1
|
Liao P, Zeng B, Li S, Zhang Y, Xiang R, Kang J, Liu Q, Li G. Cu-Bi Bimetallic Catalysts Derived from Metal-Organic Framework Arrays on Copper Foam for Efficient Glycine Electrosynthesis. Angew Chem Int Ed Engl 2025; 64:e202417130. [PMID: 39344002 DOI: 10.1002/anie.202417130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/01/2024]
Abstract
Glycine as one of the most abundant amino acids in human proteins, with extensive applications in both life and industry, is conventionally synthesized through complex procedures or toxic feedstocks. In this study, we present a facile and benign electrochemical pathway for synthesis of glycine through reductive coupling of glyoxylic acid and nitrate over a copper-bismuth bimetal catalyst derived from a metal-organic framework (MOF) array on copper foam (Cu/Bi-C@CF). Remarkably, Cu/Bi-C@CF achieves a fantastic selectivity of 89 %, corresponding a high Faraday efficiency of 65.9 %. From control experiments, the introduction of Bi caused the binding energy of Cu shift to a lower state, which leads to a high selectivity towards the formation of key intermediate hydroxylamine rather than ammonia product, facilitating the formation of oxime and providing additional sites for subsequent hydrogenation reaction on the way to glycine. Moreover, the derivation of MOF arrays ensures the effective dispersion of Bi and enhances the stability of Cu/Bi-C@CF. This innovative approach not only presents sustainable pathways for the production of value-added organonitrogen compounds utilizing readily available carbon and nitrogen sources, but also provides novel insights into the design of multistage structural catalysts for sequential reactions.
Collapse
Affiliation(s)
- Peisen Liao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Binning Zeng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Suisheng Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuhao Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Runan Xiang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiawei Kang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Bandal HA, Kim H. Enhancing electrochemical carbon dioxide reduction efficiency through heat-induced metamorphosis of copper nanowires into copper oxide/copper nanotubes with tunable surface. J Colloid Interface Sci 2024; 664:210-219. [PMID: 38461787 DOI: 10.1016/j.jcis.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) presents a unique opportunity to convert carbon dioxide (CO2) to value-added products while simultaneously storing renewable energy in the form of chemical energy. However, particle applications of this technology are limited due to the poor efficiency and product selectivity of the existing catalyst. In this study, we demonstrate a facile method for the heat-induced transformation of copper nanowires into CuOx/Cu nanotubes with defect-enriched surfaces. During this transformation, the outward migration of copper results in the formation of tubular structures encased within nanosized oxide grains. Notably, the hydrogen faradaic efficiency (FE) decreases with extended heat treatment, while carbon monoxide (CO) FE increases. As compared to Cu NWs, Cu NTs exhibit lower selectivity towards H2 and single-carbon (C1) products and favor the formation of multi-carbon (C2+) products. Consequently, a 2-fold increase in the single pass CO2 conversion (SPCC) and C2+ half-cell energy efficiency (EEhalf cell) was noted after heat treatment. The Cu NT-4 variant, synthesized under optimized conditions, exhibits the highest FE of 72.1 % for C2+ products at an operating current density (ID) of 500 mA cm-2.
