1
|
Dorney K, Shropshire NS, Adams DG, Zandi A, Baker J, Brittle S, Kanel S, Hooshmand N, Pavel IE. Ecofriendly Filtration of Silver Nanoparticles for Ultrasensitive Surface-Enhanced (Resonance) Raman Spectroscopy-Based Detection. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:16563-16575. [PMID: 39380975 PMCID: PMC11457218 DOI: 10.1021/acs.jpcc.4c03837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
In this study, a widely used colloid of Creighton AgNPs (ORI, 1-100 nm, mostly ≤ 40 nm, ∼10 μg mL-1) was rapidly manipulated via tangential flow filtration (TFF) for highly reproducible surface-enhanced (resonance) Raman spectroscopy (SE(R)RS) experiments down to the single-molecule (SM) level. The quasi-spherical AgNPs were size-selected, purified, and concentrated in two TFF fractions of a cutoff diameter of ∼40 nm: AgNP ≤ 40 (∼900 μg mL-1) and AgNP ≥ 40 (∼100 μg mL-1). The SE(R)S-based sensing capabilities of the two TFF fractions were then tested under pre-resonance (632.8 nm) and resonance (532.1 nm) excitation conditions for rhodamine 6G (R6G, 10-6-10-15 M). Both TFF isolates, AgNP ≤ 40 and AgNP ≥ 40, were more effective in adsorbing the R6G analyte (≥91%) than the original colloid (≥78%) at submonolayer coverages. Furthermore, the surface enhancement factors (SEF) of the two TFF fractions were markedly superior to those of ORI under all excitation conditions. SERS at 632.8 nm: only AgNP ≥ 40 enabled the detection of R6G at 10-9 M and produced the largest SEF (2.1 × 106). SE(R)RS and SM-SERRS at 532.1 nm: AgNP ≥ 40 gave rise to the largest SEF values (2.5 × 1010) corresponding to the SM regime down to 10-15 M of R6G. Nevertheless, AgNP ≤ 40 compensated for the size-dependence of the electromagnetic enhancements by an increase in the silver concentration, which led to SEF values comparable to those of AgNP ≥ 40 through additional resonance enhancements. TFF resulted into a ∼100-fold increase (AgNP ≤ 40) in the number of negatively charged AgNPs that were available to electrostatically bridge R6G cations and form SERRS "hot-spots" (AgNP-R6G-AgNP) within the focal volume. Evidently, the interplay between AgNP size, AgNP concentration, and excitation wavelength governs the SE(R)RS enhancements. This study demonstrated that TFF can facilitate the ecofriendly isolation of spherical AgNPs of controlled morphological and plasmonic properties for further enhancing their sensing capabilities as SE(R)RS substrates.
Collapse
Affiliation(s)
- Kevin
M. Dorney
- Department
of Chemistry, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, United States
| | - Nicholas S. Shropshire
- Department
of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas 78412, United States
| | - Daniel G. Adams
- Department
of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas 78412, United States
| | - Ashkan Zandi
- School
of Electrical and Computer Engineering, Georgia Institute of Technology, North Avenue, Atlanta, Georgia 30332, United States
| | - Joshua Baker
- Department
of Chemistry, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, United States
| | - Seth Brittle
- Department
of Chemistry, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, United States
| | - Sushil Kanel
- Department
of Chemistry, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, United States
- UES, 4401 Dayton Xenia Rd, Beavercreek, Ohio 45432, United States
| | - Nasrin Hooshmand
- Department
of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas 78412, United States
| | - Ioana E. Pavel
- Department
of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas 78412, United States
| |
Collapse
|
2
|
Sørensen LK, Gerasimov VS, Karpov SV, Ågren H. Development of discrete interaction models for ultra-fine nanoparticle plasmonics. Phys Chem Chem Phys 2024; 26:24209-24245. [PMID: 39257371 DOI: 10.1039/d4cp00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Plasmonics serves as a most outstanding feature of nanoparticle technology and is nowadays used in numerous applications within imaging, sensing and energy harvesting, like plasmonically enhanced solar cells, nanoparticle bioimaging, plasmon-controlled fluorescence for molecular tracking in living cells, plasmon-controlled electronic molecular devices and surface enhanced Raman spectroscopy for single molecular detection. Although plasmonics has been utilized since ancient times, the understanding of its basic interactions has not been fully achieved even under the emergence of modern nanoscience. In particular, it has been difficult to address the "ultra-fine" 1-10 nm regime, important for applications especially in bioimaging and biomedical areas, where neither classical nor quantum based theoretical methods apply. Recently, new approaches have been put forward to bridge this size gap based on semi-empirical discrete interaction models where each atom makes a difference. A primary aim of this perspective article is to review some of the most salient features of these models, and in particular focus on a recent extension - the extended discrete interaction model (Ex-DIM), where the geometric and environmental features are extended - and highlight a set of benchmark studies using this model concerning size, shape, material, temperature dependence and other characteristics of ultra-fine plasmonic nanoparticles. We also analyze new possibilities offered by the model for designing ultra-fine plasmonic particles for applications in the areas of bioimaging, biosensing, photothermal therapy, infrared light harvesting and photodetection. We foresee that future modelling activities will be closely connected to collaborative experimental work including synthesis, device fabrication and measurements with feedback and validation in a systematic fashion. With this strategy we can expect that modelling of ultra-fine plasmonics particles can be integrated in the development of novel plasmonic systems with unprecedented performance and applicability.
Collapse
Affiliation(s)
- Lasse K Sørensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark.
- University Library, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Valeriy S Gerasimov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia.
- Institute of Computational Modelling, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
| | - Sergey V Karpov
- L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia.
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia.
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
3
|
Huri A, Mandelbaum Y, Rozenberg M, Muzikansky A, Zysler M, Zitoun D. Surface Plasmon Resonance Modulation by Complexation of Platinum on the Surface of Silver Nanocubes. ACS OMEGA 2024; 9:35526-35536. [PMID: 39184479 PMCID: PMC11339983 DOI: 10.1021/acsomega.4c02150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 08/27/2024]
Abstract
The use of plasmonic particles, specifically, localized surface plasmonic resonance (LSPR), may lead to a significant improvement in the electrical, electrochemical, and optical properties of materials. Chemical modification of the dielectric constant near the plasmonic surface should lead to a shift of the optical resonance and, therefore, the basis for color tuning and sensing. In this research, we investigated the variation of the LSPR by modifying the chemical environment of Ag nanoparticles (NPs) through the complexation of Pt(IV) metal cations near the plasmonic surface. This study is carried out by measuring the shift of the plasmon dipole resonance of Ag nanocubes (NCs) and nanowires (NWs) of differing sizes upon coating the Ag surface with a layer of polydopamine (PDA) as a coordinating matrix for Pt(IV) complexes. The red shift of up to 45 nm depends linearly on the thickness of the PDA/Pt(IV) layer and the Pt(IV) content. Additionally, we calculated the dielectric constant of the surrounding medium using a numerical method.
Collapse
Affiliation(s)
- Avi Huri
- Department
of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced
Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Yaakov Mandelbaum
- Department
of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced
Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
- Department
of Applied Physics/Electro-Optics Engineering, Advanced Lab for Electro-Optics Simulations (ALEO), Lev Academic
Center, Jerusalem 9116001, Israel
| | - Mike Rozenberg
- Department
of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced
Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Anya Muzikansky
- Department
of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced
Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Melina Zysler
- Department
of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced
Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - David Zitoun
- Department
of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced
Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
4
|
Crêpellière J, El Hachemi M, Menguelti K, Adjeroud N, Gerard M, Bouton O, Lunca Popa P, Michel M, Leturcq R. Haze factor of silver nanowires in variable refractive index environment: experimental and simulation approaches. NANOTECHNOLOGY 2024; 35:375703. [PMID: 38897181 DOI: 10.1088/1361-6528/ad59ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
While silver nanowires (Ag NWs) have been demonstrated as a highly efficient transparent conducting material, they suffer from strong light scattering, which is quantified by a large haze factor (HF) in the optical spectrum. Here we investigate the influence of the dielectric environment on the light scattering of Ag NWs by comparing experimental measurements and simulations. In air, two peaks on the HF spectra are observed experimentally at the wavelength ofλI= 350 nm andλII= 380 nm and are attributed by simulations to the influence of the Ag NWs pentagonal shape on the localized surface plasmon resonance. The relative intensity between the two peaks is found to be dependent on whether the Ag NWs are in contact with the glass substrate or not. The HF behaviour in the near IR region seems to be dominated by Rayleigh scattering following simulations results. Dielectric environments of Ag NWs with various refractive indexes were obtained experimentally by the conformal deposition of different metal oxide coatings using atomic layer deposition, including Al-doped zinc oxide, Al2O3and SiO2coatings. The HF is found to be correlated with the refractive index environment in terms of HF peaks position, intensity and broadening. This trend of HF peaks is supported by a theoretical model to understand the optical mechanism behind this phenomenon.
Collapse
Affiliation(s)
- J Crêpellière
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - M El Hachemi
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - K Menguelti
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - N Adjeroud
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - M Gerard
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - O Bouton
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - P Lunca Popa
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - M Michel
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - R Leturcq
- Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| |
Collapse
|
5
|
Kosame S, Josline MJ, Lee JH, Ju H. Anomalous spectral shift of localized surface plasmon resonance. NANOSCALE ADVANCES 2024; 6:2636-2643. [PMID: 38752138 PMCID: PMC11093275 DOI: 10.1039/d3na01131c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024]
Abstract
We report the first observation of spectral blue shift of plasmon resonance of synthesized silver nanoparticles (AgNPs) due to a negative optical nonlinearity of a local ambient medium, i.e., indigo carmine (IC) solution at around 420 nm wavelength. The blue shift occurred at a larger concentration of AgNPs or at a larger concentration of IC solution, being in obvious contrast to spectral red shift which was widely witnessed in plasmon spectral shift in a linear regime. Plasmon-enhanced local fields could excite the third-order optical nonlinearity for blue shift even under continuous (non-pulsed) light illumination. We also found that the plasmon-excited nonlinearity could allow for differential nonlinear response of the IC solution to be even greater than its differential linear response, though appearing to be somewhat inconsistent with what was generally known in light-matter interaction. The demonstrated properties of such anomalous shift of plasmon spectral peaks and its accompanying properties indicated that plasmon technologies could be exploited not only in linear but also in nonlinear aspects for critical optimization in plasmon-energy harvesting systems such as in surface enhanced spectroscopy/microscopy, biomedical imaging/sensing, laser frequency conversion, ultrashort pulse generation, and all-optical switching.
