1
|
Herrera SE, Agazzi ML, Apuzzo E, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Polyelectrolyte-multivalent molecule complexes: physicochemical properties and applications. SOFT MATTER 2023; 19:2013-2041. [PMID: 36811333 DOI: 10.1039/d2sm01507b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The complexation of polyelectrolytes with other oppositely charged structures gives rise to a great variety of functional materials with potential applications in a wide spectrum of technological fields. Depending on the assembly conditions, polyelectrolyte complexes can acquire different macroscopic configurations such as dense precipitates, nanosized colloids and liquid coacervates. In the past 50 years, much progress has been achieved to understand the principles behind the phase separation induced by the interaction of two oppositely charged polyelectrolytes in aqueous solutions, especially for symmetric systems (systems in which both polyions have similar molecular weight and concentration). However, in recent years, the complexation of polyelectrolytes with alternative building blocks such as small charged molecules (multivalent inorganic species, oligopeptides, and oligoamines, among others) has gained attention in different areas. In this review, we discuss the physicochemical characteristics of the complexes formed by polyelectrolytes and multivalent small molecules, putting a special emphasis on their similarities with the well-known polycation-polyanion complexes. In addition, we analyze the potential of these complexes to act as versatile functional platforms in various technological fields, such as biomedicine and advanced materials engineering.
Collapse
Affiliation(s)
- Santiago E Herrera
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Maximiliano L Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), (UNRC, CONICET), Ruta Nacional 36 KM 601, 5800 Río Cuarto, Argentina.
| | - Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| |
Collapse
|
2
|
Gruber D, Ruiz-Agudo C, Cölfen H. Cationic Coacervates: Novel Phosphate Ionic Reservoir for the Mineralization of Calcium Phosphates. ACS Biomater Sci Eng 2022; 9:1791-1795. [PMID: 35061343 DOI: 10.1021/acsbiomaterials.1c01090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cationic complex coacervates are contemplated for various medical applications controlling carrier or release processes. Here, lower Mw poly(allylamine hydrochloride) (15 kg/mol) and (hydrogen)phosphate as cross-linking units were chosen to facilitate a sufficient coacervation and subsequently a controllable phosphate release, essential for consecutive mineralization reactions. In addition, the rheological characteristics of the obtained coacervates were assessed, exhibiting a pronounced liquid character, which enables beneficial properties toward remineralization applications such as high wettability and moldability. In light of our results, macroscopic hydrogels are considered for the first time as an ion source for the mineralization of crystalline calcium phosphate phases, representing an entirely new class of preceding mineralization species for potential applications in dentistry and osteology.
Collapse
Affiliation(s)
- Dominik Gruber
- Department of Chemistry, University of Konstanz, Universitätsstrasse
10, Box 714, 78457 Konstanz, Germany
| | - Cristina Ruiz-Agudo
- Department of Chemistry, University of Konstanz, Universitätsstrasse
10, Box 714, 78457 Konstanz, Germany
| | - Helmut Cölfen
- Department of Chemistry, University of Konstanz, Universitätsstrasse
10, Box 714, 78457 Konstanz, Germany
| |
Collapse
|
3
|
Nuti S, Fernández-Lodeiro C, Fernández-Lodeiro J, Fernández-Lodeiro A, Pérez-Juste J, Pastoriza-Santos I, LaGrow AP, Schraidt O, Luis Capelo-Martínez J, Lodeiro C. Polyallylamine assisted synthesis of 3D branched AuNPs with plasmon tunability in the vis-NIR region as refractive index sensitivity probes. J Colloid Interface Sci 2022; 611:695-705. [PMID: 34979340 DOI: 10.1016/j.jcis.2021.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
Abstract
This paper describes the synthesis of highly branched gold nanoparticles (AuNPs) through a facile seeded growth approach using poly(allylamine hydrochloride) (PAH) as shape inducing agent. The obtained branched AuNPs present highly tunable optical properties in the Vis-NIR region from ca. 560 nm to 1260 nm. We controlled the morphology, and therefore the optical response, of the NPs by either changing the gold salt to seeds ratio or by fine-tuning the solution pH. We proposed that the formation of size-dependent PAH-AuCl4- aggregates as demonstrated by dynamic light scattering measurements, together with pH-dependent gold salt speciation might be responsible for the branched morphology. Advanced electron microscopy techniques demonstrated the polycrystalline nature of the AuNPs and facilitated a better understanding of branched morphology. Additionally, the refractive index sensitivity estimated by the inflection point of the Localized Surface Plasmon Resonance (LSPR) band can be controlled by tuning the nanoparticle branching. Furthermore, the versatility of the PAH chemistry allowed the easy functionalization of the synthesized NPs.
Collapse
Affiliation(s)
- Silvia Nuti
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal
| | - Carlos Fernández-Lodeiro
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Javier Fernández-Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| | - Adrián Fernández-Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Alec P LaGrow
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Oliver Schraidt
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - José Luis Capelo-Martínez
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| |
Collapse
|
4
|
Lin HJ, Wang CC, Kou HS, Cheng CW, Wu SM. Stable Luminescent Poly(Allylaminehydrochloride)-Templated Copper Nanoclusters for Selectively Turn-Off Sensing of Deferasirox in β-Thalassemia Plasma. Pharmaceuticals (Basel) 2021; 14:1314. [PMID: 34959714 PMCID: PMC8706525 DOI: 10.3390/ph14121314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/19/2023] Open
Abstract
Highly stable and facile one-pot copper nanoclusters (Cu NCs) coated with poly(allylamine hydrochloride) (PAH) have been synthesized for selectively sensing deferasirox (DFX) in β-thalassemia plasma. DFX is an important drug used for treating iron overloading in β-thalassemia, but needs to be monitored due to certain toxicity. In this study, the PAH-Cu NCs showed highly stable fluorescence with emission wavelengths at 450 nm. The DFX specifically interacted with the copper nanocluster to turn off the fluorescence of the PAH-Cu NCs, and could be selectively quantified through the fluorescence quenching effect. The linear range of DFX in plasma analyzed by PAH-Cu NCs was 1.0-100.0 µg/mL (r = 0.985). The relative standard deviation (RSD) and relative error (RE) were lower than 6.51% and 7.57%, respectively, showing excellent reproducibility of PAH-Cu NCs for sensing DFX in plasma. This method was also successfully applied for an analysis of three clinical plasma samples from β-thalassemia patients taking DFX. The data presented high similarity with that obtained through a capillary electrophoresis method. According to the results, the PAH-Cu NCs could be used as a tool for clinically sensing DFX in human plasma for clinical surveys.
Collapse
Affiliation(s)
- Hung-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.L.); (H.-S.K.); (C.-W.C.)