Collapse
Affiliation(s)
- Harshad A Bandal
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
3
|
Koh ES, Geiger S, Gunnarson A, Imhof T, Meyer GM, Paciok P, Etzold BJM, Rose M, Schüth F, Ledendecker M. Influence of Support Material on the Structural Evolution of Copper during Electrochemical CO
2
Reduction. ChemElectroChem 2023. [DOI: 10.1002/celc.202200924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ezra S. Koh
- Technical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt Germany
| | - Simon Geiger
- Department of Technical Thermodynamics Deutsches Zentrum für Luft-und Raumfahrt, Stuttgart Pfaffenwaldring 38–40 70569 Stuttgart
| | - Alexander Gunnarson
- Department of Heterogeneous Catalysis Max Planck-Institut für Kohlenforschung 45470 Mülheim an der Ruhr Germany
| | - Timo Imhof
- Technical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt Germany
| | - Gregor M. Meyer
- Technical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt Germany
| | - Paul Paciok
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Bastian J. M. Etzold
- Technical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt Germany
| | - Marcus Rose
- Technical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt Germany
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis Max Planck-Institut für Kohlenforschung 45470 Mülheim an der Ruhr Germany
| | - Marc Ledendecker
- Technical University of Darmstadt Department of Chemistry Ernst-Berl-Institut für Technische und Makromolekulare Chemie 64287 Darmstadt Germany
- Current address: Technical University of Munich Department of Sustainable Energy Materials 94315 Straubing
| |
Collapse
|
4
|
Stability of Polyethylene Glycol-Coated Copper Nanoparticles and Their Optical Properties. COATINGS 2022. [DOI: 10.3390/coatings12060776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxidation is a corrosion reaction where the corroded metal forms an oxide. Prevention of oxidation at the nanoscale is critically important to retain the physicochemical properties of metal nanoparticles. In this work, we studied the stability of polyethylene glycol (PEG) coated copper nanoparticles (PEGylated CuNPs) against oxidation. The freshly-prepared PEGylated CuNPs mainly consist of metallic Cu which are quite stable in air although their surfaces are typically covered with a few monolayers of cuprous oxide. However, they are quickly oxidized in water due to the presence of protons that facilitate oxidation of the cuprous oxide to cupric oxide. PEG with carboxylic acid terminus could slightly delay the oxidation process compared to that with thiol terminus. It was found that a solvent with reducing power such as ethanol could greatly enhance the stability of PEGylated CuNPs by preventing further oxidation of the cuprous oxide to cupric oxide and thus retain the optical properties of CuNPs. The reducing environment also assists the galvanic replacement of these PEGylated CuNPs to form hollow nanoshells; however, they consist of ultra-small particle assemblies due to the co-reduction of gold precursor during the replacement reaction. As a result, these nanoshells do not exhibit strong optical properties in the near-infrared region. This study highlights the importance of solvent effects on PEGylated nonprecious metal nanoparticles against oxidation corrosion and its applications in preserving physicochemical properties of metallic nanostructures.
Collapse
|
5
|
|
6
|
Selective solar photocatalytic oxidation of benzyl alcohol to benzaldehyde over monodispersed Cu nanoclusters/TiO2/activated carbon nanocomposite. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112527] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Nilsson S, Albinsson D, Antosiewicz TJ, Fritzsche J, Langhammer C. Resolving single Cu nanoparticle oxidation and Kirkendall void formation with in situ plasmonic nanospectroscopy and electrodynamic simulations. NANOSCALE 2019; 11:20725-20733. [PMID: 31650143 DOI: 10.1039/c9nr07681f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Copper nanostructures are ubiquitous in microelectronics and heterogeneous catalysis and their oxidation is a topic of high current interest and broad relevance. It relates to important questions, such as catalyst active phase, activity and selectivity, as well as fatal failure of microelectronic devices. Despite the obvious importance of understanding the mechanism of Cu nanostructure oxidation, numerous open questions remain, including under what conditions homogeneous oxide layer growth occurs and when the nanoscale Kirkendall void forms. Experimentally, this is not trivial to investigate because when a large number of nanoparticles are simultaneously probed, ensemble averaging makes rigorous conclusions difficult. On the other hand, when (in situ) electron-microscopy approaches with single nanoparticle resolution are applied, concerns about beam effects that may both reduce the oxide or prevent oxidation via the deposition and cross-linking of carbonaceous species cannot be neglected. In response we present how single particle plasmonic nanospectroscopy can be used for the in situ real time characterization of multiple individual Cu nanoparticles during oxidation. Our analysis of their optical response combined with post mortem electron microscopy imaging and detailed Finite-Difference Time-Domain electrodynamics simulations enables in situ identification of the oxidation mechanism both in the initial oxide shell growth phase and during Kirkendall void formation, as well as the transition between them. In a wider perspective, this work presents the foundation for the application of single particle plasmonic nanospectroscopy in investigations of the impact of parameters like particle size, shape and grain structure with respect to defects and grain boundaries on the oxidation of metal nanoparticles.
