1
|
Liu J, Zhao Y, Lian X, Li D, Zhang X, Chen J, Deng B, Lan X, Shao Y. Unveiling the Influence of Water Molecules for NF 3 Removal by the Reaction of NF 3 with OH: A DFT Study. Molecules 2024; 29:4033. [PMID: 39274881 PMCID: PMC11396519 DOI: 10.3390/molecules29174033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The removal of nitrogen trifluoride (NF3) is of significant importance in atmospheric chemistry, as NF3 is an important anthropogenic greenhouse gas. However, the radical species OH and O(1D) in atmospheric conditions are nonreactive towards NF3. It is necessary to explore possible ways to remove NF3 in atmosphere. Therefore, the participation of water molecules in the reaction of NF3 with OH was discussed, as water is abundant in the atmosphere and can form very stable complexes due to its ability to act as both a hydrogen bond donor and acceptor. Systemic DFT calculations carried out at the CBS-QB3 and ωB97XD/aug-cc-pVTZ level of theory suggest that water molecules could affect the NF3 + OH reaction as well. The energy barrier of the SN2 mechanism was decreased by 8.52 kcal/mol and 10.58 kcal/mol with the assistance of H2O and (H2O)2, respectively. Moreover, the presence of (H2O)2 not only reduced the energy barrier of the reaction, but also changed the product channels, i.e., formation of NF2O + (H2O)2-HF instead of NF2OH + (H2O)2-F. Therefore, the removal of NF3 by reaction with OH is possible in the presence of water molecules. The results presented in this study should provide useful information on the atmospheric chemistry of NF3.
Collapse
Affiliation(s)
- Jiaxin Liu
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Yong Zhao
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Xueqi Lian
- Key Laboratory of Electronic Functional Materials and Devices of Guangdong Province, School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Dongdong Li
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Xueling Zhang
- Key Laboratory of Electronic Functional Materials and Devices of Guangdong Province, School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Jun Chen
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Bin Deng
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Xiaobing Lan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Youxiang Shao
- Key Laboratory of Electronic Functional Materials and Devices of Guangdong Province, School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| |
Collapse
|
2
|
Rhyman L, Lee EPF, Ramasami P, Dyke JM. A study of the thermodynamics and mechanisms of the atmospherically relevant reaction dimethyl sulphide (DMS) with atomic chlorine (Cl) in the absence and presence of water, using electronic structure methods. Phys Chem Chem Phys 2023; 25:4780-4793. [PMID: 36692209 DOI: 10.1039/d2cp05814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The thermodynamics and mechanisms of the atmospherically relevant reaction dimethyl sulphide (DMS) + atomic chlorine (Cl) were investigated in the absence and presence of a single water molecule, using electronic structure methods. Stationary points on each reaction surface were located using density functional theory (DFT) with the M06-2X functional with aug-cc-pVDZ (aVDZ) and aug-cc-pVTZ (aVTZ) basis sets. Then fixed point calculations were carried out using the UM06-2X/aVTZ optimised stationary point geometries, with aug-cc-pVnZ basis sets (n = T and Q), using the coupled cluster method [CCSD(T)], as well as the domain-based local pair natural orbitals coupled cluster [DLPNO-UCCSD(T)] approach. Four reaction channels are possible, formation of (A) CH3SCH2 + HCl, (B) CH3S + CH3Cl, (C) CH3SCl + CH3, and (C') CH3S(Cl)CH3. The results show that, in the absence of water, channels A and C' are the dominant channels. In the presence of water, the calculations show that the reaction mechanisms for A and C formation change significantly. Channel A occurs via submerged TSs and is expected to be rapid. Channel B occurs via TSs which present significant energy barriers indicating that this channel is not significant in the presence of water relative to CH3SCH2 + HCl and DMS·Cl adduct formation, as is the case in the absence of water. Channel C was not considered as it is endothermic in the absence of water. In the presence of water, pathways which proceed via (a) DMS·H2O + Cl, (b) Cl·H2O + DMS and (c) DMS·Cl + H2O were considered. It was found that under tropospheric conditions, reactions via pathway (b) are of minor importance relative to those that proceed via pathways (a) and (c). This study has shown that water changes the mechanisms of the DMS + Cl reactions significantly but the presence of water is not expected to affect the overall reaction rate coefficient under atmospheric conditions as the DMS + Cl reaction has a rate coefficient at room temperature close to the collisional limit.
Collapse
Affiliation(s)
- Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius. .,Centre For Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Edmond P F Lee
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius. .,Centre For Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - John M Dyke
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| |
Collapse
|
3
|
Impact of a single water molecule on the atmospheric oxidation of thiophene by hydroperoxyl radical. Sci Rep 2022; 12:18959. [PMID: 36347924 PMCID: PMC9643398 DOI: 10.1038/s41598-022-22831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Water as an important assistant can alter the reactivity of atmospheric species. This project is designed to investigate the impact of a single water molecule on the atmospheric reactions of aromatic compounds that have not been attended to comprehensively. In the first part, the atmospheric oxidation mechanisms of thiophene initiated by hydroperoxyl radical through a multiwell-multichannel potential energy surface were studied to have useful information about the chemistry of the considered reaction. It was verified that for the thiophene plus HO2 reaction, the addition mechanism is dominant the same as other aromatic compounds. Due to the importance of the subject and the presence of water molecules in the atmosphere with a high concentration that we know as relative humidity, and also the lack of insight into the influence of water on the reactions of aromatic compounds with active atmospheric species, herein, the effect of a single water molecule on the addition pathways of the title reaction is evaluated. In another word, this research explores how water can change the occurrence of reactions of aromatic compounds in the atmosphere. For this, the presence of one water molecule is simulated by higher-level calculations (BD(T) method) through the main interactions with the stationary points of the most probable pathways. The results show that the mechanism of the reaction with water is more complicated than the bare reaction due to the formation of the ring-like structures. Also, water molecule decreases the relative energies of all addition pathways. Moreover, atoms in molecule theory (AIM) along with the kinetic study by the transition state (TST) and the Rice–Ramsperger–Kassel–Marcus (RRKM) theories demonstrate that the overall interactions of a path determine how the rate of that path changes. In this regard, our results establish that the interactions of water with HO2 (thiophene) in the initial complex 1WHA (1WTA or 1WTB) are stronger (weaker) than the sum of its interactions in transition states. Also, for the water-assisted pathways, the ratio of the partition function of the transition state to the partition functions of the reactants is similar to the respective bare reaction. Therefore, the reaction rates of the bare pathways are more than the water-assisted paths that include the 1WHA complex and are less than the paths that involve the 1WTA and 1WTB complexes.