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.L.); (H.-S.K.); (C.-W.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Hwang-Shang Kou
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.L.); (H.-S.K.); (C.-W.C.)
| | - Cheng-Wei Cheng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.L.); (H.-S.K.); (C.-W.C.)
| | - Shou-Mei Wu
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Taiwan Food and Drug Administration, Ministry of Health and Welfare, Taipei 11561, Taiwan
| |
Collapse
|
5
|
Andreozzi P, Simó C, Moretti P, Porcel JM, Lüdtke TU, Ramirez MDLA, Tamberi L, Marradi M, Amenitsch H, Llop J, Ortore MG, Moya SE. Novel Core-Shell Polyamine Phosphate Nanoparticles Self-Assembled from PEGylated Poly(allylamine hydrochloride) with Low Toxicity and Increased In Vivo Circulation Time. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102211. [PMID: 34278713 DOI: 10.1002/smll.202102211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
An approach for reducing toxicity and enhancing therapeutic potential of supramolecular polyamine phosphate nanoparticles (PANs) through PEGylation of polyamines before their assembly into nanoparticles is presented here. It is shown that the number of polyethylene glycol (PEG) chains for polyamine largely influence physico-chemical properties of PANs and their biological endpoints. Poly(allylamine hydrochloride) (PAH) are functionalized through carbodiimide chemistry with three ratios of PEG molecules per PAH chain: 0.1, 1, and 10. PEGylated PAH is then assembled into PANs by exposing the polymer to phosphate buffer solution. PANs decrease size and surface charge with increasing PEG ratios as evidenced by dynamic light scattering and zeta potential measurements, with the ten PEG/PAH ratio PANs having practically zero charge. Small angle X-ray scattering (SAXS) proves that PEG chains form a shell around a polyamine core, which is responsible for the screening of positive charges. MTT experiments show that the screening of amine groups decreases nanoparticle toxicity, with the lowest toxicity for the 10 PEG/PAH ratio. Fluorescence correlation spectroscopy (FCS) proves less interaction with proteins for PEGylated PANs. Positron emission tomography (PET) imaging of 18 F labelled PANs shows longer circulation time in healthy mice for PEGylated PANs than non-PEGylated ones.
Collapse
Affiliation(s)
- Patrizia Andreozzi
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
- Consorzio Sistemi a Grande Interfase, Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence, 50019, Italy
| | - Cristina Simó
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Basque Research and Tech-nology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| | - Paolo Moretti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via brecce bianche, Ancona, I-60131, Italy
| | - Joaquin Martinez Porcel
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| | - Tanja Ursula Lüdtke
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| | - Maria de Los Angeles Ramirez
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
- Instituto de Nanosistemas, UNSAM, CONICET, Avenida 25 de Mayo 1021, San Martín, Buenos Aires, 1650, Argentina
| | - Lorenza Tamberi
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3/13, Sesto Fiorentino, Florence, 50019, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayergasse 9/V, Graz, 8010, Austria
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Basque Research and Tech-nology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
- Centro de Investigación Biomédica en Red - Enfermedades Respiratorias (CIBERES), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
| | - Maria Grazia Ortore
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via brecce bianche, Ancona, I-60131, Italy
| | - Sergio Enrique Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, San Sebastián, Guipúzcoa, 20014, Spain
| |
Collapse
|
6
|
Debele TA, Wu HC, Wu SR, Shan YS, Su WP. Combination Delivery of Alpha-Tocopheryl Succinate and Curcumin Using a GSH-Sensitive Micelle (PAH-SS-PLGA) to Treat Pancreatic Cancer. Pharmaceutics 2020; 12:pharmaceutics12080778. [PMID: 32824299 PMCID: PMC7464675 DOI: 10.3390/pharmaceutics12080778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/13/2023] Open
Abstract
Pancreatic cancer is one of the highest causes of mortality throughout the world; thus, it requires an effective treatment strategy. Some chemotherapeutic agents used in the clinics or under clinical trials are hydrophobic and have poor aqueous solubility; consequently, they also have minimal systemic bioavailability. Nanoparticle-based drug delivery tactics have the potential for overcoming these limitations and enhancing their therapeutic efficacy. Herein, a glutathione (GSH)-sensitive micelle (PAH-SS-PLGA) was synthesized for the combined delivery of alpha-tocopheryl succinate (TOS) and curcumin to improve its therapeutic efficacy. The chemical structures of PAH-SS-PLGA were analyzed using Proton Nuclear Magnetic Resonance (1H-NMR) and Fourier Transform Infrared (FTIR) spectroscopy, whereas the particle size, zeta potential, and surface morphology were observed using dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release results revealed that more TOS and curcumin were released in the presence of GSH (5 mM) than the physiological pH value. Fluorescence microscopy images revealed that nanoformulated curcumin/rhodamine was uptaken by PAN02 pancreatic cancer cells. In vitro cytotoxicity assays showed higher cytotoxicity for nanoformulated TOS and/or curcumin than free TOS and/or curcumin. In addition, higher cytotoxicity was observed for combination drugs than free drugs alone. Most interestingly, at all tested concentrations of nanoformulated drugs (PAH-SS-PLGA, TOS, and curcumin), the calculated combination index (CI) value was less than one, which shows that TOS and curcumin have a synergistic effect on cellular proliferation inhibition. Overall, synthesized co-polymers are the best carriers for combination drugs, TOS, and curcumin, because they enhance the therapeutic efficacy and improve pancreatic cancer treatments.
Collapse
Affiliation(s)
- Tilahun Ayane Debele
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 704, Taiwan; (T.A.D.); (Y.-S.S.)
| | - Hung-Chang Wu
- Department of Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan;
| | - Shang-Rung Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Dentistry & Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 704, Taiwan; (T.A.D.); (Y.-S.S.)
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 704, Taiwan; (T.A.D.); (Y.-S.S.)
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 4252)
| |
Collapse
|
7
|
Agazzi ML, Herrera SE, Cortez ML, Marmisollé WA, Azzaroni O. Self-assembled peptide dendrigraft supraparticles with potential application in pH/enzyme-triggered multistage drug release. Colloids Surf B Biointerfaces 2020; 190:110895. [DOI: 10.1016/j.colsurfb.2020.110895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/29/2020] [Accepted: 02/21/2020] [Indexed: 01/24/2023]
|
8
|
Echeverri-Cuartas CE, Gartner C, Lapitsky Y. PEGylation and folate conjugation effects on the stability of chitosan-tripolyphosphate nanoparticles. Int J Biol Macromol 2020; 158:1055-1062. [PMID: 32330499 DOI: 10.1016/j.ijbiomac.2020.04.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/06/2020] [Accepted: 04/18/2020] [Indexed: 01/09/2023]
Abstract
Chitosan-based nanoparticles (Ch-NPs) prepared via ionotropic gelation of Ch with sodium tripolyphosphate (TPP) have been widely examined as potential drug carriers. Yet, recent studies have shown these particles to be unstable in model (pH 7.2-7.4) physiological media. To this end, here we explored the possibility of improving TPP-crosslinked Ch-NP stability through chemical Ch modification. Specifically, Ch samples with either 76% or 92% degrees of deacetylation (DD) were grafted with either polyethylene glycol (PEG), a hydrophilic molecule, or folic acid (F), a hydrophobic molecule. Limited variation in dispersion light scattering intensity, particle size and apparent ζ-potential, and lack of macroscopic precipitation were chosen as analytical evidence of dispersion stability. TPP titrations were performed to determine the optimal TPP:glucosamine molar ratio for preparing particles with near 200-nm diameters, which are desirable for systemic administration of drugs, cellular uptake, and enhancing NP blood circulation. Both DD and Ch modification influenced the particle formation process and the evolution in NP size and ζ-potential upon 30-day storage in virtually salt-free water at 25 °C and 37 °C, where the NPs underwent partial aggregation (along with possible dissolution and swelling) but remained colloidally dispersed. Under model physiological (pH 7.2; 163 mM ionic strength) conditions, however (where the chitosan amine groups were largely deprotonated), the particles quickly became destabilized, evidently due to particle dissolution followed by Ch precipitation. Overall, within the degrees of substitution used for this work (~1% for PEG, and 3 and 6% for F), neither PEG nor F qualitatively improved Ch-NP stability at physiological pH 7.2 conditions. Thus, application of TPP-crosslinked Ch-NPs in drug delivery (even when Ch is derivatized with PEG or F) should likely be limited to administration routes with acidic pH (at which these NPs remain stable).
