1
|
Eun HJ, Ishiuchi SI, Yoo IT, Heo J, Park JW, Fujii M, Kim NJ. Cryogenic Ion Spectroscopy of Protonated and Sodiated Methyladenine Derivatives. J Phys Chem A 2023; 127:2472-2480. [PMID: 36895090 DOI: 10.1021/acs.jpca.2c09083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Ultraviolet photodissociation (UVPD) spectra of protonated 9-methyladenine (H+9MA), protonated 7-methyl adenine (H+7MA), protonated 3-methyladenine (H+3MA), and sodiated 7-methyladenine (Na+7MA) near the origin bands of the S0-S1 transition were obtained using cryogenic ion spectroscopy. The UV-UV hole burning, infrared (IR) ion-dip, and IR-UV double resonance spectra showed that all the ions were present as single isomers in a cryogenic ion trap. The UVPD spectrum of H+9MA exhibited only a broad absorption band, whereas the spectra of H+7MA, H+3MA, and Na+7MA displayed moderately or well-resolved vibronic bands. Potential energy profiles were computed to understand the reason for the different bandwidths of the vibronic bands in the spectra. The broadening of the bands was correlated with the slopes between the Franck-Condon point and the conical intersection between the S1 and S0 states in the potential energy profiles, thus reflecting the deactivation rates in the S1 state.
Collapse
Affiliation(s)
- Han Jun Eun
- Gas Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Shun-Ichi Ishiuchi
- Department of Chemistry, Tokyo Institute of Technology, Ookayama 2-12-1, Tokyo 152-8550, Japan
| | - Il Tae Yoo
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea
| | - Jiyoung Heo
- Department of Green Chemical Engineering, Sangmyung University, Chungnam 31066, Korea
| | - Jae Woo Park
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama 226-8503, Japan
| | - Nam Joon Kim
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea
| |
Collapse
|
2
|
Interaction of Uracil with LiF and Water Studied by Density Functional Theory Study on Anionic Complexes. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
3
|
Eun HJ, Ishiuchi SI, Baek JY, Lee S, Heo J, Fujii M, Kim NJ. Cryogenic ion spectroscopy of adenine complexes containing alkali metal cations. Phys Chem Chem Phys 2021; 23:6783-6790. [PMID: 33720244 DOI: 10.1039/d1cp00312g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cryogenic ion spectroscopy was used to characterize adenine complexes containing alkali metal cations (M+A, M = Cs, Rb, K, Na, and Li) produced by electrospray ionization. The ultraviolet (UV) photodissociation spectra of the complexes stored in a cryogenic ion trap exhibited well-resolved vibronic bands near their origin bands of the S0-S1 transition. The UV-UV hole-burning and infrared ion-dip spectra showed that all the M+A ions in the ion trap were single isomers of M+A7a, where the M+ ion was not bound to canonical 9H-adenine (A9) but bound to a rare tautomer, 7H-adenine (A7). Density functional theory calculations showed lower tautomerization barriers for M+A9 than for bare A9 in aqueous solution. We suggest that M+ ions not only play a catalytic role in the tautomerization of A9 to A7 but also increase the tautomerization yield by forming stable M+A7a isomers.
Collapse
Affiliation(s)
- Han Jun Eun
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea.
| | | | | | | | | | | | | |
Collapse
|
4
|
Farrokhpour H, Khoshkhou S. A TD-DFT study of the excited dissociative electronic states of the DNA nucleobases bound to Li . SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118862. [PMID: 32927359 DOI: 10.1016/j.saa.2020.118862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
In this work, the first and second dissociative potential curves of adenineLi+ (ADLi+), guanineLi+ (GUALi+), cytosineLi+(CYTLi+), and thymineLi+ (THYLi+) complexes, related to the dissociation of their LiO and LiN bonds, have been calculated in the gas phase and water, separately. For this purpose, the fifteen excited potential curves, in order of increasing energy, were calculated for each complex and the dissociative potential curves were distinguished from them considering the conical intersection points. The time-dependent density functional theory (TD-DFT) method employing the M06-2X functional was used for the calculations. It was observed that the electron transfer from the DNA base to the Li+ took place during the dissociation of complexes in the gas phase. The electrostatic field of water blocked this charge transfer and led to the excited DNA base and Li+ in its ground state. The vertical excitation energy for the desorption of the Li fragment as a neutral and cation species from the DNA bases was determined. The effect of the interaction site of Li+ on the dissociative potential curves was also investigated.
Collapse
Affiliation(s)
- H Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - S Khoshkhou
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
5
|
Padash R, Ramazani S. Investigation of stability of adenine and its tautomers in RNA and DNA, and their interaction with Na+, K+, Mg2+, Ca2+ and Zn2+. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Sharafdini R, Ramazani S. A theoretical study on the role of stability of cytosine and its tautomers in DNA (deoxyribonucleic acid), and investigation of interactions of Na +, K +, Mg 2+, Ca 2+, Zn 2+ metal ions and OH radical with cytosine tautomers. J Biomol Struct Dyn 2020; 40:3819-3836. [PMID: 33252005 DOI: 10.1080/07391102.2020.1850526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the present study, 21 cytosine tautomers were investigated so that some tautomers were reported for the first time in the gas phase and aqueous solution. C3 tautomer was the most stable tautomer in gas phase but C1 was the most stable structure in aqueous solution. The potential energy surface of all trajectories was determined for 21 tautomers and 22 transition states. Also, interactions of cytosine tautomers with Na+, K+, Mg2+, Ca2+ and Zn2+ metal ions were studied in gas phase and aqueous solution. Three types of interactions among metal ions and (N1 and O10), (N3 and O10) and (N3 and N9) of cytosine tautomers were investigated. The study of interaction energies of all complexes showed the stability of complexes in which interactions among Mg2+ and Zn2+ with tautomers were stronger than interactions among Ca2+, Na+ and K+ with tautomers, respectively. Some interactions of metal ions with cytosine tautomers made the most stable tautomers. So, the stability of rare tutomeric forms had a significant effect on stabilization of anomalous DNA (deoxyribonucleic acid) double helix and spontaneous mutations. Also, one of the most important causes of mutations in DNA (deoxyribonucleic acid) was the reaction of OH radical with nucleotide bases. So, interactions of OH radical with cytosine and its tautomers were investigated in gas phase and aqueous solution.Communicated by Ramaswamy H. Sarma.
