1
|
Zheng M, Guo Y, Li W, Wu M, Xu M, Shao M, He G, Liu Y. Medium Chain Triglycerides Promote the Uptake of β-Carotene in O/W Emulsions via Intestinal Transporter SR-B1 in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9377-9387. [PMID: 35861437 DOI: 10.1021/acs.jafc.2c02660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to elucidate the impacts of carrier oil types (long chain triglycerides (LCT), medium chain triglycerides (MCT), and orange oil (indigestible oil)) on the micellization and cellular uptake of β-carotene (BC) formulated in O/W emulsions, with an emphasis on the role of intestinal transporters. The micellization and cellular uptake of BC in the gastrointestinal tract were evaluated via an in vitro digestion model and a Caco-2 cell monolayer. And the interactions between lipids and intestinal transporters were monitored by nontargeted lipidomics, RT-PCR, and Western blot. The BC micellization rates followed a decreasing trend in emulsions: corn oil (69.47 ± 4.19%) > MCT (22.22 ± 0.89%) > orange oil (11.01 ± 2.86%), whereas the cellular uptake rate of BC was significantly higher in MCT emulsion (56.30 ± 20.13%) than in corn oil emulsion (14.01 ± 1.04%, p < 0.05). The knockdown of SR-B1 led to a 31.63% loss of BC cellular uptake from MCT micelles but had no effect on corn oil micelles. Lipidomics and transporter analysis revealed that TG (10:0/10:0/12:0) and TG (10:0/12:0/12:0) might be the fingerprint lipids that promoted the cellular absorption of BC-MCT micelles via stimulating the mRNA expression of SR-B1.
Collapse
Affiliation(s)
- Mengman Zheng
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
- Department of Nutriology, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, Zhejiang 312000, China
| | - Yi Guo
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Wenyun Li
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Min Wu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Mingjing Xu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Manman Shao
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Gengsheng He
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| | - Yuwei Liu
- School of Public Health, Fudan University/Key Laboratory of Public Health Safety, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
2
|
Enhanced Photocatalytic Activity of Hydrothermally Synthesized Perovskite Strontium Titanate Nanocubes. Top Catal 2022. [DOI: 10.1007/s11244-021-01558-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Sun S, Meng Q, Bai Y, Cao C, Li J, Cheng B, Shi B, Shan A. Lycopene improves maternal reproductive performance by modulating milk composition and placental antioxidative and immune status. Food Funct 2021; 12:12448-12467. [PMID: 34792070 DOI: 10.1039/d1fo01595h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Placental health and milk quality are important for maternal reproductive performance during pregnancy and lactation. Lycopene plays an important role in antioxidation, anti-inflammation and regulating lipid metabolism. The goal of the present study was to investigate the effects of dietary lycopene supplementation in the pig model on reproductive performance, placental health and milk composition during maternal gestation and lactation. In the present study, the litter size of live piglets was increased and the litter size of dead piglets was decreased by lycopene supplementation of the diet of sows. The litter weight at birth and weaning were increased in the lycopene group. Through placental proteomics, we enriched differentially expressed proteins (DEPs), gene ontology (GO) terms, and Kyoto encyclopedia of proteins and genomes (KEGG) pathways involved in immunity, anti-inflammation, antioxidants, and lipid metabolism and transport. Furthermore, in terms of placental health, we analyzed the levels of related enzymes, metabolites and mRNA expression in the placenta. Lycopene was shown to reduce mRNA expression and the levels of placental inflammatory factors, increase the content of immunoglobulin, improve the antioxidant capacity, and improve lipid metabolism and lipid transport in the placenta. In terms of sow milk composition, lycopene increased the levels of immunoglobulins in colostrum and lactose in colostrum and milk. Overall, the results of the present study demonstrate that dietary lycopene supplementation of sows during gestation and lactation improves the reproductive performance to a certain extent; this may be due to lycopene improving the placental health and milk composition of sows.