Collapse
Affiliation(s)
- Claudia E Echeverri-Cuartas
- Grupo de Ciencia de los Materiales/Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Colombia; Escuela de Ciencias de la Vida/Programa de Ingeniería Biomédica, Universidad EIA, Colombia.
| | - Carmiña Gartner
- Grupo de Ciencia de los Materiales/Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Colombia
| | - Yakov Lapitsky
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
9
|
Herrera SE, Agazzi ML, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Redox-active polyamine-salt aggregates as multistimuli-responsive soft nanoparticles. Phys Chem Chem Phys 2020; 22:7440-7450. [PMID: 32215420 DOI: 10.1039/d0cp00077a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyamine-salt aggregates have become promising soft materials in nanotechnology due to their easy preparation process and pH-responsiveness. Here, we report the use of hexacyanoferrate(ii) and hexacyanoferrate(iii) as electroactive crosslinking agents for the formation of nanometer-sized redox-active polyamine-redox-salt aggregates (rPSA) in bulk suspension. This nanoplatform can be selectively assembled or disassembled under different stimuli such as redox environment, pH and ionic strength. By changing the charge of the building blocks, external triggers allow switching the system between two phase states: aggregate-free solution or colloidal rPSA dispersion. The stimuli-activated modulation of the assembly/disassembly processes opens a path to exploit rPSA in technologies based on smart nanomaterials.
Collapse
Affiliation(s)
- Santiago E Herrera
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Maximiliano L Agazzi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| |
Collapse
|
10
|
Agazzi ML, Herrera SE, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Insulin Delivery from Glucose‐Responsive, Self‐Assembled, Polyamine Nanoparticles: Smart “Sense‐and‐Treat” Nanocarriers Made Easy. Chemistry 2020; 26:2456-2463. [DOI: 10.1002/chem.201905075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Maximiliano L. Agazzi
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Santiago E. Herrera
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - M. Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Waldemar A. Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química FísicaINQUIMAE-CONICETFacultad de Ciencias Exactas y NaturalesCiudad Universitaria Pabellón 2 Buenos Aires C1428EHA Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| |
Collapse
|
11
|
Herrera SE, Agazzi ML, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Multitasking polyamine/ferrioxalate nano-sized assemblies: thermo-, photo-, and redox-responsive soft materials made easy. Chem Commun (Camb) 2019; 55:14653-14656. [PMID: 31746845 DOI: 10.1039/c9cc06942a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Responsive nanomaterials have emerged as key components in materials sciences. Herein, we report the one-step preparation of multi-stimuli responsive polyamine-salt aggregates (PSA) by ionically crosslinking polyethylenimine with potassium ferrioxalate (FeOx). The unique properties of FeOx enables a novel class of soft nanomaterial that disassembles by exposure to light, reducing environments and temperature.
Collapse
Affiliation(s)
- Santiago E Herrera
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | | | | | | | | | | |
Collapse
|
12
|
Mechtaeva E, Zorin I, Gavrilova D, Fetin P, Zorina N, Bilibin A. Polyelectrolyte complexes of polyacrylic acid with oligovalent organic counterions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Herrera SE, Agazzi ML, Cortez ML, Marmisollé WA, Bilderling C, Azzaroni O. Layer‐by‐Layer Formation of Polyamine‐Salt Aggregate/Polyelectrolyte Multilayers. Loading and Controlled Release of Probe Molecules from Self‐Assembled Supramolecular Networks. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Santiago E. Herrera
- Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasDepartamento de QuímicaFacultad de Ciencias ExactasUniversidad Nacional de La Plata–CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Maximiliano L. Agazzi
- Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasDepartamento de QuímicaFacultad de Ciencias ExactasUniversidad Nacional de La Plata–CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - M. Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasDepartamento de QuímicaFacultad de Ciencias ExactasUniversidad Nacional de La Plata–CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Waldemar A. Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasDepartamento de QuímicaFacultad de Ciencias ExactasUniversidad Nacional de La Plata–CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Catalina Bilderling
- Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasDepartamento de QuímicaFacultad de Ciencias ExactasUniversidad Nacional de La Plata–CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
- Departamento de FísicaFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires C1428EHA Buenos Aires Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasDepartamento de QuímicaFacultad de Ciencias ExactasUniversidad Nacional de La Plata–CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| |
Collapse
|
14
|
Yin YB, Conrad CL, Heck KN, Lejarza F, Wong MS. Microencapsulated Photoluminescent Gold for ppb-Level Chromium(VI) Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17491-17500. [PMID: 31017388 DOI: 10.1021/acsami.9b04699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Luminescent gold nanoclusters (Au NCs) are a promising probe material for selective chemical sensing. However, low luminescent intensity and an incomplete understanding of the mechanistic origin of the luminescence limit their practical implementation. We induced glutathione-capped Au NCs to aggregate within silica-coated microcapsular structures using polymer-salt aggregate self-assembly chemistry. The encapsulated NCs have a 5× luminescence enhancement compared to free Au NCs and can detect Cr(VI) at concentrations as low as 6 ppb (=0.12 μM CrO42-) through luminescence quenching, compared to free Au NCs, which have a limit of detection (LOD) of 52 ppb (=1 μM CrO42-). The LOD is 16× lower than the United States Environmental Protection Agency maximum contaminant level for total chromium (Cr(III) + Cr(VI), 100 ppb) in drinking water. No pH adjustment is needed using the encapsulated Au NCs, unlike the case for free Au NCs. The luminescent microcapsule material can sense Cr(VI) in simulated drinking water with a ∼20-30 ppb LOD, serving as a possible basis for a practical Cr(VI) sensor.