Collapse
|
4
|
Hadizadeh MH, Pan Z, Azamat J. A new insight into the interaction of hydroxyl radical with supercooled nanodroplet in the atmosphere. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Hadizadeh MH, Pan Z, Azamat J. Investigation of OH radical in the water nanodroplet during vapor freezing process: An ab initio molecular dynamics study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Neeman EM, González D, Blázquez S, Ballesteros B, Canosa A, Antiñolo M, Vereecken L, Albaladejo J, Jiménez E. The impact of water vapor on the OH reactivity toward CH 3CHO at ultra-low temperatures (21.7-135.0 K): Experiments and theory. J Chem Phys 2021; 155:034306. [PMID: 34293904 PMCID: PMC7611909 DOI: 10.1063/5.0054859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role of water vapor (H2O) and its hydrogen-bonded complexes in the gas-phase reactivity of organic compounds with hydroxyl (OH) radicals has been the subject of many recent studies. Contradictory effects have been reported at temperatures between 200 and 400 K. For the OH + acetaldehyde reaction, a slight catalytic effect of H2O was previously reported at temperatures between 60 and 118 K. In this work, we used Laval nozzle expansions to reinvestigate the impact of H2O on the OH-reactivity with acetaldehyde between 21.7 and 135.0 K. The results of this comprehensive study demonstrate that water, instead, slows down the reaction by factors of ∼3 (21.7 K) and ∼2 (36.2-89.5 K), and almost no effect of added H2O was observed at 135.0 K.
Collapse
Affiliation(s)
- E. M. Neeman
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
| | - D. González
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
| | - S. Blázquez
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
| | - B. Ballesteros
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica. Universidad de Castilla-La Mancha. Camino de Moledores s/n. 13071, Ciudad Real, Spain
| | - A. Canosa
- CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, Université de Rennes, F-35000, Rennes, France
| | - M. Antiñolo
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica. Universidad de Castilla-La Mancha. Camino de Moledores s/n. 13071, Ciudad Real, Spain
| | - L. Vereecken
- Institute for energy and climate research, IEK-8: Troposphere. Forschungszentrum Jülich GmbH, Jülich, Germany
| | - J. Albaladejo
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica. Universidad de Castilla-La Mancha. Camino de Moledores s/n. 13071, Ciudad Real, Spain
| | - E. Jiménez
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica. Universidad de Castilla-La Mancha. Camino de Moledores s/n. 13071, Ciudad Real, Spain
| |
Collapse
|
7
|
|
8
|
Kurfman LA, Odbadrakh TT, Shields GC. Calculating Reliable Gibbs Free Energies for Formation of Gas-Phase Clusters that Are Critical for Atmospheric Chemistry: (H 2SO 4) 3. J Phys Chem A 2021; 125:3169-3176. [PMID: 33825467 DOI: 10.1021/acs.jpca.1c00872] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of atmospheric aerosols on our climate are one of the biggest uncertainties in global climate models. Calculating the pathway for the formation of pre-nucleation clusters that become aerosols is challenging, requiring a comprehensive analysis of configurational space and highly accurate Gibbs free energy calculations. We identified a large set of minimum energy configurations of (H2SO4)3 using a sampling technique based on a genetic algorithm and a stepwise density functional theory (DFT) approach and computed the thermodynamics of formation of these configurations with more accurate wavefunction-based electronic energies computed on the DFT geometries. The DLPNO-CCSD(T) methods always return more positive energies compared to the DFT energies. Within the DLPNO-CCSD(T) methods, extrapolating to the complete basis set limit gives more positive free energies compared to explicitly correlated single-point energies. The CBS extrapolation was shown to be robust as both the 4-5 inverse polynomial and Riemann zeta function schemes were within chemical accuracy of one another.
Collapse
Affiliation(s)
- Luke A Kurfman
- Department of Chemistry, Furman University, Greenville, South Carolina 29613-0002, United States
| | - Tuguldur T Odbadrakh
- Department of Chemistry, Furman University, Greenville, South Carolina 29613-0002, United States
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29613-0002, United States
| |
Collapse
|
9
|
Mao Y, Levine DS, Loipersberger M, Horn PR, Head-Gordon M. Probing radical-molecule interactions with a second generation energy decomposition analysis of DFT calculations using absolutely localized molecular orbitals. Phys Chem Chem Phys 2020; 22:12867-12885. [PMID: 32510096 DOI: 10.1039/d0cp01933j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intermolecular interactions between radicals and closed-shell molecules are ubiquitous in chemical processes, ranging from the benchtop to the atmosphere and extraterrestrial space. While energy decomposition analysis (EDA) schemes for closed-shell molecules can be generalized for studying radical-molecule interactions, they face challenges arising from the unique characteristics of the electronic structure of open-shell species. In this work, we introduce additional steps that are necessary for the proper treatment of radical-molecule interactions to our previously developed unrestricted Absolutely Localized Molecular Orbital (uALMO)-EDA based on density functional theory calculations. A "polarize-then-depolarize" (PtD) scheme is used to remove arbitrariness in the definition of the frozen wavefunction, rendering the ALMO-EDA results independent of the orientation of the unpaired electron obtained from isolated fragment calculations. The contribution of radical rehybridization to polarization energies is evaluated. It is also valuable to monitor the wavefunction stability of each intermediate state, as well as their associated spin density profiles, to ensure the EDA results correspond to a desired electronic state. These radical extensions are incorporated into the "vertical" and "adiabatic" variants of uALMO-EDA for studies of energy changes and property shifts upon complexation. The EDA is validated on two model complexes, H2O˙F and FH˙OH. It is then applied to several chemically interesting radical-molecule complexes, including the sandwiched and T-shaped benzene dimer radical cation, complexes of pyridine with benzene and naphthalene radical cations, binary and ternary complexes of the hydroxyl radical with water (˙OH(H2O) and ˙OH(H2O)2), and the pre-reactive complexes and transition states in the ˙OH + HCHO and ˙OH + CH3CHO reactions. These examples suggest that this second generation uALMO-EDA is a useful tool for furthering one's understanding of both energetic and property changes associated with radical-molecule interactions.