Collapse
Affiliation(s)
- Saikiran Kosame
- Department of Physics, Gachon University Seongnam-si 13120 Republic of Korea
| | - Mukkath Joseph Josline
- Department of Materials Science and Engineering, Ajou University Suwon Korea
- Department of Energy Systems Research, Ajou University Suwon Korea
| | - Jae-Hyun Lee
- Department of Materials Science and Engineering, Ajou University Suwon Korea
- Department of Energy Systems Research, Ajou University Suwon Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University Seongnam-si 13120 Republic of Korea
| |
Collapse
|
6
|
Park J, Ye Z, Celio H, Wang Y. Suppressing Metal Nanoparticle Ablation with Double-Pulse Femtosecond Laser Sintering. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e896-e905. [PMID: 38689906 PMCID: PMC11057546 DOI: 10.1089/3dp.2022.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
As a branch of laser powder bed fusion, selective laser sintering (SLS) with femtosecond (fs) lasers and metal nanoparticles (NPs) can achieve high precision and dense submicron features with reduced residual stress, due to the extremely short pulse duration. Successful sintering of metal NPs with fs laser is challenging due to the ablation caused by hot electron effects. In this study, a double-pulse sintering strategy with a pair of time-delayed fs-laser pulses is proposed for controlling the electron temperature while still maintaining a high enough lattice temperature. We demonstrate that when delay time is slightly longer than the electron-phonon coupling time of Cu NPs, the ablation area was drastically reduced and the power window for successful sintering was extended by about two times. Simultaneously, the heat-affected zone can be reduced by 66% (area). This new strategy can be adopted for all the SLS processes with fs laser and unlock the power of SLS with fs lasers for future applications.
Collapse
Affiliation(s)
- Janghan Park
- J. Mike Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Zefang Ye
- J. Mike Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Hugo Celio
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
| | - Yaguo Wang
- J. Mike Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
7
|
Kim G, Kim D, Ko S, Han JH, Kim J, Ko JH, Song YM, Jeong HH. Programmable directional color dynamics using plasmonics. MICROSYSTEMS & NANOENGINEERING 2024; 10:22. [PMID: 38304019 PMCID: PMC10831043 DOI: 10.1038/s41378-023-00635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 02/03/2024]
Abstract
Adaptive multicolor filters have emerged as key components for ensuring color accuracy and resolution in outdoor visual devices. However, the current state of this technology is still in its infancy and largely reliant on liquid crystal devices that require high voltage and bulky structural designs. Here, we present a multicolor nanofilter consisting of multilayered 'active' plasmonic nanocomposites, wherein metallic nanoparticles are embedded within a conductive polymer nanofilm. These nanocomposites are fabricated with a total thickness below 100 nm using a 'lithography-free' method at the wafer level, and they inherently exhibit three prominent optical modes, accompanying scattering phenomena that produce distinct dichroic reflection and transmission colors. Here, a pivotal achievement is that all these colors are electrically manipulated with an applied external voltage of less than 1 V with 3.5 s of switching speed, encompassing the entire visible spectrum. Furthermore, this electrically programmable multicolor function enables the effective and dynamic modulation of the color temperature of white light across the warm-to-cool spectrum (3250 K-6250 K). This transformative capability is exceptionally valuable for enhancing the performance of outdoor optical devices that are independent of factors such as the sun's elevation and prevailing weather conditions.
Collapse
Affiliation(s)
- Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Soeun Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Joo Hwan Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
- Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| |
Collapse
|
8
|
Yadav R, Pal S, Jana S, Roy S, Debnath K, Ray SK, Brundavanam MM, Bhaktha B N S. Synergy between plasmonic nanocavities and random lasing modes: a tool to dequench plasmon quenched fluorophore emission. Phys Chem Chem Phys 2023; 25:28336-28349. [PMID: 37840472 DOI: 10.1039/d3cp04151d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Metal nanoparticles (NPs) can be employed to modify the emission level of a dye emitter by tailoring the spectral overlap of the optical gain and localized surface plasmon resonance (LSPR). In the case of plasmonic random lasers, tuning the spectral overlap by manipulating metal NPs changes the scattering properties of the system, which is crucial in random lasers (RLs). In order to overcome this drawback, the emitter gain spectrum across the LSPR is tuned by appropriately choosing various dye emitters. A system with Au nanoislands (NIs) randomly distributed on the surface of vertically aligned ZnO nanorods on a glass substrate coated with three different dye emitters has been employed to study the metal-gain interaction as a function of spectral overlap. It is observed that the photoluminescence is quenched in the presence of Au NIs for all the three dye emitters; however, the degree of quenching is found to be directly proportional to the extent of spectral overlap of the LSPR and the fluorophore emission spectrum, with the resonantly coupled systems exhibiting higher random lasing thresholds. However, a dequenching of the emission is observed under spectrally off-resonant conditions, leading to a lower threshold RL. The effect of tailoring of the metal-gain interaction on the coherent and incoherent intensity components of RL emission is studied to elucidate the contrasting results of photoluminescence and RL emission. As the optical gain shifts away from the LSPR peak, the RL emission is dominated by the coherent intensity. The speckle-like field distributions of the RL modes couple to the plasmonic nanocavities along with a reduced absorption loss for the off-resonant case, leading to an enhanced stimulated emission. Hence, a synergy between random laser modes, plasmonic nanocavities and optimum spectral overlap has been utilized as a tool to dequench the plasmon quenched fluorophore emission.
Collapse
Affiliation(s)
- Renu Yadav
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Sourabh Pal
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Subhajit Jana
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Shuvajit Roy
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Kapil Debnath
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Samit K Ray
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Maruthi M Brundavanam
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Shivakiran Bhaktha B N
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| |
Collapse
|
9
|
Romain M, Roman P, Saviot L, Millot N, Boireau W. Inferring the Interfacial Reactivity of Gold Nanoparticles by Surface Plasmon Resonance Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13058-13067. [PMID: 37674412 DOI: 10.1021/acs.langmuir.3c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Gold nanoparticles (GNPs) require a functionalization step in most cases to be suitable for applications. Optimizing this step in order to maintain both the stability and the plasmonic properties of the GNPs is a demanding process. Indeed, multiple analyses are required to get sufficient information on the grafting rate and the stability of the obtained suspension, leading to material and time waste. In this study, we propose to investigate ligand reactivity on a gold surface with surface plasmon resonance (SPR) measurements as a way to simulate the reactivity in GNP suspensions. We consider two thiolated ligands in this work: thioglycolic acid (TA) and 6-mercaptohexanoic acid (MHA). These thiols are grafted using different conditions on GNPs (monitored by optical absorption) and on a gold surface (monitored by SPR) and the grafting efficiency and stability are compared. The same conclusions are reached in both cases regarding the best protocol to implement, namely, the thiol molecules should be introduced in a water solution at a low concentration. This demonstrates the suitability of SPR to predict the reactivity on a GNP surface.
Collapse
Affiliation(s)
- Mélanie Romain
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Phoölan Roman
- Université de Franche-Comté, CNRS, Institut Femto-ST, Besançon F-25030, France
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université de Bourgogne, BP 47870, Dijon 21078, France
| | - Wilfrid Boireau
- Université de Franche-Comté, CNRS, Institut Femto-ST, Besançon F-25030, France
| |
Collapse
|
10
|
Li S, Qin Z, Fu J, Gao Q. Nanobiosensing Based on Electro-Optically Modulated Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2400. [PMID: 37686908 PMCID: PMC10489767 DOI: 10.3390/nano13172400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
At the nanoscale, metals exhibit special electrochemical and optical properties, which play an important role in nanobiosensing. In particular, surface plasmon resonance (SPR) based on precious metal nanoparticles, as a kind of tag-free biosensor technology, has brought high sensitivity, high reliability, and convenient operation to sensor detection. By applying an electrochemical excitation signal to the nanoplasma device, modulating its surface electron density, and realizing electrochemical coupling SPR, it can effectively complete the joint transmission of electrical and optical signals, increase the resonance shift of the spectrum, and further improve the sensitivity of the designed biosensor. In addition, smartphones are playing an increasingly important role in portable mobile sensor detection systems. These systems typically connect sensing devices to smartphones to perceive different types of information, from optical signals to electrochemical signals, providing ideas for the portability and low-cost design of these sensing systems. Among them, electrochemiluminescence (ECL), as a special electrochemically coupled optical technology, has good application prospects in mobile sensing detection due to its strong anti-interference ability, which is not affected by background light. In this review, the SPR is introduced using nanoparticles, and its response process is analyzed theoretically. Then, the mechanism and sensing application of electrochemistry coupled with SPR and ECL are emphatically introduced. Finally, it extends to the relevant research on electrochemically coupled optical sensing on mobile detection platforms.
Collapse
Affiliation(s)
- Shuang Li
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.F.); (Q.G.)
| | | | | | | |
Collapse
|
11
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
12
|
Chiang CY, Chen CH, Wu CW. Fiber Optic Localized Surface Plasmon Resonance Sensor Based on Carboxymethylated Dextran Modified Gold Nanoparticles Surface for High Mobility Group Box 1 (HMGB1) Analysis. BIOSENSORS 2023; 13:bios13050522. [PMID: 37232883 DOI: 10.3390/bios13050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Rapid, sensitive, and reliable detection of high mobility group box 1 (HMGB1) is essential for medical and diagnostic applications due to its important role as a biomarker of chronic inflammation. Here, we report a facile method for the detection of HMGB1 using carboxymethyl dextran (CM-dextran) as a bridge molecule modified on the surface of gold nanoparticles combined with a fiber optic localized surface plasmon resonance (FOLSPR) biosensor. Under optimal conditions, the results showed that the FOLSPR sensor detected HMGB1 with a wide linear range (10-10 to 10-6 g/mL), fast response (less than 10 min), and a low detection limit of 43.4 pg/mL (1.7 pM) and high correlation coefficient values (>0.9928). Furthermore, the accurate quantification and reliable validation of kinetic binding events measured by the currently working biosensors are comparable to surface plasmon resonance sensing systems, providing new insights into direct biomarker detection for clinical applications.