Collapse
|
15
|
Andreozzi P, Ricci C, Porcel JEM, Moretti P, Di Silvio D, Amenitsch H, Ortore MG, Moya SE. Mechanistic study of the nucleation and conformational changes of polyamines in presence of phosphate ions. J Colloid Interface Sci 2019; 543:335-342. [DOI: 10.1016/j.jcis.2019.02.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/06/2023]
|
16
|
Herrera SE, Agazzi ML, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Polyamine Colloids Cross‐Linked with Phosphate Ions: Towards Understanding the Solution Phase Behavior. Chemphyschem 2019; 20:1044-1053. [DOI: 10.1002/cphc.201900046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/13/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Santiago E. Herrera
- Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET La Plata 1900 Argentina
| | - Maximiliano L. Agazzi
- Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET La Plata 1900 Argentina
| | - M. Lorena Cortez
- Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET La Plata 1900 Argentina
| | - Waldemar A. Marmisollé
- Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET La Plata 1900 Argentina
| | - Mario Tagliazucchi
- INQUIMAE-CONICETCiudad Universitaria Pabellón 2, Ciudad Autónoma de Buenos Aires Buenos Aires C1428EHA Argentina
| | - Omar Azzaroni
- Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET La Plata 1900 Argentina
| |
Collapse
|
17
|
Agazzi ML, Herrera SE, Cortez ML, Marmisollé WA, von Bilderling C, Pietrasanta LI, Azzaroni O. Continuous assembly of supramolecular polyamine-phosphate networks on surfaces: preparation and permeability properties of nanofilms. SOFT MATTER 2019; 15:1640-1650. [PMID: 30676599 DOI: 10.1039/c8sm02387e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Supramolecular self-assembly of molecular building blocks represents a powerful "nanoarchitectonic" tool to create new functional materials with molecular-level feature control. Here, we propose a simple method to create tunable phosphate/polyamine-based films on surfaces by successive assembly of poly(allylamine hydrochloride) (PAH)/phosphate anions (Pi) supramolecular networks. The growth of the films showed a great linearity and regularity with the number of steps. The coating thickness can be easily modulated by the bulk concentration of PAH and the deposition cycles. The PAH/Pi networks showed chemical stability between pH 4 and 10. The transport properties of the surface assemblies formed from different deposition cycles were evaluated electrochemically by using different redox probes in aqueous solution. The results revealed that either highly permeable films or efficient anion transport selectivity can be created by simply varying the concentration of PAH. This experimental evidence indicates that this new strategy of supramolecular self-assembly can be useful for the rational construction of single polyelectrolyte nanoarchitectures with multiple functionalities.
Collapse
Affiliation(s)
- Maximiliano L Agazzi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | | | | | | | | | | | | |
Collapse
|
18
|
Controlled release of monoclonal antibodies from poly-l-lysine-coated alginate spheres within a scaffolded implant mitigates autoimmune responses to transplanted islets and limits systemic antibody toxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:390-398. [DOI: 10.1016/j.msec.2018.07.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/10/2018] [Accepted: 07/20/2018] [Indexed: 01/03/2023]
|
19
|
de Silva UK, Brown J, Lapitsky Y. Poly(allylamine)/tripolyphosphate coacervates enable high loading and multiple-month release of weakly amphiphilic anionic drugs: an in vitro study with ibuprofen. RSC Adv 2018; 8:19409-19419. [PMID: 35540986 PMCID: PMC9080659 DOI: 10.1039/c8ra02588f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
When synthetic polyamines, such poly(allylamine hydrochloride) (PAH), are mixed with crosslink-forming multivalent anions, they can undergo complex coacervation. This phenomenon has recently been exploited in various applications, ranging from inorganic material synthesis, to underwater adhesion, to multiple-month release of small, water-soluble molecules. Here, using ibuprofen as a model drug molecule, we show that these coacervates may be especially effective in the long-term release of weakly amphiphilic anionic drugs. Colloidal amphiphile/polyelectrolyte complex dispersions are first prepared by mixing the amphiphilic drug (ibuprofen) with PAH. Pentavalent tripolyphosphate (TPP) ions are then added to these dispersions to form ibuprofen-loaded PAH/TPP coacervates (where the strongly-binding TPP displaces the weaker-bound ibuprofen from the PAH amine groups). The initial ibuprofen/PAH binding leads to extremely high drug loading capacities (LC-values), where the ibuprofen comprises up to roughly 30% of the coacervate mass. Conversely, the dense ionic crosslinking of PAH by TPP results in very slow release rates, where the release of ibuprofen (a small, water-soluble drug) is extended over timescales that exceed 6 months. When ibuprofen is replaced with strong anionic amphiphiles, however (i.e., sodium dodecyl sulfate and sodium dodecylbenzenesulfonate), the stronger amphiphile/polyelectrolyte binding disrupts PAH/TPP association and sharply increases the coacervate solute permeability. These findings suggest that: (1) as sustained release vehicles, PAH/TPP coacervates might be very attractive for the encapsulation and multiple-month release of weakly amphiphilic anionic payloads; and (2) strong amphiphile incorporation could be useful for tailoring PAH/TPP coacervate properties. Gel-like coacervates prepared through ionotropic gelation enable very high loading and multiple-month release of weakly amphiphilic small molecules. Conversely, strong amphiphile incorporation disrupts ionic crosslinking and strikingly alters the coacervate properties.![]()
Collapse
Affiliation(s)
| | | | - Yakov Lapitsky
- Department of Chemical Engineering
- University of Toledo
- Toledo
- USA
- School of Green Chemistry and Engineering
| |
Collapse
|
20
|
Andreozzi P, Diamanti E, Py-Daniel KR, Cáceres-Vélez PR, Martinelli C, Politakos N, Escobar A, Muzi-Falconi M, Azevedo R, Moya SE. Exploring the pH Sensitivity of Poly(allylamine) Phosphate Supramolecular Nanocarriers for Intracellular siRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38242-38254. [PMID: 29039643 DOI: 10.1021/acsami.7b11132] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silencing RNA (siRNA) technologies emerge as a promising therapeutic tool for the treatment of multiple diseases. An ideal nanocarrier (NC) for siRNAs should be stable at physiological pH and release siRNAs in acidic endosomal pH, fulfilling siRNA delivery only inside cells. Here, we show a novel application of polyamine phosphate NCs (PANs) based on their capacity to load negatively charged nucleic acids and their pH stability. PANs are fabricated by complexation of phosphate anions from phosphate buffer solution (PB) with the amine groups of poly(allylamine) hydrochloride as carriers for siRNAs. PANs are stable in a narrow pH interval, from 7 to 9, and disassemble at pH's higher than 9 and lower than 6. siRNAs are encapsulated by complexation with poly(allylamine) hydrochloride before or after PAN formation. PANs with encapsulated siRNAs are stable in cell media. Once internalized in cells following endocytic pathways, PANs disassemble at the low endosomal pH and release the siRNAs into the cytoplasm. Confocal laser scanning microscopy (CLSM) images of Rhodamine Green labeled PANs (RG-PANs) with encapsulated Cy3-labeled siRNA in A549 cells show that siRNAs are released from the PANs. Colocalization experiments with labeled endosomes and either labeled siRNAs prove the translocation of siRNAs into the cytosol. As a proof of concept, it is shown that PANs with encapsulated green fluorescence protein (GFP) siRNAs silence GFP in A549 cells expressing this protein. Silencing efficacy was evaluated by flow cytometry, CLSM, and Western blot assays. These results open the way for the use of poly(allylamine) phosphate nanocarriers for the intracellular delivery of genetic materials.