Collapse
|
7
|
Stasyuk OA, Solà M, Swart M, Fonseca Guerra C, Krygowski TM, Szatylowicz H. Effect of Alkali Metal Cations on Length and Strength of Hydrogen Bonds in DNA Base Pairs. Chemphyschem 2020; 21:2112-2126. [PMID: 32643813 DOI: 10.1002/cphc.202000434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Indexed: 01/25/2023]
Abstract
For many years, non-covalently bonded complexes of nucleobases have attracted considerable interest. However, there is a lack of information about the nature of hydrogen bonding between nucleobases when the bonding is affected by metal coordination to one of the nucleobases, and how the individual hydrogen bonds and aromaticity of nucleobases respond to the presence of the metal cation. Here we report a DFT computational study of nucleobase pairs interacting with alkali metal cations. The metal cations contribute to the stabilization of the base pairs to varying degrees depending on their position. The energy decomposition analysis revealed that the nature of bonding between nucleobases does not change much upon metal coordination. The effect of the cations on individual hydrogen bonds were described by changes in VDD charges on frontier atoms, H-bond length, bond energy from NBO analysis, and the delocalization index from QTAIM calculations. The aromaticity changes were determined by a HOMA index.
Collapse
Affiliation(s)
- Olga A Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Spain
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Célia Fonseca Guerra
- Theoretical Chemistry, Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.,Leiden Institute of Chemistry, Leiden University, PO Box 9502, NL-2300 RA, Leiden, The Netherlands
| | | | - Halina Szatylowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| |
Collapse
|
8
|
Ionization of adenine in the presence of Na+ in the gas phase and water. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Mohammadi M, Ramazani S. Comparison of the stability of thymine tautomers and the interaction of its tautomers with Na +, K +, Mg 2+ and Ca 2+ in gas and solvent phases. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1636150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Bhai S, Ganguly B. Role of backbones on the interaction of metal ions with deoxyribonucleic acid and peptide nucleic acid: A DFT study. J Mol Graph Model 2019; 93:107445. [PMID: 31494536 DOI: 10.1016/j.jmgm.2019.107445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 11/30/2022]
Abstract
Metal ion interaction with deoxyribonucleic acid and peptide nucleic acid were studied using B3LYP-D3/6-311++g(d,p)//B3LYP/6-31 + G(d) level of theory in aqueous phase employing polarized continuum (PCM) model. This study reports the role of backbones on deoxyribonucleic acid and peptide nucleic acid for complexation with different metal ions. The systematic study performed with DFT calculations reveals that central binding (Type-4) shows the strongest binding compared to the other binding modes because of the involvement of the backbone as well as the nitrogenous bases. The charged backbone of DNA nucleotides contributes significantly towards binding with the metal ions. The deoxyguanosine monophosphate (dGMP) clearly indicates the strongest binding upon complexation with Mg2+ (-49.6 kcal/mol), Zn2+ (-45.3 kcal/mol) and Cu2+ (-148.4 kcal/mol), respectively. The neutral backbone of PNA also assists to complex the metal ions with PNA nucleotides. The Mg2+ and Cu2+ prefer to bind with the PNA-Cytosine (-32.9 kcal/mol & -132.9 kcal/mol) in central binding mode (type-4). PNA-Adenine-Zn2+ (-29.1 kcal/mol) is the preferred binding mode (type-4) compared to other modes of interaction for this metal ion with PNA-Adenine nucleotide. The Cu2+ ion showed the superior complexation ability with deoxyribonucleic acid and peptide nucleic acid compared to Mg2+ and Zn2+ ions. The cation-π complexation with the bases of nucleotides was also obtained with Cu2+ ion. The AIM (atoms in molecule) theory has been applied to examine the nature of the interaction of Mg2+, Zn2+, and Cu2+ ion to the deoxyribonucleic acid and peptide nucleic acid. The alkaline earth metal, Mg2+ ion shows electrostatic nature while interaction with deoxyribonucleic acid and peptide nucleic acid, however, the transition metal ions (Zn2+, Cu2+) showed partly covalent nature as well with deoxyribonucleic acid and peptide nucleic acid. The optical properties calculated for the binding of metal ions with deoxyribonucleic acid and peptide nucleic acid showed a diagnostic signature to ascertain the interaction of metal ions with such nucleotides. Cu2+ ion showed larger red shifts in the absorption spectrum values upon complexation with the DNAs and PNAs. The calculated results suggest that such metal ions would prefer to bind with the DNA compared to PNA in DNA-PNA duplexes. The preference for the binding of metal ions with DNA nucleotides is largely attributed to the contribution of charged backbones compared to the neutral PNA backbones.
Collapse
Affiliation(s)
- Surjit Bhai
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India.
| |
Collapse
|
11
|
Cheng R, Loire E, Fridgen TD. Hydrogen bonding in alkali metal cation-bound i-motif-like dimers of 1-methyl cytosine: an IRMPD spectroscopic and computational study. Phys Chem Chem Phys 2019; 21:11103-11110. [PMID: 31094375 DOI: 10.1039/c9cp01223k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The structures of alkali metal cation bound 1-methylcytosine (1-mCyt) dimers were explored using vibrational spectroscopy in the form of infrared multiple photon dissociation (IRMPD) spectroscopy and by computational methods. For the smaller alkali metal cations, Li+ and Na+, only non-hydrogen bonded symmetric anti-parallel structures were observed in agreement with the lowest energy computed structures. For K+, Rb+, and Cs+ the vibrational spectra in the N-H stretch region showed strong evidence for hydrogen bonding in agreement with the lowest energy structures which contained hydrogen bonding interactions between the amine group of one cytosine and the carbonyl oxygen of the other cytosine. The lowest energy structures for these complexes were compared to previously studied cytosine complexes [(Cyt)2M]+ where M = Li, Na, and K. The calculations are in agreement that only the non-hydrogen bonded structures would be observed for these cytosine complexes.