Collapse
Affiliation(s)
- Chang-Yue Chiang
- Graduate School of Engineering Science and Technology and Interdisciplinary Program of Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Chien-Hsing Chen
- Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chin-Wei Wu
- Graduate School of Engineering Science and Technology and Interdisciplinary Program of Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| |
Collapse
|
13
|
Deriu C, Thakur S, Tammaro O, Fabris L. Challenges and opportunities for SERS in the infrared: materials and methods. NANOSCALE ADVANCES 2023; 5:2132-2166. [PMID: 37056617 PMCID: PMC10089128 DOI: 10.1039/d2na00930g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
In the wake of a global, heightened interest towards biomarker and disease detection prompted by the SARS-CoV-2 pandemic, surface enhanced Raman spectroscopy (SERS) positions itself again at the forefront of biosensing innovation. But is it ready to move from the laboratory to the clinic? This review presents the challenges associated with the application of SERS to the biomedical field, and thus, to the use of excitation sources in the near infrared, where biological windows allow for cell and through-tissue measurements. Two main tackling strategies will be discussed: (1) acting on the design of the enhancing substrate, which includes manipulation of nanoparticle shape, material, and supramolecular architecture, and (2) acting on the spectral collection set-up. A final perspective highlights the upcoming scientific and technological bets that need to be won in order for SERS to stably transition from benchtop to bedside.
Collapse
Affiliation(s)
- Chiara Deriu
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Shaila Thakur
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Olimpia Tammaro
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
- Department of Materials Science and Engineering, Rutgers University Piscataway NJ 08854 USA
| |
Collapse
|
14
|
Recent advances in plasmon-enhanced luminescence for biosensing and bioimaging. Anal Chim Acta 2023; 1254:341086. [PMID: 37005018 DOI: 10.1016/j.aca.2023.341086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
Plasmon-enhanced luminescence (PEL) is a unique photophysical phenomenon in which the interaction between luminescent moieties and metal nanostructures results in a marked luminescence enhancement. PEL offers several advantages and has been extensively used to design robust biosensing platforms for luminescence-based detection and diagnostics applications, as well as for the development of many efficient bioimaging platforms, enabling high-contrast non-invasive real-time optical imaging of biological tissues, cells, and organelles with high spatial and temporal resolution. This review summarizes recent progress in the development of various PEL-based biosensors and bioimaging platforms for diverse biological and biomedical applications. Specifically, we comprehensively assessed rationally designed PEL-based biosensors that can efficiently detect biomarkers (proteins and nucleic acids) in point-of-care tests, highlighting significant improvements in the sensing performance upon the integration of PEL. In addition to discussing the merits and demerits of recently developed PEL-based biosensors on substrates or in solutions, we include a brief discussion on integrating PEL-based biosensing platforms into microfluidic devices as a promising multi-responsive detection method. The review also presents comprehensive details about the recent advances in the development of various PEL-based multi-functional (passive targeting, active targeting, and stimuli-responsive) bioimaging probes, highlighting the scope of future improvements in devising robust PEL-based nanosystems to achieve more effective diagnostic and therapeutic insights by enabling imaging-guided therapy.
Collapse
|
15
|
Dhindsa P, Solti D, Jacobson CR, Kuriakose A, Naidu GN, Bayles A, Yuan Y, Nordlander P, Halas NJ. Facet Tunability of Aluminum Nanocrystals. NANO LETTERS 2022; 22:10088-10094. [PMID: 36525692 DOI: 10.1021/acs.nanolett.2c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aluminum nanocrystals (Al NCs) with a well-defined size and shape combine unique plasmonic properties with high earth abundance, potentially ideal for applications where sustainability and cost are important factors. It has recently been shown that single-crystal Al {100} nanocubes can be synthesized by the decomposition of AlH3 with Tebbe's reagent, a titanium(IV) catalyst with two cyclopentadienyl ligands. By systematically modifying the catalyst molecular structure, control of the NC growth morphology is observed spectroscopically, as the catalyst stabilizes the {100} NC facets. By varying the catalyst concentration, Al NC faceted growth is tunable from {100} faceted nanocubes to {111} faceted octahedra. This study provides direct insight into the role of catalyst molecular structure in controlling Al NC morphology.
Collapse
Affiliation(s)
- Parmeet Dhindsa
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - David Solti
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christian R Jacobson
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Anvy Kuriakose
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Gopal Narmada Naidu
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Aaron Bayles
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yigao Yuan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Naomi J Halas
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
16
|
Fan M, Zhang Y, Chen D, Ren L, Yang Q, Zhou C. Tunable light trapping in the graphene metasurface. APPLIED OPTICS 2022; 61:10694-10699. [PMID: 36606928 DOI: 10.1364/ao.475861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Graphene metasurfaces based on surface plasmon resonance can greatly enhance the interaction between light and matter at the nanoscale. At present, the resonance of graphene metasurfaces is widely used to enhance the absorption of atomic layer graphene, but little work has focused on the light field trapping capabilities it brings. In this paper, we numerically study the light trapping and manipulation of an asymmetric graphene metasurface. The designed device supports two resonant modes, and the multipole decomposition confirms that the electric dipole response dominates them. The calculated average electric field enhancement factor (EF) can reach 1206 and 1779, respectively. The near-field distribution indicates that the electric field is mainly localized in the graphene nanodisks. When the Fermi energy changes, the intensity and peak position of EF can be effectively regulated. In addition, when the polarization of the incident light is adjusted, the light field capture of the two modes is independently regulated. These results reveal that the graphene metasurface has significant light field capture and regulation ability, which provides a new idea for the realization of active regulation of high-performance low-dimensional optical devices.
Collapse
|
17
|
Nugroho FAA, Świtlik D, Armanious A, O’Reilly P, Darmadi I, Nilsson S, Zhdanov VP, Höök F, Antosiewicz TJ, Langhammer C. Time-Resolved Thickness and Shape-Change Quantification using a Dual-Band Nanoplasmonic Ruler with Sub-Nanometer Resolution. ACS NANO 2022; 16:15814-15826. [PMID: 36083800 PMCID: PMC9620406 DOI: 10.1021/acsnano.2c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Time-resolved measurements of changes in the size and shape of nanobiological objects and layers are crucial to understand their properties and optimize their performance. Optical sensing is particularly attractive with high throughput and sensitivity, and label-free operation. However, most state-of-the-art solutions require intricate modeling or multiparameter measurements to disentangle conformational or thickness changes of biomolecular layers from complex interfacial refractive index variations. Here, we present a dual-band nanoplasmonic ruler comprising mixed arrays of plasmonic nanoparticles with spectrally separated resonance peaks. As electrodynamic simulations and model experiments show, the ruler enables real-time simultaneous measurements of thickness and refractive index variations in uniform and heterogeneous layers with sub-nanometer resolution. Additionally, nanostructure shape changes can be tracked, as demonstrated by quantifying the degree of lipid vesicle deformation at the critical coverage prior to rupture and supported lipid bilayer formation. In a broader context, the presented nanofabrication approach constitutes a generic route for multimodal nanoplasmonic optical sensing.
Collapse
Affiliation(s)
- Ferry Anggoro Ardy Nugroho
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Department
of Physics and Astronomy, Vrije Universiteit
Amsterdam, De Boelelaan
1081, 1081 HV Amsterdam, The Netherlands
- Department
of Physics, Universitas Indonesia, Depok 16424, Indonesia
| | - Dominika Świtlik
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Antonius Armanious
- Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Padraic O’Reilly
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Iwan Darmadi
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Sara Nilsson
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Vladimir P. Zhdanov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Boreskov
Institute of Catalysis, Russian Academy
of Sciences, Novosibirsk 630090, Russia
| | - Fredrik Höök
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Tomasz J. Antosiewicz
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
18
|
Negm A, Howlader MMR, Belyakov I, Bakr M, Ali S, Irannejad M, Yavuz M. Materials Perspectives of Integrated Plasmonic Biosensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7289. [PMID: 36295354 PMCID: PMC9611134 DOI: 10.3390/ma15207289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
With the growing need for portable, compact, low-cost, and efficient biosensors, plasmonic materials hold the promise to meet this need owing to their label-free sensitivity and deep light-matter interaction that can go beyond the diffraction limit of light. In this review, we shed light on the main physical aspects of plasmonic interactions, highlight mainstream and future plasmonic materials including their merits and shortcomings, describe the backbone substrates for building plasmonic biosensors, and conclude with a brief discussion of the factors affecting plasmonic biosensing mechanisms. To do so, we first observe that 2D materials such as graphene and transition metal dichalcogenides play a major role in enhancing the sensitivity of nanoparticle-based plasmonic biosensors. Then, we identify that titanium nitride is a promising candidate for integrated applications with performance comparable to that of gold. Our study highlights the emerging role of polymer substrates in the design of future wearable and point-of-care devices. Finally, we summarize some technical and economic challenges that should be addressed for the mass adoption of plasmonic biosensors. We believe this review will be a guide in advancing the implementation of plasmonics-based integrated biosensors.