Collapse
Affiliation(s)
- Shishuai Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Qingwei Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Yongsong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Chunyu Cao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Jibo Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Baojing Cheng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| |
Collapse
|
4
|
Liu Y, Zhu C. Trajectory surface hopping molecular dynamics simulations for retinal protonated Schiff-base photoisomerization. Phys Chem Chem Phys 2021; 23:23861-23874. [PMID: 34651159 DOI: 10.1039/d1cp03401d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Global switching trajectory surface hopping molecular dynamics simulations are performed using accurate on-the-fly (TD)CAM-B3LYP/6-31G potential energy surfaces to study retinal protonated Schiff-base photoisomerization up to S1 excitation. The simulations detected two-layer conical intersection networks: one is at an energy as high as 8 eV and the other is in the energy range around 3-4 eV. Six conical intersections within the low-layer energy region that correspond to active conical intersections under experimental conditions are found via the use of pairwise isomers, within which nonadiabatic molecular dynamics simulations are performed. Eight isomer products are populated with simulated sampling trajectories from which the simulated quantum yield in the gas phase is estimated to be 0.11 (0.08) moving from the all-trans isomer to the 11-cis (11-cis to all-trans) isomer in comparison with an experimental value of 0.09 (0.2) in the solution phase. Each conical intersection is related to one specific twist angle accompanying a related CC double bond motion during photoisomerization. Nonplanar distortion of the entire dynamic process has a significant role in the formation of the relevant photoisomerization products. The present simulation indicates that all hopping points show well-behaved potential energy surface topology, as calculated via the conventional TDDFT method, at conical intersections between S1 and S0 states. Therefore, the present nonadiabatic dynamics simulations with the TDDFT method are very encouraging for simulating various large systems related to retinal Schiff-base photoisomerization in the real world.
Collapse
Affiliation(s)
- Yuxiu Liu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, Hsinchu 30010, Taiwan.
| | - Chaoyuan Zhu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, Hsinchu 30010, Taiwan. .,Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
5
|
Hutcheson A, Paul AC, Myhre RH, Koch H, Høyvik IM. Describing ground and excited state potential energy surfaces for molecular photoswitches using coupled cluster models. J Comput Chem 2021; 42:1419-1429. [PMID: 33973669 DOI: 10.1002/jcc.26553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022]
Abstract
In this article, we use two extensively studied systems, a retinal model system and azobenzene, to explore the use of coupled cluster models for describing ground and singlet excited state potential energy surfaces of photoswitchable systems. While not being suitable for describing nuclear dynamics of photoisomerization, coupled cluster models have useful attributes, such as the inclusion of dynamical correlation, their black box nature, and the systematic improvement offered by truncation level. Results for the studied systems show that when triple excitations (here through the CC3 model) are included, ground and excited state potential energy surfaces for isomerization paths may reliably be generated, also for states of doubly excited character. For ground state equilibrium cis- and trans-azobenzene, the molecular geometry and basis set is seen to significantly impact the vertical excitation energies for the two lowest excited states. Efficient implementations of coupled cluster models can therefore constitute valuable tools for investigating photoswitchable systems and can be used for preliminary black box studies to gather information before more complicated excited state dynamics approaches are pursued.
Collapse
Affiliation(s)
- Anders Hutcheson
- Department of Chemistry, The Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Rolf H Myhre
- Department of Chemistry, The Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ida-Marie Høyvik
- Department of Chemistry, The Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Nabi F, Arain MA, Rajput N, Alagawany M, Soomro J, Umer M, Soomro F, Wang Z, Ye R, Liu J. Health benefits of carotenoids and potential application in poultry industry: A review. J Anim Physiol Anim Nutr (Berl) 2020; 104:1809-1818. [PMID: 32333620 DOI: 10.1111/jpn.13375] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
Carotenoids are one of the widespread and ubiquitous lipid-soluble pigments that produce a wide range of colours which are universally found in various plants, microalgae, bacteria and fungi. Recently, interest in using carotenoids as feed ingredients has increased markedly owing to their bioactive and health-promoting properties. In terms of applications, carotenoid-rich products are widely available in the form of food and feed additive, supplements and natural colourants. Carotenoids play a versatile biological role that contributes to therapeutic effects, including anticancer, immunomodulators, anti-inflammatory, antibacterial, antidiabetic and neuroprotective. Dietary supplementation of carotenoids not only improves the production performance and health of poultry birds, but also enhances the quality of egg and meat. Several studies have suggested that the supplementation of plant derived carotenoids revealed numerous health-promoting activities in poultry birds. Carotenoids reduce the oxidative stress in pre-hatched and post-hatched birds through different mechanisms, including quench free radicals, activating antioxidant enzymes and inhibiting the signalling pathways. Use of carotenoids in poultry feed as a part of nutrient that confers bird health and improve product quality. Carotenoids play a critical role for the pigmentation of egg yolk, skin, legs, beak, comb, feather and fat. Birds consumed carotenoid deficient diet resulting hues of their egg yolk or pale coloured skin. Therefore, uniform pigmentation generally indicates the health status and quality of the poultry products. This review aims to gather recent information regarding bioactive properties of carotenoids and highlight pharmaceutical and health beneficial effects of carotenoids for the poultry industry. Additionally, it explores the importance of carotenoids as alternative feed ingredients for poultry to boost the production performance and replace synthetic medicine and nutrients.
