/jp9010795] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme-copper oxidases have a crucial role in the energy transduction mechanism, catalyzing the reduction of dioxygen to water. The reduction of dioxygen takes place at the binuclear center, which contains heme a3 and CuB. The X-ray crystal structures have revealed that the C6' of tyrosine 244 (bovine heart numbering) is cross-linked to a nitrogen of histidine 240, a ligand to CuB. The role of the cross-linked tyrosine at the active site still remains unclear. In order to provide insight into the function of the cross-linked tyrosine, we have investigated the spectroscopic and electrochemical properties of chemical analogues of the CuB-His-Tyr site. The analogues, a tridentate histidine-phenol cross-linked ether ligand and the corresponding Cu-containing complex, were previously synthesized in our laboratory (White, K.; et al. Chem. Commun. 2007, 3252-3254). Spectrophotometric titrations of the ligand and the Cu-complex indicate a pKa of the phenolic proton of 8.8 and 7.7, respectively. These results are consistent with the cross-linked tyrosine playing a proton delivery role at the cytochrome c oxidase active site. The presence of the phenoxyl radical was investigated at low temperature using electron paramagnetic resonance (EPR) and Fourier transform infrared (FT-IR) difference spectroscopy. UV photolysis of the ligand, without bound copper, generated a narrow g=2.0047 signal, attributed to the phenoxyl radial. EPR spectra recorded before and after UV photolysis of the Cu-complex showed a g=2 signal characteristic of oxidized copper, suggesting that the copper is not spin-coupled to the phenoxyl radical. An EPR signal from the phenoxyl radical was not observed in the Cu-complex, either due to spin relaxation of the two unpaired electrons or to masking of the narrow phenoxyl radical signal by the strong copper contribution. Stable isotope (13C) labeling of the phenol ring (C1') Cu-complex, combined with photoinduced difference FT-IR spectroscopy, revealed bands at 1485 and 1483 cm(-1) in the 12C-minus-13C-isotope-edited spectra of the ligand and Cu-complex, respectively. These bands are attributed to the radical v7a stretching frequency and are shifted to 1468 and 1472 cm(-1), respectively, with 13C1' labeling. These results show that a radical is generated in both the ligand and the Cu-complex and support the unambiguous assignment of a vibrational band to the phenoxyl radical v7a stretching mode. These data are discussed with respect to a possible role of the cross-linked tyrosine radical in cytochrome c oxidase.
Collapse
Affiliation(s)
- Adam Offenbacher
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Kaila VRI, Johansson MP, Sundholm D, Laakkonen L, Wiström M. The chemistry of the CuB site in cytochrome c oxidase and the importance of its unique His-Tyr bond. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:221-33. [PMID: 19388139 DOI: 10.1016/j.bbabio.2009.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The CuB metal center is at the core of the active site of the heme-copper oxidases, comprising a copper atom ligating three histidine residues one of which is covalently bonded to a tyrosine residue. Using quantum chemical methodology, we have studied the CuB site in several redox and ligand states proposed to be intermediates of the catalytic cycle. The importance of the His-Tyr crosslink was investigated by comparing energetics, charge, and spin distributions between systems with and without the crosslink. The His-Tyr bond was shown to decrease the proton affinity and increase the electron affinity of both Tyr-244 and the copper. A previously unnoticed internal electronic equilibrium between the copper atom and the tyrosine was observed, which seems to be coupled to the unique structure of the system. In certain states the copper and Tyr-244 compete for the unpaired electron, the localization of which is determined by the oxygenous ligand of the copper. This electronic equilibrium was found to be sensitive to the presence of a positive charge 10 A away from the center, simulating the effect of Lys-319 in the K-pathway of proton transfer. The combined results provide an explanation for why the heme-copper oxidases need two pathways of proton uptake, and why the K-pathway is active only in the second half of the reaction cycle.