Collapse
Affiliation(s)
- Yuezhi Mao
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
10
|
Gao A, Li G, Peng B, Weidman JD, Xie Y, Schaefer HF. The water trimer reaction OH + (H 2O) 3→ (H 2O) 2OH + H 2O. Phys Chem Chem Phys 2020; 22:9767-9774. [PMID: 32338658 DOI: 10.1039/d0cp01418d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
All important stationary points on the potential energy surface (PES) for the reaction OH + (H2O)3→ (H2O)2OH + H2O have been fully optimized using the "gold standard" CCSD(T) method with the large Dunning correlation-consistent cc-pVQZ basis sets. Three types of pathways were found. For the pathway without hydrogen abstraction, the barrier height of the transition state (TS1) is predicted to lie 5.9 kcal mol-1 below the reactants. The two major complexes (H2O)3OH (CP1 and CP2a) are found to lie 6.3 and 11.0 kcal mol-1, respectively, below the reactants [OH + (H2O)3]. For one of the H-abstraction pathways the lowest classical barrier height is predicted to be much higher, 6.1 kcal mol-1 (TS2a) above the reactants. For the other H-abstraction pathway the barrier height is even higher, 15.0 (TS3) kcal mol-1. Vibrational frequencies and the zero-point vibrational energies connected to the PES are also reported. The energy barriers for the H-abstraction pathways are compared with those for the OH + (H2O)2 and OH + H2O reactions, and the effects of the third water on the energetics are usually minor (0.2 kcal mol-1).
Collapse
Affiliation(s)
- Aifang Gao
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, China
| | | | | | | | | | | |
Collapse
|
11
|
Zhang T, Zhai K, Zhang Y, Geng L, Geng Z, Zhou M, Lu Y, Shao X, Lily M. Effect of water and ammonia on the HO + NH3 → NH2 + H2O reaction in troposphere: Competition between single and double hydrogen atom transfer pathways. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Jara-Toro RA, Barrera JA, Aranguren-Abrate JP, Taccone RA, Pino GA. Rate Coefficient and Mechanism of the OH-Initiated Degradation of 1-Chlorobutane: Atmospheric Implications. J Phys Chem A 2020; 124:229-239. [PMID: 31825215 DOI: 10.1021/acs.jpca.9b10426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we investigate the degradation process of 1-chlorobutane, initiated by OH radicals, under atmospheric conditions (air pressure of 750 Torr and 296 K) from both experimental and theoretical approaches. In the first one, a relative kinetic method was used to obtain the rate coefficient for this reaction, while the products were identified for the first time (1-chloro-2-butanone, 1-chloro-2-butanol, 4-chloro-2-butanone, 3-hydroxy-butanaldehyde, and 3-chloro-2-butanol) using mass spectrometry, allowing suggesting a reaction mechanism. The theoretical calculations, for the reactive process, were computed using the BHandHLYP/6-311++G(d,p) level of theory, and the energies for all of the stationary points were refined at the CCSD(T) level. Five conformers for 1-chlorobutane and 33 reactive channels with OH radicals were found, which were considered to calculate the thermal rate coefficient (as the sum of the site-specific rate coefficients using canonical transition state theory). The theoretical rate coefficient (1.8 × 10-12 cm3 molecule-1 s-1) is in good agreement with the experimental value (2.22 ± 0.50) × 10-12 cm3 molecule-1 s-1 determined in this work. Finally, environmental impact indexes were calculated and a discussion on the atmospheric implications due to the emissions of this compound into the troposphere was given.
Collapse
Affiliation(s)
- Rafael A Jara-Toro
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre y Medina Allende , X5000HUA Córdoba , Argentina.,Centro Láser de Ciencias Moleculares-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre s/n, Pabellón Argentina , X5000HUA Córdoba , Argentina
| | - Javier A Barrera
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre y Medina Allende , X5000HUA Córdoba , Argentina.,Centro Láser de Ciencias Moleculares-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre s/n, Pabellón Argentina , X5000HUA Córdoba , Argentina
| | - Juan P Aranguren-Abrate
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre y Medina Allende , X5000HUA Córdoba , Argentina.,Centro Láser de Ciencias Moleculares-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre s/n, Pabellón Argentina , X5000HUA Córdoba , Argentina
| | - Raúl A Taccone
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre y Medina Allende , X5000HUA Córdoba , Argentina.,Centro Láser de Ciencias Moleculares-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre s/n, Pabellón Argentina , X5000HUA Córdoba , Argentina
| | - Gustavo A Pino
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre y Medina Allende , X5000HUA Córdoba , Argentina.,Centro Láser de Ciencias Moleculares-Universidad Nacional de Córdoba , Ciudad Universitaria , Haya de la Torre s/n, Pabellón Argentina , X5000HUA Córdoba , Argentina
| |
Collapse
|
13
|
Niu Z, Tang M, Ge N. Structure, stability, infrared spectra, and bonding of OH m(H 2O) 7 ( m = 0, ±1) clusters: ab initio study combining the particle swarm optimization algorithm. Phys Chem Chem Phys 2020; 22:26487-26501. [PMID: 33185201 DOI: 10.1039/d0cp04332j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The various structural candidates of anionic, neutral, and cationic water clusters OHm(H2O)7 (m = 0, ±1) have been globally predicted by combining the particle swarm optimization method and quantum chemical calculations. Geometry optimization and vibrational analysis for the optimal structures were performed with the MP2/aug-cc-pVDZ method, and the energy profile was further refined at the CCSD(T)/CBS level. Special attention was paid to the relationships between configurations and energies, particularly the first solvation shell coordination number of OH- and OH. For OH-(H2O)7, OH(H2O)7, and OH+(H2O)7 clusters, the most stable species at room temperature are predicted to be the tetra-solvated multi-ring structure A6, the tri-solvated hemibond cage structure N1, and the single five-membered ring structure C2, respectively. The temperature effects on the stability of these three systems were also explored via Gibbs free energies. Furthermore, for the OH-(H2O)7 clusters, the assignments of vibrational transitions in the OH stretching region are in good agreement with the studies of small hydroxide ion-water clusters, and the IR spectra of two isomers (tetra-solvated multi-ring A6 and penta-solvated cage A3) may match future experimental observation well. By topological analysis and reduced density gradient analysis, the structural characteristics and bonding strengths of the studied clusters were investigated. This work indicates the excellent performance of the PSO search algorithm and CALYPSO on water clusters, and may further provide extensive insights into the chemical behavior such as the transport mechanism of OH- ions and OH radicals in the aqueous phase.
Collapse
Affiliation(s)
- Zhenwei Niu
- School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | | | | |
Collapse
|
14
|
Sugiura Y, Takayanagi T. Franck–Condon simulations of transition-state spectra for the OH + H2O and OD + D2O reactions. Phys Chem Chem Phys 2020; 22:20685-20692. [DOI: 10.1039/d0cp03681a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum wave packet calculations in reduced dimensions were performed to analyze the experimentally measured transition-state spectra of the OH + H2O and OD + D2O hydrogen exchange reactions.