Collapse
Affiliation(s)
- Ayman Negm
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Electronics and Communications Engineering, Cairo University, Giza 12613, Egypt
| | - Matiar M. R. Howlader
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ilya Belyakov
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohamed Bakr
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shirook Ali
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
- School of Mechanical and Electrical Engineering Technology, Sheridan College, Brampton, ON L6Y 5H9, Canada
| | | | - Mustafa Yavuz
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
19
|
Sørensen LK, Khrennikov DE, Gerasimov VS, Ershov AE, Polyutov SP, Karpov SV, Ågren H. Medium dependent optical response in ultra-fine plasmonic nanoparticles. Phys Chem Chem Phys 2022; 24:24062-24075. [PMID: 36172859 DOI: 10.1039/d2cp02929d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the influence of media on the interaction of ultra-fine plasmonic nanoparticles (≤ 8 nm) with radiation. The important role of the surface layer of the nanoparticles, with properties that differ from the ones in the inner part, is established. Using an atomistic representation of the nanoparticle material and its interaction with light, we find a highly inhomogeneous distribution of the electric field inside and around the particles. It is predicted that with an increase in the refractive index of the ambient medium, the extension of the surface layer of atoms increases, something that also is accompanied by an enhanced red shift of the plasmon resonance band compared to large particles in which the influence of this layer and its relative volume is reduced. It is shown that the physical origin for the formation of a surface layer of atoms near the nanoparticle boundary is related to the anisotropy of the local environment of atoms in this layer which changes the conditions for the interaction of neighboring atoms with each other and with the incident radiation. It is shown that a growth of the refractive index of the ambient medium results in an increase in the local field in the dielectric cavity in which a plasmonic nanoparticle is embedded and which is accompanied by a growth of the amplitude of the plasmon resonance. We predict that in the ultra-fine regime the refractive index sensitivity shows a decreasing trend with respect to size which is opposite to that for larger particles. With the applied atomistic model this work demonstrates close relations between field distributions and properties of ultra-fine nanoparticles.
Collapse
Affiliation(s)
- Lasse K Sørensen
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden. .,Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, SE-10691, Sweden.,University Library, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Daniil E Khrennikov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia
| | - Valeriy S Gerasimov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia.,Institute of Computational Modelling, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
| | - Alexander E Ershov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia.,Institute of Computational Modelling, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
| | - Sergey P Polyutov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia.,Federal Siberian Research Clinical Centre under FMBA of Russia, 660037, Kolomenskaya, 26 Krasnoyarsk, Russia
| | - Sergey V Karpov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, Krasnoyarsk, 660041, Russia.,L. V. Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russia
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
20
|
Wu Q, Zhang Y, Qu D, Li C. MIM waveguide system with independently tunable double resonances and its application for two-parameter detection. APPLIED OPTICS 2022; 61:7409-7414. [PMID: 36256042 DOI: 10.1364/ao.465922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
A metal-insulator-metal (MIM) waveguide system consisting of a MIM waveguide, a ring cavity, and a semi-ring cavity is proposed. Using the finite element method, the transmission characteristics of the MIM waveguide system are discussed under the different geometry parameters. By detecting the resonance wavelength and varying the refractive index, the sensing performance of the MIM waveguide system is analyzed. The proposed structure can be used as a refractive index sensor with the maximum sensitivity of 2412 nm/RIU. Due to isolating the ring cavity and semi-ring cavity, the independent tuning of double resonances can be realized by changing the refractive index of the insulator in the ring cavity or the semi-ring cavity. Benefiting from two independent refractive index sensing modes, the structure with two isolated resonators can realize the simultaneous measurement of glucose solution concentration and blood plasma concentration. The sensitivity of glucose solution sensing in the ring cavity is 0.13133 nm/(g/L). Meanwhile, the blood plasma concentration detection in the semi-ring cavity is realized with the sensitivity of 0.358 nm/(g/L). The system with two isolated cavities has the potential to be used as an efficient nano sensor, which can achieve simultaneous measurement of two parameters.
Collapse
|
21
|
Cao F, Zhao X, Lv X, Hu L, Jiang W, Yang F, Chi L, Chang P, Xu C, Xie Y. An LSPR Sensor Integrated with VCSEL and Microfluidic Chip. NANOMATERIALS 2022; 12:nano12152607. [PMID: 35957038 PMCID: PMC9370176 DOI: 10.3390/nano12152607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
The work introduces a localized surface plasmon resonance (LSPR) sensor chip integrated with vertical-cavity surface-emitting lasers (VCSELs). Using VCSEL as the light source, the hexagonal gold nanoparticle array was integrated with anodic aluminum oxide (AAO) as the mask on the light-emitting end face. The sensitivity sensing test of the refractive index solution was realized, combined with microfluidic technology. At the same time, the finite-difference time- domain (FDTD) algorithm was applied to model and simulate the gold nanostructures. The experimental results showed that the output power of the sensor was related to the refractive index of the sucrose solution. The maximum sensitivity of the sensor was 1.65 × 106 nW/RIU, which gives it great application potential in the field of biomolecular detection.
Collapse
Affiliation(s)
- Fang Cao
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Xupeng Zhao
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Xiaoqing Lv
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China
- Correspondence: (X.L.); (L.C.); (Y.X.); Tel.: +86-10-67391641-868 (Y.X.)
| | - Liangchen Hu
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Wenhui Jiang
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Feng Yang
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Li Chi
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Correspondence: (X.L.); (L.C.); (Y.X.); Tel.: +86-10-67391641-868 (Y.X.)
| | - Pengying Chang
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Chen Xu
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Yiyang Xie
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
- Correspondence: (X.L.); (L.C.); (Y.X.); Tel.: +86-10-67391641-868 (Y.X.)
| |
Collapse
|
22
|
Mansour Y, Battie Y, Naciri AE, Chaoui N. In situ monitoring of the shape distribution of metallic colloids from extinction spectroscopy measurements. OPTICS LETTERS 2022; 47:3255-3258. [PMID: 35776599 DOI: 10.1364/ol.460555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
In this Letter, we propose a new, to the best of our knowledge, approach to determine the shape distribution of gold (Au) nanorods from real-time extinction spectroscopy measurements. This method is based on the linearization of the shape distribution effective medium theory (SDEMT). The aspect ratio distribution of Au colloids is obtained in a few tens of ms without any a priori information on the distribution. Both bimodal and monomodal shape distributions of nanoparticles can be extracted by analyzing their extinction spectra. The proposed method is applied to monitor the change in the nanoparticle shape during their exposure to ns-laser pulses.
Collapse
|
23
|
Chen CH, Chiang CY. Determination of the Highly Sensitive Carboxyl-Graphene Oxide-Based Planar Optical Waveguide Localized Surface Plasmon Resonance Biosensor. NANOMATERIALS 2022; 12:nano12132146. [PMID: 35807986 PMCID: PMC9268428 DOI: 10.3390/nano12132146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/20/2022]
Abstract
This study develops a highly sensitive and low-cost carboxyl-graphene-oxide-based planar optical waveguide localized surface plasmon resonance biosensor (GO-OW LSPR biosensor), a system based on measuring light intensity changes. The structure of the sensing chip comprises an optical waveguide (OW)-slide glass and microfluidic-poly (methyl methacrylate) (PMMA) substrate, and the OW-slide glass surface-modified gold nanoparticle (AuNP) combined with graphene oxide (GO). As the GO has an abundant carboxyl group (–COOH), the number of capture molecules can be increased. The refractive index sensing system uses silver-coated reflective film to compare the refractive index sensitivity of the GO-OW LSPR biosensor to increase the refractive index sensitivity. The result shows that the signal variation of the system with the silver-coated reflective film is 1.57 times that of the system without the silver-coated reflective film. The refractive index sensitivity is 5.48 RIU−1 and the sensor resolution is 2.52 ± 0.23 × 10−6 RIU. The biochemical sensing experiment performs immunoglobulin G (IgG) and streptavidin detection. The limits of detection of the sensor for IgG and streptavidin are calculated to be 23.41 ± 1.54 pg/mL and 5.18 ± 0.50 pg/mL, respectively. The coefficient of variation (CV) of the repeatability experiment (sample numbers = 3) is smaller than 10.6%. In addition, the affinity constants of the sensor for anti-IgG/IgG and biotin/streptavidin are estimated to be 1.06 × 107 M−1 and 7.30 × 109 M−1, respectively. The result shows that the GO-OW LSPR biosensor has good repeatability and very low detection sensitivity. It can be used for detecting low concentrations or small biomolecules in the future.
Collapse
Affiliation(s)
- Chien-Hsing Chen
- Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Chang-Yue Chiang
- Graduate School of Engineering Science and Technology and Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
- Correspondence: ; Tel.: +886-5-5342601 (ext. 4014)
| |
Collapse
|
24
|
Kuthala N, Shanmugam M, Kong X, Chiang CS, Hwang KC. Salt-mediated, plasmonic field-field/field-lattice coupling-enhanced NIR-II photodynamic therapy using core-gap-shell gold nanopeanuts. NANOSCALE HORIZONS 2022; 7:589-606. [PMID: 35527504 DOI: 10.1039/d1nh00631b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plasmonic field-field coupling-induced enhancement of the optical properties of dye molecules in the nanogaps among metal nanoparticle clusters and thin films has attracted significant attention especially in disease-related theranostic applications. However, it is very challenging to synthesize plasmonic core-gap-shell nanostructures with a well-controlled nanogap, uniform shape, and distances to maximize the plasmonic field-field coupling between the core and the shell. Herein, we synthesized Au@gap@AuAg nanopeanut-shaped core-gap-shell nanostructures (Au NPN) and tuned their optical absorption from near-infrared region-I (NIR-I) to near-infrared region-II (NIR-II) by filling their nanogap with a high dielectric NaCl(aq) aqueous solution, which led to a dramatic redshift in the plasmonic absorption band by 320 nm from 660 to 980 nm and a 12.6-fold increase (at 1064 nm) in the extinction coefficient in the NIR region (1000-1300 nm). Upon filling the nanogap with NaCl(aq) aqueous solution, the Au NPN6.5(NaCl) (i.e., ∼6.5 nm nanogap)-mediated NIR-II photodynamic therapy effect was dramatically enhanced, resulting in a much longer average lifespan of >55 days for the mice bearing a murine colon tumor and treated with Au NPN6.5(NaCl) plus 1064 nm light irradiation compared to the mice treated with Au NPN6.5 + 1064 nm light irradiation (without nanogap filled with dielectric NaCl(aq), 40 d) and the doxorubicin-treated group (23 d). This study demonstrates a simple but effective method to tune and maximize the plasmonic field-field coupling between the metal shell and metal core of core-gap-shell nanostructures, the plasmonic field-lattice interactions, and biomedical applications for the treatment of tumors. Overall, our work presents a new way to enhance/maximize the plasmonic field-field and field-lattice coupling, and thus the performance/sensitivities in nanogap-based bioimaging, sensing, and theranostic nanomaterials and devices.
