1
|
Du Y, Kanamori T, Yaginuma Y, Yoshida N, Kaneko S, Yuasa H. Diffusion of 1O 2 along the PNA backbone diminishes the efficiency of photooxidation of PNA/DNA duplexes by biphenyl photosensitizer. Bioorg Med Chem Lett 2024; 114:129988. [PMID: 39396684 DOI: 10.1016/j.bmcl.2024.129988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Nitrobiphenyl photosensitizer (NBP)-peptide nucleic acids (PNA) conjugates were synthesized to develop a tool for photo-knockdown of target DNAs. The presence of NBP hardly hindered duplex formation with the complementary single strand DNA as demonstrated by the comparison of Tm values and CD spectra with those for standard PNA/DNA duplexes. However, the photooxidation of guanines in NBP-PNA/DNAs was significantly less effective than those of corresponding NBP-DNA/DNA. Production of singlet oxygen (1O2) during the photooxidation was confirmed by consumption of furfuryl alcohol, a 1O2 detector. The poor photooxidation efficiency was ameliorated with 1O2 generated from an externally added NBP derivative. It was found that, when complexed with the sticky end of a double strand DNA, NBP-PNA was able to photooxidize G in the DNA/DNA duplex region, whereas G in the PNA/DNA duplex region was considerably unreactive. These results suggest that 1O2 produced from NBP-PNA tends to quench during diffusion along the PNA/DNA backbone, whereas quenching is less likely during diffusion along DNA/DNA region.
Collapse
Affiliation(s)
- Yaoyao Du
- School of Life Science and Technology, Institute of Science Tokyo, 4259 J2-10 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Takashi Kanamori
- School of Life Science and Technology, Institute of Science Tokyo, 4259 J2-10 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yuma Yaginuma
- School of Life Science and Technology, Institute of Science Tokyo, 4259 J2-10 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Nanai Yoshida
- School of Life Science and Technology, Institute of Science Tokyo, 4259 J2-10 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Shota Kaneko
- School of Life Science and Technology, Institute of Science Tokyo, 4259 J2-10 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hideya Yuasa
- School of Life Science and Technology, Institute of Science Tokyo, 4259 J2-10 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
2
|
Ambrosio F, Landi A, Peluso A, Capobianco A. Quantum Chemical Insights into DNA Nucleobase Oxidation: Bridging Theory and Experiment. J Chem Theory Comput 2024; 20:9708-9719. [PMID: 39437005 DOI: 10.1021/acs.jctc.4c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The oxidation free energies of DNA nucleobases in aqueous solution are still matter of extensive discussion because of the contrasting results reported so far. With the aim of settling a longstanding debate about the oxidation potentials of DNA constituents, herein we report the results of state-of-the-art DFT-based molecular dynamics simulations, in which the whole solvent environment is modeled at the atomistic level, by using DFT supercell calculations, with periodic boundary conditions. Calculated vertical ionization energies are very close to those observed by photoelectron spectroscopy both in the gas phase and in solution. One-electron oxidation free energies in aqueous solution agree well with the results of differential pulse voltammetry measurements and with those inferred by photoelectron spectroscopy with the aid of theoretical computations to estimate vibrational relaxation.
Collapse
Affiliation(s)
- Francesco Ambrosio
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, I-85100 Potenza (PZ), Italy
| | - Alessandro Landi
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano (SA), Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano (SA), Italy
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano (SA), Italy
| |
Collapse
|
3
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
4
|
Lucia-Tamudo J, Nogueira JJ, Díaz-Tendero S. Charge Transfer Mechanism in Guanine-Based Self-Assembled Monolayers on a Gold Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15129-15139. [PMID: 38984413 PMCID: PMC11270990 DOI: 10.1021/acs.langmuir.4c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
In this work, we have theoretically determined the one-electron oxidation potentials and charge transfer mechanisms in complex systems based on a self-assembled monolayer of guanine molecules adsorbed on a gold surface through different organic linkers. Classical molecular dynamics simulations were carried out to sample the conformational space of both the neutral and the cationic species. Thus, the redox potentials were determined for the ensembles of geometries through multiscale quantum-mechanics/molecular-mechanics/continuum solvation model calculations in the framework of the Marcus theory and in combination with an additive scheme previously developed. In this context, conformational sampling, description of the environment, and effects caused by the linker have been considered. Applying this methodology, we unravel the phenomena of electric current transport by evaluating the different stages in which charge transfer could occur. The results revealed how the positive charge migrates from the organic layer to the gold surface. Specifically, the transport mechanism seems to take place mainly along a single ligand and driven with the help of the electrostatic interactions of the surrounding molecules. Aside, several self-assembled monolayers with different linkers have been analyzed to understand how the nature of that moiety can tune the redox properties and the efficiency of the transport. We have found that the conjugation between the guanine and the linker, at the same time conjugated to the gold surface, gives rise to a more efficient transport. In conclusion, the established computational protocol sheds light on the mechanism behind charge transport in electrochemical DNA-based biosensor nanodevices.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Lucia-Tamudo J, Díaz-Tendero S, Nogueira JJ. Modeling One-Electron Oxidation Potentials and Hole Delocalization in Double-Stranded DNA by Multilayer and Dynamic Approaches. J Chem Inf Model 2024; 64:4802-4810. [PMID: 38856665 PMCID: PMC11200263 DOI: 10.1021/acs.jcim.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The number of innovative applications for DNA nowadays is growing quickly. Its use as a nanowire or electrochemical biosensor leads to the need for a deep understanding of the charge-transfer process along the strand, as well as its redox properties. These features are computationally simulated and analyzed in detail throughout this work by combining molecular dynamics, multilayer schemes, and the Marcus theory. One-electron oxidation potential and hole delocalization have been analyzed for six DNA double strands that cover all possible binary combinations of nucleotides. The results have revealed that the one-electron oxidation potential decreases with respect to the single-stranded DNA, giving evidence that the greater rigidity of a double helix induces an increase in the capacity of storing the positive charge generated upon oxidation. In addition, the hole is mainly stored in nucleobases with large reducer character, i.e., purines, especially when those are arranged in a stacked configuration in the same strand. From the computational point of view, the sampling needed to describe biological systems implies a significant computational cost. Here, we show that a small number of representative conformations generated by clustering analysis provides accurate results when compared with those obtained from sampling, reducing considerably the computational cost.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
Balu KE, Almohdar D, Ratcliffe J, Tang Q, Parwal T, Çağlayan M. Structural and biochemical characterization of LIG1 during mutagenic nick sealing of oxidatively damaged ends at the final step of DNA repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592774. [PMID: 38766188 PMCID: PMC11100680 DOI: 10.1101/2024.05.06.592774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
DNA ligase 1 (LIG1) joins broken strand-breaks in the phosphodiester backbone to finalize DNA repair pathways. We previously reported that LIG1 fails on nick repair intermediate with 3'-oxidative damage incorporated by DNA polymerase (pol) β at the downstream steps of base excision repair (BER) pathway. Here, we determined X-ray structures of LIG1/nick DNA complexes containing 3'-8oxodG and 3'-8oxorG opposite either a templating Cytosine or Adenine and demonstrated that the ligase active site engages with mutagenic repair intermediates during steps 2 and 3 of the ligation reaction referring to the formation of DNA-AMP intermediate and a final phosphodiester bond, respectively. Furthermore, we showed the mutagenic nick sealing of DNA substrates with 3'-8oxodG:A and 3'-8oxorG:A by LIG1 wild-type, immunodeficiency disease-associated variants, and DNA ligase 3α (LIG3α) in vitro . Finally, we observed that LIG1 and LIG3α seal resulting nick after an incorporation of 8oxorGTP:A by polβ and AP-Endonuclease 1 (APE1) can clean oxidatively damaged ends at the final steps. Overall, our findings uncover a mechanistic insight into how LIG1 discriminates DNA or DNA/RNA junctions including oxidative damage and a functional coordination between the downstream enzymes, polβ, APE1, and BER ligases, to process mutagenic repair intermediates to maintain repair efficiency.
Collapse
|
7
|
N M, Kumar PS, Manna D. Chemical Methods to Identify Epigenetic Modifications in Cytosine Bases. Chem Asian J 2024; 19:e202301005. [PMID: 38206202 DOI: 10.1002/asia.202301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Chemical modifications to Cytosine bases are among the most studied epigenetic markers and their detection in the human genome plays a crucial role in gaining more insights about gene regulation, prognosis of genetic disorders and unraveling genetic inheritance patterns. The Cytosine methylated at the 5th position and oxidized derivatives thereof generated in the demethylation pathways, perform separate and unique epigenetic functions in an organism. As the presence of various Cytosine modifications is associated with diverse diseases, including cancer, there has been a strong focus on developing methods, both chemical and alternative approaches, capable of detecting these modifications at a single-base resolution across the entire genome. In this comprehensive review, we aim to consolidate the various chemical methods and understanding their chemistry that have been established to date for the detection of various Cytosine modifications.