Collapse
Affiliation(s)
- Yutaro Sugiura
- Department of Chemistry
- Saitama University
- Saitama City
- Japan
| | | |
Collapse
|
15
|
Zhu Y, Lu Y, Song H. Thermal rate coefficients and kinetic isotope effects of the reaction HO + H2O → H2O + OH. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2495-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Wen YM, Wang ZQ, Hu CE, Chen XR, Chen QF. Possible low-energy isomers of OH (H2O)4 (n = 0, ±1) clusters via the particle swarm optimization algorithm: An ab initio study. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Xu L, Tsona NT, Tang S, Li J, Du L. Role of (H 2O) n ( n = 1-2) in the Gas-Phase Reaction of Ethanol with Hydroxyl Radical: Mechanism, Kinetics, and Products. ACS OMEGA 2019; 4:5805-5817. [PMID: 31459732 PMCID: PMC6648320 DOI: 10.1021/acsomega.9b00145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/14/2019] [Indexed: 06/10/2023]
Abstract
The effect of water on the hydrogen abstraction mechanism and product branching ratio of CH3CH2OH + •OH reaction has been investigated at the CCSD(T)/aug-cc-pVTZ//BH&HLYP/aug-cc-pVTZ level of theory, coupled with the reaction kinetics calculations, implying the harmonic transition-state theory. Depending on the hydrogen sites in CH3CH2OH, the bared reaction proceeds through three elementary paths, producing CH2CH2OH, CH3CH2O, and CH3CHOH and releasing a water molecule. Thermodynamic and kinetic results indicate that the formation of CH3CHOH is favored over the temperature range of 216.7-425.0 K. With the inclusion of water, the reaction becomes quite complex, yielding five paths initiated by three channels. The products do not change compared with the bared reaction, but the preference for forming CH3CHOH drops by up to 2%. In the absence of water, the room temperature rate coefficients for the formation of CH2CH2OH, CH3CH2O, and CH3CHOH are computed to be 5.2 × 10-13, 8.6 × 10-14, and 9.0 × 10-11 cm3 molecule-1 s-1, respectively. The effective rate coefficients of corresponding monohydrated and dihydrated reactions are 3-5 and 6-8 orders of magnitude lower than those of the unhydrated reaction, indicating that water has a decelerating effect on the studied reaction. Overall, the characterized effects of water on the thermodynamics, kinetics, and products of the CH3CH2OH + •OH reaction will facilitate the understanding of the fate of ethanol and secondary pollutants derived from it.
Collapse
Affiliation(s)
- Li Xu
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| | - Narcisse T. Tsona
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| | - Shanshan Tang
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| | - Junyao Li
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| | - Lin Du
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
18
|
Yu X, Hou H, Wang B. Atmospheric Chemistry of Perfluoro-3-methyl-2-butanone [CF 3C(O)CF(CF 3) 2]: Photodissociation and Reaction with OH Radicals. J Phys Chem A 2018; 122:8840-8848. [PMID: 30371084 DOI: 10.1021/acs.jpca.8b09111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Perfluoro-3-methyl-2-butanone (CF3C(O)CF(CF3)2, abbreviated as C5) is a potentially excellent fire suppression alternative to halons and a promising dielectric gas for SF6 replacement. As a prototypical perfluorinated asymmetrical ketone, photodissociation and reaction with hydroxyl radicals of C5 have been investigated theoretically to gain insights into its atmospheric chemistry and environmental impact. C5 has a broad UV absorption band in the range 260-360 nm with a maximum at 302 nm and the maximal photolysis rate coefficient is 8.3 × 10-5 s-1. Photoexcitation from S0 through the perpendicular n → π* transition produces the excited S1 species, which can either dissociate straightforwardly via the bifurcated α-CC bond cleavage or be trickled down to T1 via the S1/T1 intersystem crossing (ISC) pathway. In the Franck-Condon region of the S1 surface, the long-lived S1 species exists and the slow ISC pathway is dominant, followed by the α-cleavage through T1 barriers to form perfluoroalkyl and perfluoroacetyl radicals. While the excitation energy exceeds 286 nm, the direct dissociation of C5 though the S1 barriers takes over before the ISC occurs. Several pathways for regeneration of the ground-state S0 from S1 and T1 via seams of crossing or internal conversion were revealed. The C5 + OH reaction occurs via direct carbonyl addition mechanism followed by the rapid displacement of one of the alkyl groups. Although it can be accelerated considerably by the H2O-mediated catalysis or the intercepted vibrationally excited quantum states in the hot S0*, the degradation of C5 by OH radicals is too slow to compete with the photolysis pathways.
Collapse
Affiliation(s)
- Xiaojuan Yu
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Hua Hou
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Baoshan Wang
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| |
Collapse
|
19
|
Shin HK. Relaxation of the H 2O Overtone Bending Vibration in the Water Dimer···Hydroxyl Radical Complex. J Phys Chem A 2018; 122:5510-5517. [PMID: 29846069 DOI: 10.1021/acs.jpca.8b03674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relaxation mechanism of the overtone bending vibration in the collision of the water dimer with the vibrationally excited hydroxyl radical is studied by use of trajectory procedures. The transfer of the OH(v = 1) energy to the dimer stretches is followed by a near-resonant first overtone transition to the donor monomer. Nearly a quarter of the trajectories undergo a complex-mode collision, forming the (H2O)2···OH complex bound by a hydrogen bond with the lifetime ranging from a subpicosecond scale to >100 ps. The overtone vibration relaxes to the ground state, transferring approximately half of its energy to the dimer hydrogen-bonding (H2O···H2O) and the remaining half to the complex hydrogen-bonding (H2O)2···OH, via near-resonant pathways, each consisting of a series of intermolecular low-frequency vibrations.
Collapse
Affiliation(s)
- H K Shin
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| |
Collapse
|
20
|
Zhu Y, Ping L, Bai M, Liu Y, Song H, Li J, Yang M. Tracking the energy flow in the hydrogen exchange reaction OH + H 2O → H 2O + OH. Phys Chem Chem Phys 2018; 20:12543-12556. [PMID: 29693667 DOI: 10.1039/c8cp00938d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The prototypical hydrogen exchange reaction OH + H2O → H2O + OH has attracted considerable interest due to its importance in a wide range of chemically active environments. In this work, an accurate global potential energy surface (PES) for the ground electronic state was developed based on ∼44 000 ab initio points at the level of UCCSD(T)-F12a/aug-cc-pVTZ. The PES was fitted using the fundamental invariant-neural network method with a root mean squared error of 4.37 meV. The mode specific dynamics was then studied by the quasi-classical trajectory method on the PES. Furthermore, the normal mode analysis approach was employed to calculate the final vibrational state distribution of the product H2O, in which a new scheme to acquire the Cartesian coordinates and momenta of each atom in the product molecule from the trajectories was proposed. It was found that, on one hand, excitation of either the symmetric stretching mode or the asymmetric stretching mode of the reactant H2O promotes the reaction more than the translational energy, which can be rationalized by the sudden vector projection model. On the other hand, the relatively higher efficacy of exciting the symmetric stretching mode than that of the asymmetric stretching mode is caused by the prevalence of the indirect mechanism at low collision energies and the stripping mechanism at high collision energies. In addition, the initial collision energy turns ineffectively into the vibrational energy of the products H2O and OH while a fraction of the energy transforms into the rotational energy of the product H2O. Fundamental excitation of the stretching modes of H2O results in the product H2O having the highest population in the fundamental state of the asymmetric stretching mode, followed by the ground state and the fundamental state of the symmetric stretching mode.