Collapse
Affiliation(s)
- Ruodi Cheng
- Department of Chemistry, Memorial University, St. John's, NL A1B 3 × 7, Canada.
| | - Estelle Loire
- Laboratoire Chimie Physique - CLIO, Batiment 201, Porte 2, Campus Universite d'Orsay, 91405, France
| | - Travis D Fridgen
- Department of Chemistry, Memorial University, St. John's, NL A1B 3 × 7, Canada.
| |
Collapse
|
12
|
Ding Y, Wang X, Xie L, Yao X, Xu W. Two-dimensional self-assembled nanostructures of nucleobases and their related derivatives on Au(111). Chem Commun (Camb) 2018; 54:9259-9269. [PMID: 30027963 DOI: 10.1039/c8cc03585g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The construction of two-dimensional (2D) self-assembled nanostructures has been one of the considerably interesting areas of on-surface chemistry in the past few decades, and has benefited from the rapid development and improvement of scanning probe microscopy techniques. In this research field, many attempts have been made in the controllable fabrication of well-ordered and multifunctional surface nanostructures, which attracted interest because of the prospect for artificial design of functional molecular nanodevices. DNA and RNA are considered to be programmable self-assembly systems and it is possible to use their base sequences to encode instructions for assembly in a predetermined fashion at the nanometer scale. As important constituents of nucleic acids, nucleobases, with intrinsic functional groups for hydrogen bonding, coordination bonding, and electrostatic interactions, can be employed as a potential system for the versatile construction of various biomolecular nanostructures, which may be used to structure the self-assembly of DNA-based artificial molecular constructions and play an important role in novel biosensors based on surface functionalization. In this article, we will review the recent progress of on-surface self-assembly of nucleobases and their derivatives together with different reactants (e.g., metals, halogens, salts and water), and as a result, various 2D surface nanostructures are summarized.
Collapse
Affiliation(s)
- Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | | | | | | | | |
Collapse
|
13
|
Thermochemistry of the Reaction of Solvated Sodium Ion Clusters with Thymine in the Gas Phase: An Example of the Reaction in Microcosmic Environment. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Li D, Han Y, Li H, Zhang P, Kang Q, Li Z, Shen D. The influence of isolated and penta-hydrated Zn 2+ on some of the intramolecular proton-transfer processes of thymine: a quantum chemical study. RSC Adv 2018; 8:11021-11026. [PMID: 35541537 PMCID: PMC9078977 DOI: 10.1039/c7ra13750h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/27/2018] [Indexed: 02/02/2023] Open
Abstract
Zinc cation (Zn2+) plays an important role in the chemistry of DNA base pairs. In this work, the influence of isolated and penta-hydrated Zn2+ on some of the intramolecular proton-transfer processes of thymine (T) is investigated by the density functional theory method. It is shown that the calculated binding energies between Zn2+ and T are exothermic in vacuum. Compared to T, Zn2+ increases the stability of tautomer T' by 28.7 kcal mol-1, promoting the intramolecular proton transfer of T. But in a micro-water environment, the attachment processes of Zn2+ to T hydrates, penta-hydrated Zn2+ to T, and penta-hydrated Zn2+ to T hydrates lead to the rearrangement of molecules and the redistribution of charges. The conventional T is still the most stable form and the influence of Zn2+ is much reduced and the proton transfer is thermodynamically unfavored. The detailed characterization is helpful to understand the genotoxicity of zinc ions.
Collapse
Affiliation(s)
- Dejie Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 P. R. China
| | - Ying Han
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Huijuan Li
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Ping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 P. R. China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 P. R. China
| | - Zhihua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 P. R. China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
15
|
Cheng R, Rose VE, Power B, Fridgen TD. Self-assembled uracil complexes containing tautomeric uracils: an IRMPD spectroscopic and computation study of the structures of gaseous uracilnCa2+ (n = 4, 5, or 6) complexes. Phys Chem Chem Phys 2018; 20:572-580. [DOI: 10.1039/c7cp07128k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The structures of doubly-charged uracil (U) complexes with Ca2+, UnCa2+ (n = 4, 5, 6), were studied by infrared multiphoton dissociation (IRMPD) spectroscopy and computational methods.