Collapse
Affiliation(s)
- Sara Nilsson
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - David Albinsson
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | | | - Joachim Fritzsche
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Christoph Langhammer
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
8
|
Phan HT, Haes AJ. What Does Nanoparticle Stability Mean? THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:16495-16507. [PMID: 31844485 PMCID: PMC6913534 DOI: 10.1021/acs.jpcc.9b00913] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The term "nanoparticle stability" is widely used to describe the preservation of a particular nanostructure property ranging from aggregation, composition, crystallinity, shape, size, and surface chemistry. As a result, this catch-all term has various meanings, which depend on the specific nanoparticle property of interest and/or application. In this feature article, we provide an answer to the question, "What does nanoparticle stability mean?". Broadly speaking, the definition of nanoparticle stability depends on the targeted size dependent property that is exploited and can only exist for a finite period of time given all nanostructures are inherently thermodynamically and energetically unfavorable relative to bulk states. To answer this question specifically, however, the relationship between nanoparticle stability and the physical/chemical properties of metal/metal oxide nanoparticles are discussed. Specific definitions are explored in terms of aggregation state, core composition, shape, size, and surface chemistry. Next, mechanisms of promoting nanoparticle stability are defined and related to these same nanoparticle properties. Metrics involving both kinetics and thermodynamics are considered. Methods that provide quantitative metrics for measuring and modeling nanoparticle stability in terms of core composition, shape, size, and surface chemistry are outlined. The stability of solution-phase nanoparticles are also impacted by aggregation state. Thus, collision and DLVO theories are discussed. Finally, challenges and opportunities in understanding what nanoparticle stability means are addressed to facilitate further studies with this important class of materials.
Collapse
|
9
|
Albinsson D, Nilsson S, Antosiewicz TJ, Zhdanov VP, Langhammer C. Heterodimers for in Situ Plasmonic Spectroscopy: Cu Nanoparticle Oxidation Kinetics, Kirkendall Effect, and Compensation in the Arrhenius Parameters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:6284-6293. [PMID: 30906496 PMCID: PMC6428146 DOI: 10.1021/acs.jpcc.9b00323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Indexed: 05/12/2023]
Abstract
The ability to study oxidation, reduction, and other chemical transformations of nanoparticles in real time and under realistic conditions is a nontrivial task due to their small dimensions and the often challenging environment in terms of temperature and pressure. For scrutinizing oxidation of metal nanoparticles, visible light optical spectroscopy based on the plasmonic properties of the metal has been established as a suitable method. However, directly relying on the plasmonic resonance of metal nanoparticles as a built-in probe to track oxidation has a number of drawbacks, including the loss of optical contrast in the late oxidation stages. To address these intrinsic limitations, we present a plasmonic heterodimer-based nanospectroscopy approach, which enables continuous self-referencing by using polarized light to eliminate parasitic signals and provides large optical contrast all the way to complete oxidation. Using Au-Cu heterodimers and combining experiments with finite-difference time-domain simulations, we quantitatively analyze the oxidation kinetics of ca. 30 nm sized Cu nanoparticles up to complete oxidation. Taking the Kirkendall effect into account, we extract the corresponding apparent Arrhenius parameters at various extents of oxidation and find that they exhibit a significant compensation effect, implying that changes in the oxidation mechanism occur as oxidation progresses and the structure of the formed oxide evolves. In a wider perspective, our work promotes the use of model-system-type in situ optical plasmonic spectroscopy experiments in combination with electrodynamics simulations to quantitatively analyze and mechanistically interpret oxidation of metal nanoparticles and the corresponding kinetics in demanding chemical environments, such as in heterogeneous catalysis.
Collapse
Affiliation(s)
- David Albinsson
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Sara Nilsson
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | | | - Vladimir P. Zhdanov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Boreskov
Institute of Catalysis, Russian Academy
of Sciences, Novosibirsk 630090, Russia
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
10
|
Shaik AH, Chandan MR. Preparation of stable copper nanostructures and their direct phase transfer using mercaptosuccinic acid. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Dabera GDMR, Walker M, Sanchez AM, Pereira HJ, Beanland R, Hatton RA. Retarding oxidation of copper nanoparticles without electrical isolation and the size dependence of work function. Nat Commun 2017; 8:1894. [PMID: 29196617 PMCID: PMC5711799 DOI: 10.1038/s41467-017-01735-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023] Open
Abstract
Copper nanoparticles (CuNPs) are attractive as a low-cost alternative to their gold and silver analogues for numerous applications, although their potential has hardly been explored due to their higher susceptibility to oxidation in air. Here we show the unexpected findings of an investigation into the correlation between the air-stability of CuNPs and the structure of the thiolate capping ligand; of the eight different ligands screened, those with the shortest alkyl chain, -(CH2)2-, and a hydrophilic carboxylic acid end group are found to be the most effective at retarding oxidation in air. We also show that CuNPs are not etched by thiol solutions as previously reported, and address the important fundamental question of how the work function of small supported metal particles scales with particle size. Together these findings set the stage for greater utility of CuNPs for emerging electronic applications.