Collapse
Affiliation(s)
- Yongfa Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Trajectory procedures are used to study the collision between the vibrationally excited H2O and the ground-state (H2O)2 with particular reference to energy transfer to the hydrogen bond through the inter- and intramolecular pathways. In nearly 98% of the trajectories, energy transfer processes occur on a subpicosecond scale (≤0.7 ps). The H2O transfers approximately three-quarters of its excitation energy to the OH stretches of the dimer. The first step of the intramolecular pathway in the dimer involves a near-resonant first overtone transition from the OH stretch to the bending mode. The energy transfer probability in the presence of the 1:2 resonance is 0.61 at 300 K. The bending mode then redistributes its energy to low-frequency intermolecular vibrations in a series of small excitation steps, with the pathway which results in the hydrogen-bonding modes gaining most of the available energy. The hydrogen bonding in ∼50% of the trajectories ruptures on vibrational excitation, leaving one quantum in the bend of the monomer fragment. In a small fraction of trajectories, the duration of collision is longer than 1 ps, during which the dimer and H2O form a short-lived complex through a secondary hydrogen bond, which undergoes large amplitude oscillations.
Collapse
Affiliation(s)
- H K Shin
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| |
Collapse
|
22
|
Zhang T, Lan X, Qiao Z, Wang R, Yu X, Xu Q, Wang Z, Jin L, Wang Z. Role of the (H2O)n (n = 1–3) cluster in the HO2 + HO → 3O2 + H2O reaction: mechanistic and kinetic studies. Phys Chem Chem Phys 2018. [DOI: 10.1039/c8cp00020d] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upon incorporation of the catalyst (H2O)n (n = 1–3) into the reaction HO2 + HO → H2O + 3O2, the catalytic effects of water, water dimer, and water trimer mainly arise from the contribution of a single molecule of water vapor.
Collapse
Affiliation(s)
- Tianlei Zhang
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Xinguang Lan
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Zhangyu Qiao
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Rui Wang
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Xiaohu Yu
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Qiong Xu
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Zhiyin Wang
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Linxia Jin
- Shaanxi Key Laboratory of Catalysis
- School of Chemical & Environment Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - ZhuQing Wang
- Analytical and Testing Center
- Sichuan University of Science & Engineering
- Zigong 643000
- P. R. China
| |
Collapse
|
23
|
Yu X, Hou H, Wang B. Double-Layered Composite Methods Extrapolating to Complete Basis-Set Limit for the Systems Involving More than Ten Heavy Atoms: Application to the Reaction of Heptafluoroisobutyronitrile with Hydroxyl Radical. J Phys Chem A 2017; 121:9020-9032. [DOI: 10.1021/acs.jpca.7b08844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojuan Yu
- College of Chemistry and
Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hua Hou
- College of Chemistry and
Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Baoshan Wang
- College of Chemistry and
Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
24
|
Gao A, Li G, Peng B, Xie Y, Schaefer HF. The water dimer reaction OH + (H 2O) 2 → (H 2O)-OH + H 2O. Phys Chem Chem Phys 2017; 19:18279-18287. [PMID: 28678244 DOI: 10.1039/c7cp03233a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stationary points, including the entrance complex, transition states, and the exit complex, for the reaction OH + (H2O)2 → (H2O)OH + H2O have been carefully examined using the "gold standard" CCSD(T) method with the correlation-consistent basis sets up to cc-pVQZ. The complex (H2O)2OH is found to lie 10.8 kcal mol-1 below the separated reactants. This complex should be observable in the gas phase via vibrational or microwave spectroscopy. Seven unique transition states were found. One pathway for the title reaction has no barrier, in which the OH radical captures a whole water molecule from the water dimer. For the hydrogen abstraction pathways the lowest classical barrier height is predicted to be 5.9 kcal mol-1 (TS1) relative to separated reactants, and the other pathways are of higher barriers, i.e., 17.8 (TS2) and 18.4 (TS3) kcal mol-1. The harmonic vibrational frequencies and the zero-point vibrational energies of the stationary points for the reaction are also reported.
Collapse
Affiliation(s)
- Aifang Gao
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, China.
| | | | | | | | | |
Collapse
|
25
|
Cheng L, Yu X, Zhao K, Hou H, Wang B. Electronic Structures and OH-Induced Atmospheric Degradation of CF 3NSF 2: A Potential Green Dielectric Replacement for SF 6. J Phys Chem A 2017; 121:2610-2619. [PMID: 28323432 DOI: 10.1021/acs.jpca.7b01898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electronic structures of [(trifluoromethyl)imino]sulfur difluoride (CF3NSF2) and degradation mechanisms by hydroxyl radical have been investigated using density functional theory (M06-2X), the complete basis set quadratic CBS-Q, and the explicitly correlated coupled-cluster methods [CCSD(T)-F12]. The d-function augmented correlation-consistent basis sets including triple- and quadruple-ξ were employed for the sulfur-containing species. It was found that CF3NSF2 exists as two conformations connected by the internal rotation of CF3 around the central NS bond. The distorted syn conformer is more stable than the symmetrical anti conformer. The nitrogen-sulfur link in CF3NSF2 was revealed to be predominantly ionic CF3N--+SF2 in structure rather than the conventional N═S double bond on the basis of natural bond orbital analysis. OH radical prefers to attach on the S atom of CF3NSF2 along the opposite direction of the S-F bond via a nucleophilic addition mechanism with a barrier of 2.9 kcal/mol whereas the ON association pathway is negligible. Although many product channels are thermodynamically favorable, none of them is kinetically accessible because of the significant barriers along the reaction routes. However, the degradation of CF3NSF2 by OH can be accelerated considerably in the presence of a single water molecule, which acts as a bridge for the consecutive proton migration within the floppy cyclic geometries. The half-life of CF3NSF2 was estimated to be 2.5 year, and the final products are exclusively CF3NH and SF2O. Theoretical calculation supports that CF3NSF2 is an environment-friendly green gas. It is worthy of testing its dielectric properties to replace SF6 for practical use.