Collapse
Affiliation(s)
- Madhumitha N
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Parvathy S Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
8
|
Armijos-Capa G, Tuninetti JS, Thomas AH, Serrano MP. Enhancement of the Photosensitizing Properties of 6-Carboxypterin through Covalent Binding to the pH-Responsive and Biocompatible Poly(allylamine Hydrochloride). ACS APPLIED MATERIALS & INTERFACES 2024; 16:3922-3934. [PMID: 38061363 DOI: 10.1021/acsami.3c13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
A polymeric photosensitizer was synthesized through covalent attachment of the natural photosensitizer 6-carboxypterin (Cap) to a poly(allylamine hydrochloride) (PAH) polymer. The optimization of the functionalization steps and purification procedure is described. The overall yield of the functionalization reaction was 67% to generate the modified polymer (PAH-Cap), featuring a Cap substitution degree of approximately 1% and advantageous spectroscopic properties. Photosensitizing properties of PAH-Cap were observed to occur via both photooxidation mechanisms, i.e., type I and type II. This feature was demonstrated using a biologically relevant target molecule, 2'-deoxyguanosine (dG). The spectroscopic, photophysical, and photochemical behaviors in aqueous environments were studied and compared to Cap. To explore possible further relevant biological applications, experiments with PAH-Cap and dG were carried out at physiological pH. PAH-Cap can generate singlet molecular oxygen and initiate an electron transfer process at pH 7 in air-saturated solutions upon UVA irradiation. Moreover, based on its spectroscopic features, visible light can be used to initiate the photooxidation of biological compounds in water, with many interesting advantages compared to free Cap and other related pteridines. These advantages include an enhancement of the photosensitizing effect at physiological pH and the potential of PAH-Cap for its use as a building block in supramolecular assemblies. The functionalization strategy hereby described can be employed for the preparation of robust photoactive polymers with great potential for its application in photodynamic therapy (PDT) and disinfection technologies.
Collapse
Affiliation(s)
- Gerardo Armijos-Capa
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata B1904DPI, Argentina
| | - Jimena S Tuninetti
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata B1904DPI, Argentina
| | - Andrés H Thomas
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata B1904DPI, Argentina
| | - Mariana P Serrano
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), La Plata B1904DPI, Argentina
| |
Collapse
|
9
|
Kruchinin AA, Kamzeeva PN, Zharkov DO, Aralov AV, Makarova AV. 8-Oxoadenine: A «New» Player of the Oxidative Stress in Mammals? Int J Mol Sci 2024; 25:1342. [PMID: 38279342 PMCID: PMC10816367 DOI: 10.3390/ijms25021342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Numerous studies have shown that oxidative modifications of guanine (7,8-dihydro-8-oxoguanine, 8-oxoG) can affect cellular functions. 7,8-Dihydro-8-oxoadenine (8-oxoA) is another abundant paradigmatic ambiguous nucleobase but findings reported on the mutagenicity of 8-oxoA in bacterial and eukaryotic cells are incomplete and contradictory. Although several genotoxic studies have demonstrated the mutagenic potential of 8-oxoA in eukaryotic cells, very little biochemical and bioinformatics data about the mechanism of 8-oxoA-induced mutagenesis are available. In this review, we discuss dual coding properties of 8-oxoA, summarize historical and recent genotoxicity and biochemical studies, and address the main protective cellular mechanisms of response to 8-oxoA. We also discuss the available structural data for 8-oxoA bypass by different DNA polymerases as well as the mechanisms of 8-oxoA recognition by DNA repair enzymes.
Collapse
Affiliation(s)
- Alexander A. Kruchinin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| | - Polina N. Kamzeeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia;
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Andrey V. Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Alena V. Makarova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| |
Collapse
|
10
|
Zanetti D, Matuszewska O, Giorgianni G, Pezzetta C, Demitri N, Bonifazi D. Photoredox Annulation of Polycyclic Aromatic Hydrocarbons. JACS AU 2023; 3:3045-3054. [PMID: 38034957 PMCID: PMC10685425 DOI: 10.1021/jacsau.3c00438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023]
Abstract
The rise of interest in using polycyclic aromatic hydrocarbons (PAHs) and molecular graphenoids in optoelectronics has recently stimulated the growth of modern synthetic methodologies giving access to intramolecular aryl-aryl couplings. Here, we show that a radical-based annulation protocol allows expansion of the planarization approaches to prepare functionalized molecular graphenoids. The enabler of this reaction is peri-xanthenoxanthene, the photocatalyst which undergoes photoinduced single electron transfer with an ortho-oligoarylenyl precursor bearing electron-withdrawing and nucleofuge groups. Dissociative electron transfer enables the formation of persistent aryl radical intermediates, the latter undergoing intramolecular C-C bond formation, allowing the planarization reaction to occur. The reaction conditions are mild and compatible with various electron-withdrawing and -donating substituents on the aryl rings as well as heterocycles and PAHs. The method could be applied to induce double annulation reactions, allowing the synthesis of π-extended scaffolds with different edge peripheries.
Collapse
Affiliation(s)
- Davide Zanetti
- Institute
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Oliwia Matuszewska
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Giuliana Giorgianni
- Institute
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Cristofer Pezzetta
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Nicola Demitri
- Elettra—Sincrotrone
Trieste, S.S. 14 Km 163.5
in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Davide Bonifazi
- Institute
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
11
|
Lucia-Tamudo J, Alcamí M, Díaz-Tendero S, Nogueira JJ. One-Electron Oxidation Potentials and Hole Delocalization in Heterogeneous Single-Stranded DNA. Biochemistry 2023; 62:3312-3322. [PMID: 37923303 PMCID: PMC10666269 DOI: 10.1021/acs.biochem.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
The study of DNA processes is essential to understand not only its intrinsic biological functions but also its role in many innovative applications. The use of DNA as a nanowire or electrochemical biosensor leads to the need for a deep investigation of the charge transfer process along the strand as well as of the redox properties. In this contribution, the one-electron oxidation potential and the charge delocalization of the hole formed after oxidation are computationally investigated for different heterogeneous single-stranded DNA strands. We have established a two-step protocol: (i) molecular dynamics simulations in the frame of quantum mechanics/molecular mechanics (QM/MM) were performed to sample the conformational space; (ii) energetic properties were then obtained within a QM1/QM2/continuum approach in combination with the Marcus theory over an ensemble of selected geometries. The results reveal that the one-electron oxidation potential in the heterogeneous strands can be seen as a linear combination of that property within the homogeneous strands. In addition, the hole delocalization between different nucleobases is, in general, small, supporting the conclusion of a hopping mechanism for charge transport along the strands. However, charge delocalization becomes more important, and so does the tunneling mechanism contribution, when the reducing power of the nucleobases forming the strand is similar. Moreover, charge delocalization is slightly enhanced when there is a correlation between pairs of some of the interbase coordinates of the strand: twist/shift, twist/slide, shift/slide, and rise/tilt. However, the internal structure of the strand is not the predominant factor for hole delocalization but the specific sequence of nucleotides that compose the strand.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department
of Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Manuel Alcamí
- Department
of Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Sergio Díaz-Tendero
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
12
|
Andrés CMC, de la Lastra JMP, Juan CA, Plou FJ, Pérez-Lebeña E. Chemical Insights into Oxidative and Nitrative Modifications of DNA. Int J Mol Sci 2023; 24:15240. [PMID: 37894920 PMCID: PMC10607741 DOI: 10.3390/ijms242015240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
This review focuses on DNA damage caused by a variety of oxidizing, alkylating, and nitrating species, and it may play an important role in the pathophysiology of inflammation, cancer, and degenerative diseases. Infection and chronic inflammation have been recognized as important factors in carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Cellular DNA is continuously exposed to a very high level of genotoxic stress caused by physical, chemical, and biological agents, with an estimated 10,000 modifications occurring every hour in the genetic material of each of our cells. This review highlights recent developments in the chemical biology and toxicology of 2'-deoxyribose oxidation products in DNA.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. AstrofísicoFco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
13
|
Benny J, Liu J. Spin-orbit charge transfer from guanine and 9-methylguanine radical cations to nitric oxide radicals and the induced triplet-to-singlet intersystem crossing. J Chem Phys 2023; 159:085102. [PMID: 37638623 DOI: 10.1063/5.0160921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Nitric oxide (●NO) participates in many biological activities, including enhancing DNA radiosensitivity in ionizing radiation-based radiotherapy. To help understand the radiosensitization of ●NO, we report reaction dynamics between ●NO and the radical cations of guanine (a 9HG●+ conformer) and 9-methylguanine (9MG●+). On the basis of the formation of 9HG●+ and 9MG●+ in the gas phase and the collisions of the radical cations with ●NO in a guided-ion beam mass spectrometer, the charge transfer reactions of 9HG●+ and 9MG●+ with ●NO were examined. For both reactions, the kinetic energy-dependent product ion cross sections revealed a threshold energy that is 0.24 (or 0.37) eV above the 0 K product 9HG (or 9MG) + NO+ asymptote. To interrogate this abnormal threshold behavior, the reaction potential energy surface for [9MG + NO]+ was mapped out at closed-shell singlet, open-shell singlet, and triplet states using density functional and coupled cluster theories. The results showed that the charge transfer reaction requires the interaction of a triplet-state surface originating from a reactant-like precursor complex 3[9MG●+(↑)⋅(↑)●NO] with a closed-shell singlet-state surface evolving from a charge-transferred complex 1[9MG⋅NO+]. During the reaction, an electron is transferred from π∗(NO) to perpendicular π∗(9MG), which introduces a change in orbital angular momentum. The latter offsets the change in electron spin angular momentum and facilitates intersystem crossing. The reaction threshold in excess of the 0 K thermochemistry and the low charge-transfer efficiency are rationalized by the vibrational excitation in the product ion NO+ and the kinetic shift arising from a long-lived triplet intermediate.