Collapse
Affiliation(s)
- G Dinesha M R Dabera
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Marc Walker
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Ana M Sanchez
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - H Jessica Pereira
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Richard Beanland
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Ross A Hatton
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
12
|
Susman MD, Feldman Y, Bendikov TA, Vaskevich A, Rubinstein I. Real-time plasmon spectroscopy study of the solid-state oxidation and Kirkendall void formation in copper nanoparticles. NANOSCALE 2017; 9:12573-12589. [PMID: 28820220 DOI: 10.1039/c7nr04256f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Oxidation and corrosion reactions have a major effect on the application of non-noble metals. Kinetic information and simple theoretical models are often insufficient for describing such processes in metals at the nanoscale, particularly in cases involving formation of internal voids (nano Kirkendall effect, NKE) during oxidation. Here we study the kinetics of solid-state oxidation of chemically-grown copper nanoparticles (NPs) by in situ localized surface plasmon resonance (LSPR) spectroscopy during isothermal annealing in the range 110-170 °C. We show that LSPR spectroscopy is highly effective in kinetic studies of such systems, enabling convenient in situ real-time measurements during oxidation. Change of the LSPR spectra throughout the oxidation follows a common pattern, observed for different temperatures, NP sizes and substrates. The well-defined initial Cu NP surface plasmon (SP) band red-shifts continuously with oxidation, while the extinction intensity initially increases to reach a maximum value at a characteristic oxidation time τ, after which the SP intensity continuously drops. The characteristic time τ is used as a scaling parameter for the kinetic analysis. Evolution of the SP wavelength and extinction intensity during oxidation at different temperatures follows the same kinetics when the oxidation time is normalized to τ, thus pointing to a general oxidation mechanism. The characteristic time τ is used to estimate the activation energy of the process, determined to be 144 ± 6 kJ mol-1, similar to previously reported values for high-temperature Cu thermal oxidation. The central role of the NKE in the solid-state oxidation process is revealed by electron microscopy, while formation of Cu2O as the major oxidation product is established by X-ray diffraction, XPS, and electrochemical measurements. The results indicate a transition of the oxidation mechanism from a Valensi-Carter (VC) to NKE mechanism with the degree of oxidation. To interpret the optical evolution during oxidation, Mie scattering solutions for metal core-oxide shell spherical particles are computed, considering formation of Kirkendall voids. The model calculations are in agreement with the experimental results, showing that the large red-shift of the LSPR band during oxidation is the result of Kirkendall voiding, thus establishing the major role of the NKE in determining the optical behavior of such systems.
Collapse
Affiliation(s)
- Mariano D Susman
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | | | | | | | | |
Collapse
|
13
|
LaGrow AP, Ward MR, Lloyd DC, Gai PL, Boyes ED. Visualizing the Cu/Cu2O Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy. J Am Chem Soc 2016; 139:179-185. [DOI: 10.1021/jacs.6b08842] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Alec P. LaGrow
- The
York Nanocentre and Departments of ‡Physics, ∥Chemistry, and §Electronics, University of York, York YO10 5DD, U.K
| | - Michael R. Ward
- The
York Nanocentre and Departments of ‡Physics, ∥Chemistry, and §Electronics, University of York, York YO10 5DD, U.K
| | - David C. Lloyd
- The
York Nanocentre and Departments of ‡Physics, ∥Chemistry, and §Electronics, University of York, York YO10 5DD, U.K
| | - Pratibha L. Gai
- The
York Nanocentre and Departments of ‡Physics, ∥Chemistry, and §Electronics, University of York, York YO10 5DD, U.K
| | - Edward D. Boyes
- The
York Nanocentre and Departments of ‡Physics, ∥Chemistry, and §Electronics, University of York, York YO10 5DD, U.K
| |
Collapse
|
14
|
Novel Cu(0)–Fe3O4@SiO2/NH2cel as an Efficient and Sustainable Magnetic Catalyst for the Synthesis of 1,4-Disubstituted-1,2,3-triazoles and 2-Substituted-Benzothiazoles via One-Pot Strategy in Aqueous Media. Catal Letters 2016. [DOI: 10.1007/s10562-015-1672-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Bhardwaj M, Kour M, Paul S. Cu(0) onto sulfonic acid functionalized silica/carbon composites as bifunctional heterogeneous catalysts for the synthesis of polysubstituted pyridines and nitriles under benign reaction media. RSC Adv 2016. [DOI: 10.1039/c6ra19840f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bifunctional heterogeneous catalysts based on Cu(0) onto sulphonated silica/carbon composites for the one-pot synthesis of polysubstituted pyridines and oxidative transformation of aldehydes to nitriles.