Collapse
Affiliation(s)
- Fazul Nabi
- College of Animal Science, Southwest University, Rongchang, Chongqing, China.,Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, Pakistan
| | - Muhammad A Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, Pakistan
| | - Nasir Rajput
- Department of Poultry Husbandry, Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jamila Soomro
- Department of Veterinary Physiology & Biochemistry, Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Muhammad Umer
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, Pakistan
| | - Feroza Soomro
- Department of Veterinary Parasitology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Zhongqing Wang
- College of Animal Science, Southwest University, Rongchang, Chongqing, China
| | - Ruiling Ye
- College of Animal Science, Southwest University, Rongchang, Chongqing, China
| | - Juan Liu
- College of Animal Science, Southwest University, Rongchang, Chongqing, China
| |
Collapse
|
7
|
Bold BM, Sokolov M, Maity S, Wanko M, Dohmen PM, Kranz JJ, Kleinekathöfer U, Höfener S, Elstner M. Benchmark and performance of long-range corrected time-dependent density functional tight binding (LC-TD-DFTB) on rhodopsins and light-harvesting complexes. Phys Chem Chem Phys 2020; 22:10500-10518. [PMID: 31950960 DOI: 10.1039/c9cp05753f] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chromophores of rhodopsins (Rh) and light-harvesting (LH) complexes still represent a major challenge for a quantum chemical description due to their size and complex electronic structure. Since gradient corrected and hybrid density functional approaches have been shown to fail for these systems, only range-separated functionals seem to be a promising alternative to the more time consuming post-Hartree-Fock approaches. For extended sampling of optical properties, however, even more approximate approaches are required. Recently, a long-range corrected (LC) functional has been implemented into the efficient density functional tight binding (DFTB) method, allowing to sample the excited states properties of chromophores embedded into proteins using quantum mechanical/molecular mechanical (QM/MM) with the time-dependent (TD) DFTB approach. In the present study, we assess the accuracy of LC-TD-DFT and LC-TD-DFTB for rhodopsins (bacteriorhodopsin (bR) and pharaonis phoborhodopsin (ppR)) and LH complexes (light-harvesting complex II (LH2) and Fenna-Matthews-Olson (FMO) complex). This benchmark study shows the improved description of the color tuning parameters compared to standard DFT functionals. In general, LC-TD-DFTB can exhibit a similar performance as the corresponding LC functionals, allowing a reliable description of excited states properties at significantly reduced cost. The two chromophores investigated here pose complementary challenges: while huge sensitivity to external field perturbation (color tuning) and charge transfer excitations are characteristic for the retinal chromophore, the multi-chromophoric character of the LH complexes emphasizes a correct description of inter-chromophore couplings, giving less importance to color tuning. None of the investigated functionals masters both systems simultaneously with satisfactory accuracy. LC-TD-DFTB, at the current stage, although showing a systematic improvement compared to TD-DFTB cannot be recommended for studying color tuning in retinal proteins, similar to some of the LC-DFT functionals, because the response to external fields is still too weak. For sampling of LH-spectra, however, LC-TD-DFTB is a viable tool, allowing to efficiently sample absorption energies, as shown for three different LH complexes. As the calculations indicate, geometry optimization may overestimate the importance of local minima, which may be averaged over when using trajectories. Fast quantum chemical approaches therefore may allow for a direct sampling of spectra in the near future.
Collapse
Affiliation(s)
- Beatrix M Bold
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Biosynthesis and biomedical perspectives of carotenoids with special reference to human health-related applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Strobbe S, De Lepeleire J, Van Der Straeten D. From in planta Function to Vitamin-Rich Food Crops: The ACE of Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:1862. [PMID: 30619424 PMCID: PMC6305313 DOI: 10.3389/fpls.2018.01862] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 05/11/2023]
Abstract
Humans are highly dependent on plants to reach their dietary requirements, as plant products contribute both to energy and essential nutrients. For many decades, plant breeders have been able to gradually increase yields of several staple crops, thereby alleviating nutritional needs with varying degrees of success. However, many staple crops such as rice, wheat and corn, although delivering sufficient calories, fail to satisfy micronutrient demands, causing the so called 'hidden hunger.' Biofortification, the process of augmenting nutritional quality of food through the use of agricultural methodologies, is a pivotal asset in the fight against micronutrient malnutrition, mainly due to vitamin and mineral deficiencies. Several technical advances have led to recent breakthroughs. Nutritional genomics has come to fruition based on marker-assisted breeding enabling rapid identification of micronutrient related quantitative trait loci (QTL) in the germplasm of interest. As a complement to these breeding techniques, metabolic engineering approaches, relying on a continuously growing fundamental knowledge of plant metabolism, are able to overcome some of the inevitable pitfalls of breeding. Alteration of micronutrient levels does also require fundamental knowledge about their role and influence on plant growth and development. This review focuses on our knowledge about provitamin A (beta-carotene), vitamin C (ascorbate) and the vitamin E group (tocochromanols). We begin by providing an overview of the functions of these vitamins in planta, followed by highlighting some of the achievements in the nutritional enhancement of food crops via conventional breeding and genetic modification, concluding with an evaluation of the need for such biofortification interventions. The review further elaborates on the vast potential of creating nutritionally enhanced crops through multi-pathway engineering and the synergistic potential of conventional breeding in combination with genetic engineering, including the impact of novel genome editing technologies.