Collapse
Affiliation(s)
- Ruodi Cheng
- Department of Chemistry
- Memorial University
- St. John's
- Canada
| | | | - Barry Power
- Department of Chemistry
- Memorial University
- St. John's
- Canada
| | | |
Collapse
|
16
|
Li D, Han Y, Li H, Zhang P, Kang Q, Shen D. Do the fragments from decomposed ZIF-8 greatly affect some of the intramolecular proton-transfer of thymine? A quantum chemical study. RSC Adv 2018; 8:27227-27234. [PMID: 35539982 PMCID: PMC9083285 DOI: 10.1039/c8ra03817a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/02/2018] [Indexed: 01/26/2023] Open
Abstract
The intramolecular proton-transfer processes of thymine were investigated by the density functional theory method. It is shown that the mutation from keto (T) to enol (T′) form is affected by zeolitic imidazolate framework-8 (ZIF-8) fragments such as single 2-methylimidazole neutral crystals (M), and negatively charged 2-methylimidazole ligands (M−). Results show that with the number (n) of water (w) molecules that assist proton-transfer increasing from 1 to 4, the order of the tautomeric energy barriers (in kcal mol−1) is T-2w (16.3) < T-1w (17.6) < T-3w (17.8) < T-4w (20.5). In the presence of M, the order of energy barrier is MT-2w (16.6) < MT-1w (17.7) < MT-3w (18.9) < MT-4w (20.8). M− has a catalysis effect on the energy barrier and the order is M−T-2w (14.4) < M−T-3w (15.2) < M−T-1w (16.3) < M−T-4w (16.8). The attachment of the M− fragment slightly promotes the proton-transfer processes in some instances. The characterization of the proton-transfer processes is helpful to understand the genotoxicity of ZIF-8 during drug delivery applications. Investigations on whether fragments from decomposed ZIF-8 would affect the intramolecular proton-transfer of thymine by DFT modeling.![]()
Collapse
Affiliation(s)
- Dejie Li
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| | - Ying Han
- National Engineering Research Center for Colloidal Materials
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Huijuan Li
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao
- P. R. China
| | - Ping Zhang
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals
| |
Collapse
|
17
|
Zhu Y, Roy HA, Cunningham NA, Strobehn SF, Gao J, Munshi MU, Berden G, Oomens J, Rodgers MT. IRMPD Action Spectroscopy, ER-CID Experiments, and Theoretical Studies of Sodium Cationized Thymidine and 5-Methyluridine: Kinetic Trapping During the ESI Desolvation Process Preserves the Solution Structure of [Thd+Na]<sup/>. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2423-2437. [PMID: 28836109 DOI: 10.1007/s13361-017-1753-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/01/2017] [Accepted: 07/02/2017] [Indexed: 05/25/2023]
Abstract
Thymidine (dThd) is a fundamental building block of DNA nucleic acids, whereas 5-methyluridine (Thd) is a common modified nucleoside found in tRNA. In order to determine the conformations of the sodium cationized thymine nucleosides [dThd+Na]+ and [Thd+Na]+ produced by electrospray ionization, their infrared multiple photon dissociation (IRMPD) action spectra are measured. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations and frequency analyses are performed at the B3LYP/6-311+G(d,p) level of theory, whereas energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory. As protonation preferentially stabilizes minor tautomers of dThd and Thd, tautomerization facilitated by Na+ binding is also considered. Comparisons of the measured IRMPD and computed IR spectra find that [dThd+Na]+ prefers tridentate (O2,O4',O5') coordination to the canonical 2,4-diketo form of dThd with thymine in a syn orientation. In contrast, [Thd+Na]+ prefers bidentate (O2,O2') coordination to the canonical 2,4-diketo tautomer of Thd with thymine in an anti orientation. Although 2,4-dihydroxy tautomers and O2 protonated thymine nucleosides coexist in the gas phase, no evidence for minor tautomers is observed for the sodium cationized species. Consistent with experimental observations, the computational results confirm that the sodium cationized thymine nucleosides exhibit a strong preference for the canonical form of the thymine nucleobase. Survival yield analyses based on energy-resolved collision-induced dissociation (ER-CID) experiments suggest that the relative stabilities of protonated and sodium cationized dThd and Thd follow the order [dThd+H]+ < [Thd+H]+ < [dThd+Na]+ < [Thd+Na]+. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - S F Strobehn
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - J Gao
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - M U Munshi
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
18
|
Power B, Rowe S, Fridgen TD. Ammoniated Complexes of Uracil and Transition Metal Ions: Structures of [M(Ura-H)(Ura)(NH3)]+ by IRMPD Spectroscopy and Computational Methods (M = Fe, Co, Ni, Cu, Zn, Cd). J Phys Chem B 2016; 121:58-65. [DOI: 10.1021/acs.jpcb.6b09614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Barry Power
- Department of Chemistry, Memorial University, St. John’s, Newfoundland and Labrador, Canada A1B 3X7
| | - Steven Rowe
- Department of Chemistry, Memorial University, St. John’s, Newfoundland and Labrador, Canada A1B 3X7
| | - Travis D. Fridgen
- Department of Chemistry, Memorial University, St. John’s, Newfoundland and Labrador, Canada A1B 3X7
| |
Collapse
|
19
|
Zhu Y, Hamlow LA, He CC, Strobehn SF, Lee JK, Gao J, Berden G, Oomens J, Rodgers MT. Influence of Sodium Cationization versus Protonation on the Gas-Phase Conformations and Glycosidic Bond Stabilities of 2'-Deoxyadenosine and Adenosine. J Phys Chem B 2016; 120:8892-904. [PMID: 27494378 DOI: 10.1021/acs.jpcb.6b06105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influence of noncovalent interactions with a sodium cation on the gas-phase structures and N-glycosidic bond stabilities of 2'-deoxyadenosine (dAdo) and adenosine (Ado), [dAdo+Na](+) and [Ado+Na](+), are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and energy-resolved collision-induced dissociation (ER-CID) experiments. ER-CID experiments are also performed on the protonated forms of these nucleosides, [dAdo+H](+) and [Ado+H](+), for comparison purposes. Complementary electronic structure calculations are performed to determine the structures and relative stabilities of the stable low-energy conformations of the sodium cationized nucleoside complexes and to predict their IR spectra. Comparison between the measured IRMPD action spectra and calculated IR spectra enables the conformations of the sodium cationized nucleosides present in the experiments to be elucidated. The influence of sodium cationization versus protonation on the structures and IR spectra is elucidated by comparison to IRMPD and theoretical results previously reported for the protonated forms of these nucleosides. The influence of sodium cationization versus protonation on the glycosidic bond stability of the adenine nucleosides is determined by comparison of the ER-CID behavior of these systems. All structures present in the experiments are found to involve tridentate binding of Na(+) to the N3, O4', and O5' atoms forming favorable 5- and 6-membered chelation rings, which requires that adenine rotate to a syn configuration. This mode of sodium cation binding results in moderate flexibility of the sugar moiety such that the sugar puckering of the conformations present varies between C2'-endo and O4'-endo. Sodium cationization is found to be less effective toward activating the N-glycosidic bond than protonation for both dAdo and Ado. Both the IRMPD yields and ER-CID behavior indicate that the 2'-hydroxyl substituent of Ado stabilizes the N-glycosidic bond relative to that of dAdo.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - C C He
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - S F Strobehn
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J K Lee
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J Gao
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
20
|
Gao J, Berden G, Rodgers MT, Oomens J. Interaction of Cu(+) with cytosine and formation of i-motif-like C-M(+)-C complexes: alkali versus coinage metals. Phys Chem Chem Phys 2016; 18:7269-77. [PMID: 26894838 DOI: 10.1039/c6cp00234j] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Watson-Crick structure of DNA is among the most well-known molecular structures of our time. However, alternative base-pairing motifs are also known to occur, often depending on base sequence, pH, or the presence of cations. Pairing of cytosine (C) bases induced by the sharing of a single proton (C-H(+)-C) may give rise to the so-called i-motif, which occurs primarily in expanded trinucleotide repeats and the telomeric region of DNA, particularly at low pH. At physiological pH, silver cations were recently found to stabilize C dimers in a C-Ag(+)-C structure analogous to the hemiprotonated C-dimer. Here we use infrared ion spectroscopy in combination with density functional theory calculations at the B3LYP/6-311G+(2df,2p) level to show that copper in the 1+ oxidation state induces an analogous formation of C-Cu(+)-C structures. In contrast to protons and these transition metal ions, alkali metal ions induce a different dimer structure, where each ligand coordinates the alkali metal ion in a bidentate fashion in which the N3 and O2 atoms of both cytosine ligands coordinate to the metal ion, sacrificing hydrogen-bonding interactions between the ligands for improved chelation of the metal cation.