Collapse
Affiliation(s)
- Patrizia Andreozzi
- Soft Matter Nanotechnology Group, CIC biomaGUNE , Paseo Miramón 182 C, San Sebastián, Guipúzcoa 20014, Spain
| | - Eleftheria Diamanti
- Soft Matter Nanotechnology Group, CIC biomaGUNE , Paseo Miramón 182 C, San Sebastián, Guipúzcoa 20014, Spain
| | - Karen Rapp Py-Daniel
- Departamento de Genética e Morfologia, Universidade de Brasília, Instituto de Ciências Biológicas , Brasília, Distrito Federal 70910-900, Brazil
| | - Paolin Rocio Cáceres-Vélez
- Departamento de Genética e Morfologia, Universidade de Brasília, Instituto de Ciências Biológicas , Brasília, Distrito Federal 70910-900, Brazil
| | - Chiara Martinelli
- Department of Biosciences, University of Milan , Via Giovanni Celoria, 26, Milan 20133, Italy
| | - Nikolaos Politakos
- Soft Matter Nanotechnology Group, CIC biomaGUNE , Paseo Miramón 182 C, San Sebastián, Guipúzcoa 20014, Spain
| | - Ane Escobar
- Soft Matter Nanotechnology Group, CIC biomaGUNE , Paseo Miramón 182 C, San Sebastián, Guipúzcoa 20014, Spain
| | - Marco Muzi-Falconi
- Department of Biosciences, University of Milan , Via Giovanni Celoria, 26, Milan 20133, Italy
| | - Ricardo Azevedo
- Departamento de Genética e Morfologia, Universidade de Brasília, Instituto de Ciências Biológicas , Brasília, Distrito Federal 70910-900, Brazil
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE , Paseo Miramón 182 C, San Sebastián, Guipúzcoa 20014, Spain
| |
Collapse
|
21
|
Farashishiko A, Plush SE, Maier KB, Dean Sherry A, Woods M. Crosslinked shells for nano-assembled capsules: a new encapsulation method for smaller Gd 3+-loaded capsules with exceedingly high relaxivities. Chem Commun (Camb) 2017; 53:6355-6358. [PMID: 28555682 PMCID: PMC5580261 DOI: 10.1039/c7cc00123a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nano-assembled capsules can incorporate large payloads of high relaxivity Gd3+, permitting the development of highly detectable molecular imaging agents for MRI. A new encapsulating shell, based upon cross-linked peptides, is found to afford smaller capsules (127 nm average diameter) with exceptionally high per-Gd3+ relaxivities (70.7 s-1 mmolal-1).
Collapse
Affiliation(s)
- Annah Farashishiko
- Department of Chemistry, Portland State University, 1719 SW 10th Ave, Portland, OR 97201, USA.
| | | | | | | | | |
Collapse
|
22
|
Rigaux G, Gheran CV, Callewaert M, Cadiou C, Voicu SN, Dinischiotu A, Andry MC, Vander Elst L, Laurent S, Muller RN, Berquand A, Molinari M, Huclier-Markai S, Chuburu F. Characterization of Gd loaded chitosan-TPP nanohydrogels by a multi-technique approach combining dynamic light scattering (DLS), asymetrical flow-field-flow-fractionation (AF4) and atomic force microscopy (AFM) and design of positive contrast agents for molecular resonance imaging (MRI). NANOTECHNOLOGY 2017; 28:055705. [PMID: 28029111 DOI: 10.1088/1361-6528/aa5188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chitosan CS-tripolyphosphate TPP/hyaluronic acid HA nanohydrogels loaded with gadolinium chelates (GdDOTA ⊂ CS-TPP/HA NGs) synthesized by ionic gelation were designed for lymph node (LN) MRI. In order to be efficiently drained to LNs, nanogels (NGs) needed to exhibit a diameter ϕ < 100 nm. For that, formulation parameters were tuned, using (i) CS of two different molecular weights (51 and 37 kDa) and (ii) variable CS/TPP ratio (2 < CS/TPP < 8). Characterization of NG size distribution by dynamic light scattering (DLS) and asymetrical flow-field-flow-fractionation (AF4) showed discrepancies since DLS diameters were consistently above 200 nm while AF4 showed individual nano-objects with ϕ < 100 nm. Such a difference could be correlated to the presence of aggregates inherent to ionic gelation. This point was clarified by atomic force microscopy (AFM) in liquid mode which highlighted the main presence of individual nano-objects in nanosuspensions. Thus, combination of DLS, AF4 and AFM provided a more precise characterization of GdDOTA ⊂ CS-TPP/HA nanohydrogels which, in turn, allowed to select formulations leading to NGs of suitable mean sizes showing good MRI efficiency and negligible toxicity.
Collapse
Affiliation(s)
- G Rigaux
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne URCA, F-51685 Reims Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nasir Z, Ali A, Shakir M, Wahab R, Shamsuzzaman S, Lutfullah L. Silica-supported NiO nanocomposites prepared via a sol–gel technique and their excellent catalytic performance for one-pot multicomponent synthesis of benzodiazepine derivatives under microwave irradiation. NEW J CHEM 2017. [DOI: 10.1039/c6nj04013f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterogeneous and versatile NiO–SiO2 NCs were synthesized by a sol–gel technique and used as a catalyst for the one-pot multicomponent synthesis of benzodiazepines.