Collapse
|
10
|
Grabarek D, Andruniów T. Initial excited-state relaxation of locked retinal protonated schiff base chromophore. An insight from coupled cluster and multireference perturbation theory calculations. J Comput Chem 2018; 39:1720-1727. [PMID: 29727036 DOI: 10.1002/jcc.25346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 11/07/2022]
Abstract
The initial S1 excited-state relaxation of retinal protonated Schiff base (RPSB) analog with central C11C12 double bond locked by eight-membered ring (locked-11.8) was investigated by means of multireference perturbation theory methods (XMCQDPT2, XMS-CASPT2, MS-CASPT2) as well as single-reference coupled-cluster CC2 method. The analysis of XMCQDPT2-based geometries reveals rather weak coupling between in-plane and out-of-plane structural evolution and minor energetical relaxation of three locked-11.8 conformers. Therefore, a strong coupling between bonds length inversion and backbone out-of-plane deformation resulting in a very steep S1 energy profile predicted by CASSCF/CASPT2 calculations is in clear contradiction with the reference XMCQDPT2 results. Even though CC2 method predicts good quality ground-state structures, the excited-state structures display more advanced torsional deformation leading to ca. 0.2 eV exaggerated energy relaxation and significantly red shifted (0.4-0.7 eV) emission maxima. According to our findings, the initial photoisomerization process in locked-11.8, and possibly in other RPSB analogs, studied fully (both geometries and energies) by multireference perturbation theory may be somewhat slower than predicted by CASSCF/CASPT2 or CC2 methods. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| |
Collapse
|
11
|
Wolański Ł, Grabarek D, Andruniów T. Is the choice of a standard zeroth-order hamiltonian in CASPT2 ansatz optimal in calculations of excitation energies in protonated and unprotonated schiff bases of retinal? J Comput Chem 2018; 39:1470-1480. [PMID: 29635695 DOI: 10.1002/jcc.25217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 11/07/2022]
Abstract
To account for systematic error of CASPT2 method empirical modification of the zeroth-order Hamiltonian with Ionization Potential-Electron Affinity (IPEA) shift was introduced. The optimized IPEA value (0.25 a.u.), called standard IPEA (S-IPEA), was recommended but due to its unsatisfactory performance in multiple metallic and organic compounds it has been questioned lately as a general parameter working properly for all molecules under CASPT2 study. As we are interested in Schiff bases of retinal, an important question emerging from this conflict of choice, to use or not to use S-IPEA, is whether the introduction of the modified zeroth-order Hamiltonian into CASPT2 ansatz does really improve their energetics. To achieve this goal, we assessed an impact of the IPEA shift value, in a range of 0-0.35 a.u., on vertical excitation energies to low-lying singlet states of two protonated (RPSBs) and two unprotonated (RSBs) Schiff bases of retinal for which experimental data in gas phase are available. In addition, an effect of geometry, basis set, and active space on computed VEEs is also reported. We find, that for these systems, the choice of S-IPEA significantly overestimates both S0 →S1 and S0 →S2 energies and the best theoretical estimate, in reference to the experimental data, is provided with either unmodified zeroth-order Hamiltonian or small value of the IPEA shift in a range of 0.05-0.15 a.u., depending on active space and basis set size, equilibrium geometry, and character of the excited state. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Łukasz Wolański
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| |
Collapse
|
12
|
Isomerization of the RPSB chromophore in the gas phase along the torsional pathways using QTAIM. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.07.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Grabarek D, Walczak E, Andruniów T. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results. J Chem Theory Comput 2016; 12:2346-56. [DOI: 10.1021/acs.jctc.6b00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Elżbieta Walczak
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| |
Collapse
|
14
|
Peccati F, Wiśniewska M, Solans-Monfort X, Sodupe M. Computational study on donor–acceptor optical markers for Alzheimer's disease: a game of charge transfer and electron delocalization. Phys Chem Chem Phys 2016; 18:11634-43. [DOI: 10.1039/c5cp07274c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The length of the conjugated double bond chain in DANIR dyes modulates the charge transfer character, non-radiative deactivation pathways and affinity for amyloid-β fibril.