Collapse
Affiliation(s)
- Jonathan Benny
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| |
Collapse
|
14
|
Simpson MM, Lam CC, Goodman JM, Balasubramanian S. Selective Functionalisation of 5-Methylcytosine by Organic Photoredox Catalysis. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202304756. [PMID: 38516645 PMCID: PMC10953388 DOI: 10.1002/ange.202304756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 03/23/2024]
Abstract
The epigenetic modification 5-methylcytosine plays a vital role in development, cell specific gene expression and disease states. The selective chemical modification of the 5-methylcytosine methyl group is challenging. Currently, no such chemistry exists. Direct functionalisation of 5-methylcytosine would improve the detection and study of this epigenetic feature. We report a xanthone-photosensitised process that introduces a 4-pyridine modification at a C(sp3)-H bond in the methyl group of 5-methylcytosine. We propose a reaction mechanism for this type of reaction based on density functional calculations and apply transition state analysis to rationalise differences in observed reaction efficiencies between cyanopyridine derivatives. The reaction is initiated by single electron oxidation of 5-methylcytosine followed by deprotonation to generate the methyl group radical. Cross coupling of the methyl radical with 4-cyanopyridine installs a 4-pyridine label at 5-methylcytosine. We demonstrate use of the pyridination reaction to enrich 5-methylcytosine-containing ribonucleic acid.
Collapse
Affiliation(s)
- Mathew M. Simpson
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Ching Ching Lam
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Jonathan M. Goodman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Shankar Balasubramanian
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
- Cancer ResearchUKCambridge Institute Li Ka Shing CentreUniversity of CambridgeRobinson WayCB2 0RECambridgeUK
- School of Clinical MedicineUniversity of CambridgeCB2 0SPCambridgeUK
| |
Collapse
|
15
|
Simpson MM, Lam CC, Goodman JM, Balasubramanian S. Selective Functionalisation of 5-Methylcytosine by Organic Photoredox Catalysis. Angew Chem Int Ed Engl 2023; 62:e202304756. [PMID: 37118885 PMCID: PMC10952617 DOI: 10.1002/anie.202304756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 04/30/2023]
Abstract
The epigenetic modification 5-methylcytosine plays a vital role in development, cell specific gene expression and disease states. The selective chemical modification of the 5-methylcytosine methyl group is challenging. Currently, no such chemistry exists. Direct functionalisation of 5-methylcytosine would improve the detection and study of this epigenetic feature. We report a xanthone-photosensitised process that introduces a 4-pyridine modification at a C(sp3 )-H bond in the methyl group of 5-methylcytosine. We propose a reaction mechanism for this type of reaction based on density functional calculations and apply transition state analysis to rationalise differences in observed reaction efficiencies between cyanopyridine derivatives. The reaction is initiated by single electron oxidation of 5-methylcytosine followed by deprotonation to generate the methyl group radical. Cross coupling of the methyl radical with 4-cyanopyridine installs a 4-pyridine label at 5-methylcytosine. We demonstrate use of the pyridination reaction to enrich 5-methylcytosine-containing ribonucleic acid.
Collapse
Affiliation(s)
- Mathew M. Simpson
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Ching Ching Lam
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Jonathan M. Goodman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Shankar Balasubramanian
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
- Cancer ResearchUKCambridge Institute Li Ka Shing CentreUniversity of CambridgeRobinson WayCB2 0RECambridgeUK
- School of Clinical MedicineUniversity of CambridgeCB2 0SPCambridgeUK
| |
Collapse
|
16
|
Lucia-Tamudo J, Díaz-Tendero S, Nogueira JJ. Intramolecular and intermolecular hole delocalization rules the reducer character of isolated nucleobases and homogeneous single-stranded DNA. Phys Chem Chem Phys 2023; 25:14578-14589. [PMID: 37191244 DOI: 10.1039/d3cp00884c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The use of DNA strands as nanowires or electrochemical biosensors requires a deep understanding of charge transfer processes along the strand, as well as of the redox properties. These properties are computationally assessed in detail throughout this study. By applying molecular dynamics and hybrid QM/continuum and QM/QM/continuum schemes, the vertical ionization energies, adiabatic ionization energies, vertical attachment energies, one-electron oxidation potentials, and delocalization of the hole generated upon oxidation have been determined for nucleobases in their free form and as part of a pure single-stranded DNA. We show that the reducer ability of the isolated nucleobases is explained by the intramolecular delocalization of the positively charged hole, while the enhancement of the reducer character when going from aqueous solution to the strand correlates very well with the intermolecular hole delocalization. Our simulations suggest that the redox properties of DNA strands can be tuned by playing with the balance between intramolecular and intermolecular charge delocalization.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Sergio Díaz-Tendero
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
17
|
Lucia-Tamudo J, Nogueira JJ, Díaz-Tendero S. An Efficient Multilayer Approach to Model DNA-Based Nanobiosensors. J Phys Chem B 2023; 127:1513-1525. [PMID: 36779932 PMCID: PMC9969517 DOI: 10.1021/acs.jpcb.2c07225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In this work, we present a full computational protocol to successfully obtain the one-electron reduction potential of nanobiosensors based on a self-assembled monolayer of DNA nucleobases linked to a gold substrate. The model is able to account for conformational sampling and environmental effects at a quantum mechanical (QM) level efficiently, by combining molecular mechanics (MM) molecular dynamics and multilayer QM/MM/continuum calculations within the framework of Marcus theory. The theoretical model shows that a guanine-based biosensor is more prone to be oxidized than the isolated nucleobase in water due to the electrostatic interactions between the assembled guanine molecules. In addition, the redox properties of the biosensor can be tuned by modifying the nature of the linker that anchor the nucleobases to the metal support.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
18
|
Cárdenas G, Lucia‐Tamudo J, Mateo‐delaFuente H, Palmisano VF, Anguita‐Ortiz N, Ruano L, Pérez‐Barcia Á, Díaz‐Tendero S, Mandado M, Nogueira JJ. MoBioTools: A toolkit to setup quantum mechanics/molecular mechanics calculations. J Comput Chem 2023; 44:516-533. [PMID: 36507763 PMCID: PMC10107847 DOI: 10.1002/jcc.27018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
We present a toolkit that allows for the preparation of QM/MM input files from a conformational ensemble of molecular geometries. The package is currently compatible with trajectory and topology files in Amber, CHARMM, GROMACS and NAMD formats, and has the possibility to generate QM/MM input files for Gaussian (09 and 16), Orca (≥4.0), NWChem and (Open)Molcas. The toolkit can be used in command line, so that no programming experience is required, although it presents some features that can also be employed as a python application programming interface. We apply the toolkit in four situations in which different electronic-structure properties of organic molecules in the presence of a solvent or a complex biological environment are computed: the reduction potential of the nucleobases in acetonitrile, an energy decomposition analysis of tyrosine interacting with water, the absorption spectrum of an azobenzene derivative integrated into a voltage-gated ion channel, and the absorption and emission spectra of the luciferine/luciferase complex. These examples show that the toolkit can be employed in a manifold of situations for both the electronic ground state and electronically excited states. It also allows for the automatic correction of the active space in the case of CASSCF calculations on an ensemble of geometries, as it is shown for the azobenzene derivative photoswitch case.