Collapse
Affiliation(s)
- Zeba Nasir
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Abad Ali
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Mohammad Shakir
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202 002
- India
| | - Rizwan Wahab
- Department of Zoology
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | | | | |
Collapse
|
24
|
Sacco P, Paoletti S, Cok M, Asaro F, Abrami M, Grassi M, Donati I. Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers. Int J Biol Macromol 2016; 92:476-483. [DOI: 10.1016/j.ijbiomac.2016.07.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
|
25
|
Zhang P, Yang H, Wang G, Tong W, Gao C. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing. Colloids Surf B Biointerfaces 2016; 142:223-229. [DOI: 10.1016/j.colsurfb.2016.02.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 01/22/2023]
|
26
|
Chang SY, Lai HM. Effect of trisodium citrate on swelling property and structure of cationic starch thin film. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Farashishiko A, Chacón KN, Blackburn NJ, Woods M. Nano assembly and encapsulation; a versatile platform for slowing the rotation of polyanionic Gd(3+) -based MRI contrast agents. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:154-9. [PMID: 26708733 PMCID: PMC4864039 DOI: 10.1002/cmmi.1676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 11/05/2022]
Abstract
Encapsulating discrete Gd(3+) chelates in nano-assembled capsules (NACs) is a simple and effective method of preparing an MRI contrast agent capable of delivering a large payload of high relaxivity imaging agent. The preparation of contrast agent containing NACs had previously focussed on preparations incorporating GdDOTP(5-) into the internal aggregate. In this report we demonstrate that other Gd(3+) chelates bearing overall charges as low as 2- can also be used to prepare NACs. This discovery opens up the possibility of using Gd(3+) chelates that have inner-sphere water molecules that could further increase the relaxivity enhancement associated with the long τR that arises from encapsulation. However, encapsulation of the q = 1 chelate GdDTPA(2-) did not give rise to a significant increase in relaxivity relative to encapsulation of the outer-sphere chelate GdTTHA(3-). This leads us to the conclusion that in the NAC interior proton transport is not mediated by movement of whole water molecules and the enhanced relaxivity of Gd(3+) chelate encapsulated within NACs arises primarily from second sphere effects.
Collapse
Affiliation(s)
- Annah Farashishiko
- Department of Chemistry, Portland State University, 1719 SW 10 Avenue, Portland, OR 97201, USA
| | - Kelly N. Chacón
- Institute of Environmental Health, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Ninian J. Blackburn
- Institute of Environmental Health, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mark Woods
- Department of Chemistry, Portland State University, 1719 SW 10 Avenue, Portland, OR 97201, USA
- Advanced Imaging Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
28
|
Song S, Guo H, Jiang Z, Jin Y, Wu Y, An X, Zhang Z, Sun K, Dou H. Self-assembled microbubbles as contrast agents for ultrasound/magnetic resonance dual-modality imaging. Acta Biomater 2015; 24:266-78. [PMID: 26112374 DOI: 10.1016/j.actbio.2015.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/29/2015] [Accepted: 06/17/2015] [Indexed: 01/26/2023]
Abstract
In this work, superparamagnetic self-assembled microbubbles (SAMBs) consisting of "Poly(acrylic acid)-Iron oxide nanoparticles-Polyamine" sandwich-like shells and tetradecafluorohexane cores were fabricated by a template-free self-assembly approach. The SAMBs exhibit not only magnetic resonance (MR) T2 imaging functionality, but also ultrasound (US) image contrast, showing great potential as US/MR dual contrast agents. The diameters of the SAMBs can be tuned easily from 450nm to 1300nm by changing the precursor ratio, and this size variation directly affects their in vitro MRI and US signals. The SAMBs also exhibit in vivo contrast enhancement capabilities in rat liver with injection through portal vein, for both MR and US imaging. Additionally, the biodistribution of SAMBs over time suggests normal systemic metabolic activity through the spleen. The results show that the Fe content in rat liver reduces to a level of which Fe cannot be detected in 45days. The SAMBs exhibit no obvious damage to the primary organs of rat during the metabolic process, indicating their good biocompatibility in vivo.
Collapse
Affiliation(s)
- Sheng Song
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Heze Guo
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zequan Jiang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuqing Jin
- Department of Plastic and Reconstructive Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Ying Wu
- Department of Ultrasound, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Xiao An
- Department of Neoplasms and Interventional Radiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Zhaofeng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, PR China.
| | - Kang Sun
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
29
|
Lawrence PG, Lapitsky Y. Ionically cross-linked poly(allylamine) as a stimulus-responsive underwater adhesive: ionic strength and pH effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1564-1574. [PMID: 25569307 DOI: 10.1021/la504611x] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gel-like coacervates that adhere to both hydrophilic and hydrophobic substrates under water have recently been prepared by ionically cross-linking poly(allylamine) (PAH) with pyrophosphate (PPi) and tripolyphosphate (TPP). Among the many advantages of these underwater adhesives (which include their simple preparation and low cost) is their ability to dissolve on demand when exposed to high or low pH. To further analyze their stimulus-responsive properties, we have investigated the pH and ionic strength effects on the formation, rheology and adhesion of PAH/PPi and PAH/TPP complexes. The ionic cross-linker concentrations needed to form these adhesives decreased with increasing pH and ionic strength (although the complexes ceased to form when the parent solution pH exceeded ca. 8.5; i.e., the effective pKa of PAH). Once formed, their ionic cross-links were most stable (as inferred from their relaxation times) at near-neutral or slightly alkaline pH values (of roughly 6.5-9) and at low ionic strengths. The decrease in ionic cross-link stability within complexes prepared at other pH values and at elevated (150-300 mM) NaCl concentrations diminished both the strength and longevity of adhesion (although, under most conditions tested, the short-term tensile adhesion strengths remained above 10(5) Pa). Additionally, the sensitivity of PAH/PPi and PAH/TPP complexes to ionic strength was demonstrated as a potential route to injectable adhesive design (where spontaneous adhesive formation was triggered via injection of low-viscosity, colloidal PAH/TPP dispersions into phosphate buffered saline). Thus, while the sensitivity of ionically cross-linked PAH networks to pH and ionic strength can weaken their adhesion, it can also impart them with additional functionality, such as minimally invasive, injectable delivery, and ability to form and dissolve their bonds on demand.
Collapse
Affiliation(s)
- Patrick G Lawrence
- Department of Chemical and Environmental Engineering and ‡School of Green Chemistry and Engineering, University of Toledo , Toledo, Ohio 43606, United States
| | | |
Collapse
|
30
|
Mouslmani M, Rosenholm JM, Prabhakar N, Peurla M, Baydoun E, Patra D. Curcumin associated poly(allylamine hydrochloride)-phosphate self-assembled hierarchically ordered nanocapsules: size dependent investigation on release and DPPH scavenging activity of curcumin. RSC Adv 2015. [DOI: 10.1039/c4ra12831a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Curcumin associated poly(allylamine hydrochloride) crosslinks with dipotassium phosphate and silica nanoparticles to form nanocapsule that shows DPPH scavenging activity and releases curcumin triggered by pH.