Collapse
Affiliation(s)
- Juehan Gao
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Li H, Zhang L, Zhou H, Wang Y, Fan X. Theoretical studies on the single proton transfer process in adenine base. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huifang Li
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
| | - Lisheng Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
| | - Hui Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
| | - Yanfei Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry; Gannan Normal University; Ganzhou 341000 PR China
- Material and Chemical Engineering Department; Pingxiang University; Pingxiang 337055 PR China
| |
Collapse
|
22
|
Baek JY, Choi CM, Eun HJ, Park KS, Choi MC, Heo J, Kim NJ. Ultraviolet photodissociation spectroscopy of cold, isolated adenine complexes with a potassium cation. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Stasyuk OA, Szatylowicz H, Krygowski TM. Aromaticity of H-bonded and metal complexes of guanine tautomers. Struct Chem 2015. [DOI: 10.1007/s11224-015-0605-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Salpin JY, Haldys V, Guillaumont S, Tortajada J, Hurtado M, Lamsabhi AM. Gas-Phase Interactions between Lead(II) Ions and Cytosine: Tandem Mass Spectrometry and Infrared Multiple-Photon Dissociation Spectroscopy Study. Chemphyschem 2014; 15:2959-71. [DOI: 10.1002/cphc.201402369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Indexed: 12/07/2022]
|
25
|
Lu S. Zn2+ blocks annealing of complementary single-stranded DNA in a sequence-selective manner. Sci Rep 2014; 4:5464. [PMID: 24965053 PMCID: PMC4071324 DOI: 10.1038/srep05464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/11/2014] [Indexed: 12/19/2022] Open
Abstract
Zinc is the second most abundant trace element essential for all living organisms. In human body, 30–40% of the total zinc ion (Zn2+) is localized in the nucleus. Intranuclear free Zn2+ sparks caused by reactive oxygen species have been observed in eukaryotic cells, but question if these free Zn2+ outrages could have affected annealing of complementary single-stranded (ss) DNA, a crucial step in DNA synthesis, repair and recombination, has never been raised. Here the author reports that Zn2+ blocks annealing of complementary ssDNA in a sequence-selective manner under near-physiological conditions as demonstrated in vitro using a low-temperature EDTA-free agarose gel electrophoresis (LTEAGE) procedure. Specifically, it is shown that Zn2+ does not block annealing of repetitive DNA sequences lacking CG/GC sites that are the major components of junk DNA. It is also demonstrated that Zn2+ blocks end-joining of double-stranded (ds) DNA fragments with 3′ overhangs mimicking double-strand breaks, and prevents renaturation of long stretches (>1 kb) of denatured dsDNA, in which Zn2+-tolerant intronic DNA provides annealing protection on otherwise Zn2+-sensitive coding DNA. These findings raise a challenging hypothesis that Zn2+-ssDNA interaction might be among natural forces driving eukaryotic genomes to maintain the Zn2+-tolerant repetitive DNA for adapting to the Zn2+-rich nucleus.
Collapse
Affiliation(s)
- Shunwen Lu
- USDA-ARS, Cereal Crops Research Unit, Fargo, ND 58102, USA
| |
Collapse
|
26
|
Anizelli PR, Baú JPT, Nabeshima HS, da Costa MF, de Santana H, Zaia DAM. An experimental and theoretical vibrational study of interaction of adenine and thymine with artificial seawaters: A prebiotic chemistry experiment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 126:184-196. [PMID: 24607468 DOI: 10.1016/j.saa.2014.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/29/2014] [Accepted: 02/07/2014] [Indexed: 06/03/2023]
Abstract
Nucleic acid bases play important roles in living beings. Thus, their interaction with salts the prebiotic Earth could be an important issue for the understanding of origin of life. In this study, the effect of pH and artificial seawaters on the structure of adenine and thymine was studied via parallel determinations using FT-IR, Raman spectroscopy and theoretical calculations. Thymine and adenine lyophilized in solutions at basic and acidic conditions showed characteristic bands of the enol-imino tautomer due to the deprotonation and the hydrochloride form due to protonation, respectively. The interaction of thymine and adenine with different seawaters representative of different geological periods on Earth was also studied. In the case of thymine a strong interaction with Sr(2+) promoted changes in the Raman and infrared spectra. For adenine changes in infrared and Raman spectra were observed in the presence of salts from all seawaters tested. The experimental results were compared to theoretical calculations, which showed structural changes due to the presence of ions Na(+), Mg(2+), Ca(2+) and Sr(2+) of artificial seawaters. For thymine the bands arising from C4=C5 and C6=O stretching were shifted to lower values, and for adenine, a new band at 1310cm(-1) was observed. The reactivity of adenine and thymine was studied by comparing changes in nucleophilicity and energy of the HOMO orbital.