Collapse
Affiliation(s)
- Gustavo Cárdenas
- Department of ChemistryUniversidad Autónoma de MadridMadridSpain
| | | | | | | | | | - Lorena Ruano
- Department of ChemistryUniversidad Autónoma de MadridMadridSpain
| | | | - Sergio Díaz‐Tendero
- Department of ChemistryUniversidad Autónoma de MadridMadridSpain
- Institute for Advanced Research in Chemistry (IAdChem)Universidad Autónoma de MadridMadridSpain
- Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridSpain
| | - Marcos Mandado
- Department of Physical ChemistryUniversity of VigoVigoSpain
| | - Juan J. Nogueira
- Department of ChemistryUniversidad Autónoma de MadridMadridSpain
- Institute for Advanced Research in Chemistry (IAdChem)Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
19
|
Giese B, Karamash M, Fromm KM. Chances and challenges of long-distance electron transfer for cellular redox reactions. FEBS Lett 2023; 597:166-173. [PMID: 36114008 DOI: 10.1002/1873-3468.14493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/14/2023]
Abstract
Biological redox reactions often use a set-up in which final redox partners are localized in different compartments and electron transfer (ET) among them is mediated by redox-active molecules. In enzymes, these ET processes occur over nm distances, whereas multi-protein filaments bridge μm ranges. Electrons are transported over cm ranges in cable bacteria, which are formed by thousands of cells. In this review, we describe molecular mechanisms that explain how respiration in a compartmentalized set-up ensures redox homeostasis. We highlight mechanistic studies on ET through metal-free peptides and proteins demonstrating that long-distance ET is possible because amino acids Tyr, Trp, Phe, and Met can act as relay stations. This cuts one long ET into several short reaction steps. The chances and challenges of long-distance ET for cellular redox reactions are then discussed.
Collapse
Affiliation(s)
- Bernd Giese
- Department of Chemistry, University of Fribourg, Switzerland
| | - Maksym Karamash
- Department of Chemistry, University of Fribourg, Switzerland
| | | |
Collapse
|
20
|
Hahm JY, Park J, Jang ES, Chi SW. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp Mol Med 2022; 54:1626-1642. [PMID: 36266447 PMCID: PMC9636213 DOI: 10.1038/s12276-022-00822-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022] Open
Abstract
In pathophysiology, reactive oxygen species control diverse cellular phenotypes by oxidizing biomolecules. Among these, the guanine base in nucleic acids is the most vulnerable to producing 8-oxoguanine, which can pair with adenine. Because of this feature, 8-oxoguanine in DNA (8-oxo-dG) induces a G > T (C > A) mutation in cancers, which can be deleterious and thus actively repaired by DNA repair pathways. 8-Oxoguanine in RNA (o8G) causes problems in aberrant quality and translational fidelity, thereby it is subjected to the RNA decay pathway. In addition to oxidative damage, 8-oxo-dG serves as an epigenetic modification that affects transcriptional regulatory elements and other epigenetic modifications. With the ability of o8G•A in base pairing, o8G alters structural and functional RNA-RNA interactions, enabling redirection of posttranscriptional regulation. Here, we address the production, regulation, and function of 8-oxo-dG and o8G under oxidative stress. Primarily, we focus on the epigenetic and epitranscriptional roles of 8-oxoguanine, which highlights the significance of oxidative modification in redox-mediated control of gene expression.
Collapse
Affiliation(s)
- Ja Young Hahm
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Jongyeun Park
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Eun-Sook Jang
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea
| | - Sung Wook Chi
- grid.222754.40000 0001 0840 2678Department of Life Sciences, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678Institute of Life Sciences and Biotechnology, Korea University, Seoul, 02481 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481 Republic of Korea
| |
Collapse
|
21
|
Xue Z, Demple B. Knockout and Inhibition of Ape1: Roles of Ape1 in Base Excision DNA Repair and Modulation of Gene Expression. Antioxidants (Basel) 2022; 11:antiox11091817. [PMID: 36139891 PMCID: PMC9495735 DOI: 10.3390/antiox11091817] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector-1 (Ape1/Ref-1) is the major apurinic/apyrimidinic (AP) endonuclease in mammalian cells. It functions mainly in the base excision repair pathway to create a suitable substrate for DNA polymerases. Human Ape1 protein can activate some transcription factors to varying degrees, dependent on its N-terminal, unstructured domain, and some of the cysteines within it, apparently via a redox mechanism in some cases. Many cancer studies also suggest that Ape1 has potential for prognosis in terms of the protein level or intracellular localization. While homozygous disruption of the Ape1 structural gene APEX1 in mice causes embryonic lethality, and most studies in cell culture indicate that the expression of Ape1 is essential, some recent studies reported the isolation of viable APEX1 knockout cells with only mild phenotypes. It has not been established by what mechanism the Ape1-null cell lines cope with the endogenous DNA damage that the enzyme normally handles. We review the enzymatic and other activities of Ape1 and the recent studies of the properties of the APEX1 knockout lines. The APEX1 deletions in CH12F3 and HEK293 FT provide an opportunity to test for possible off-target effects of Ape1 inhibition. For this work, we tested the Ape1 endonuclease inhibitor Compound 3 and the redox inhibitor APX2009. Our results confirmed that both APEX1 knockout cell lines are modestly more sensitive to killing by an alkylating agent than their Ape1-proficient cells. Surprisingly, the knockout lines showed equal sensitivity to direct killing by either inhibitor, despite the lack of the target protein. Moreover, the CH12F3 APEX1 knockout was even more sensitive to Compound 3 than its APEX1+ counterpart. Thus, it appears that both Compound 3 and APX2009 have off-target effects. In cases where this issue may be important, it is advisable that more specific endpoints than cell survival be tested for establishing mechanism.
Collapse
Affiliation(s)
- Zhouyiyuan Xue
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
- Molecular and Cellular Biochemistry Program, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
- Correspondence: ; Tel.: +1-(631)-444-3978
| |
Collapse
|
22
|
Kekić T, Lietard J. Sequence-dependence of Cy3 and Cy5 dyes in 3' terminally-labeled single-stranded DNA. Sci Rep 2022; 12:14803. [PMID: 36045146 PMCID: PMC9428881 DOI: 10.1038/s41598-022-19069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Fluorescence is an ideal tool to see and manipulate nucleic acids, and engage in their rich and complex biophysical properties. Labeling is the preferred approach to track and quantify fluorescence with nucleic acids and cyanine dyes are emblematic in this context. The fluorescent properties of cyanine dyes are known to be sequence-dependent, with purines in the immediate vicinity increasing the fluorescence intensity of Cy3 and Cy5 dyes, and the ability of nucleobases to modulate the photophysical properties of common fluorophores may influence fluorescence measurements in critical assays such as FISH, qPCR or high-throughput sequencing. In this paper, we comprehensively map the sequence-dependence of Cy3 and Cy5 dyes in 3'-fluorescently labeled single-stranded DNA by preparing the complete permutation library of the 5 consecutive nucleotides immediately adjacent to the dye, or 1024 sequences. G-rich motifs dominate the high fluorescence range, while C-rich motifs lead to significant quenching, an observation consistent with 5'-labeled systems. We also uncover GCGC patterns in the extreme top range of fluorescence, a feature specific to 3'-Cy3 and Cy5 oligonucleotides. This study represents the final piece in linking nucleotide identity to fluorescence changes for Cy3, Cy5 and fluorescein in all 3', 5', single-stranded and double-stranded DNA formats.
Collapse
Affiliation(s)
- Tadija Kekić
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
23
|
Angelov D, Boopathi R, Lone IN, Menoni H, Dimitrov S, Cadet J. Capturing Protein-Nucleic Acid Interactions by High-Intensity Laser-Induced Covalent Crosslinking. Photochem Photobiol 2022; 99:296-312. [PMID: 35997098 DOI: 10.1111/php.13699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Interactions of DNA with structural proteins such as histones, regulatory proteins, and enzymes play a crucial role in major cellular processes such as transcription, replication and repair. The in vivo mapping and characterization of the binding sites of the involved biomolecules are of primary importance for a better understanding of genomic deployment that is implicated in tissue and developmental stage-specific gene expression regulation. The most powerful and commonly used approach to date is immunoprecipitation of chemically cross-linked chromatin (XChIP) coupled with sequencing analysis (ChIP-seq). While the resolution and the sensitivity of the high-throughput sequencing techniques have been constantly improved little progress has been achieved in the crosslinking step. Because of its low efficiency the use of the conventional UVC lamps remains very limited while the formaldehyde method was established as the "gold standard" crosslinking agent. Efficient biphotonic crosslinking of directly interacting nucleic acid-protein complexes by a single short UV laser pulse has been introduced as an innovative technique for overcoming limitations of conventionally used chemical and photochemical approaches. In this survey, the main available methods including the laser approach are critically reviewed for their ability to generate DNA-protein crosslinks in vitro model systems and cells.