Collapse
Affiliation(s)
- Lin Cheng
- College of Electricaland Electronic Engineering, Hua Zhong University of Science and Technology , Wuhan 430074, People's Republic of China.,Wuhan NARI, State Grid Power Research Institute , Wuhan 430072, People's Republic of China
| | - Xiaojuan Yu
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Kun Zhao
- Wuhan NARI, State Grid Power Research Institute , Wuhan 430072, People's Republic of China
| | - Hua Hou
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Baoshan Wang
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| |
Collapse
|
26
|
Jara-Toro RA, Hernández FJ, Taccone RA, Lane SI, Pino GA. Water Catalysis of the Reaction between Methanol and OH at 294 K and the Atmospheric Implications. Angew Chem Int Ed Engl 2017; 56:2166-2170. [DOI: 10.1002/anie.201612151] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Rafael A. Jara-Toro
- INFIQC (CONICET-UNC). Dpto. de Fisicoquímica-; Facultad de Ciencias Químicas-; Centro Láser de Ciencias Moleculares-; Universidad Nacional de Córdoba; Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Federico J. Hernández
- INFIQC (CONICET-UNC). Dpto. de Fisicoquímica-; Facultad de Ciencias Químicas-; Centro Láser de Ciencias Moleculares-; Universidad Nacional de Córdoba; Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Raúl A. Taccone
- INFIQC (CONICET-UNC). Dpto. de Fisicoquímica-; Facultad de Ciencias Químicas-; Centro Láser de Ciencias Moleculares-; Universidad Nacional de Córdoba; Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Silvia I. Lane
- INFIQC (CONICET-UNC). Dpto. de Fisicoquímica-; Facultad de Ciencias Químicas-; Centro Láser de Ciencias Moleculares-; Universidad Nacional de Córdoba; Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Gustavo A. Pino
- INFIQC (CONICET-UNC). Dpto. de Fisicoquímica-; Facultad de Ciencias Químicas-; Centro Láser de Ciencias Moleculares-; Universidad Nacional de Córdoba; Ciudad Universitaria X5000HUA Córdoba Argentina
| |
Collapse
|
27
|
Jara-Toro RA, Hernández FJ, Taccone RA, Lane SI, Pino GA. Water Catalysis of the Reaction between Methanol and OH at 294 K and the Atmospheric Implications. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rafael A. Jara-Toro
- INFIQC (CONICET-UNC). Dpto. de Fisicoquímica-; Facultad de Ciencias Químicas-; Centro Láser de Ciencias Moleculares-; Universidad Nacional de Córdoba; Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Federico J. Hernández
- INFIQC (CONICET-UNC). Dpto. de Fisicoquímica-; Facultad de Ciencias Químicas-; Centro Láser de Ciencias Moleculares-; Universidad Nacional de Córdoba; Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Raúl A. Taccone
- INFIQC (CONICET-UNC). Dpto. de Fisicoquímica-; Facultad de Ciencias Químicas-; Centro Láser de Ciencias Moleculares-; Universidad Nacional de Córdoba; Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Silvia I. Lane
- INFIQC (CONICET-UNC). Dpto. de Fisicoquímica-; Facultad de Ciencias Químicas-; Centro Láser de Ciencias Moleculares-; Universidad Nacional de Córdoba; Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Gustavo A. Pino
- INFIQC (CONICET-UNC). Dpto. de Fisicoquímica-; Facultad de Ciencias Químicas-; Centro Láser de Ciencias Moleculares-; Universidad Nacional de Córdoba; Ciudad Universitaria X5000HUA Córdoba Argentina
| |
Collapse
|
28
|
Bai M, Lu D, Li J. Quasi-classical trajectory studies on the full-dimensional accurate potential energy surface for the OH + H2O = H2O + OH reaction. Phys Chem Chem Phys 2017; 19:17718-17725. [DOI: 10.1039/c7cp02656k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first accurate PES for the OH + H2O reaction is developed by using the permutation invariant polynomial-neural network method to fit ∼48 000 CCSD(T)-F12a/AVTZ calculated points.
Collapse
Affiliation(s)
- Mengna Bai
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Dandan Lu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Jun Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|
29
|
Global reaction route mapping of water-catalysed gas phase oxidation of glyoxylic acid with hydroxyl radical. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-2019-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Wang DM, Long ZW, Tan XF, Long B, Zhang WJ. Theoretical Study on Gas Phase Reactions of OH Hydrogen-Abstraction from Formyl Fluoride with Different Catalysts. CHINESE J CHEM PHYS 2016. [DOI: 10.1063/1674-0068/29/cjcp1509187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
31
|
Ghoshal S, Hazra MK. Impact of OH Radical-Initiated H2CO3 Degradation in the Earth’s Atmosphere via Proton-Coupled Electron Transfer Mechanism. J Phys Chem A 2016; 120:562-75. [DOI: 10.1021/acs.jpca.5b08805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sourav Ghoshal
- Chemical
Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700 064, India
| | - Montu K. Hazra
- Chemical
Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700 064, India
| |
Collapse
|
32
|
Wang Y, Zhang X, Lyapustina S, Nilles MM, Xu S, Graham JD, Bowen KH, Kelly JT, Tschumper GS, Hammer NI. The onset of electron-induced proton-transfer in hydrated azabenzene cluster anions. Phys Chem Chem Phys 2016; 18:704-12. [DOI: 10.1039/c5cp02746b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The prospect that protons from water may be transferred to N-heterocyclic molecules due to the presence of an excess electron is studied in hydrated azabenzene cluster anions using spectroscopy and computational chemistry.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry
- Johns Hopkins University
- Baltimore
- USA
| | - Xinxing Zhang
- Department of Chemistry
- Johns Hopkins University
- Baltimore
- USA
| | | | | | - Shoujun Xu
- Department of Chemistry
- Johns Hopkins University
- Baltimore
- USA
| | | | - Kit H. Bowen
- Department of Chemistry
- Johns Hopkins University
- Baltimore
- USA
| | - John T. Kelly
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| | | | - Nathan I. Hammer
- Department of Chemistry and Biochemistry
- University of Mississippi
- University
- USA
| |
Collapse
|
33
|
Liu J, Fang S, Wang Z, Yi W, Tao FM, Liu JY. Hydrolysis of Sulfur Dioxide in Small Clusters of Sulfuric Acid: Mechanistic and Kinetic Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13112-13120. [PMID: 26450714 DOI: 10.1021/acs.est.5b02977] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The deposition and hydrolysis reaction of SO2 + H2O in small clusters of sulfuric acid and water are studied by theoretical calculations of the molecular clusters SO2-(H2SO4)n-(H2O)m (m = 1,2; n = 1,2). Sulfuric acid exhibits a dramatic catalytic effect on the hydrolysis reaction of SO2 as it lowers the energy barrier by over 20 kcal/mol. The reaction with monohydrated sulfuric acid (SO2 + H2O + H2SO4 - H2O) has the lowest energy barrier of 3.83 kcal/mol, in which the cluster H2SO4-(H2O)2 forms initially at the entrance channel. The energy barriers for the three hydrolysis reactions are in the order SO2 + (H2SO4)-H2O > SO2 + (H2SO4)2-H2O > SO2 + H2SO4-H2O. Furthermore, sulfurous acid is more strongly bonded to the hydrated sulfuric acid (or dimer) clusters than the corresponding reactant (monohydrated SO2). Consequently, sulfuric acid promotes the hydrolysis of SO2 both kinetically and thermodynamically. Kinetics simulations have been performed to study the importance of these reactions in the reduction of atmospheric SO2. The results will give a new insight on how the pre-existing aerosols catalyze the hydrolysis of SO2, leading to the formation and growth of new particles.