Collapse
Affiliation(s)
- Naresh Kuthala
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Munusamy Shanmugam
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| |
Collapse
|
25
|
Luo X, Qiao L, Xia Z, Yu J, Wang X, Huang J, Shu C, Wu C, He Y. Shape- and Size-Dependent Refractive Index Sensing and SERS Performance of Gold Nanoplates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6454-6463. [PMID: 35549353 DOI: 10.1021/acs.langmuir.2c00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmonic sensors are promising for ultrasensitive chemical and biological analysis. Gold nanoplates (Au NPLs) show unique geometrical structures with high ratios of surface to bulk atoms, which display fascinating plasmonic properties but require optimization. This study presented a systematic investigation of the influence of different parameters (shape, aspect ratio, and resonance mode) on localized surface plasmon resonance properties, refractive index (RI, n) sensitivities, and surface-enhanced Raman scattering (SERS) enhancement ability of different types of Au NPLs through finite-difference time-domain (FDTD) simulations. As a proof of concept, triangular, circular, and hexagonal Au NPLs with varying aspect ratios were fabricated via a three-step seed-mediated growth method by the experiment. Both FDTD-simulated and measured experimental results confirm that the RI sensitivities increase with the aspect ratio. Furthermore, choosing a lower order resonance mode of Au NPLs benefits higher RI sensitivities. The SERS enhancement abilities of Au NPLs also predicted to be highly dependent on the shape and aspect ratio. The triangular Au NPLs showed the highest SERS enhancement ability, while it drastically decreased for circular Au NPLs after the rounding process. The SERS enhancement ability gradually became more intense as the hexagonal Au NPLs overgrown on circular Au NPLs with increasing volumes of HAuCl4 solution. The results are expected to help develop effective biosensors.
Collapse
Affiliation(s)
- Xiaojun Luo
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Ling Qiao
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P.R. China
| | - Zhichao Xia
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Jiaming Yu
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Xiaozhou Wang
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Juhong Huang
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Chang Shu
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Caijun Wu
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Yi He
- School of Science, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
26
|
Hong YA, Ha JW. Enhanced refractive index sensitivity of localized surface plasmon resonance inflection points in single hollow gold nanospheres with inner cavity. Sci Rep 2022; 12:6983. [PMID: 35484278 PMCID: PMC9050728 DOI: 10.1038/s41598-022-11197-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Hollow gold nanoparticles have great potential for localized surface plasmon resonance (LSPR) sensing. In this study, we investigated the refractive index (RI) sensitivities of single hollow gold nanosphere (HAuNS) with thin Au shell and inner cavity and single solid gold nanosphere (AuNS) in media with different RIs. The HAuNS exhibited a remarkable improvement in the RI sensitivity than the AuNS of similar size. The increased RI sensitivity of HAuNSs was ascribed to plasmon coupling between the inner and outer surface of the Au nanoshell. We then investigated the homogeneous LSPR scattering inflection points (IFs) to better understand the RI sensitivity of single HAuNS. The LSPR IF at the long wavelength side exhibited a better RI sensitivity compared to the wavelength shift of its counterpart LSPR maximum peak. Furthermore, the single HAuNS showed a remarkable improvement in the RI sensitivity at the LSPR IFs when compared to the AuNS of similar size. Therefore, we provided a new insight into the effect of inner cavity of HAuNS on the RI sensitivity of homogeneous LSPR IFs for use in LSPR-based biosensors.
Collapse
Affiliation(s)
- Yun A Hong
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea
| | - Ji Won Ha
- Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea. .,Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, South Korea.
| |
Collapse
|
27
|
Abstract
In the last few decades, plasmonic colorimetric biosensors raised increasing interest in bioanalytics thanks to their cost-effectiveness, responsiveness, and simplicity as compared to conventional laboratory techniques. Potential high-throughput screening and easy-to-use assay procedures make them also suitable for realizing point of care devices. Nevertheless, several challenges such as fabrication complexity, laborious biofunctionalization, and poor sensitivity compromise their technological transfer from research laboratories to industry and, hence, still hamper their adoption on large-scale. However, newly-developing plasmonic colorimetric biosensors boast impressive sensing performance in terms of sensitivity, dynamic range, limit of detection, reliability, and specificity thereby continuously encouraging further researches. In this review, recently reported plasmonic colorimetric biosensors are discussed with a focus on the following categories: (i) on-platform-based (localized surface plasmon resonance, coupled plasmon resonance and surface lattice resonance); (ii) colloid aggregation-based (label-based and label free); (iii) colloid non-aggregation-based (nanozyme, etching-based and growth-based).
Collapse
|
28
|
Akouibaa A, Masrour R, Jabar A, Benhamou M, Ouarch M, Derouiche A. Study of the Optical and Thermoplasmonics Properties of Gold Nanoparticle Embedded in Al 2O 3 Matrix. PLASMONICS (NORWELL, MASS.) 2022; 17:1157-1169. [PMID: 35228839 PMCID: PMC8865734 DOI: 10.1007/s11468-022-01607-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/28/2022] [Indexed: 05/30/2023]
Abstract
In this paper, the optical and thermoplasmonics properties of nanocomposites consisting of spherical gold nanoparticles (AuNPs) integrated in Al 2 O 3 matrix are determined using the Finite Element Method (FEM). Firstly, the refractive index ( n ) , extinction coefficient ( κ ) , absorption coefficient ( μ a ) , and optical conductivity ( σ ) are calculated from the effective complex permittivity obtained by solving the Laplace's equation for different size and concentration of nanoparticles. The surface plasmon resonance (SPR) properties of AuNPs are optimized from the peak presented in the absorption coefficient spectrum. The results show that the optical parameters n , κ , μ a , and σ undergo a strong variation around the wavelength λ max corresponding to the SPR phenomenon. The value of λ max increases from 560 to 600 n m when the radius of the particles varies between r = 5 and r = 30 n m . The effect of the AuNP concentration on the band gap energy E g ( e V ) of Au- Al 2 O 3 nanocomposites is also studied, a shift from E g = 5.34 to E g = 5.49 e V is observed when the concentration of the AuNPs increases from 0 to 0.82 % . The electric field enhancement induced by the AuNPs at plasmonic resonance is also determined depending to the particle size; the results show that the enhancement factor increases from g = 4.71 to g = 6.95 when the radius of the AuNPs increases from r = 5 to 30 n m . The thermal dissipation of the plasmonic energy of spherical of our system dispersed in the Al 2 O 3 matrix is determined considering the Joule effect which occurs by the oscillation of the charges at the plasmonic resonance. The generated thermal power by particles is calculated for different sizes, which allows to calculate the thermal power per gram of particles depending on the intensity of the incident electric field. The results show that the plasmonic thermal power is almost identical for small particles when the radius is less than r = 15 n m and increases considerably when the size increases from r = 15 to 30 n m . For a fixed size and incident field amplitude, we calculated the temperature change in the nanocomposites Au- Al 2 O 3 depending of time for different particle concentrations; the temperature variation curves obtained are linear as a function of time.
Collapse
Affiliation(s)
- Abdelilah Akouibaa
- LPPPC, Physics Department, Faculty of Sciences Ben M’sik, Casablanca, Hassan II University Casablanca, P.O. Box 7955, Casablanca, Morocco
| | - Rachid Masrour
- Laboratory of Solid Physics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, BP 1796, Fez, Morocco
| | - Abderrahim Jabar
- Laboratory of Solid Physics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, BP 1796, Fez, Morocco
| | - Mabrouk Benhamou
- Physics Department, Faculty of Sciences, EDSC, Moulay Ismail University, P.O. Box 11201, Meknes, Morocco
| | - Mohamed Ouarch
- CRMEF, Casablanca-Settat (Annex El-Jadida), Casablanca, Morocco
| | - Abdelali Derouiche
- LPPPC, Physics Department, Faculty of Sciences Ben M’sik, Casablanca, Hassan II University Casablanca, P.O. Box 7955, Casablanca, Morocco
| |
Collapse
|
29
|
Control of Surface Plasmon Resonance in Silver Nanocubes by CEP-Locked Laser Pulse. PHOTONICS 2022. [DOI: 10.3390/photonics9020053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Localized surface plasmon resonance (LSPR) of metal nanoparticles has attracted increasing attention in surface-enhanced Raman scattering, chemical and biological sensing applications. In this article, we calculate the optical extinction spectra of a silver nanocube driven by an ultrashort carrier envelope phase (CEP)-locked laser pulse. Five LSPR modes are clearly excited in the optical spectra. We analyze the physical origin of each mode from the charge distribution on different parts of the cubic particle and the dipole and quadrupole excitation features at the LSPR peaks. The charge distribution follows a simple rule that when the charge concentrates from the face to the corners of the cubic particle, the resonant wavelength red-shifts. Then we modulate the LSPR spectra by changing CEP. The results show that CEP has selective plasmon mode excitation functionality and can act as a novel modulation role on LSPR modes. Our work suggests a novel means to regulate LSPR modes and the corresponding optical properties of metal nanoparticles via various freedoms of controlled optical field, which can be useful for optimized applications in chemical and biological sensors, single molecule detection, and so on.
Collapse
|
30
|
Zhang YJ, Radjenovic PM, Zhou XS, Zhang H, Yao JL, Li JF. Plasmonic Core-Shell Nanomaterials and their Applications in Spectroscopies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005900. [PMID: 33811422 DOI: 10.1002/adma.202005900] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/24/2021] [Indexed: 05/22/2023]
Abstract
Plasmonic core-shell nanostructures have attracted considerable attention in the scientific community recently due to their highly tunable optical properties. Plasmon-enhanced spectroscopies are one of the main applications of plasmonic nanomaterials. When excited by an incident laser of suitable wavelength, strong and highly localized electromagnetic (EM) fields are generated around plasmonic nanomaterials, which can significantly boost excitation and/or radiation processes that amplify Raman, fluorescence, or nonlinear signals and improve spectroscopic sensitivity. Herein, recent developments in plasmon-enhanced spectroscopies utilizing core-shell nanostructures are reviewed, including shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), plasmon-enhanced fluorescence spectroscopy, and plasmon-enhanced nonlinear spectroscopy.