Collapse
Affiliation(s)
- Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, CNRS UMR 5239, 46 Allée d'Italie, 69007, Lyon, France.,Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, Izmir 35330, Turkey
| | - Ramachandran Boopathi
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, CNRS UMR 5239, 46 Allée d'Italie, 69007, Lyon, France.,Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - Imtiaz Nisar Lone
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, Izmir 35330, Turkey
| | - Hervé Menoni
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700, La Tronche, France
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700, La Tronche, France
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| |
Collapse
|
24
|
Moe MM, Saito T, Tsai M, Liu J. Singlet O 2 Oxidation of the Radical Cation versus the Dehydrogenated Neutral Radical of 9-Methylguanine in a Watson-Crick Base Pair. Consequences of Structural Context. J Phys Chem B 2022; 126:5458-5472. [PMID: 35849846 DOI: 10.1021/acs.jpcb.2c03748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In DNA, guanine is the most susceptible to oxidative damage by exogenously and endogenously produced electronically excited singlet oxygen (1O2). The reaction mechanism and the product outcome strongly depend on the nucleobase ionization state and structural context. Previously, exposure of a monomeric 9-methylguanine radical cation (9MG•+, a model guanosine compound) to 1O2 was found to result in the formation of an 8-peroxide as the initial product. The present work explores the 1O2 oxidation of 9MG•+ and its dehydrogenated neutral form [9MG - H]• within a Watson-Crick base pair consisting of one-electron-oxidized 9-methylguanine-1-methylcytosine [9MG·1MC]•+. Emphasis is placed on entangling the base pair structural context and intra-base pair proton transfer with and consequences thereof on the singlet oxygenation of guanine radical species. Electrospray ionization coupled with guided-ion beam tandem mass spectrometry was used to study the formation and reaction of guanine radical species in the gas phase. The 1O2 oxidation of both 9MG•+ and [9MG - H]• is exothermic and proceeds barrierlessly either in an isolated monomer or within a base pair. Single- and multi-referential theories were tested for treating spin contaminations and multi-configurations occurring in radical-1O2 interactions, and reaction potential energy surfaces were mapped out to support experimental findings. The work provides a comprehensive profile for the singlet oxygenation of guanine radicals in different charge states and in the absence and the presence of base pairing. All results point to an 8-peroxide as the major oxidation product in the experiment, and the oxidation becomes slightly more favorable in a neutral radical form. On the basis of a variety of reaction pathways and product profiles observed in the present and previous studies, the interplay between guanine structure, base pairing, and singlet oxygenation and its biological implications are discussed.
Collapse
Affiliation(s)
- May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| | - Toru Saito
- Department of Biomedical Information Science, Graduate School of Information Science, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-Ku, 731-3194 Hiroshima, Japan
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Avenue, Long Island City, New York 11101, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
25
|
Lucia-Tamudo J, Cárdenas G, Anguita-Ortiz N, Díaz-Tendero S, Nogueira JJ. Computation of Oxidation Potentials of Solvated Nucleobases by Static and Dynamic Multilayer Approaches. J Chem Inf Model 2022; 62:3365-3380. [PMID: 35771991 PMCID: PMC9326891 DOI: 10.1021/acs.jcim.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The determination
of the redox properties of nucleobases is of
paramount importance to get insight into the charge-transfer processes
in which they are involved, such as those occurring in DNA-inspired
biosensors. Although many theoretical and experimental studies have
been conducted, the value of the one-electron oxidation potentials
of nucleobases is not well-defined. Moreover, the most appropriate
theoretical protocol to model the redox properties has not been established
yet. In this work, we have implemented and evaluated different static
and dynamic approaches to compute the one-electron oxidation potentials
of solvated nucleobases. In the static framework, two thermodynamic
cycles have been tested to assess their accuracy against the direct
determination of oxidation potentials from the adiabatic ionization
energies. Then, the introduction of vibrational sampling, the effect
of implicit and explicit solvation models, and the application of
the Marcus theory have been analyzed through dynamic methods. The
results revealed that the static direct determination provides more
accurate results than thermodynamic cycles. Moreover, the effect of
sampling has not shown to be relevant, and the results are improved
within the dynamic framework when the Marcus theory is applied, especially
in explicit solvent, with respect to the direct approach. Finally,
the presence of different tautomers in water does not affect significantly
the one-electron oxidation potentials.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gustavo Cárdenas
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nuria Anguita-Ortiz
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
26
|
Chen CG, Nardi AN, Amadei A, D’Abramo M. Theoretical Modeling of Redox Potentials of Biomolecules. Molecules 2022; 27:1077. [PMID: 35164342 PMCID: PMC8838479 DOI: 10.3390/molecules27031077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
The estimation of the redox potentials of biologically relevant systems by means of theoretical-computational approaches still represents a challenge. In fact, the size of these systems typically does not allow a full quantum-mechanical treatment needed to describe electron loss/gain in such a complex environment, where the redox process takes place. Therefore, a number of different theoretical strategies have been developed so far to make the calculation of the redox free energy feasible with current computational resources. In this review, we provide a survey of such theoretical-computational approaches used in this context, highlighting their physical principles and discussing their advantages and limitations. Several examples of these approaches applied to the estimation of the redox potentials of both proteins and nucleic acids are described and critically discussed. Finally, general considerations on the most promising strategies are reported.
Collapse
Affiliation(s)
- Cheng Giuseppe Chen
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.G.C.); (A.N.N.)
| | | | - Andrea Amadei
- Department of Chemical and Technological Sciences, Tor Vergata University, 00133 Rome, Italy;
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.G.C.); (A.N.N.)
| |
Collapse
|
27
|
Lietard J, Ameur D, Somoza MM. Sequence-dependent quenching of fluorescein fluorescence on single-stranded and double-stranded DNA. RSC Adv 2022; 12:5629-5637. [PMID: 35425544 PMCID: PMC8982050 DOI: 10.1039/d2ra00534d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Fluorescein is commonly used to label macromolecules, particularly proteins and nucleic acids, but its fluorescence is known to be strongly dependent on its direct chemical environment.
Collapse
Affiliation(s)
- Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Dominik Ameur
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Mark M. Somoza
- Institute of Inorganic Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
28
|
Albarqouni Y, Ali GA, Lee SP, Mohd-Hairul AR, Algarni H, Chong KF. Dual-functional single stranded deoxyribonucleic acid for graphene oxide reduction and charge storage enhancement. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Zhou W, Liu J. Reaction mechanism and dynamics for C8-hydroxylation of 9-methylguanine radical cation by water molecules. Phys Chem Chem Phys 2021; 23:24464-24477. [PMID: 34698322 DOI: 10.1039/d1cp03884b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In contrast to their spontaneous deprotonation in aqueous solution, reactions of guanine and guanosine radical cations with water in the gas phase are exclusively initiated by hydration of the radical cations as reported in recent work (Y. Sun et al., Phys. Chem. Chem. Phys., 2018, 20, 27510). As gas-phase hydration reactions closely mimic the actual scenario for guanine radical cations in double-stranded DNA, exploration of subsequent reactions within their water complexes can provide an insight into the resulting oxidative damage to nucleosides. Herein guided-ion beam mass spectrometry experiment and direct dynamics trajectory simulations were carried out to examine prototype complexes of the 9-methylguanine radical cation with one and two water ligands (i.e., 9MG˙+·(H2O)1-2) in the gas phase, wherein the complexes were activated by collisional activation in the experiment and by thermal excitation at high temperatures in the simulations. Guided by mass spectroscopic measurements, trajectory results and reaction potential energy surface, three reaction pathways were identified. The first two reaction pathways start with H-atom abstraction from water by the O6 and N7 atoms in 9MG˙+ and are referred to as HAO6 and HAN7, respectively. The primary products of HAO6 and HAN7 reactions, including [9MG + HO6]+/[9MG + HN7]+ and ˙OH, react further to either form [8OH-9MG + HO6]˙+ and [8OH-9MG + HN7]˙+via C8-hydroxylation or form radical cations of 6-enol-guanine (6-enol-G˙+) and 7H-guanine (7HG˙+) via SN2-type methanol elimination. The third reaction pathway corresponds to the formation of 8OH-9MG+ by H elimination from the complex, referred to as HE. Among these product channels, [8OH-9MG + HN7]˙+ has the most favorable formation probability, especially in the presence of additional water molecules. This product may serve as a preceding structure to the 8-oxo-7,8-dihydroguanine lesion in DNA and has implications for health effects of radiation exposure and radiation therapy.
Collapse
Affiliation(s)
- Wenjing Zhou
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. .,PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. .,PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
30
|
Baptista FA, Krizsan D, Stitch M, Sazanovich IV, Clark IP, Towrie M, Long C, Martinez-Fernandez L, Improta R, Kane-Maguire NAP, Kelly JM, Quinn SJ. Adenine Radical Cation Formation by a Ligand-Centered Excited State of an Intercalated Chromium Polypyridyl Complex Leads to Enhanced DNA Photo-oxidation. J Am Chem Soc 2021; 143:14766-14779. [PMID: 34464120 PMCID: PMC8447253 DOI: 10.1021/jacs.1c06658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Assessment of the
DNA photo-oxidation and synthetic photocatalytic
activity of chromium polypyridyl complexes is dominated by consideration
of their long-lived metal-centered excited states. Here we report
the participation of the excited states of [Cr(TMP)2dppz]3+ (1) (TMP = 3,4,7,8-tetramethyl-1,10-phenanthroline;
dppz = dipyrido[3,2-a:2′,3′-c]phenazine) in DNA photoreactions. The interactions of
enantiomers of 1 with natural DNA or with oligodeoxynucleotides
with varying AT content (0–100%) have been studied by steady
state UV/visible absorption and luminescence spectroscopic methods,
and the emission of 1 is found to be quenched in all
systems. The time-resolved infrared (TRIR) and visible absorption
spectra (TA) of 1 following excitation in the region
between 350 to 400 nm reveal the presence of relatively long-lived
dppz-centered states which eventually yield the emissive metal-centered
state. The dppz-localized states are fully quenched when bound by
GC base pairs and partially so in the presence of an AT base-pair
system to generate purine radical cations. The sensitized formation
of the adenine radical cation species (A•+T) is identified by assigning the TRIR spectra with help of
DFT calculations. In natural DNA and oligodeoxynucleotides containing
a mixture of AT and GC of base pairs, the observed time-resolved spectra
are consistent with eventual photo-oxidation occurring predominantly
at guanine through hole migration between base pairs. The combined
targeting of purines leads to enhanced photo-oxidation of guanine.