Collapse
Affiliation(s)
- Madhvi Bhardwaj
- Department of Chemistry
- University of Jammu
- Jammu-180 006
- India
| | - Manmeet Kour
- Department of Chemistry
- University of Jammu
- Jammu-180 006
- India
| | - Satya Paul
- Department of Chemistry
- University of Jammu
- Jammu-180 006
- India
| |
Collapse
|
16
|
Zhao H, Mao G, Han H, Song J, Liu Y, Chu W, Sun Z. An effective and environment-friendly system for Cu NPs@RGO-catalyzed C–C homocoupling of aryl halides or arylboronic acids in ionic liquids under microwave irradiation. RSC Adv 2016. [DOI: 10.1039/c6ra04683e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cu NPs@RGO can effectively catalyze Ullmann C–C homocoupling of aryl halides and arylboronic acids under microwave irradiation in green solvent ionic liquid..
Collapse
Affiliation(s)
- Hongyan Zhao
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Guijie Mao
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
| | - Huatao Han
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Jinyi Song
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Yang Liu
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Wenyi Chu
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| | - Zhizhong Sun
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion
| |
Collapse
|
17
|
Catalytic and fluorescence studies with copper nanoparticles synthesized in polysorbates of varying hydrophobicity. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.11.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Preparation of stable sub 10 nm copper nanopowders redispersible in polar and non-polar solvents. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.10.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Nagaonkar D, Shende S, Rai M. Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis inAllium cepa. Biotechnol Prog 2015; 31:557-65. [DOI: 10.1002/btpr.2040] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/17/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Dipali Nagaonkar
- Nanobiotechnology Laboratory; Dept. of Biotechnology, S.G.B. Amravati University; Amravati 444 602 Maharashtra India
| | - Sudhir Shende
- Nanobiotechnology Laboratory; Dept. of Biotechnology, S.G.B. Amravati University; Amravati 444 602 Maharashtra India
| | - Mahendra Rai
- Nanobiotechnology Laboratory; Dept. of Biotechnology, S.G.B. Amravati University; Amravati 444 602 Maharashtra India
| |
Collapse
|
20
|
Hussain N, Gogoi P, Azhaganand VK, Shelke MV, Das MR. Green synthesis of stable Cu(0) nanoparticles onto reduced graphene oxide nanosheets: a reusable catalyst for the synthesis of symmetrical biaryls from arylboronic acids under base-free conditions. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01229a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu(0) nanoparticle-rGO composites exhibit excellent catalytic activity for the synthesis of symmetrical biaryls from arylboronic acids under microwave irradiation.