Collapse
Affiliation(s)
- Francesca Peccati
- Departament de Química
- Universitat Autònoma de Barcelona
- 08193 – Bellaterra
- Spain
| | - Marta Wiśniewska
- Centre of New Technologies
- University of Warsaw
- 02-097 Warsaw
- Poland
| | | | - Mariona Sodupe
- Departament de Química
- Universitat Autònoma de Barcelona
- 08193 – Bellaterra
- Spain
| |
Collapse
|
15
|
Saini RK, Nile SH, Park SW. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int 2015; 76:735-750. [DOI: 10.1016/j.foodres.2015.07.047] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/23/2015] [Accepted: 07/31/2015] [Indexed: 11/30/2022]
|
16
|
Zhou P, Liu J, Han K, He G. The photoisomerization of 11-cis-retinal protonated schiff base in gas phase: Insight from spin-flip density functional theory. J Comput Chem 2013; 35:109-20. [DOI: 10.1002/jcc.23463] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/12/2013] [Accepted: 09/24/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Panwang Zhou
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 Liaoning People's Republic of China
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 Liaoning People's Republic of China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 Liaoning People's Republic of China
| | - Guozhong He
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 Liaoning People's Republic of China
| |
Collapse
|
17
|
Walczak E, Szefczyk B, Andruniów T. Geometries and Vertical Excitation Energies in Retinal Analogues Resolved at the CASPT2 Level of Theory: Critical Assessment of the Performance of CASSCF, CC2, and DFT Methods. J Chem Theory Comput 2013; 9:4915-27. [DOI: 10.1021/ct400423u] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elżbieta Walczak
- Wroclaw University of Technology, Institute of Physical & Theoretical Chemistry, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Borys Szefczyk
- Wroclaw University of Technology, Institute of Physical & Theoretical Chemistry, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Wroclaw University of Technology, Institute of Physical & Theoretical Chemistry, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
18
|
Huix-Rotllant M, Filatov M, Gozem S, Schapiro I, Olivucci M, Ferré N. Assessment of Density Functional Theory for Describing the Correlation Effects on the Ground and Excited State Potential Energy Surfaces of a Retinal Chromophore Model. J Chem Theory Comput 2013; 9:3917-32. [PMID: 26592387 DOI: 10.1021/ct4003465] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the quest for a cost-effective level of theory able to describe a large portion of the ground and excited potential energy surfaces of large chromophores, promising approaches are rooted in various approximations to the exact density functional theory (DFT). In the present work, we investigate how generalized Kohn-Sham DFT (GKS-DFT), time-dependent DFT (TDDFT), and spin-restricted ensemble-DFT (REKS) methods perform along three important paths characterizing a model retinal chromophore (the penta-2,4-dieniminium cation) in a region of near-degeneracy (close to a conical intersection) with respect to reference high-level multiconfigurational wave function methods. If GKS-DFT correctly describes the closed-shell charge transfer state, only TDDFT and REKS approaches give access to the open-shell diradical, one which sometimes corresponds to the electronic ground state. It is demonstrated that the main drawback of the usual DFT-based methods lies in the absence of interactions between the charge transfer and the diradicaloid configurations. Hence, we test a new computational scheme based on the State-averaged REKS (SA-REKS) approach, which explicitly includes these interactions into account. The State-Interaction SA-REKS (SI-SA-REKS) method significantly improves on the REKS and the SA-REKS results for the target system. The similarities and differences between DFT and wave function-based approaches are analyzed according to (1) the active space dimensions of the wave function-based methods and (2) the relative electronegativities of the allyl and protonated Schiff base moieties.