These results show that DNA photo-oxidation by the intercalated 1, which locates the dppz in contact with the target purines,
is dominated by the LC centered excited state. This work has implications
for future phototherapeutics and photocatalysis.
Collapse
Affiliation(s)
| | - Dorottya Krizsan
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Mark Stitch
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Igor V Sazanovich
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, U.K
| | - Ian P Clark
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, U.K
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, U.K
| | - Conor Long
- The School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry(IADCHEM) Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, 80136 Naples, Italy
| | - Noel A P Kane-Maguire
- Department of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, South Carolina 29613-1120, United States
| | - John M Kelly
- School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
31
|
Ortiz-Rodríguez LA, Ortiz-Zayas G, Pollum M, Hoehn SJ, Jockusch S, Crespo-Hernández CE. Intramolecular Charge Transfer in the Azathioprine Prodrug Quenches Intersystem Crossing to the Reactive Triplet State in 6-Mercaptopurine †. Photochem Photobiol 2021; 98:617-632. [PMID: 34480764 DOI: 10.1111/php.13513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
The thiopurine prodrugs 6-mercaptopurine and azathioprine are among the world's essential medications for acute lymphoblastic leukemia, immunosuppression and several autoimmune conditions. Thiopurine prodrugs are efficient UVA absorbers and singlet oxygen generators and the long-term treatment with these prodrugs correlates with a high incidence of sunlight-induced skin cancer in patients. In this contribution, we show that the electronic relaxation mechanisms and photochemical properties of azathioprine are remarkably different from those of 6-mercaptopurine upon absorption of UVA radiation. UVA excitation of 6-mercaptopurine results in nearly 100% triplet yield and up to 30% singlet oxygen generation, whereas excitation of azathioprine with UVA leads to triplet yields of 15-3% depending on pH of the aqueous solution and <1% singlet oxygen generation. While photoexcitation of 6-mercaptopurine and other thiopurine prodrugs can facilitate oxidatively generated cell damage, azathioprine's poor photosensitization ability reveals the use of interchromophoric charge-transfer interactions for the molecular design of photostable prodrugs exhibiting a remarkable reduction in photocytotoxic side effects before drug metabolization.
Collapse
Affiliation(s)
| | | | - Marvin Pollum
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | | | | |
Collapse
|
32
|
A model to understand type I oxidations of biomolecules photosensitized by pterins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
33
|
Baptista MS, Cadet J, Greer A, Thomas AH. Photosensitization Reactions of Biomolecules: Definition, Targets and Mechanisms. Photochem Photobiol 2021; 97:1456-1483. [PMID: 34133762 DOI: 10.1111/php.13470] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
Photosensitization reactions have been demonstrated to be largely responsible for the deleterious biological effects of UV and visible radiation, as well as for the curative actions of photomedicine. A large number of endogenous and exogenous photosensitizers, biological targets and mechanisms have been reported in the past few decades. Evolving from the original definitions of the type I and type II photosensitized oxidations, we now provide physicochemical frameworks, classifications and key examples of these mechanisms in order to organize, interpret and understand the vast information available in the literature and the new reports, which are in vigorous growth. This review surveys in an extended manner all identified photosensitization mechanisms of the major biomolecule groups such as nucleic acids, proteins, lipids bridging the gap with the subsequent biological processes. Also described are the effects of photosensitization in cells in which UVA and UVB irradiation triggers enzyme activation with the subsequent delayed generation of superoxide anion radical and nitric oxide. Definitions of photosensitized reactions are identified in biomolecules with key insights into cells and tissues.
Collapse
Affiliation(s)
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, NY, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
34
|
Sun Y, Tsai M, Moe MM, Liu J. Dynamics and Multiconfiguration Potential Energy Surface for the Singlet O2 Reactions with Radical Cations of Guanine, 9-Methylguanine, 2′-Deoxyguanosine, and Guanosine. J Phys Chem A 2021; 125:1564-1576. [DOI: 10.1021/acs.jpca.1c00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College 31-10 Thomson Avenue, Long Island City, New York 11101, United States
| | - May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
35
|
Lüdtke C, Sobottka S, Heinrich J, Liebing P, Wedepohl S, Sarkar B, Kulak N. Forty Years after the Discovery of Its Nucleolytic Activity: [Cu(phen) 2 ] 2+ Shows Unattended DNA Cleavage Activity upon Fluorination. Chemistry 2021; 27:3273-3277. [PMID: 33245157 PMCID: PMC7898652 DOI: 10.1002/chem.202004594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Indexed: 11/30/2022]
Abstract
[Cu(phen)2]2+ (phen=1,10‐phenanthroline) is the first and still one of the most efficient artificial nucleases. In general, when the phen ligand is modified, the nucleolytic activity of its CuII complex is significantly reduced. This is most likely due to higher steric bulk of such ligands and thus lower affinity to DNA. CuII complexes with phen ligands having fluorinated substituents (F, CF3, SF5, SCF3) surprisingly showed excellent DNA cleavage activity—in contrast to the unsubstituted [Cu(phen)2]2+—in the absence of the otherwise required classical, bioabundant external reducing agents like thiols or ascorbate. This nucleolytic activity correlates well with the half‐wave potentials E1/2 of the complexes. Cancer cell studies show cytotoxic effects of all complexes with fluorinated ligands in the low μm range, whereas they were less toxic towards healthy cells (fibroblasts).
Collapse
Affiliation(s)
- Carsten Lüdtke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Julian Heinrich
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Phil Liebing
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Stefanie Wedepohl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany.,Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Nora Kulak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
36
|
Mukherjee M, Tripathi D, Brehm M, Riplinger C, Dutta AK. Efficient EOM-CC-based Protocol for the Calculation of Electron Affinity of Solvated Nucleobases: Uracil as a Case Study. J Chem Theory Comput 2020; 17:105-116. [DOI: 10.1021/acs.jctc.0c00655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Divya Tripathi
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Martin Brehm
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | | | | |
Collapse
|
37
|
Sobek J, Schlapbach R. Dependence of Fluorescence Quenching of CY3 Oligonucleotide Conjugates on the Oxidation Potential of the Stacking Base Pair. Molecules 2020; 25:molecules25225369. [PMID: 33212871 PMCID: PMC7698394 DOI: 10.3390/molecules25225369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023] Open
Abstract
To understand the complex fluorescence properties of astraphloxin (CY3)-labelled oligonucleotides, it is necessary to take into account the redox properties of the nucleobases. In oligonucleotide hybrids, we observed a dependence of the fluorescence intensity on the oxidation potential of the neighbouring base pair. For the series I < A < G < 8-oxoG, the extent of fluorescence quenching follows the trend of decreasing oxidation potentials. In a series of 7 nt hybrids, stacking interactions of CY3 with perfect match and mismatch base pairs were found to stabilise the hybrid by 7–8 kJ/mol. The fluorescence measurements can be explained by complex formation resulting in fluorescence quenching that prevails over the steric effect of a reduced excited state trans-cis isomerisation, which was expected to increase the fluorescence efficiency of the dye when stacking to a base pair. This can be explained by the fact that, in a double strand, base pairing and stacking cause a dramatic change in the oxidation potential of the nucleobases. In single-molecule fluorescence measurements, the oxidation of G to 8-oxoG was observed as a result of photoinduced electron transfer and subsequent chemical reactions. Our results demonstrate that covalently linked CY3 is a potent oxidant towards dsDNA. Sulfonated derivatives should be used instead.