Collapse
Affiliation(s)
- Najrul Hussain
- Materials Science Division
- CSIR-North East Institute of Science and Technology
- Jorhat-785006
- India
- Academy of Scientific and Innovative Research
| | - Pranjal Gogoi
- Medicinal Chemistry Division
- CSIR-North East Institute of Science and Technology
- Jorhat-785006
- India
- Academy of Scientific and Innovative Research
| | - Vedi Kuyil Azhaganand
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Manjusha V. Shelke
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research
| | - Manash R. Das
- Materials Science Division
- CSIR-North East Institute of Science and Technology
- Jorhat-785006
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
21
|
Ben-Sasson M, Zodrow KR, Genggeng Q, Kang Y, Giannelis EP, Elimelech M. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:384-93. [PMID: 24308843 DOI: 10.1021/es404232s] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biofouling is a major operational challenge in reverse osmosis (RO) desalination, motivating a search for improved biofouling control strategies. Copper, long known for its antibacterial activity and relatively low cost, is an attractive potential biocidal agent. In this paper, we present a method for loading copper nanoparticles (Cu-NPs) on the surface of a thin-film composite (TFC) polyamide RO membrane. Cu-NPs were synthesized using polyethyleneimine (PEI) as a capping agent, resulting in particles with an average radius of 34 nm and a copper content between 39 and 49 wt.%. The positive charge of the Cu-NPs imparted by the PEI allowed a simple electrostatic functionalization of the negatively charged RO membrane. We confirmed functionalization and irreversible binding of the Cu-NPs to the membrane surface with SEM and XPS after exposing the membrane to bath sonication. We also demonstrated that Cu-NP functionalization can be repeated after the Cu-NPs dissolve from the membrane surface. The Cu-NP functionalization had minimal impact on the intrinsic membrane transport parameters. Surface hydrophilicity and surface roughness were also maintained, and the membrane surface charge became positive after functionalization. The functionalized membrane exhibited significant antibacterial activity, leading to an 80-95% reduction in the number of attached live bacteria for three different model bacterial strains. Challenges associated with this functionalization method and its implementation in RO desalination are discussed.
Collapse
Affiliation(s)
- Moshe Ben-Sasson
- Department of Chemical and Environmental Engineering Yale University New Haven, Connecticut 06520-8286, United States
| | | | | | | | | | | |
Collapse
|
22
|
Cu nanoparticles of low polydispersity synthesized by a double-template method and their stability. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3123-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Pacioni NL, Filippenko V, Presseau N, Scaiano JC. Oxidation of copper nanoparticles in water: mechanistic insights revealed by oxygen uptake and spectroscopic methods. Dalton Trans 2013; 42:5832-8. [DOI: 10.1039/c3dt32836h] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Lee CF, Chang CL, Yang JC, Lai HY, Chen CH. Morphological determination of face-centered-cubic metallic nanoparticles by X-ray diffraction. J Colloid Interface Sci 2012; 369:129-33. [DOI: 10.1016/j.jcis.2011.12.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/14/2011] [Accepted: 12/17/2011] [Indexed: 11/26/2022]
|
25
|
Han X, Gelein R, Corson N, Wade-Mercer P, Jiang J, Biswas P, Finkelstein JN, Elder A, Oberdörster G. Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology 2011; 287:99-104. [PMID: 21722700 PMCID: PMC4070602 DOI: 10.1016/j.tox.2011.06.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/24/2011] [Accepted: 06/07/2011] [Indexed: 11/17/2022]
Abstract
Studies showed that certain cytotoxicity assays were not suitable for assessing nanoparticle (NP) toxicity. We evaluated a lactate dehydrogenase (LDH) assay for assessing copper (Cu-40, 40nm), silver (Ag-35, 35nm; Ag-40, 40nm), and titanium dioxide (TiO(2)-25, 25nm) NPs by examining their potential to inactivate LDH and interference with β-nicotinamide adenine dinucleotide (NADH), a substrate for the assay. We also performed a dissolution assay for some of the NPs. We found that the copper NPs, because of their high dissolution rate, could interfere with the LDH assay by inactivating LDH. Ag-35 could also inactivate LDH probably because of the carbon matrix used to cage the particles during synthesis. TiO(2)-25 NPs were found to adsorb LDH molecules. In conclusion, NP interference with the LDH assay depends on the type of NPs and the suitability of the assay for assessing NP toxicity should be examined case by case.
Collapse
Affiliation(s)
- Xianglu Han
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Kanninen P, Johans C, Merta J, Kontturi K. Influence of ligand structure on the stability and oxidation of copper nanoparticles. J Colloid Interface Sci 2008; 318:88-95. [DOI: 10.1016/j.jcis.2007.09.069] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 09/19/2007] [Accepted: 09/25/2007] [Indexed: 11/25/2022]
|