Collapse
Affiliation(s)
- Jingjing Liu
- Institute of Theoretical Chemistry, Jilin University , Changchun 130023, People's Republic of China
| | - Sheng Fang
- Institute of Theoretical Chemistry, Jilin University , Changchun 130023, People's Republic of China
| | - Zhixiu Wang
- Institute of Theoretical Chemistry, Jilin University , Changchun 130023, People's Republic of China
| | - Wencai Yi
- Institute of Theoretical Chemistry, Jilin University , Changchun 130023, People's Republic of China
| | - Fu-Ming Tao
- Department of Chemistry and Biochemistry, California State University , Fullerton, California 92834, United States
| | - Jing-Yao Liu
- Institute of Theoretical Chemistry, Jilin University , Changchun 130023, People's Republic of China
| |
Collapse
|
34
|
Hernandez FJ, Brice JT, Leavitt CM, Liang T, Raston PL, Pino GA, Douberly GE. Mid-infrared signatures of hydroxyl containing water clusters: Infrared laser Stark spectroscopy of OH–H2O and OH(D2O)n (n = 1-3). J Chem Phys 2015; 143:164304. [DOI: 10.1063/1.4933432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Federico J. Hernandez
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba, Argentina
| | - Joseph T. Brice
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | | | - Tao Liang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Paul L. Raston
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, USA
| | - Gustavo A. Pino
- INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba, Argentina
| | - Gary E. Douberly
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
35
|
Viegas LP, Varandas AJC. Role of (H2O)n (n = 2–3) Clusters on the HO2 + O3 Reaction: A Theoretical Study. J Phys Chem B 2015; 120:1560-8. [DOI: 10.1021/acs.jpcb.5b07691] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luís P. Viegas
- Centro
de Química
and Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - António J. C. Varandas
- Centro
de Química
and Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
36
|
Systematic testing of Gaussian and complete basis set methods with dispersion corrections for environmentally relevant clusters. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.09.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Zhu YP, Liu YR, Huang T, Jiang S, Xu KM, Wen H, Zhang WJ, Huang W. Theoretical Study of the Hydration of Atmospheric Nucleation Precursors with Acetic Acid. J Phys Chem A 2014; 118:7959-74. [DOI: 10.1021/jp506226z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu-Peng Zhu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yi-Rong Liu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shuai Jiang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Kang-Ming Xu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Hui Wen
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Wei-Jun Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- School of Environmental Science & Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- School of Environmental Science & Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
38
|
Galib M, Hanna G. The Role of Hydrogen Bonding in the Decomposition of H2CO3 in Water: Mechanistic Insights from Ab Initio Metadynamics Studies of Aqueous Clusters. J Phys Chem B 2014; 118:5983-93. [DOI: 10.1021/jp5029195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mirza Galib
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gabriel Hanna
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
39
|
Chen HC, Hwang BJ, Mai FD, Liu YC, Lin CM, Kuo HS, Chou DS, Lee MJ, Yang KH, Yu CC, Chen JR, Lo TY, Tsai HY, Yang CP, Wang C, Hsieh HT, Rick J. Active and stable liquid water innovatively prepared using resonantly illuminated gold nanoparticles. ACS NANO 2014; 8:2704-2713. [PMID: 24533852 DOI: 10.1021/nn406403c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The properties of confined liquid water, or liquid water in contact with hydrophobic surfaces, are significantly different from those of bulk liquid water. However, all of water's commonly described properties are related to inert "bulk liquid water" which comprises a tetrahedral hydrogen-bonded network. In this work, we report an innovative and facile method for preparing small water clusters (SWCs) with reduced affinity hydrogen bonds by letting bulk water flow through supported Au nanoparticles (NPs) under resonant illumination to give NP-treated (AuNT) water at constant temperature. Utilizing localized surface plasmon resonance on illuminated Au NPs, the strong hydrogen bonds of bulk water can be disordered when water is located at the illuminated Au/water interface. The prepared SWCs are free of Au NPs. The energy efficiency for creating SWCs is ∼17%. The resulting stable AuNT water exhibits distinct properties at room temperature, which are significantly different from the properties of untreated bulk water, examples being their ability to scavenge free hydroxyl and 2,2-diphenyl-1-picrylhydrazyl radicals and to effectively reduce NO release from lipopolysaccharide-induced inflammatory cells.
Collapse
Affiliation(s)
- Hsiao-Chien Chen
- Department of Biochemistry, School of Medicine, College of Medicine, Taipei Medical University , No. 250, Wu-Hsing Street, Taipei 11031, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Structure and thermodynamics of H3O+(H2O)8 clusters: A combined molecular dynamics and quantum mechanics approach. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.07.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Jørgensen S, Jensen C, Kjaergaard HG, Anglada JM. The gas-phase reaction of methane sulfonic acid with the hydroxyl radical without and with water vapor. Phys Chem Chem Phys 2013; 15:5140-50. [PMID: 23450164 DOI: 10.1039/c3cp44034f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gas phase reaction between methane sulfonic acid (CH3SO3H; MSA) and the hydroxyl radical (HO), without and with a water molecule, was investigated with DFT-B3LYP and CCSD(T)-F12 methods. For the bare reaction we have found two reaction mechanisms, involving proton coupled electron transfer and hydrogen atom transfer processes that produce CH3SO3 and H2O. We also found a third reaction mechanism involving the double proton transfer process, where the products and reactants are identical. The computed rate constant for the oxidation process is 8.3 × 10(-15) cm(3) s(-1) molecule(-1). CH3SO3H forms two very stable complexes with water with computed binding energies of about 10 kcal mol(-1). The presence of a single water molecule makes the reaction between CH3SO3H and HO much more complex, introducing a new reaction that consists in the interchange of H2O between HO and CH3SO3H. Our kinetic calculations show that 99.5% of the reaction involves this interchange of the water molecule and, consequently, water vapor does not play any role in the oxidation reaction of methane sulfonic acid by the hydroxyl radical.