Collapse
|
38
|
Kuchlyan J, Martinez-Fernandez L, Mori M, Gavvala K, Ciaco S, Boudier C, Richert L, Didier P, Tor Y, Improta R, Mély Y. What Makes Thienoguanosine an Outstanding Fluorescent DNA Probe? J Am Chem Soc 2020; 142:16999-17014. [PMID: 32915558 DOI: 10.1021/jacs.0c06165] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thienoguanosine (thG) is an isomorphic guanosine (G) surrogate that almost perfectly mimics G in nucleic acids. To exploit its full potential and lay the foundation for future applications, 20 DNA duplexes, where the bases facing and neighboring thG were systematically varied, were thoroughly studied using fluorescence spectroscopy, molecular dynamics simulations, and mixed quantum mechanical/molecular mechanics calculations, yielding a comprehensive understanding of its photophysics in DNA. In matched duplexes, thG's hypochromism was larger for flanking G/C residues but its fluorescence quantum yield (QY) and lifetime values were almost independent of the flanking bases. This was attributed to high duplex stability, which maintains a steady orientation and distance between nucleobases, so that a similar charge transfer (CT) mechanism governs the photophysics of thG independently of its flanking nucleobases. thG can therefore replace any G residue in matched duplexes, while always maintaining similar photophysical features. In contrast, the local destabilization induced by a mismatch or an abasic site restores a strong dependence of thG's QY and lifetime values on its environmental context, depending on the CT route efficiency and solvent exposure of thG. Due to this exquisite sensitivity, thG appears ideal for monitoring local structural changes and single nucleotide polymorphism. Moreover, thG's dominant fluorescence lifetime in DNA is unusually long (9-29 ns), facilitating its selective measurement in complex media using a lifetime-based or a time-gated detection scheme. Taken together, our data highlight thG as an outstanding emissive substitute for G with good QY, long fluorescence lifetimes, and exquisite sensitivity to local structural changes.
Collapse
Affiliation(s)
- Jagannath Kuchlyan
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Mattia Mori
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Krishna Gavvala
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France.,Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto Biostrutture e Bioimmagini, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
39
|
Nakano K, Sawada T, Mori Y, Morita K, Ishimatsu R. Covalent Hyperbranched Polymer Self-Assemblies of Three-Way Junction DNA for Single-Molecule Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10166-10174. [PMID: 32787041 DOI: 10.1021/acs.langmuir.0c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A hyperbranched polymer (HBP) made of three-way junction (TWJ) DNAs is reported. Three types of 26-mer DNAs with 5'-ends modified with psoralen (PSN) were synthesized. All had self-complementary sequences starting from the 5'-end to the sixth base (AAGCTT), allowing intermolecular hybridization. The base sequences of the remaining 20-mer sites were designed so that upon hybridization, three strands had a TWJ structure with a mass of 25,000 that could be further grown by forming HBPs. PSN photochemically reacts to form interstrand cross-links that increase the polymer stability. Aggregates [(380 ± 44) nm and (65 ± 6) nm] detected with dynamic light scattering for TWJ-DNA solutions were also imaged by electron microscopy and atomic force microscopy, providing evidence of hyperbranched polymerization. The TWJ unit also polymerized on solid substrates such as Au and glass and formed self-assembled monolayers (SAMs). The HBP SAMs were integrated into commercial Pt-interdigitated electrode arrays. The DNA devices had current-voltage curves typical of metal-insulator-metal Schottky diodes; the effective barrier heights and the ideality factors were 0.52 ± 0.002 eV and 21 ± 3.2, respectively. The series resistances were (26 ± 3.3) × 106 Ω, which may provide insights into DNA electron transport. The DNA HBP enables stable electrical connections with probe electrodes and will be an important single-molecule platform.
Collapse
Affiliation(s)
- Koji Nakano
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University. Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takafumi Sawada
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University. Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshifumi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University. Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kohei Morita
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University. Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryoichi Ishimatsu
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University. Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
40
|
Tang X, Wu Y, Zhao R, Kou X, Dong Z, Zhou W, Zhang Z, Tan W, Fang X. Photorelease of Pyridines Using a Metal‐Free Photoremovable Protecting Group. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao‐Jun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wei Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Weihong Tan
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Institute of Cancer and Basic Medicine Chinese Academy of Sciences Hangzhou 310022 China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Institute of Cancer and Basic Medicine Chinese Academy of Sciences Hangzhou 310022 China
| |
Collapse
|
41
|
Tang XJ, Wu Y, Zhao R, Kou X, Dong Z, Zhou W, Zhang Z, Tan W, Fang X. Photorelease of Pyridines Using a Metal-Free Photoremovable Protecting Group. Angew Chem Int Ed Engl 2020; 59:18386-18389. [PMID: 32671906 DOI: 10.1002/anie.202005310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 12/18/2022]
Abstract
The photorelease of bioactive molecules has emerged as a valuable tool in biochemistry. Nevertheless, many important bioactive molecules, such as pyridine derivatives, cannot benefit from currently available organic photoremovable protecting groups (PPGs). We found that the inefficient photorelease of pyridines is attributed to intramolecular photoinduced electron transfer (PET) from PPGs to pyridinium ions. To alleviate PET, we rationally designed a strategy to drive the excited state of PPG from S1 to T1 with a heavy atom, and synthesized a new PPG by substitution of the H atom at the 3-position of 7-dietheylamino-coumarin-4-methyl (DEACM) with Br or I. This resulted in an improved photolytic efficiency of the pyridinium ion by hundreds-fold in aqueous solution. The PPG can be applied to various pyridine derivatives. The successful photorelease of a microtubule inhibitor, indibulin, in living cells was demonstrated for the potential application of this strategy in biochemical research.
Collapse
Affiliation(s)
- Xiao-Jun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weihong Tan
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
42
|
The Detection of 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine in Circulating Cell-Free DNA: A Step Towards Longitudinal Monitoring of Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:125-138. [DOI: 10.1007/978-3-030-41283-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Ortiz-Rodríguez JC, Santana JA, Méndez-Hernández DD. Linear correlation models for the redox potential of organic molecules in aqueous solutions. J Mol Model 2020; 26:70. [PMID: 32146589 DOI: 10.1007/s00894-020-4331-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/23/2020] [Indexed: 01/11/2023]
Abstract
In this study, we use the molecular orbital energy approximation (MOEA) and the energy difference approximation (EDA) to build linear correlation models for the redox potentials of 53 organic compounds in aqueous solutions. The molecules evaluated include nitroxides, phenols, and amines. Both the MOEA and EDA methods yield similar correlation models, however, the MOEA method is less computationally expensive. Correlation coefficients (R2) below 0.3 and mean absolute errors above 0.25 V were found for correlation models built without solvent effects. When explicit water molecules and a continuum solvent model are added to the calculations, correlation coefficients close to 0.8 are reached, and mean absolute errors below 0.18 V are obtained. The incorporation of solvent effects is necessary for good correlation models, particularly for redox processes of charged molecules in aqueous solutions. A comparison of the correlation models from different methodologies is provided. Graphical abstract.
Collapse
Affiliation(s)
| | - Juan A Santana
- Department of Chemistry, University of Puerto Rico at Cayey, Cayey, PR, 00736, USA
| | | |
Collapse
|
44
|
Teo RD, Migliore A, Beratan DN. Mutation effects on charge transport through the p58c iron-sulfur protein. Chem Sci 2020; 11:7076-7085. [PMID: 33250976 PMCID: PMC7690218 DOI: 10.1039/d0sc02245d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
Growing experimental evidence indicates that iron–sulfur proteins play key roles in DNA repair and replication. In particular, charge transport between [Fe4S4] clusters, mediated by proteins and DNA, may convey signals to coordinate enzyme action. Human primase is a well studied [Fe4S4] protein, and its p58c domain (which contains an [Fe4S4] cluster) plays a role in the initiation of DNA replication. The Y345C mutation in p58c is linked to gastric tumors and may influence the protein-mediated charge transport. The complexity of protein–DNA systems, and the intricate electronic structure of [Fe4S4] clusters, have impeded progress into understanding functional charge transport in these systems. In this study, we built force fields to describe the high potential [Fe4S4] cluster in both oxidation states. The parameterization is compatible with AMBER force fields and enabled well-balanced molecular dynamics simulations of the p58c–RNA/DNA complex relevant to the initiation of DNA replication. Using the molecular mechanics Poisson–Boltzmann and surface area solvation method on the molecular dynamics trajectories, we find that the p58c mutation induces a modest change in the p58c–duplex binding free energy in agreement with recent experiments. Through kinetic modeling and analysis, we identify key features of the main charge transport pathways in p58c. In particular, we find that the Y345C mutation partially changes the composition and frequency of the most efficient (and potentially relevant to the biological function) charge transport pathways between the [Fe4S4] cluster and the duplex. Moreover, our approach sets the stage for a deeper understanding of functional charge transfer in [Fe4S4] protein–DNA complexes. Functional electron transfer between the [Fe4S4] cluster and the nucleic acid is impacted by a Y345C mutation in the p58c subunit of human primase.![]()
Collapse
Affiliation(s)
- Ruijie D Teo
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA . ;
| | - Agostino Migliore
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA . ;
| | - David N Beratan
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA . ; .,Department of Physics , Duke University , Durham , North Carolina 27708 , USA.,Department of Biochemistry , Duke University , Durham , North Carolina 27710 , USA
| |
Collapse
|
45
|
Sun Y, Moe MM, Liu J. Mass spectrometry and computational study of collision-induced dissociation of 9-methylguanine–1-methylcytosine base-pair radical cation: intra-base-pair proton transfer and hydrogen transfer, non-statistical dissociation, and reaction with a water ligand. Phys Chem Chem Phys 2020; 22:14875-14888. [DOI: 10.1039/d0cp01788d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental and theoretical study is presented on the collision-induced dissociation of 9-methylguanine–1-methylcytosine base-pair radical cation ([9MG·1MC]˙+) and its monohydrate ([9MG·1MC]˙+·H2O) with Xe and Ar gases.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| | - May Myat Moe
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| | - Jianbo Liu
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| |
Collapse
|
46
|
Li S, Leeming MG, O'Hair RAJ. What are the Potential Sites of DNA Attack by N-Acetyl-p-benzoquinone Imine (NAPQI)? Aust J Chem 2020. [DOI: 10.1071/ch19361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic bioactivation of small molecules can produce electrophilic metabolites that can covalently modify proteins and DNA. Paracetamol (APAP) is a commonly used over-the-counter analgesic, and its hepatotoxic side effects have been postulated to be due to the formation of the electrophilic metabolite N-acetylbenzoquinone imine (NAPQI). It has been established that NAPQI reacts to form covalent bonds to the side-chain functional groups of cysteine, methionine, tyrosine, and tryptophan residues. While there have been scattered reports that APAP can form adducts with DNA the nature of these adducts have not yet been fully characterised. Here the four deoxynucleosides, deoxyguanosine (dG), deoxyadenosine (dA), deoxycytidine (dC), and deoxythymidine (dT) were reacted with NAPQI and the formation of adducts was profiled using liquid chromatography–mass spectrometry with positive-ion mode electrospray ionisation and collision-induced dissociation. Covalent adducts were detected for dG, dA, and dC and tandem mass spectrometry (MS/MS) spectra revealed common neutral losses of deoxyribose (116 amu) arising from cleavage of the glyosidic bond with formation of the modified nucleobase. Of the four deoxynucleosides, dC proved to be the most reactive, followed by dG and dA. A pH dependence was found, with greater reactivity being observed at pH 5.5. The results of density functional theory calculations aimed at understanding the relative reactivities of the four deoxynucleosides towards NAPQI are described.