Collapse
Affiliation(s)
- Yue-Jiao Zhang
- College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Petar M Radjenovic
- College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Hua Zhang
- College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jian-Lin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian-Feng Li
- College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
31
|
Verma MS, Chandra M. Second harmonic generation-based nonlinear plasmonic RI-sensing in solution: the pivotal role of the particle size. Phys Chem Chem Phys 2021; 23:25565-25571. [PMID: 34782895 DOI: 10.1039/d1cp04546f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we demonstrate the utility of the second harmonic generation (SHG) for refractometric sensing in the solution phase. We employ an aqueous colloid of gold nanorods as our sensors, and modulation in their SHG with the surrounding refractive index (RI) is mirrored using second-harmonic light scattering (SHLS). A limit of detection (LOD) as low as 9 × 10-4 RIU is achieved. The RI sensitivity of our SHLS-based approach is two orders of magnitude higher than that obtained using linear Rayleigh scattering. Most importantly, we show that the particle size plays a crucial role in controlling the nonlinear plasmonic sensing performance of gold nanorods.
Collapse
Affiliation(s)
- Mrigank Singh Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India.
| |
Collapse
|
32
|
Stein F, Schielke A, Barcikowski S, Rehbock C. Influence of Gold/Silver Ratio in Ablative Nanoparticles on Their Interaction with Aptamers and Functionality of the Obtained Conjugates. Bioconjug Chem 2021; 32:2439-2446. [PMID: 34730343 DOI: 10.1021/acs.bioconjchem.1c00468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nano-bio-conjugates, featuring noble metal gold-silver alloy nanoparticles, represent a versatile tool in diagnostics and therapeutics due to their plasmonic and antimicrobial properties tunable by the particle's gold molar fraction. However, little is known about how the binding of thiolated biomolecules to noble metal nanoparticles is influenced by the fraction of gold and silver atoms on the nanoparticle's surface and to which extend this would affect the functionality of the conjugated biomolecules. In this work, we generated gold-silver alloy nanoparticles with average diameters of 7-8 nm using the modern, surfactant-free laser ablation in liquids (LAL) synthesis approach. We conjugated them with thiolated miniStrep aptamer ligands at well-controlled aptamer-to-nanoparticle surface area ratios with maxima between 12 and 27 pmol aptamer/cm2 particle surface area. The results revealed a clear correlation between surface coverage and the nanoparticles' nominal gold/silver ratio, with maximum coverage reached for gold-rich alloys and a pronounced maximum for silver-rich alloys. However, the conjugates' functionality, evaluated by binding of streptavidin, was surprisingly robust and hardly affected by the nominal composition. However, 1.5 times higher surface coverage was needed to obtain maximum functionality in the silver-rich conjugates. Based on these results, it may be concluded that the nominal composition of gold-silver alloy nano-bioconjugates is freely tunable without a pronounced impact on the attached ligands' functionality, a finding highly relevant for the flexible design of nano-bio-conjugates for future biomedical applications. This study's results may facilitate the design of alloy nano-bio-conjugates for future applications in therapeutics and diagnostics.
Collapse
Affiliation(s)
- Frederic Stein
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany
| | - Andreas Schielke
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany
| | - Christoph Rehbock
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany
| |
Collapse
|
33
|
Zutterman F, Champagne B. Simulation of absorption and scattering spectra of crystalline organic nanoparticles with the discrete dipole approximation: Effects of crystal shape, crystal size, and refractive index of the medium. J Chem Phys 2021; 155:164703. [PMID: 34717351 DOI: 10.1063/5.0064930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of the shape (habit) of crystalline organic nanoparticles on their absorption spectra is studied by simulations using the discrete dipole approximation, focusing, in particular, on the vibronic structure of the absorption bands in the spectra. Simulations predict a significant effect that, for sufficiently small particles, can be simply rationalized by the depolarization factor. The crystal size and the refractive index of the medium in which the nanoparticles are embedded are also found to have an effect on the absorption spectra. All factors mentioned are found to influence also the spectra of scattered light. These effects, already broadly documented for metallic nanoparticles, are here demonstrated theoretically for the first time for crystalline organic nanoparticles, providing novel insight into the optical response of such particles. The effects are expected to be displayed by all organic nanoparticles, as long as they have a well-defined crystal structure and are large enough for the optical properties to be understandable using a macroscopic dielectric tensor. The effects demonstrated here should be taken into account when rationalizing differences in absorption spectra of a substance in solution and in nanoparticle form, e.g., in deducing the type of intermolecular packing. The effects are much less pronounced for optically isotropic nanoparticles.
Collapse
Affiliation(s)
- Freddy Zutterman
- Laboratoire de Chimie Théorique (LCT), Namur Institute of Structured Matter (NISM), University of Namur (UNamur), Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Benoît Champagne
- Laboratoire de Chimie Théorique (LCT), Namur Institute of Structured Matter (NISM), University of Namur (UNamur), Rue de Bruxelles, 61, B-5000 Namur, Belgium
| |
Collapse
|
34
|
Sanchis-Gual R, Torres-Cavanillas R, Coronado-Puchau M, Giménez-Marqués M, Coronado E. Plasmon-assisted spin transition in gold nanostar@spin crossover heterostructures. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:10811-10818. [PMID: 35360440 PMCID: PMC8900490 DOI: 10.1039/d1tc01943k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/02/2021] [Indexed: 06/01/2023]
Abstract
Herein we report the design of core@shell nanoparticles formed by a metallic Au nanostar core and a spin-crossover shell based on the coordination polymer [Fe(Htrz)2(trz)](BF4). This procedure is general and has been extended to other metallic morphologies (nanorods, nanotriangles). Thanks to the photothermal effect arising from the plasmonic properties of the Au nanostar, 60% of iron centers undergo a thermal spin transition inside the thermal hysteresis triggered by a 808 nm laser low intensity irradiation. Compared to other Au morphologies, the great advantage of the nanostar shape arises from the hot spots created at the branches of the nanostar. These hot spots give rise to large NIR absorptions, making them ideal nanostructures for efficiently converting light into heat using low energy light, like that provided by a 808 nm laser.
Collapse
Affiliation(s)
- Roger Sanchis-Gual
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltran 2 46980 Paterna Spain
| | - Ramón Torres-Cavanillas
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltran 2 46980 Paterna Spain
| | - Marc Coronado-Puchau
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltran 2 46980 Paterna Spain
| | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltran 2 46980 Paterna Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular, Universitat de València Catedrático José Beltran 2 46980 Paterna Spain
| |
Collapse
|
35
|
Sanchis-Gual R, Otero TF, Coronado-Puchau M, Coronado E. Enhancing the electrocatalytic activity and stability of Prussian blue analogues by increasing their electroactive sites through the introduction of Au nanoparticles. NANOSCALE 2021; 13:12676-12686. [PMID: 34477618 DOI: 10.1039/d1nr02928b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prussian blue analogues (PBAs) have been proven as excellent Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) in acidic, neutral and alkaline media. Further improvements can be achieved by increasing their electrical conductivity, but scarce attention has been paid to quantify the electroactive sites of the electrocatalyst when this enhancement occurs. In this work, we have studied how the chemical design influences the specific density of electroactive sites in different Au-PBA nanostructures. Thus, we have first obtained and fully characterized a variety of monodisperse core@shell hybrid nanoparticles of Au@PBA (PBA of NiIIFeII and CoIIFeII) with different shell sizes. Their catalytic activity is evaluated by studying the OER, which is compared to pristine PBAs and other Au-PBA heterostructures. By using the coulovoltammetric technique, we have demonstrated that the introduction of 5-10% of Au in weight in the core@shell leads to an increase in the electroactive mass and thus, to a higher density of active sites capable of taking part in the OER. This increase leads to a significant decrease in the onset potential (up to 100 mV) and an increase (up to 420%) in the current density recorded at an overpotential of 350 mV. However, the Tafel slope remains unchanged, suggesting that Au reduces the limiting potential of the catalyst with no variation in the reaction kinetics. These improvements are not observed in other Au-PBA nanostructures mainly due to a lower contact between both compounds and the Au oxidation. Hence, an Au core activates the PBA shell and increases the conductivity of the resulting hybrid, while the PBA shell prevents Au oxidation. The strong synergistic effect existing in the core@shell structure evidences the importance of the chemical design for preparing PBA-based nanostructures exhibiting better electrocatalytic performances and higher electrochemical stabilities.
Collapse
Affiliation(s)
- Roger Sanchis-Gual
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| | | | | | | |
Collapse
|
36
|
Lertvachirapaiboon C, Baba A, Shinbo K, Kato K. Colorimetric Detection Based on Localized Surface Plasmon Resonance for Determination of Chemicals in Urine. ANAL SCI 2021; 37:929-940. [PMID: 33132235 DOI: 10.2116/analsci.20r005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Colorimetric sensors based on localized surface plasmon resonance (LSPR) have attracted much attention for biosensor and chemical sensor applications. The unique optical effect of LSPR is based on the nanostructure of noble metals (e.g., Au, Ag, and Al) and the refractive index of the environment surrounding these metal nanomaterials. When either the structure or the environment of these nanomaterials is changed, their optical properties change and can be observed by spectroscopic techniques or the naked eye. Colorimetric-probe-based LSPR provides a simple, rapid, real-time, nonlabelled, sensitive biochemical detection and can be used for point-of-care testing as well as rapid screening for the diagnosis of various diseases. Gold and silver nanoparticles, which are the two most widely used plasmonic nanomaterials, demonstrate strong and sensitive LSPR signals that can be used for the selective detection of several chemicals in biochemical compounds provided by the human body (e.g., urine and blood). This information can be used for the diagnosis of several human health conditions. This paper provides information regarding colorimetric probes based on LSPR for the detection of three major chemicals in human urine: creatinine, albumin, and glucose. In addition, the mechanisms of selective detection and quantitative analysis of these chemicals using metal nanoparticles are discussed along with colorimetric-detection-based LSPR for many other specific chemicals that can be detected in urine, such as catecholamine neurotransmitters, thymine, and various medicines. Furthermore, issues regarding the use of portable platforms for health monitoring with colorimetric detection based on LSPR are discussed.