Collapse
Affiliation(s)
- Miquel Huix-Rotllant
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire , 13397 Marseille Cedex 20, France
| | - Michael Filatov
- Institut für Physicalische und Theoretische Chemie, Universität Bonn , Beringstr. 4, 53115 Bonn, Germany
| | - Samer Gozem
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43402, United States
| | - Igor Schapiro
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43402, United States.,Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34 - 36, Mülheim an der Ruhr, Germany
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43402, United States.,Dipartimento di Chimica, Università di Siena , Siena, Italy
| | - Nicolas Ferré
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire , 13397 Marseille Cedex 20, France
| |
Collapse
|
19
|
Kaczor A, Reva I, Fausto R. Influence of cage confinement on the photochemistry of matrix-isolated E-β-ionone: FT-IR and DFT study. J Phys Chem A 2013; 117:888-97. [PMID: 23305459 DOI: 10.1021/jp310764u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
β-ionone, a model compound of carotenoids ring structure, was investigated by FT-IR spectroscopy in a low-temperature argon matrix as well as using B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) quantum-chemical calculations. The spectrum of matrix-isolated E-β-ionone was analyzed and attributed to six conformers of the compound. Then, matrix-isolated E-β-ionone was submitted to UV irradiation using either a broadband source (with different cutoff filters) or a narrowband laser/MOPO system (at various wavelengths). Upon 240 nm narrowband irradiation, the formation of both Z-retro-γ-ionone and Z-β-ionone was observed, the reactant and the photoproducts being in a photostationary equilibrium. Under these conditions, the matrix environment was found to hamper subsequent reactions of Z-retro-γ-ionone and Z-β-ionone, so that this last species could be observed directly for the first time. Furthermore, the formation of Z-retro-γ-ionone was shown to occur directly via an intramolecular [1,5] H-atom shift and thereby, under the constraints imposed by the matrix confinement, the conformations assumed by this photoproduct were found to be strictly determined by those initially assumed by the reactant molecules. Broadband irradiation resulted in the completion of the reaction (disappearance of the reactant) and the sole observation of Z-retro-γ-ionone. These results imply that under these conditions the Z-β-ionone is unstable, very likely decaying to additional conformers of Z-retro-γ-ionone, as reflected in the broader bands due to this photoproduct observed in the infrared spectra of the broadband irradiated matrix.
Collapse
Affiliation(s)
- A Kaczor
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| | | | | |
Collapse
|
20
|
Sneskov K, Olsen JMH, Schwabe T, Hättig C, Christiansen O, Kongsted J. Computational screening of one- and two-photon spectrally tuned channelrhodopsin mutants. Phys Chem Chem Phys 2013; 15:7567-76. [DOI: 10.1039/c3cp44350g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Coccia E, Guidoni L. Quantum monte carlo study of the retinal minimal model C5H6NH2+. J Comput Chem 2012; 33:2332-9. [DOI: 10.1002/jcc.23071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/22/2012] [Accepted: 06/26/2012] [Indexed: 12/22/2022]
|
22
|
Pescitelli G, Woody RW. The Exciton Origin of the Visible Circular Dichroism Spectrum of Bacteriorhodopsin. J Phys Chem B 2012; 116:6751-63. [DOI: 10.1021/jp212166k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gennaro Pescitelli
- Dipartimento
di Chimica e Chimica
Industriale, Università degli Studi di Pisa, via Risorgimento 35, I-56126 Pisa, Italy
| | - Robert W. Woody
- Department of Biochemistry and
Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
23
|
Kaila VRI, Send R, Sundholm D. The effect of protein environment on photoexcitation properties of retinal. J Phys Chem B 2012; 116:2249-58. [PMID: 22166007 DOI: 10.1021/jp205918m] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinal is the photon absorbing chromophore of rhodopsin and other visual pigments, enabling the vertebrate vision process. The effects of the protein environment on the primary photoexcitation process of retinal were studied by time-dependent density functional theory (TDDFT) and the algebraic diagrammatic construction through second order (ADC(2)) combined with our recently introduced reduction of virtual space (RVS) approximation method. The calculations were performed on large full quantum chemical cluster models of the bluecone (BC) and rhodopsin (Rh) pigments with 165-171 atoms. Absorption wavelengths of 441 and 491 nm were obtained at the B3LYP level of theory for the respective models, which agree well with the experimental values of 414 and 498 nm. Electrostatic rather than structural strain effects were shown to dominate the spectral tuning properties of the surrounding protein. The Schiff base retinal and a neighboring Glu-113 residue were found to have comparable proton affinities in the ground state of the BC model, whereas in the excited state, the proton affinity of the Schiff base is 5.9 kcal/mol (0.26 eV) higher. For the ground and excited states of the Rh model, the proton affinity of the Schiff base is 3.2 kcal/mol (0.14 eV) and 7.9 kcal/mol (0.34 eV) higher than for Glu-113, respectively. The protein environment was found to enhance the bond length alternation (BLA) of the retinyl chain and blueshift the first absorption maxima of the protonated Schiff base in the BC and Rh models relative to the chromophore in the gas phase. The protein environment was also found to decrease the intensity of the second excited state, thus improving the quantum yield of the photoexcitation process. Relaxation of the BC model on the excited state potential energy surface led to a vanishing BLA around the isomerization center of the conjugated retinyl chain, rendering the retinal accessible for cis-trans isomerization. The energy of the relaxed excited state was found to be 30 kcal/mol (1.3 eV) above the minimum ground state energy, and might be related to the transition state of the thermal activation process.