Collapse
Affiliation(s)
- Pedro R Anizelli
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - João P T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Henrique S Nabeshima
- Departamento de Física-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Marcello F da Costa
- Departamento de Física-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Henrique de Santana
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina, PR, Brazil.
| |
Collapse
|
27
|
Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M. Aromaticity from the viewpoint of molecular geometry: application to planar systems. Chem Rev 2014; 114:6383-422. [PMID: 24779633 DOI: 10.1021/cr400252h] [Citation(s) in RCA: 375] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tadeusz M Krygowski
- Department of Chemistry, Warsaw University , Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Kong H, Sun Q, Wang L, Tan Q, Zhang C, Sheng K, Xu W. Atomic-scale investigation on the facilitation and inhibition of guanine tautomerization at Au(111) surface. ACS NANO 2014; 8:1804-1808. [PMID: 24476199 DOI: 10.1021/nn4061918] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nucleobase tautomerization might induce mismatch of base pairing. Metals, involved in many important biophysical processes, have been theoretically proven to be capable of affecting tautomeric equilibria and stabilities of different nucleobase tautomers. However, direct real-space evidence on demonstrating different nucleobase tautomers and further revealing the effect of metals on their tautomerization at surfaces has not been reported to date. From the interplay of high-resolution STM imaging and DFT calculations, we show for the first time that tautomerization of guanine from G/9H to G/7H is facilitated on Au(111) by heating, whereas such tautomerization process is effectively inhibited by introducing Ni atoms due to its preferential coordination at the N7 site of G/9H. These findings may help to elucidate possible influence of metals on nucleobase tautomerization and provide from a molecular level some theoretical basis on metal-based drug design.
Collapse
Affiliation(s)
- Huihui Kong
- College of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), Tongji University , Caoan Road 4800, Shanghai 201804, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Stasyuk OA, Szatylowicz H, Krygowski TM. Tautomerisation of thymine acts against the Hückel 4N + 2 rule. The effect of metal ions and H-bond complexations on the electronic structure of thymine. Org Biomol Chem 2014; 12:6476-83. [DOI: 10.1039/c4ob00964a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Not necessarily the π-electron delocalization is responsible for the stability of thymine tautomers.
Collapse
Affiliation(s)
- Olga A. Stasyuk
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw, Poland
| | - Halina Szatylowicz
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw, Poland
| | | |
Collapse
|
31
|
Ai H, Liu J, Chan K. Stability and isomerization of complexes formed by metal ions and cytosine isomers in aqueous phase. J Mol Model 2013; 19:3447-61. [DOI: 10.1007/s00894-013-1850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/04/2013] [Indexed: 12/01/2022]
|
32
|
SHAKOURIAN-FARD MEHDI, FATTAHI ALIREZA. INFLUENCE OF CATION-HETEROATOM (Li+, Na+, AND K+) INTERACTION ON THE STRUCTURAL AND THERMOCHEMICAL PROPERTIES OF 2′-DEOXYTHYMIDINE NUCLEOSIDE: QTAIM AND NBO ANALYZES. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s0219633612501131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Density functional theory (DFT) method and B3LYP/6-311++G(d,p) basis set were used to determine coordination geometries, binding strength, and metal ion affinity (MIA) for interaction of 2′-deoxythymidine (dT) with alkali metal cations including Li+, Na+ , and K+ . Calculations demonstrated that the interaction of dT with these cations is tri-coordinated η (O2, O4′, O5′). Among these cations, Li+ cation exhibited the most tendency for interaction with dT. Cations via their interaction with dT can affect the N-glycosidic bond length, the values of pseudorotation of the sugar ring, the orientation of base unit with respect to sugar ring and the acidity of O5′H, O3′H, and N3H groups in 2′-dT nucleoside. Natural bond orbital (NBO) analysis was performed to calculate the charge transfer and natural population analysis of the complexes. Quantum theory of atoms in molecules (QTAIM) was also applied to determine the nature of interactions. It was shown that in these complexes, (dT- Li+ , dT- Na+ , and dT- K+ ), the bonds are an electrostatic (closed-shell) interaction in the nature.
Collapse
Affiliation(s)
- MEHDI SHAKOURIAN-FARD
- Department of Chemistry, Sharif University of Technology, P.O. Box: 11365-9516, Tehran, Iran
| | - ALIREZA FATTAHI
- Department of Chemistry, Sharif University of Technology, P.O. Box: 11365-9516, Tehran, Iran
| |
Collapse
|
33
|
Rostov IV, Kobayashi R. A correlated ab initio quantum chemical study of the interaction of the Na+, Mg2+, Ca2+ and Zn2+ ions with the tautomers of cytosine in the presence of polar solvent. Phys Chem Chem Phys 2013; 15:12930-9. [DOI: 10.1039/c3cp51574e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Natesan S, Balaz S. Rigorous incorporation of tautomers, ionization species, and different binding modes into ligand-based and receptor-based 3D-QSAR methods. Curr Pharm Des 2013; 19:4316-22. [PMID: 23170882 PMCID: PMC3778504 DOI: 10.2174/1381612811319230013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/19/2012] [Indexed: 11/22/2022]
Abstract
Speciation of drug candidates and receptors caused by ionization, tautomerism, and/or covalent hydration complicates ligandand receptor-based predictions of binding affinities by 3-dimensional structure-activity relationships (3D-QSAR). The speciation problem is exacerbated by tendency of tautomers to bind in multiple conformations or orientations (modes) in the same binding site. New forms of the 3D-QSAR correlation equations, capable of capturing this complexity, can be developed using the time hierarchy of all steps that lie behind the monitored biological process - binding, enzyme inhibition or receptor activity. In most cases, reversible interconversions of individual ligand and receptor species can be treated as quickly established equilibria because they are finished in a small fraction of the exposure time that is used to determine biological effects. The speciation equilibria are satisfactorily approximated by invariant fractions of individual ligand and receptor species for buffered experimental or in vivo conditions. For such situations, the observed drug-receptor association constant of a ligand is expressed as the sum of products, for each ligand and receptor species pair, of the association microconstant and the fractions of involved species. For multiple binding modes, each microconstant is expressed as the sum of microconstants of individual modes. This master equation leads to new 3D-QSAR correlation equations integrating the results of all molecular simulations or calculations, which are run for each ligand-receptor species pair separately. The multispecies, multimode 3D-QSAR approach is illustrated by a ligand-based correlation of transthyretin binding of thyroxine analogs and by a receptor-based correlation of inhibition of MK2 by benzothiophenes and pyrrolopyrimidines.