Collapse
Affiliation(s)
| | - Akira Baba
- Graduate School of Science and Technology, Niigata University
| | - Kazunari Shinbo
- Graduate School of Science and Technology, Niigata University
| | - Keizo Kato
- Graduate School of Science and Technology, Niigata University
| |
Collapse
|
37
|
Feng S, Ji W. Advanced Nanoporous Anodic Alumina-Based Optical Sensors for Biomedical Applications. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.678275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Close-packed hexagonal array nanopores are widely used both in research and industry. A self-ordered nanoporous structure makes anodic aluminum oxide (AAO) one of the most popular nanomaterials. This paper describes the main formation mechanisms for AAO, the AAO fabrication process, and optical sensor applications. The paper is focused on four types of AAO-based optical biosensor technology: surface-Enhanced Raman Scattering (SERS), surface Plasmon Resonance (SPR), reflectometric Interference Spectroscopy (RIfS), and photoluminescence Spectroscopy (PL). AAO-based optical biosensors feature very good selectivity, specificity, and reusability.
Collapse
|
38
|
Kim DM, Park JS, Jung SW, Yeom J, Yoo SM. Biosensing Applications Using Nanostructure-Based Localized Surface Plasmon Resonance Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:3191. [PMID: 34064431 PMCID: PMC8125509 DOI: 10.3390/s21093191] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/06/2023]
Abstract
Localized surface plasmon resonance (LSPR)-based biosensors have recently garnered increasing attention due to their potential to allow label-free, portable, low-cost, and real-time monitoring of diverse analytes. Recent developments in this technology have focused on biochemical markers in clinical and environmental settings coupled with advances in nanostructure technology. Therefore, this review focuses on the recent advances in LSPR-based biosensor technology for the detection of diverse chemicals and biomolecules. Moreover, we also provide recent examples of sensing strategies based on diverse nanostructure platforms, in addition to their advantages and limitations. Finally, this review discusses potential strategies for the development of biosensors with enhanced sensing performance.
Collapse
Affiliation(s)
- Dong Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon 34158, Korea;
| | - Jong Seong Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Seung-Woon Jung
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Jinho Yeom
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| |
Collapse
|
39
|
Hwang CSH, Ahn MS, Jeong KH. Extraordinary sensitivity enhancement of Ag-Au alloy nanohole arrays for label-free detection of Escherichia Coli. BIOMEDICAL OPTICS EXPRESS 2021; 12:2734-2743. [PMID: 34123500 PMCID: PMC8176792 DOI: 10.1364/boe.420828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Alloy nanostructures unveil extraordinary plasmonic phenomena that supersede the mono-metallic counterparts. Here we report silver-gold (Ag-Au) alloy nanohole arrays (α-NHA) for ultra-sensitive plasmonic label-free detection of Escherichia Coli (E. coli). Large-area α-NHA were fabricated by using nanoimprint lithography and concurrent thermal evaporation of Ag and Au. The completely miscible Ag-Au alloy exhibits an entirely different dielectric function in the near infra-red wavelength range compared to mono-metallic Ag or Au. The α-NHA demonstrate substantially enhanced refractive index sensitivity of 387 nm/RIU, surpassing those of Ag or Au mono-metallic nanohole arrays by approximately 40%. Moreover, the α-NHA provide highly durable material stability to corrosion and oxidation during over one-month observation. The ultra-sensitive α-NHA allow the label-free detection of E. coli in various concentration levels ranging from 103 to 108 cfu/ml with a calculated limit of detection of 59 cfu/ml. This novel alloy plasmonic material provides a new outlook for widely applicable biosensing and bio-medical applications.
Collapse
|
40
|
Huang SC, Bao YF, Wu SS, Huang TX, Sartin MM, Wang X, Ren B. Electrochemical Tip-Enhanced Raman Spectroscopy: An In Situ Nanospectroscopy for Electrochemistry. Annu Rev Phys Chem 2021; 72:213-234. [PMID: 33400554 DOI: 10.1146/annurev-physchem-061020-053442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Revealing the intrinsic relationships between the structure, properties, and performance of the electrochemical interface is a long-term goal in the electrochemistry and surface science communities because it could facilitate the rational design of electrochemical devices. Achieving this goal requires in situ characterization techniques that provide rich chemical information and high spatial resolution. Electrochemical tip-enhanced Raman spectroscopy (EC-TERS), which provides molecular fingerprint information with nanometer-scale spatial resolution, is a promising technique for achieving this goal. Since the first demonstration of this technique in 2015, EC-TERS has been developed for characterizing various electrochemical processes at the nanoscale and molecular level. Here, we review the development of EC-TERS over the past 5 years. We discuss progress in addressing the technical challenges, including optimizing the EC-TERS setup and solving tip-related issues, and provide experimental guidelines. We also survey the important applications of EC-TERS for probing molecular protonation, molecular adsorption, electrochemical reactions, and photoelectrochemical reactions. Finally, we discuss the opportunities and challenges in the future development of this young technique.
Collapse
Affiliation(s)
- Sheng-Chao Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Yi-Fan Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Si-Si Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Teng-Xiang Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Matthew M Sartin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| |
Collapse
|
41
|
Kakkanattu A, Eerqing N, Ghamari S, Vollmer F. Review of optical sensing and manipulation of chiral molecules and nanostructures with the focus on plasmonic enhancements [Invited]. OPTICS EXPRESS 2021; 29:12543-12579. [PMID: 33985011 DOI: 10.1364/oe.421839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Chiral molecules are ubiquitous in nature; many important synthetic chemicals and drugs are chiral. Detecting chiral molecules and separating the enantiomers is difficult because their physiochemical properties can be very similar. Here we review the optical approaches that are emerging for detecting and manipulating chiral molecules and chiral nanostructures. Our review focuses on the methods that have used plasmonics to enhance the chiroptical response. We also review the fabrication and assembly of (dynamic) chiral plasmonic nanosystems in this context.
Collapse
|
42
|
Franco D, Calabrese G, Petralia S, Neri G, Corsaro C, Forte L, Squarzoni S, Guglielmino S, Traina F, Fazio E, Conoci S. Antimicrobial Effect and Cytotoxic Evaluation of Mg-Doped Hydroxyapatite Functionalized with Au-Nano Rods. Molecules 2021; 26:molecules26041099. [PMID: 33669712 PMCID: PMC7923154 DOI: 10.3390/molecules26041099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hydroxyapatite (HA) is the main inorganic mineral that constitutes bone matrix and represents the most used biomaterial for bone regeneration. Over the years, it has been demonstrated that HA exhibits good biocompatibility, osteoconductivity, and osteoinductivity both in vitro and in vivo, and can be prepared by synthetic and natural sources via easy fabrication strategies. However, its low antibacterial property and its fragile nature restricts its usage for bone graft applications. In this study we functionalized a MgHA scaffold with gold nanorods (AuNRs) and evaluated its antibacterial effect against S. aureus and E. coli in both suspension and adhesion and its cytotoxicity over time (1 to 24 days). Results show that the AuNRs nano-functionalization improves the antibacterial activity with 100% bacterial reduction after 24 h. The toxicity study, however, indicates a 4.38-fold cell number decrease at 24 days. Although further optimization on nano-functionalization process are needed for cytotoxicity, these data indicated that Au-NRs nano-functionalization is a very promising method for improving the antibacterial properties of HA.
Collapse
Affiliation(s)
- Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.F.); (G.C.); (G.N.); (S.G.)
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.F.); (G.C.); (G.N.); (S.G.)
| | - Salvatore Petralia
- Department of Drug Science and Health, University of Catania, 95125 Catania, Italy;
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.F.); (G.C.); (G.N.); (S.G.)
| | - Carmelo Corsaro
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, 98166 Messina, Italy; (C.C.); (E.F.)
| | | | - Stefano Squarzoni
- CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Salvatore Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.F.); (G.C.); (G.N.); (S.G.)
| | - Francesco Traina
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, 98166 Messina, Italy; (C.C.); (E.F.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.F.); (G.C.); (G.N.); (S.G.)