Collapse
Affiliation(s)
- Ville R I Kaila
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
24
|
Valsson O, Angeli C, Filippi C. Excitation energies of retinal chromophores: critical role of the structural model. Phys Chem Chem Phys 2012; 14:11015-20. [DOI: 10.1039/c2cp41387f] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Send R, Kaila VRI, Sundholm D. Benchmarking the Approximate Second-Order Coupled-Cluster Method on Biochromophores. J Chem Theory Comput 2011; 7:2473-84. [DOI: 10.1021/ct200215d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Robert Send
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Ville R. I. Kaila
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, Maryland, United States
- Department of Chemistry, P.O. Box 55 (A. I. Virtanens plats 1), FIN-00014 University of Helsinki, Finland
- Helsinki Bioenergetics Group, Programme of Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | - Dage Sundholm
- Department of Chemistry, P.O. Box 55 (A. I. Virtanens plats 1), FIN-00014 University of Helsinki, Finland
| |
Collapse
|
26
|
Chung WC, Nanbu S, Ishida T. Nonadiabatic ab Initio Dynamics of a Model Protonated Schiff Base of 9-cis Retinal. J Phys Chem A 2010; 114:8190-201. [DOI: 10.1021/jp103253b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wilfredo Credo Chung
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4, Takano-nishihirakicho, Kyoto 606-8103, Japan
| | - Shinkoh Nanbu
- Department of Materials and Life Sciences, Faculty of Science and Engineering, Sophia University, Chiyodaku Kioicho, Tokyo 102-8554, Japan
| | - Toshimasa Ishida
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4, Takano-nishihirakicho, Kyoto 606-8103, Japan
| |
Collapse
|
27
|
Rostov IV, Amos RD, Kobayashi R, Scalmani G, Frisch MJ. Studies of the ground and excited-state surfaces of the retinal chromophore using CAM-B3LYP. J Phys Chem B 2010; 114:5547-55. [PMID: 20369810 DOI: 10.1021/jp911329g] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The isomerization of the 11-cis isomer (PSB11) of the retinal chromophore to its all-trans isomer (PSBT) is examined. Optimized structures on both the ground state and the excited state are calculated, and the dependence on torsional angles in the carbon chain is investigated. Time-dependent density functional theory is used to produce excitation energies and the excited-state surface. To avoid problems with the description of excited states that can arise with standard DFT methods, the CAM-B3LYP functional was used. Comparing CAM-B3LYP with B3LYP results indicates that the former is significantly more accurate, as a consequence of which detailed cross sections of the retinal excited-state surface are obtained.
Collapse
Affiliation(s)
- Ivan V Rostov
- Australian National University Supercomputer Facility, Mills Road, Canberra, ACT 0200, Australia
| | | | | | | | | |
Collapse
|
28
|
Iyama T, Kawabata H, Tachikawa H. Effects of Point Charges on the Excitation Energies of Protonated Schiff Base of Retinal. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/15533174.2010.486814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tetsuji Iyama
- a Division of Materials Chemistry, Graduate School of Engineering , Hokkaido University , Sapporo, Japan
| | - Hiroshi Kawabata
- a Division of Materials Chemistry, Graduate School of Engineering , Hokkaido University , Sapporo, Japan
| | - Hiroto Tachikawa
- a Division of Materials Chemistry, Graduate School of Engineering , Hokkaido University , Sapporo, Japan
| |
Collapse
|
29
|
Valsson O, Filippi C. Photoisomerization of Model Retinal Chromophores: Insight from Quantum Monte Carlo and Multiconfigurational Perturbation Theory. J Chem Theory Comput 2010. [DOI: 10.1021/ct900692y] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Omar Valsson
- Faculty of Science and Technology and MESA+ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Claudia Filippi
- Faculty of Science and Technology and MESA+ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
30
|
Send R, Sundholm D, Johansson MP, Pawłowski F. Excited State Potential Energy Surfaces of Polyenes and Protonated Schiff Bases. J Chem Theory Comput 2009; 5:2401-14. [DOI: 10.1021/ct900240s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert Send
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany
| | - Dage Sundholm
- Department of Chemistry, P.O. Box 55 (A.I. Virtanens plats 1), University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikael P. Johansson
- Lundbeck Foundation Centre for Theoretical Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark
| | - Filip Pawłowski
- Physics Institute, Kazimierz Wielki University, Plac Weyssenhoffa 11, PL-85-072 Bydgoszcz, Poland
| |
Collapse
|
31
|
Lehtonen O, Sundholm D, Send R, Johansson MP. Coupled-cluster and density functional theory studies of the electronic excitation spectra of trans-1,3-butadiene and trans-2-propeniminium. J Chem Phys 2009; 131:024301. [DOI: 10.1063/1.3158990] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