Collapse
Affiliation(s)
- Mai Mouslmani
- Department of Chemistry
- American University of Beirut
- Beirut
- Lebanon
| | | | - Neeraj Prabhakar
- Laboratory for Physical Chemistry
- Åbo Akademi University
- Turku
- Finland
| | - Markus Peurla
- Laboratory of Electron Microscopy
- University of Turku
- Turku
- Finland
| | - Elias Baydoun
- Department of Biology
- American University of Beirut
- Beirut
- Lebanon
| | - Digambara Patra
- Department of Chemistry
- American University of Beirut
- Beirut
- Lebanon
| |
Collapse
|
31
|
Zhang P, Song X, Tong W, Gao C. Nanoparticle/Polymer Assembled Microcapsules with pH Sensing Property. Macromol Biosci 2014; 14:1495-504. [DOI: 10.1002/mabi.201400259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/18/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Pan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Xiaoxue Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
32
|
Amali AJ, Sharma B, Rana RK. Assembly of multiple components in a hybrid microcapsule: designing a magnetically separable Pd catalyst for selective hydrogenation. Chemistry 2014; 20:12239-44. [PMID: 25088358 DOI: 10.1002/chem.201402467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Indexed: 11/11/2022]
Abstract
In analogy to the role of long-chain polyamines in biosilicification, poly-L-lysine facilitates the assembly of nanocomponents to design multifunctional microcapsule structures. The method is demonstrated by the fabrication of a magnetically separable catalyst that accommodates Pd nanoparticles (NPs) as active catalyst, Fe3O4 NPs as magnetic component for easy recovery of the catalyst, and silica NPs to impart stability and selectivity to the catalyst. In addition, polyamines embedded inside the microcapsule prevent the agglomeration of Pd NPs and thus result in efficient catalytic activity in hydrogenation reactions, and the hydrophilic silica surface results in selectivity in reactions depending on the polarity of substrates.
Collapse
Affiliation(s)
- Arlin Jose Amali
- Nanomaterials Laboratory, I & PC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007 (India), Fax: (+91) 40-27160921; Current address: Center for Green Chemistry Processes, School of Chemistry, Madurai Kamaraj University, Madurai 625 021 (India)
| | | | | |
Collapse
|
33
|
Huang Y, Lawrence PG, Lapitsky Y. Self-assembly of stiff, adhesive and self-healing gels from common polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7771-7777. [PMID: 24476067 DOI: 10.1021/la404606y] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Underwater adhesion has numerous potential medical, household, and industrial applications. It is typically achieved through covalent polymerization and cross-linking reactions and/or the use of highly specialized biological or biomimetic polymers. As a simpler alternative to these covalent and biomimetic strategies, this article shows that stiff, gel-like complexes that adhere to various substrates under water can also be prepared through the ionic cross-linking of common, commercial polyelectrolytes. The gels form spontaneously when synthetic polycations, such as poly(allylamine) (PAH), are mixed with strongly binding multivalent anions, pyrophosphate (PPi) and tripolyphosphate (TPP). The PAH/PPi and PAH/TPP gels exhibit very high storage moduli (G∞′ ≈ 400 kPa), self-heal when torn, and adhere to both hydrophilic and hydrophobic substrates under water (with short-term tensile adhesion strengths of 350–450 kPa). Furthermore, these gels can be dissolved on demand (if adhesion needs to be reversed) by changing the ambient pH, which controls the ionization state of the polyelectrolyte and ionic cross-linker. These properties suggest that synthetic polycations cross-linked with PPi and TPP ions could provide a simple, inexpensive, and scalable platform for underwater adhesion.
Collapse
Affiliation(s)
- Yan Huang
- Department of Chemical and Environmental Engineering and ‡School of Green Chemistry and Engineering, University of Toledo , Toledo, Ohio 43606, United States
| | | | | |
Collapse
|
34
|
Fukasawa T, Hashimoto M, Nagamine S, Aoki H, Shinto H, Ito S, Ohshima M. Fabrication of ICG Dye-containing Particles by Growth of Polymer/Salt Aggregates and Measurement of Photoacoustic Signals. CHEM LETT 2014. [DOI: 10.1246/cl.131088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | - Hiroyuki Aoki
- Department of Polymer Chemistry, Kyoto University
- Advanced Biomedical Engineering Research Unit, Kyoto University
| | | | - Shinzaburo Ito
- Department of Polymer Chemistry, Kyoto University
- Advanced Biomedical Engineering Research Unit, Kyoto University
| | | |
Collapse
|
35
|
Ionically crosslinked polyelectrolyte nanocarriers: Recent advances and open problems. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.03.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Shi J, Jiang Z. An efficient and recyclable enzyme catalytic system constructed through the synergy between biomimetic mineralization and polyamine–salt aggregate assembly. J Mater Chem B 2014; 2:4435-4441. [DOI: 10.1039/c4tb00440j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Lauth V, Maas M, Rezwan K. Coacervate-directed synthesis of CaCO3 microcarriers for pH-responsive delivery of biomolecules. J Mater Chem B 2014; 2:7725-7731. [DOI: 10.1039/c4tb01213e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
pH-responsive, protein loaded calcium carbonate microcarriers are synthesized by the combination of complex coacervation and mineralization for drug delivery applications.
Collapse
Affiliation(s)
- V. Lauth
- Advanced Ceramics
- University of Bremen
- 28359 Bremen, Germany
| | - M. Maas
- Advanced Ceramics
- University of Bremen
- 28359 Bremen, Germany
| | - K. Rezwan
- Advanced Ceramics
- University of Bremen
- 28359 Bremen, Germany
| |
Collapse
|
38
|
Huang Y, Lapitsky Y. Determining the colloidal behavior of ionically cross-linked polyelectrolytes with isothermal titration calorimetry. J Phys Chem B 2013; 117:9548-57. [PMID: 23856000 DOI: 10.1021/jp405384b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mixtures of polyelectrolytes and multivalent counterions can self-assemble into colloidal complexes. These complexes attract widespread interest in applications such as medicine, household product formulations, and separation processes. To facilitate the development of these colloidal dispersions, we examined isothermal titration calorimetry (ITC) as an automated screening tool for identifying the polymer and multivalent counterion compositions that (1) form ionically cross-linked colloidal complexes and (2) lead to their rapid coagulation (and macroscopic phase separation). By studying various polyelectrolyte/multivalent counterion mixtures, we have identified and generalized the features in the ITC data that indicate colloidal complex formation and coagulation. The limitations of this calorimetric screening method were also elucidated. These analyses suggest that ITC can be effective for screening the short-term colloidal behavior of polyelectrolyte/multivalent counterion mixtures but are unreliable in revealing their long-term (equilibrium) properties.
Collapse
Affiliation(s)
- Yan Huang
- Department of Chemical and Environmental Engineering, University of Toledo, Toledo, Ohio 43606, USA
| | | |
Collapse
|
39
|
Dressick WJ, Wahl KJ, Bassim ND, Stroud RM, Petrovykh DY. Divalent-anion salt effects in polyelectrolyte multilayer depositions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15831-15843. [PMID: 23106264 DOI: 10.1021/la3033176] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We systematically investigate the effects of divalent anions on the assembly of polyelectrolyte multilayers by fabricating polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) multilayer films from aqueous solutions containing SO(4)(2-), HPO(4)(2-), or organic dicarboxylate dianions. The chosen concentrations of these anions (i.e., ≤0.05 M) allow us to isolate their effects on the assembly process from those of the polyelectrolyte solubility or solution ionic strength (maintained constant at μ = 1.00 M by added NaCl). Compared to a control film prepared from solutions containing only Cl(-) anions, stratified multilayers deposited in the presence of dianions exhibit increased UV absorbance, thickness, and roughness. From the dependence of film properties on the solution concentration of SO(4)(2-) and number of polyelectrolyte layers deposited, we derive a generic model for the PSS/PAH multilayer formation that involves adsorption of PAH aggregates formed in solution via electrostatic interactions of PAH with bridging dianions. Experiments using HPO(4)(2-) and organic dicarboxylate species of varying structure indicate that the separation, rigidity, and angle between the discrete negatively charged sites in the dianion govern the formation of the PAH aggregates, and therefore also the properties of the multilayer film. A universal linear relationship between film UV absorbance and thickness is observed among all dianion types or concentrations, consistent with the model.