Collapse
|
47
|
Lee W, Matsika S. Role of charge transfer states into the formation of cyclobutane pyrimidine dimers in DNA. Faraday Discuss 2019; 216:507-519. [PMID: 31025669 DOI: 10.1039/c8fd00184g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoinduced charge transfer between neighboring bases plays an important role in DNA. One of its important effects is shown in its ability to affect the photochemical yields of the formation of cyclobutane pyrimidine dimer (CPD) products between adjacent pyrimidine bases. In this work we examine how the energies of charge transfer states depend on the sequences of oligonucleotides using a hybrid quantum and molecular mechanics (QM/MM) methodology combined with the algebraic diagrammatic construction through a second order electronic structure method for excited states. Specifically, we examine 10 sequences with guanine being on the 5' or 3' position of two pyrimidine bases. The results show that the energies of charge transfer states are affected by the nature of the donor acceptor pair, by the distance between them, and by other electrostatic effects created by the surrounding environment.
Collapse
Affiliation(s)
- Wook Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
48
|
Potowski M, Losch F, Wünnemann E, Dahmen JK, Chines S, Brunschweiger A. Screening of metal ions and organocatalysts on solid support-coupled DNA oligonucleotides guides design of DNA-encoded reactions. Chem Sci 2019; 10:10481-10492. [PMID: 32055372 PMCID: PMC7003951 DOI: 10.1039/c9sc04708e] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/17/2019] [Indexed: 12/27/2022] Open
Abstract
DNA-encoded compound libraries are widely used in drug discovery. Screening of catalysts for compatibility with solid phase-coupled DNA sequences guided the selection of encoded reactions, exemplified by a Zn(II)-mediated aza-Diels–Alder reaction.
DNA-encoded compound libraries are a widely used technology for target-based small molecule screening. Generally, these libraries are synthesized by solution phase combinatorial chemistry requiring aqueous solvent mixtures and reactions that are orthogonal to DNA reactivity. Initiating library synthesis with readily available controlled pore glass-coupled DNA barcodes benefits from enhanced DNA stability due to nucleobase protection and choice of dry organic solvents for encoded compound synthesis. We screened the compatibility of solid-phase coupled DNA sequences with 53 metal salts and organic reagents. This screening experiment suggests design of encoded library synthesis. Here, we show the reaction optimization and scope of three sp3-bond containing heterocyclic scaffolds synthesized on controlled pore glass-connected DNA sequences. A ZnCl2-promoted aza-Diels–Alder reaction with Danishefsky's diene furnished diverse substituted DNA-tagged pyridones, and a phosphoric acid organocatalyst allowed for synthesis of tetrahydroquinolines by the Povarov reaction and pyrimidinones by the Biginelli reaction, respectively. These three reactions caused low levels of DNA depurination and cover broad and only partially overlapping chemical space though using one set of DNA-coupled starting materials.
Collapse
Affiliation(s)
- Marco Potowski
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| | - Florian Losch
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| | - Elena Wünnemann
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| | - Janina K Dahmen
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| | - Silvia Chines
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| | - Andreas Brunschweiger
- Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany .
| |
Collapse
|
49
|
Horoszko CP, Jena PV, Roxbury D, Rotkin SV, Heller DA. Optical Voltammetry of Polymer-Encapsulated Single-Walled Carbon Nanotubes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:24200-24208. [PMID: 32690989 PMCID: PMC7371339 DOI: 10.1021/acs.jpcc.9b07626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The semiconducting single-walled carbon nanotube (SWCNT), noncovalently wrapped by a polymeric monolayer, is a nanoscale semiconductor-electrolyte interface under investigation for sensing, photonics, and photovoltaic applications. SWCNT complexes are routinely observed to sensitize various electrochemical/redox phenomena, even in the absence of an external field. While the photoluminescence response to gate voltage depends on the redox potential of the nanotube, analogous optical voltammetry of functionalized carbon nanotubes could be conducted in suspension without applying voltage but by varying the solution conditions as well as the chemistry of the encapsulating polymer. Steady-state photoluminescence, absorbance, and in situ measurements of O2/H2O reactivity show correlation with the pH/pK a-dependent reactivity of π-rich coatings. The nanotube emission responses suggest that the presence of photogenerated potential may explain the observed coating electrochemical reactivity. This work finds that electronic and chemical interactions of the nanotube with the encapsulating polymer may play a critical role in applications that depend on radiative recombination, such as optical sensing.
Collapse
Affiliation(s)
- Christopher P. Horoszko
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10065, United States
| | - Prakrit V. Jena
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Slava V. Rotkin
- Materials Research Institute and Department of Engineering Science and Mechanics, Pennsylvania State University, Millennium Science Complex, University Park, Pennsylvania 16802, United States
| | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Weill Cornell Medicine, Cornell University, New York, New York 10065, United States
| |
Collapse
|
50
|
Merz J, Steffen A, Nitsch J, Fink J, Schürger CB, Friedrich A, Krummenacher I, Braunschweig H, Moos M, Mims D, Lambert C, Marder TB. Synthesis, photophysical and electronic properties of tetra-donor- or acceptor-substituted ortho-perylenes displaying four reversible oxidations or reductions. Chem Sci 2019; 10:7516-7534. [PMID: 31588303 PMCID: PMC6761871 DOI: 10.1039/c9sc02420d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023] Open
Abstract
Via regioselective Ir-catalyzed C-H borylation and subsequent reactions (i.e., via Br4-Per or (BF3K)4-Per intermediates), we have introduced strong π-donors and acceptors at the 2,5,8,11-positions of perylene leading to unusual properties. Thus, incorporation of four donor diphenylamine (DPA) or four acceptor Bmes2 (mes = 2,4,6-Me3C6H2) moieties yields novel compounds which can be reversibly oxidized or reduced four times, respectively, an unprecedented behavior for monomeric perylene derivatives. Spectroelectrochemical measurements show NIR absorptions up to 3000 nm for the mono-cation radical of (DPA)4-Per and a strong electronic coupling over the perylene bridge was observed indicative of fully delocalized Robin-Day Class III behavior. Both (DPA)4-Per and (Bmes2)4-Per derivatives possess unusually long intrinsic singlet lifetimes (τ 0), e.g., 94 ns for the former one. The compounds are emissive in solution, thin films, and the solid state, with apparent Stokes shifts that are exceptionally large for perylene derivatives. Transient absorption measurements on (DPA)4-Per reveal an additional excited state, with a long lifetime of 500 μs, which sensitizes singlet oxygen effectively.
Collapse
Affiliation(s)
- Julia Merz
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Andreas Steffen
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , 44227 Dortmund , Germany
| | - Jörn Nitsch
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Julian Fink
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Claudia B Schürger
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Alexandra Friedrich
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Ivo Krummenacher
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Holger Braunschweig
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| | - Michael Moos
- Institut für Organische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - David Mims
- Institut für Organische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Christoph Lambert
- Institut für Organische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Todd B Marder
- Institut für Anorganische Chemie , Institute for Sustainable Chemistry & Catalysis with Boron (ICB) , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany .
| |
Collapse
|