Collapse
Affiliation(s)
- Solvejg Jørgensen
- Department of Chemistry, University of Copenhagen, Copenhagen O, Denmark.
| | | | | | | |
Collapse
|
42
|
Zhang T, Wang W, Li C, Du Y, Lü J. Catalytic effect of a single water molecule on the atmospheric reaction of HO2 + OH: fact or fiction? A mechanistic and kinetic study. RSC Adv 2013. [DOI: 10.1039/c3ra40341f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Do NH, Cooper PD. Formation and Reaction of Oxidants in Water Ice Produced from the Deposition of RF-Discharged Rare Gas and Water Mixtures. J Phys Chem A 2012; 117:153-9. [PMID: 23237388 DOI: 10.1021/jp3090556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nhut H. Do
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Drive, MSN
3E2 Fairfax, Virginia 22030, United States
| | - Paul D. Cooper
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Drive, MSN
3E2 Fairfax, Virginia 22030, United States
| |
Collapse
|
44
|
Acocella A, Jones GA, Zerbetto F. Excitation Energy Transfer and Low-Efficiency Photolytic Splitting of Water Ice by Vacuum UV Light. J Phys Chem Lett 2012; 3:3610-3615. [PMID: 26290996 DOI: 10.1021/jz301640h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Experimental estimates of photolytic efficiency (yield per photon) for photodissociation and photodesorption from water ice range from about 10(-3) to 10(-1). However, in the case of photodissociation of water in the gas phase, it is close to unity. Exciton dynamics carried out by a quantum mechanical time-dependent propagator shows that in the eight most stable water hexamers, the excitation diffuses away from the initially excited molecule within a few femtoseconds. On the basis of these quantum dynamics simulations, it is hypothesized that the ultrafast exciton energy transfer process, which in general gives rise to a delocalized exciton within these clusters, may contribute to the low efficiency of photolytic processes in water ice. It is proposed that exciton diffusion inherently competes with the nuclear dynamics that drives the photodissociation process in the repulsive S1 state on the sub-10 fs time scale.
Collapse
Affiliation(s)
- Angela Acocella
- †Dipartimento di Chimica "G. Ciamician", Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy
| | - Garth A Jones
- ‡School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Francesco Zerbetto
- †Dipartimento di Chimica "G. Ciamician", Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
45
|
Temelso B, Phan TN, Shields GC. Computational Study of the Hydration of Sulfuric Acid Dimers: Implications for Acid Dissociation and Aerosol Formation. J Phys Chem A 2012; 116:9745-58. [DOI: 10.1021/jp3054394] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Berhane Temelso
- Dean’s Office, College of Arts and Sciences,
and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837,
United States
| | - Thuong Ngoc Phan
- Dean’s Office, College of Arts and Sciences,
and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837,
United States
| | - George C. Shields
- Dean’s Office, College of Arts and Sciences,
and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837,
United States
| |
Collapse
|
46
|
Zhang T, Li G, Wang W, Du Y, Li C, Lü J. Theoretical studies on atmospheric reactions of CH2FO2 with HO2 and HO2⋅H2O complex. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Husar DE, Temelso B, Ashworth AL, Shields GC. Hydration of the Bisulfate Ion: Atmospheric Implications. J Phys Chem A 2012; 116:5151-63. [DOI: 10.1021/jp300717j] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Devon E. Husar
- Dean’s Office, College of
Arts and Sciences,
and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Berhane Temelso
- Dean’s Office, College of
Arts and Sciences,
and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Alexa L. Ashworth
- Dean’s Office, College of
Arts and Sciences,
and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - George C. Shields
- Dean’s Office, College of
Arts and Sciences,
and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| |
Collapse
|
48
|
Buszek RJ, Barker JR, Francisco JS. Water Effect on the OH + HCl Reaction. J Phys Chem A 2012; 116:4712-9. [DOI: 10.1021/jp3025107] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robert J. Buszek
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084,
United States
| | - John R. Barker
- Department
of Atmospheric, Oceanic
and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143, United States
| | - Joseph S. Francisco
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084,
United States
| |
Collapse
|
49
|
|
50
|
Buszek RJ, Torrent-Sucarrat M, Anglada JM, Francisco JS. Effects of a single water molecule on the OH + H2O2 reaction. J Phys Chem A 2012; 116:5821-9. [PMID: 22455374 DOI: 10.1021/jp2077825] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of a single water molecule on the reaction between H(2)O(2) and HO has been investigated by employing MP2 and CCSD(T) theoretical approaches in connection with the aug-cc-PVDZ, aug-cc-PVTZ, and aug-cc-PVQZ basis sets and extrapolation to an ∞ basis set. The reaction without water has two elementary reaction paths that differ from each other in the orientation of the hydrogen atom of the hydroxyl radical moiety. Our computed rate constant, at 298 K, is 1.56 × 10(-12) cm(3) molecule(-1) s(-1), in excellent agreement with the suggested value by the NASA/JPL evaluation. The influence of water vapor has been investigated by considering either that H(2)O(2) first forms a complex with water that reacts with hydroxyl radical or that H(2)O(2) reacts with a previously formed H(2)O·OH complex. With the addition of water, the reaction mechanism becomes much more complex, yielding four different reaction paths. Two pathways do not undergo the oxidation reaction but an exchange reaction where there is an interchange between H(2)O(2)·H(2)O and H(2)O·OH complexes. The other two pathways oxidize H(2)O(2), with a computed total rate constant of 4.09 × 10(-12) cm(3) molecule(-1) s(-1) at 298 K, 2.6 times the value of the rate constant of the unassisted reaction. However, the true effect of water vapor requires taking into account the concentration of the prereactive bimolecular complex, namely, H(2)O(2)·H(2)O. With this consideration, water can actually slow down the oxidation of H(2)O(2) by OH between 1840 and 20.5 times in the 240-425 K temperature range. This is an example that demonstrates how water could be a catalyst in an atmospheric reaction in the laboratory but is slow under atmospheric conditions.
Collapse
Affiliation(s)
- Robert J Buszek
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | | | | | | |
Collapse
|