- Correspondence: ; Tel.: +39-090-676-1
| |
Collapse
|
43
|
Das A, Kumar K, Dhawan A. Periodic arrays of plasmonic crossed-bowtie nanostructures interspaced with plasmonic nanocrosses for highly sensitive LSPR based chemical and biological sensing. RSC Adv 2021; 11:8096-8106. [PMID: 35423295 PMCID: PMC8695081 DOI: 10.1039/d0ra09012c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/07/2021] [Indexed: 11/30/2022] Open
Abstract
In this paper, we present novel localized surface plasmon resonance (LSPR) sensors based on periodic arrays of gold crossed-bowtie nanostructures interspaced with gold nanocross pillars. Finite difference time domain (FDTD) numerical simulations were carried out to model bulk sensors as well as localized sensors based on the plasmonic nanostructures being proposed. The geometrical parameters of the plasmonic nanostructures are varied to obtain the best possible sensing performance in terms of sensitivity and figure of merit. A very high bulk sensitivity of 1753 nm per unit change in refractive index (nm RIU-1), with a figure of merit for bulk sensing (FOMbulk) of 3.65 RIU-1, is obtained for these plasmonic nanostructures. This value of bulk sensitivity is higher in comparison to previously proposed LSPR sensors based on plasmonic nanopillars and nanocrosses. Moreover, the optimized LSPR sensors being proposed in this paper provide maximum sensitivity of localized refractive index sensing of 70 nm/nm with a FOMlocalized of 0.33 nm-1. This sensitivity of localized refractive index sensing is the highest reported thus far in comparison with previously reported LSPR sensors. It is also demonstrated that the operating resonance wavelengths of these LSPR sensors can be controllably tuned for specific applications by changing the dimensions of the plasmonic nanostructures.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Electrical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Kamal Kumar
- Department of Electrical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Anuj Dhawan
- Department of Electrical Engineering, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
44
|
Yin Y, Zhu J, Wang Z, Ma G, Yuan H, Li X. Enhanced Plasmonic Resonance Characteristics of AgNRs-Gold Film Hybrid System. Front Chem 2021; 8:553541. [PMID: 33553101 PMCID: PMC7859493 DOI: 10.3389/fchem.2020.553541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, the plasma gap resonance maintained by metal-film-coupled nanostructures has attracted extensive attention. This mainly originates from its flexible control of the spectral response and significantly enhanced field strength at the nanoparticle–film junction. In the present study, the tunability of local surface plasmon resonances (LSPRs) of nanorods coupled to a gold film is studied theoretically. To this end, the plasmonic resonances in the nanostructure of individual silver nanorod–gold film (AgNR-film) with different parameters are investigated. Obtained results show that the refractive index sensitivity (S) of nanostructures to the environment increases as the aspect ratio (Ar) of nanostructures increase. It is found that when the aspect ratio (Ar) is set to 3.5, the figure of merit (FOM) is the highest. Moreover, the variation in the gap distances of the nanorod monomer–gold film, electric field distribution of nanorods dimer, and the corresponding impact on the gold film are studied. It is concluded that the gap size of nanostructures has an exponential correlation with the resonance wavelength. Considering the remarkable influence of the gap size and the surrounding medium environment on the spectral shift of AgNR-film nanostructures, potential applications of the structure as a refractive index sensor and biomolecule measurement are proposed.
Collapse
Affiliation(s)
- Yanping Yin
- College of Electronic and Information, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jin Zhu
- College of Electronic and Information, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zaoji Wang
- College of Electronic and Information, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Guojun Ma
- College of Electronic and Information, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Huining Yuan
- College of Electronic and Information, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaolong Li
- College of Electronic and Information, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
45
|
Guarino-Hotz M, Zhang JZ. Structural control and biomedical applications of plasmonic hollow gold nanospheres: A mini review. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1694. [PMID: 33501780 DOI: 10.1002/wnan.1694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
Hollow gold nanospheres (HGNs) are core/shell structures with a dielectric material core, usually composed of solvent, and a gold metal shell. Such structures have two metal/dielectric interfaces to allow interaction between the gold metal with the interior and external dielectric environment. Upon illumination by light, HGNs exhibit unique surface plasmon resonance (SPR) properties compared to solid gold nanoparticles. Their SPR absorption/scattering can be tuned by changing their diameter, shell thicknesses, and surface morphologies. In addition to the low toxicity, easy functionalization, resistance to photobleaching, and sensitivity to changes in surrounding medium of gold, the enhanced surface-to-volume ratio and tunable SPR of HGNs make them highly attractive for different applications in the fields of sensing, therapy, and theranostics. In this article, we review recent progress on the synthesis and structural control of HGNs and applications of their SPR properties in biomedical sensing and theranostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > in vitro Nanoparticle-Based Sensing Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Melissa Guarino-Hotz
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| |
Collapse
|
46
|
Ultrahigh sensitive refractive index nanosensors based on nanoshells, nanocages and nanoframes: effects of plasmon hybridization and restoring force. Sci Rep 2021; 11:2065. [PMID: 33483573 PMCID: PMC7822811 DOI: 10.1038/s41598-021-81578-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022] Open
Abstract
In this study, the effect of the plasmon hybridization mechanism on the performance and refractive index (RI) sensitivity of nanoshell, nanocage and nanoframe structures is investigated using the finite-difference time-domain simulation. To create nanocage structure, we textured the cubic nanoshell surfaces and examined the impact of its key parameters (such as array of cavities, size of cavities and wall thickness) on the nanocage's RI-sensitivity. Synthesis of the designed nanocages is a challenging process in practice, but here the goal is to understand the physics lied behind it and try to answer the question "Why nanoframes are more sensitive than nanocages?". Our obtained results show that the RI-sensitivity of nanocage structures increases continuously by decreasing the array of cavities. Transforming the nanocage to the nanoframe structure by reducing the array of cavities to a single cavity significantly increases the RI-sensitivity of the nanostructure. This phenomenon can be related to the simultaneous presence of symmetric and asymmetric plasmon oscillations in the nanocage structure and low restoring force of nanoframe compared to nanocage. As the optimized case shows, the proposed single nanoframe with aspect ratio (wall length/wall thickness) of 12.5 shows RI-sensitivity of 1460 nm/RIU, the sensitivity of which is ~ 5.5 times more than its solid counterpart.
Collapse
|
47
|
Cucci LM, Trapani G, Hansson Ö, La Mendola D, Satriano C. Gold Nanoparticles Functionalized with Angiogenin for Wound Care Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:201. [PMID: 33466813 PMCID: PMC7830515 DOI: 10.3390/nano11010201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
In this work, we aimed to develop a hybrid theranostic nano-formulation based on gold nanoparticles (AuNP)-having a known anti-angiogenic character-and the angiogenin (ANG), in order to tune the angiogenesis-related phases involved in the multifaceted process of the wound healing. To this purpose, spherical were surface "decorated" with three variants of the protein, namely, the recombinant (rANG), the wild-type, physiologically present in the human plasma (wtANG) and a new mutant with a cysteine substitution of the serine at the residue 28 (S28CANG). The hybrid biointerface between AuNP and ANG was scrutinized by a multi-technique approach based on dynamic light scattering, spectroscopic (UV-visible, circular dichroism) and microscopic (atomic force and laser scanning confocal) techniques. The analyses of optical features of plasmonic gold nanoparticles allowed for discrimination of different adsorption modes-i.e.; predominant physisorption and/or chemisorption-triggered by the ANG primary sequence. Biophysical experiments with supported lipid bilayers (SLB), an artificial model of cell membrane, were performed by means of quartz crystal microbalance with dissipation monitoring acoustic sensing technique. Cellular experiments on human umbilical vein endothelial cells (HUVEC), in the absence or presence of copper-another co-player of angiogenesis-were carried out to assay the nanotoxicity of the hybrid protein-gold nanoassemblies as well as their effect on cell migration and tubulogenesis. Results pointed to the promising potential of these nanoplatforms, especially the new hybrid Au-S28CANG obtained with the covalent grafting of the mutant on the gold surface, for the modulation of angiogenesis processes in wound care.
Collapse
Affiliation(s)
- Lorena Maria Cucci
- Laboratory of Hybrid NanoBioInterfaces (NHBIL), Department of Chemical Sciences, University of Catania, 95125 Catania, Italy;
| | - Giuseppe Trapani
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy;
| | - Örjan Hansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Göteborg, Sweden;
| | | | - Cristina Satriano
- Laboratory of Hybrid NanoBioInterfaces (NHBIL), Department of Chemical Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
48
|
Novikov IA, Kiryanov MA, Nurgalieva PK, Frolov AY, Popov VV, Dolgova TV, Fedyanin AA. Ultrafast Magneto-Optics in Nickel Magnetoplasmonic Crystals. NANO LETTERS 2020; 20:8615-8619. [PMID: 33238104 DOI: 10.1021/acs.nanolett.0c03305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we report on ultrafast all-optical modulation of the surface-plasmon (SP)-assisted transverse magneto-optical Kerr effect (TMOKE) and the reflectance in a one-dimensional nickel magnetoplasmonic crystal (MPC). A 50 fs nonresonant laser pump pulse with 7 mJ/cm2 fluence reduces the magnetization by 65%, which results in the suppression of TMOKE in the SP-resonant probe from 1.15% to 0.4%. The differential reflectance of SP-resonant probe achieves 5.5%. Besides this, it is shown that electron thermalization and relaxation in MPC are several times slower than those in the plane nickel.
Collapse
Affiliation(s)
- I A Novikov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - M A Kiryanov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - P K Nurgalieva
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - A Yu Frolov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - V V Popov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - T V Dolgova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - A A Fedyanin
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
49
|
De Marchi S, Núñez-Sánchez S, Bodelón G, Pérez-Juste J, Pastoriza-Santos I. Pd nanoparticles as a plasmonic material: synthesis, optical properties and applications. NANOSCALE 2020; 12:23424-23443. [PMID: 33231597 DOI: 10.1039/d0nr06270g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This review provides an overview of current progress in Pd nanoparticles supporting localized surface plasmon resonance and their applications. We begin by analyzing briefly the optical properties of Pd putting particular focus on outlining the origin of its size- and shape-dependent LSPR, high refractive index sensitivity, and high absorption contribution. The differences in the optical behavior with Au and Ag, the primary plasmonic materials, are highlighted. The main strategies to synthesize Pd nanoparticles, pure or hybrid, with well-defined optical properties are then reviewed. In this section, we include only those works that carry out the study of the optical properties of the nanoparticles. The applications of plasmonic Pd nanoparticles are also discussed in detail. This review is concluded with a section devoted to the future perspectives highlighting the most relevant challenges to be addressed to take Pd nanoparticles from the laboratory to real applications.
Collapse
Affiliation(s)
- Sarah De Marchi
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain.
| | | | | | | | | |
Collapse
|
50
|
Mansour Y, Battie Y, Naciri AE, Chaoui N. Monitoring the aspect ratio distribution of colloidal gold nanoparticles under pulsed-laser exposure. OPTICS EXPRESS 2020; 28:34501-34515. [PMID: 33182918 DOI: 10.1364/oe.399831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
We propose an advanced in situ extinction spectroscopy set up to investigate the dynamic of the fragmentation and reshaping processes of gold colloids during a ns-laser pulse exposure. The evolution of the aspect ratio distribution of gold nanorods (NRs) during the laser exposure is obtained by analyzing each spectra with the shape distributed effective medium theory. We demonstrate that the kinetics of NR shape transformation can be divided into two fluence regimes. At small fluence, the kinetic is limited by the NRs orientation, while at high fluence, the fragmentation rate is only limited by the probability of NRs to be located in the irradiated volume.
Collapse
|