Collapse
Affiliation(s)
- Senthil Natesan
- Albany College of Pharmacy and Health Sciences, Vermont Campus, Colchester, VT 05446
| | - Stefan Balaz
- Albany College of Pharmacy and Health Sciences, Vermont Campus, Colchester, VT 05446
| |
Collapse
|
35
|
Ai H, Chen J, Zhang C. Amino–Imino Adenine Tautomerism Induced by the Cooperative Effect between Metal Ion and H2O/NH3. J Phys Chem B 2012; 116:13624-36. [DOI: 10.1021/jp308937k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hongqi Ai
- Shandong Provincial Key Laboratory
of Fluorine Chemistry and Chemical Materials, School of Chemistry
and Chemical Engineering, University of Jinan, Jinan City, 250022, P. R. China
| | - Jinpeng Chen
- Shandong Provincial Key Laboratory
of Fluorine Chemistry and Chemical Materials, School of Chemistry
and Chemical Engineering, University of Jinan, Jinan City, 250022, P. R. China
| | - Chong Zhang
- Department of Chemistry and
Technology, Liaocheng University, Liaocheng
252059, P. R. China
| |
Collapse
|
36
|
Andreev RV, Borodkin GI, Shubin VG. Quantum-chemical study on adenine nitrosonium complexes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2012. [DOI: 10.1134/s1070428012100144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Wincel H. Gas-phase hydration thermochemistry of sodiated and potassiated nucleic acid bases. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1479-87. [PMID: 22821196 PMCID: PMC3414711 DOI: 10.1007/s13361-012-0436-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/10/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Hydration reactions of sodiated and potassiated nucleic acid bases (uracil, thymine, cytosine, and adenine) produced by electrospray have been studied in a gas phase using the pulsed ion-beam high-pressure mass spectrometer. The thermochemical properties, ΔH(o)(n), ΔS(o)(n), and ΔG(o)(n), for the hydrated systems were obtained from hydration equilibrium measurement. The structural aspects of the hydrated complexes are discussed in conjunction with available literature data. The correlation between water binding energies in the hydrated complexes and the corresponding metal ion affinities of nucleobases suggests that a significant (if not dominant) amount of the canonical structure of cytosine undergoes tautomerization during electrospray ionization, and the thermochemical values for cationized cytosine probably correspond to a mixture of tautomeric complexes.
Collapse
Affiliation(s)
- Henryk Wincel
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
38
|
Theoretical study on the interaction of glutathione with group IA (Li+, Na+, K+), IIA (Be2+, Mg2+, Ca2+), and IIIA (Al3+) metal cations. Struct Chem 2012. [DOI: 10.1007/s11224-012-0031-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
39
|
Kobayashi R. Correlated Ab Initio Quantum Chemical Study of the Interaction of the Na+, Mg2+, Ca2+, and Zn2+ Ions with the Tautomers of Cytosine. J Phys Chem A 2012; 116:4987-94. [DOI: 10.1021/jp302695r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rika Kobayashi
- Australian National University Supercomputer Facility,
Mills Road, Canberra, ACT 0200, Australia
| |
Collapse
|
40
|
Can anion interaction accelerate transformation of cytosine tautomers? Detailed view form QTAIM analysis. Struct Chem 2012. [DOI: 10.1007/s11224-012-9993-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Ali OY, Randell NM, Fridgen TD. Primary Fragmentation Pathways of Gas Phase [M(Uracil−H)(Uracil)]+ Complexes (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd , Mg, Ca, Sr, Ba, and Pb): Loss of Uracil versus HNCO. Chemphyschem 2012; 13:1507-13. [DOI: 10.1002/cphc.201200015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/07/2012] [Indexed: 11/07/2022]
|
42
|
Mg2+/Ca2+ binding to DNA bases: a quantum chemical method and ABEEMσπ/MM fluctuating charge model study. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1098-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Romancová I, Chval Z, Předota M. Influence of the Environment on the Specificity of the Mg(II) Binding to Uracil. J Phys Chem A 2012; 116:1786-93. [DOI: 10.1021/jp208823f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ingrid Romancová
- Institute
of Physics
and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370
05 České Budějovice, Czech Republic
| | - Zdeněk Chval
- Department of Laboratory
Methods and Information Systems, Faculty of Health and
Social Studies, University of South Bohemia, J. Boreckého 27, CZ-370 11 České Budějovice,
Czech Republic
| | - Milan Předota
- Institute
of Physics
and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370
05 České Budějovice, Czech Republic
| |
Collapse
|
44
|
Cao GJ, Xu HG, Li RZ, Zheng W. Hydrogen bonds in the nucleobase-gold complexes: Photoelectron spectroscopy and density functional calculations. J Chem Phys 2012; 136:014305. [DOI: 10.1063/1.3671945] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Burt MB, Fridgen TD. Structures and physical properties of gaseous metal cationized biological ions. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:235-250. [PMID: 22641728 DOI: 10.1255/ejms.1177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metal chelation can alter the activity of free biomolecules by modifying their structures or stabilizing higher energy tautomers. In recent years, mass spectrometric techniques have been used to investigate the effects of metal complexation with proteins, nucleobases and nucleotides, where small conformational changes can have significant physiological consequences. In particular, infrared multiple photon dissociation spectroscopy has emerged as an important tool for determining the structure and reactivity of gas-phase ions. Unlike other mass spectrometric approaches, this method is able to directly resolve structural isomers using characteristic vibrational signatures. Other activation and dissociation methods, such as blackbody infrared radiative dissociation or collision-induced dissociation can also reveal information about the thermochemistry and dissociative pathways of these biological ions. This information can then be used to provide information about the structures of the ionic complexes under study. In this article, we review the use of gas-phase techniques in characterizing metal-bound biomolecules. Particular attention will be given to our own contributions, which detail the ability of metal cations to disrupt nucleobase pairs, direct the self-assembly of nucleobase clusters and stabilize non-canonical isomers of amino acids.