32
|
Durbeej B. On the primary event of phytochrome: quantum chemical comparison of photoreactions at C4, C10 and C15. Phys Chem Chem Phys 2009; 11:1354-61. [PMID: 19224036 DOI: 10.1039/b811813b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytochromes are widespread photoreceptors responsive to red and far-red light that exist in two photochromic forms Pr (inactive) and Pfr (active). The Pr --> Pfr conversion proceeds through a series of events initiated by Z-->E photoisomerization of the tetrapyrrole chromophore, believed to occur at C15 of the methine bridge between rings C and D. Recent crystal structures show that ring D in Pr is less tightly packed by the protein than rings A, B and C, which should favor the C15 reaction over reactions at C4 (AB methine bridge) and C10 (BC). In the present work, quantum chemical methods are used to establish the intrinsic reactivity of the chromophore towards all three possible Z-->E isomerization events in the absence of steric effects and specific interactions with the protein. Using a level of theory that reproduces spectroscopic data with an accuracy of approximately 0.2 eV, it is demonstrated that isolated conditions allow the C10 photoreaction to substantially dominate. This finding suggests that the different degrees of ring-packing observed in the protein are crucial not only to facilitate a reaction at C15, but also to prevent an intrinsically more favorable reaction at C10 from taking place.
Collapse
Affiliation(s)
- Bo Durbeej
- Department of Chemistry, University of Siena, Via Aldo Moro 2, I-53100, Siena, Italy.
| |
Collapse
|
33
|
Pescitelli G, Sreerama N, Salvadori P, Nakanishi K, Berova N, Woody RW. Inherent Chirality Dominates the Visible/Near-Ultraviolet CD Spectrum of Rhodopsin. J Am Chem Soc 2008; 130:6170-81. [DOI: 10.1021/ja711009y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Pisa, via Risorgimento 35, I-56126 Pisa, Italy, Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, and Department of Chemistry, Columbia University, 3000 Broadway, MC 3114, New York 10027
| | - Narasimha Sreerama
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Pisa, via Risorgimento 35, I-56126 Pisa, Italy, Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, and Department of Chemistry, Columbia University, 3000 Broadway, MC 3114, New York 10027
| | - Piero Salvadori
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Pisa, via Risorgimento 35, I-56126 Pisa, Italy, Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, and Department of Chemistry, Columbia University, 3000 Broadway, MC 3114, New York 10027
| | - Koji Nakanishi
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Pisa, via Risorgimento 35, I-56126 Pisa, Italy, Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, and Department of Chemistry, Columbia University, 3000 Broadway, MC 3114, New York 10027
| | - Nina Berova
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Pisa, via Risorgimento 35, I-56126 Pisa, Italy, Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, and Department of Chemistry, Columbia University, 3000 Broadway, MC 3114, New York 10027
| | - Robert W. Woody
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Pisa, via Risorgimento 35, I-56126 Pisa, Italy, Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, and Department of Chemistry, Columbia University, 3000 Broadway, MC 3114, New York 10027
| |
Collapse
|
34
|
The molecular structure of a curl-shaped retinal isomer. J Mol Model 2008; 14:717-26. [DOI: 10.1007/s00894-008-0284-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
|
35
|
Send R, Sundholm D. Coupled-cluster studies of the lowest excited states of the 11-cis-retinal chromophore. Phys Chem Chem Phys 2007; 9:2862-7. [PMID: 17538731 DOI: 10.1039/b616137e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first few excited states of the 11-cis-retinal (PSB11) chromophore have been studied at the coupled-cluster approximative singles and doubles (CC2) level using triple-zeta quality basis sets augmented with double sets of polarisation functions. The two lowest vertical excitation energies of 2.14 and 3.21 eV are in good agreement with recently reported experimental values of 2.03 and 3.18 eV obtained in molecular beam measurements. Calculations at the time-dependent density functional theory (TDDFT) level using the B3LYP hybrid functional yield vertical excitation energies of 2.34 and 3.10 eV for the two lowest states. Zero-point vibrational energy (ZPVE) corrections of -0.09 and -0.17 eV were deduced from the harmonic vibrational frequencies for the ground and excited states calculated at the density functional theory (DFT) and TDDFT level, respectively, using the B3LYP hybrid functional.
Collapse
Affiliation(s)
- Robert Send
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, 76128, Karlsruhe, Germany
| | | |
Collapse
|