Collapse
|
40
|
Liao Y, Wang X, Qian W, Li Y, Li X, Yu DG. Bulk synthesis, optimization, and characterization of highly dispersible polypyrrole nanoparticles toward protein separation using nanocomposite membranes. J Colloid Interface Sci 2012; 386:148-57. [DOI: 10.1016/j.jcis.2012.07.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/16/2022]
|
41
|
Xuan J, Jia XD, Jiang LP, Abdel-Halim E, Zhu JJ. Gold nanoparticle-assembled capsules and their application as hydrogen peroxide biosensor based on hemoglobin. Bioelectrochemistry 2012; 84:32-7. [DOI: 10.1016/j.bioelechem.2011.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 09/14/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
|
42
|
Nanoparticle assembled microcapsules for application as pH and ammonia sensor. Anal Chim Acta 2011; 708:75-83. [DOI: 10.1016/j.aca.2011.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 11/20/2022]
|
43
|
Amali AJ, Saravanan P, Rana RK. Tailored Anisotropic Magnetic Chain Structures Hierarchically Assembled from Magnetoresponsive and Fluorescent Components. Angew Chem Int Ed Engl 2011; 50:1318-21. [DOI: 10.1002/anie.201005619] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Indexed: 01/24/2023]
|
44
|
Amali AJ, Saravanan P, Rana RK. Tailored Anisotropic Magnetic Chain Structures Hierarchically Assembled from Magnetoresponsive and Fluorescent Components. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Bagaria HG, Wong MS. Polyamine–salt aggregate assembly of capsules as responsive drug delivery vehicles. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10712g] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Sridaeng D, Weingart JJ, Chantarasiri N, Zhe J, Hu JJ. Postsynthetic surface functionalization, encapsulation, and releasing studies of a novel polymer nanocapsule. J Appl Polym Sci 2010. [DOI: 10.1002/app.31755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
D’Anna F, Marullo S, Vitale P, Noto R. Electronic and Steric Effects: How Do They Work in Ionic Liquids? The Case of Benzoic Acid Dissociation. J Org Chem 2010; 75:4828-34. [DOI: 10.1021/jo100914p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Francesca D’Anna
- Dipartimento di Chimica Organica “E. Paternò”, Università degli Studi di Palermo, Viale delle Scienze-Parco d’Orleans II, 90128 Palermo, Italy
| | - Salvatore Marullo
- Dipartimento di Chimica Organica “E. Paternò”, Università degli Studi di Palermo, Viale delle Scienze-Parco d’Orleans II, 90128 Palermo, Italy
| | - Paola Vitale
- Dipartimento di Chimica Organica “E. Paternò”, Università degli Studi di Palermo, Viale delle Scienze-Parco d’Orleans II, 90128 Palermo, Italy
| | - Renato Noto
- Dipartimento di Chimica Organica “E. Paternò”, Università degli Studi di Palermo, Viale delle Scienze-Parco d’Orleans II, 90128 Palermo, Italy
| |
Collapse
|
48
|
Kini GC, Lai J, Wong MS, Biswal SL. Microfluidic formation of ionically cross-linked polyamine gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6650-6656. [PMID: 20078130 DOI: 10.1021/la903983y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this article, we discuss in situ polymer gelation in microfluidic channels from electrostatically mediated interactions when reactant streams of a linear cationic polymer (poly(allylamine hydrochloride, PAH) and a multivalent anion (sodium citrate) are subjected to shear flow. We find that the polyamine exhibits shear-thickening behavior as it is ionically cross-linked by citrate ions to form viscoelastic gel phases. These gels form at room temperature and remain stable and intact after the cessation of flow. Gelation is found to occur in the polymer stream and not the citrate stream because of an appreciably higher diffusivity of citrate ions when compared to the gel and PAH and because of laminar flow conditions in the microfluidic environment. Gel formation occurred when the pH of the PAH stream was below the PAH pK(a) value of 8.38 and when citrate was either in a disodium or trisodium state. The formation of aggregates, gels, and droplets was found to depend strongly on the charge ratio and flow conditions. The gelation of PAH begins with the formation of colloidal aggregates of PAH and citrate, which then combine under shear flow to form noncontinuous or continuous gels. Droplets of citrate can form within regions of continuous gels as excess citrate anions diffuse into the gel stream.
Collapse
Affiliation(s)
- Gautam C Kini
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | | | | | | |
Collapse
|
49
|
Non-Layer-by-Layer Assembly and Encapsulation Uses of Nanoparticle-Shelled Hollow Spheres. ADVANCES IN POLYMER SCIENCE 2010. [DOI: 10.1007/12_2010_53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
50
|
Yu J, Javier D, Yaseen MA, Nitin N, Richards-Kortum R, Anvari B, Wong MS. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules. J Am Chem Soc 2010; 132:1929-38. [PMID: 20092330 PMCID: PMC2834762 DOI: 10.1021/ja908139y] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New colloidal materials that can generate heat upon irradiation are being explored for photothermal therapy as a minimally invasive approach to cancer treatment. The near-infrared dye indocyanine green (ICG) could serve as a basis for such a material, but its encapsulation and subsequent use are difficult to carry out. We report the three-step room-temperature synthesis of approximately 120-nm capsules loaded with ICG within salt-cross-linked polyallylamine aggregates, and coated with antiepidermal growth factor receptor (anti-EGFR) antibodies for tumor cell targeting capability. We studied the synthesis conditions such as temperature and water dilution to control the capsule size and characterized the size distribution via dynamic light scattering and scanning electron microscopy. We further studied the specificity of tumor cell targeting using three carcinoma cell lines with different levels of EGFR expression and investigated the photothermal effects of ICG containing nanocapsules on EGFR-rich tumor cells. Significant thermal toxicity was observed for encapsulated ICG as compared to free ICG at 808 nm laser irradiation with radiant exposure of 6 W/cm(2). These results illustrate the ability to design a colloidal material with cell targeting and heat generating capabilities using noncovalent chemistry.
Collapse
Affiliation(s)
- Jie Yu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77251, USA
| | - David Javier
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | - Mohammad A. Yaseen
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129
| | - Nitin Nitin
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | | | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, CA, 99251, USA
| | - Michael S. Wong
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77251, USA
- Department of Chemistry, Rice University, Houston, TX 77251, USA
| |
Collapse
|