Collapse
Affiliation(s)
- Ville R I Kaila
- Helsinki Bioenergetics Group, Programme of Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
13
|
Tureček F, Yao C, Fung YME, Hayakawa S, Hashimoto M, Matsubara H. Histidine-Containing Radicals in the Gas Phase. J Phys Chem B 2009; 113:7347-66. [DOI: 10.1021/jp900719n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington, 98195, and Department of Chemistry, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Chunxiang Yao
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington, 98195, and Department of Chemistry, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Y. M. Eva Fung
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington, 98195, and Department of Chemistry, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Shigeo Hayakawa
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington, 98195, and Department of Chemistry, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Mami Hashimoto
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington, 98195, and Department of Chemistry, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Hiroshi Matsubara
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington, 98195, and Department of Chemistry, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
14
|
Sharpe MA, Ferguson-Miller S. A chemically explicit model for the mechanism of proton pumping in heme-copper oxidases. J Bioenerg Biomembr 2008; 40:541-9. [PMID: 18830692 DOI: 10.1007/s10863-008-9182-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/01/2008] [Indexed: 11/28/2022]
Abstract
A mechanism for proton pumping is described that is based on chemiosmotic principles and the detailed molecular structures now available for cytochrome oxidases. The importance of conserved water positions and a step-wise gated process of proton translocation is emphasized, where discrete electron transfer events are coupled to proton uptake and expulsion. The trajectory of each pumped proton is the same for all four substrate electrons. An essential role for the His-Tyr cross-linked species is discussed, in gating of the D- and K-channels and as an acceptor/donor of electrons and protons at the binuclear center.
Collapse
Affiliation(s)
- Martyn A Sharpe
- Department of Neurosurgery, The Methodist Hospital, Houston, TX 77030, USA.
| | | |
Collapse
|
15
|
Hemp J, Robinson DE, Martinez TJ, Kelleher NL, Gennis RB. Evolutionary migration of a post-translationally modified active-site residue in the proton-pumping heme-copper oxygen reductases. Biochemistry 2006; 45:15405-10. [PMID: 17176062 PMCID: PMC2535580 DOI: 10.1021/bi062026u] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the respiratory chains of aerobic organisms, oxygen reductase members of the heme-copper superfamily couple the reduction of O2 to proton pumping, generating an electrochemical gradient. There are three distinct families of heme-copper oxygen reductases: A, B, and C types. The A- and B-type oxygen reductases have an active-site tyrosine that forms a unique cross-linked histidine-tyrosine cofactor. In the C-type oxygen reductases (also called cbb3 oxidases), an analogous active-site tyrosine has recently been predicted by molecular modeling to be located within a different transmembrane helix in comparison to the A- and B-type oxygen reductases. In this work, Fourier-transform mass spectrometry is used to show that the predicted tyrosine forms a histidine-tyrosine cross-linked cofactor in the active site of the C-type oxygen reductases. This is the first known example of the evolutionary migration of a post-translationally modified active-site residue. It also verifies the presence of a unique cofactor in all three families of proton-pumping respiratory oxidases, demonstrating that these enzymes likely share a common reaction mechanism and that the histidine-tyrosine cofactor may be a required component for proton pumping.
Collapse
Affiliation(s)
- James Hemp
- Department of Chemistry, University of Illinois, Urbana, IL 61801
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801
| | - Dana E. Robinson
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | - Todd J. Martinez
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | - Neil L. Kelleher
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801
- Corresponding author: Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801 , FAX: 217-244-3186, TEL: 217-333-9075
| |
Collapse
|
16
|
Rauhamäki V, Baumann M, Soliymani R, Puustinen A, Wikström M. Identification of a histidine-tyrosine cross-link in the active site of the cbb3-type cytochrome c oxidase from Rhodobacter sphaeroides. Proc Natl Acad Sci U S A 2006; 103:16135-40. [PMID: 17060620 PMCID: PMC1637549 DOI: 10.1073/pnas.0606254103] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heme-copper oxidases constitute a superfamily of terminal dioxygen-reducing enzymes located in the inner mitochondrial or in the bacterial cell membrane. The presence of a mechanistically important covalent bond between a histidine ligand of the copper ion (Cu(B)) in the active site and a generally conserved tyrosine residue nearby has been shown to exist in the canonical cytochrome c oxidases. However, according to sequence alignment studies, this critical tyrosine is missing from the subfamily of cbb(3)-type oxidases found in certain bacteria. Recently, homology modeling has suggested that a tyrosine residue located in a different helix might fulfill this role in these enzymes. Here, we show directly by methods of protein chemistry and mass spectrometry that there is indeed a covalent link between this tyrosine and the copper-ligating histidine. The identity of the cross-linked tyrosine was determined by showing that the cross-link is not formed when this residue is replaced by phenylalanine, even though structural integrity is maintained. These results suggest a universal functional importance of the histidine-tyrosine cross-link in the mechanism of O(2) reduction by all heme-copper oxidases.
Collapse
Affiliation(s)
- Virve Rauhamäki
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Viikinkaari 1, 00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|