Collapse
Affiliation(s)
- Michael B Burt
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada, A1B 3X7
| | | |
Collapse
|
46
|
Ali OY, Fridgen TD. Structures and Fragmentation of [Cu(Uracil-H)(Uracil)]+ in the Gas Phase. Chemphyschem 2011; 13:588-96. [DOI: 10.1002/cphc.201100661] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/15/2011] [Indexed: 11/10/2022]
|
47
|
Chen J, Ai H, Zhao Y, Liu J. A theoretical prediction on the ground-state complexes bound by metal ions to thymine base isomers. J PHYS ORG CHEM 2011. [DOI: 10.1002/poc.1881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jinpeng Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering; University of Jinan; Jinan City 250022 China
| | - Hongqi Ai
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering; University of Jinan; Jinan City 250022 China
| | - Yongping Zhao
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering; University of Jinan; Jinan City 250022 China
| | - Jingjing Liu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering; University of Jinan; Jinan City 250022 China
| |
Collapse
|
48
|
Theoretical studies of the solvent effect on conformational equilibria and atomic charges for isolated and hydrogen-bonded dimethoxy thiadiazoles. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Nagy PI, Messer WS. Theoretical studies of the in-solution isomeric protonation of non-aromatic six-member rings with two nitrogens. J Phys Chem B 2011; 115:4758-67. [PMID: 21452810 DOI: 10.1021/jp202241m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For exploring the preferred site for hydrogen bond formation, theoretical calculations have been performed for a number of six-member, nonaromatic rings allowing for alternative protonation on the ring nitrogens. Gas-phase protonation studies for test molecules indicate that the B3LYP/aug-cc-pvtz and QCISD(T)(CBS) calculations approach the experimental values within about 1 kcal/mol with considerable improvement for relative enthalpies and free energies. Relative free energies calculated at the IEF-PCM/B3LYP/aug-cc-pvtz level predict favorable protonation on the tertiary rather than on the secondary nitrogen both in aqueous solution and in a dichloromethane solvent for saturated rings. Protonation on a nitrogen atom next to a C═C bond is disfavored due to a large increase in internal energy. Monte Carlo simulations considering a counterion and Ewald summation for the long-range electrostatic effects for a 0.1 molar model system predict ΔG(solv)/MC values generally less negative than from the IEF-PCM calculations. These results make the protonation on the tertiary nitrogen even more favored. The solute-solvent pair-energy distribution depends sensitively on the applied model. In conclusion, the freely moving anion has been considered as the most relevant model with overall neutrality for the system and applying the least restrictions.
Collapse
Affiliation(s)
- Peter I Nagy
- Center for Drug Design and Development, The University of Toledo, Toledo, Ohio 43606-3390, United States.
| | | |
Collapse
|
50
|
Rajabi K, Gillis EAL, Fridgen TD. Structures of alkali metal ion-adenine complexes and hydrated complexes by IRMPD spectroscopy and electronic structure calculations. J Phys Chem A 2010; 114:3449-56. [PMID: 20163169 DOI: 10.1021/jp9098683] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complexes between adenine and the alkali metal ions Li(+), Na(+), K(+), and Cs(+) have been investigated by infrared multiple photon dissociation (IRMPD) spectroscopy between 2800 and 3900 cm(-1), as have some singly hydrated complexes. The IRMPD spectra clearly show the N-H stretching and the NH(2) symmetric and asymmetric stretching vibrations of adenine; and for the solvated ions, the O-H stretching vibrations are observed. These experimental spectra were compared with those for a variety of possible structures, including both A9 (A9 refers to the tautomer where hydrogen is on the nitrogen in position 9 of adenine, see Scheme 1) and A7 adenine tautomers, computed using B3-LYP/6-31+G(d,p). By comparing the experimental and the simulated spectra it is possible to rule out various structures and to further assign structures to the species probed in these experiments. Single-point calculations on the B3-LYP/6-31+G(d,p) geometries have been performed at MP2/6-311++G(2d, p) to obtain good estimates of the relative thermochemistries for the different structures. In all cases the computed IR spectrum for the lowest energy structure is consistent with the experimental IRMPD spectrum, but in some cases structural assignment cannot be confirmed based solely upon comparison with the experimental spectra so computed thermochemistries can be used to rule out high-energy structures. On the basis of the IRMPD spectra and the energy calculations, all adenine-M(+) and adenine-M(+)-H(2)O are concluded to be composed of the A7 tautomer of adenine, which is bound to the cations in a bidentate fashion through N3 and N9 (see Scheme 1 for numbering convention). For the hydrated ions water binds directly to the metal ion through oxygen, as would be expected since the metal contains most positive charge density. For the hydrated lithium cation-bound adenine dimer, the water molecule is concluded to be hydrogen bonded to a free basic site of one of the adenine monomers, which is also bound to the lithium cation. Experimental and theoretical results on adenine-Li(+)-H(2)O suggest that the electrosprayed adenine-Li(+) resembles the lowest-energy solution phase ion rather than the lowest-energy gas-phase ion, which is the imine form.
Collapse
Affiliation(s)
- Khadijeh Rajabi
- Department of Chemistry, Memorial University, St. John's, Newfoundland and Labrador, A1B 3X7, Canada
| | | | | |
Collapse
|