1
|
Pathania H, Chauhan P, Chaudhary V, Khosla A, Neetika, Kumar S, Gaurav, Sharma M. Engineering core-shell mesoporous silica and Fe 3O 4@Au nanosystems for targeted cancer therapeutics: a review. Biotechnol Genet Eng Rev 2024; 40:3653-3681. [PMID: 36444150 DOI: 10.1080/02648725.2022.2147685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022]
Abstract
The extensive utilization of nanoparticles in cancer therapies has inspired a new field of study called cancer nanomedicine. In contrast to traditional anticancer medications, nanomedicines offer a targeted strategy that eliminates side effects and has high efficacy. With its vast surface area, variable pore size, high pore volume, abundant surface chemistry and specific binding affinity, mesoporous silica nanoparticles (MPSNPs) are a potential candidate for cancer diagnosis and treatment. However, there are several bottlenecks associated with nanoparticles, including specific toxicity or affinity towards particular body fluid, which can cater by architecting core-shell nanosystems. The core-shell chemistries, synergistic effects, and interfacial heterojunctions in core-shell nanosystems enhance their stability, catalytic and physicochemical attributes, which possess high performance in cancer therapeutics. This review article summarizes research and development dedicated to engineering mesoporous core-shell nanosystems, especially silica nanoparticles and Fe3O4@Au nanoparticles, owing to their unique physicochemical characteristics. Moreover, it highlights state-of-the-art magnetic and optical attributes of Fe3O4@Au and MPSNP-based cancer therapy strategies. It details the designing of Fe3O4@Au and MPSN to bind with drugs, receptors, ligands, and destroy tumour cells and targeted drug delivery. This review serves as a fundamental comprehensive structure to guide future research towards prospects of core-shell nanosystems based on Fe3O4@Au and MPSNP for cancer theranostics.
Collapse
Affiliation(s)
- Himani Pathania
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Priyanka Chauhan
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Vishal Chaudhary
- Research Cell and Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, PR China
| | - Neetika
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Gaurav
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Mamta Sharma
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
- Department of Botany, Vivekananda Bhawan, Sardar Patel University, Mandi, India
| |
Collapse
|
2
|
Trihan R, Bogucki O, Kozlowska A, Ihle M, Ziesche S, Fetliński B, Janaszek B, Kieliszczyk M, Kaczkan M, Rossignol F, Aimable A. Hybrid gold-silica nanoparticles for plasmonic applications: A comparison study of synthesis methods for increasing gold coverage. Heliyon 2023; 9:e15977. [PMID: 37223706 PMCID: PMC10200860 DOI: 10.1016/j.heliyon.2023.e15977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
The current work focuses on the synthesis of hybrid nanoparticles (NPs) made of a silica core (Si NPs) coated with discrete gold nanoparticles (Au NPs), which exhibit localized surface plasmon resonance (LSPR) properties. This plasmonic effect is directly related to the nanoparticles size and arrangement. In this paper, we explore a wide range of size for the silica cores (80, 150, 400, and 600 nm) and for the gold NPs (8, 10, and 30 nm). Some rational comparison between different functionalization techniques and different synthesis methods for the Au NPs are proposed, related to the optical properties and colloidal stability in time. An optimized, robust and reliable synthesis route is established, which improves the gold density and homogeneity. The performances of these hybrid nanoparticles are evaluated in order to be used in the shape of a dense layer for pollutant detection in gas or liquids, and find numerous applications as a cheap and new optical device.
Collapse
Affiliation(s)
- Romain Trihan
- Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France
| | - Oskar Bogucki
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Anna Kozlowska
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Martin Ihle
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Winterbergstr. 28, 01277 Dresden, Germany
| | - Steffen Ziesche
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Winterbergstr. 28, 01277 Dresden, Germany
| | - Bartosz Fetliński
- Warsaw University of Technology – Institute of Microelectronics and Optoelectronics, 75 Koszykowa Street, 00-662 Warsaw, Poland
| | - Bartosz Janaszek
- Warsaw University of Technology – Institute of Microelectronics and Optoelectronics, 75 Koszykowa Street, 00-662 Warsaw, Poland
| | - Marcin Kieliszczyk
- Warsaw University of Technology – Institute of Microelectronics and Optoelectronics, 75 Koszykowa Street, 00-662 Warsaw, Poland
| | - Marcin Kaczkan
- Warsaw University of Technology – Institute of Microelectronics and Optoelectronics, 75 Koszykowa Street, 00-662 Warsaw, Poland
| | | | - Anne Aimable
- Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France
| |
Collapse
|
3
|
Adam A, Mertz D. Iron Oxide@Mesoporous Silica Core-Shell Nanoparticles as Multimodal Platforms for Magnetic Resonance Imaging, Magnetic Hyperthermia, Near-Infrared Light Photothermia, and Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1342. [PMID: 37110927 PMCID: PMC10145772 DOI: 10.3390/nano13081342] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The design of core-shell nanocomposites composed of an iron oxide core and a silica shell offers promising applications in the nanomedicine field, especially for developing efficient theranostic systems which may be useful for cancer treatments. This review article addresses the different ways to build iron oxide@silica core-shell nanoparticles and it reviews their properties and developments for hyperthermia therapies (magnetically or light-induced), combined with drug delivery and MRI imaging. It also highlights the various challenges encountered, such as the issues associated with in vivo injection in terms of NP-cell interactions or the control of the heat dissipation from the core of the NP to the external environment at the macro or nanoscale.
Collapse
|
4
|
Su YY, Jiang XY, Zheng LJ, Yang YW, Yan SY, Tian Y, Tian W, Liu WF, Teng ZG, Yao H, Wang SJ, Zhang LJ. Hybrid Au-star@Prussian blue for high-performance towards bimodal imaging and photothermal treatment. J Colloid Interface Sci 2023; 634:601-609. [PMID: 36549208 DOI: 10.1016/j.jcis.2022.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 11/18/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
In recent years, branched or star-shaped Au nanostructures composed of core and protruding arms have attracted much attention due to their unique optical properties and morphology. As the clinically adapted nanoagent, prussian blue (PB) has recently gained widespread attention in cancer theranostics with potential applications in magnetic resonance (MR) imaging. In this article, we propose a hybrid star gold nanostructure(Au-star@PB)as a novel theranostic agent for T1-weighted magnetic resonance imaging (MRI)/ photoacoustic imaging(PAI) and photothermal therapy (PTT) of tumors. Importantly, the Au-star@PB nanoparticles function as effective MRI/PA contrast agents in vivo by increasing T1-weighted MR/PAI signal intensity and as effective PTT agents in vivo by decreasing the tumor volume in MCF-7 tumor bearing BALB / c mouse model as well as in vitro by lessening tumor cells growth rate. Interestingly, we found the main photothermal effect of Au-star@PB is derived from Au-star, but not PB. In summary, the hybrid structure of Au-star@PB NPs with good biological safety, significant photostability, dual imaging capability, and high therapeutic efficiency, might offer a novel avenue for the future diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yun Yan Su
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China; Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Xin Yu Jiang
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China
| | - Li Juan Zheng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Yi Wen Yang
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China
| | - Suo Yu Yan
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China
| | - Ying Tian
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Wei Tian
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Wen Fei Liu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Zhao Gang Teng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Hui Yao
- Department of Radiology, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China; Department of General Surgery, The First Affiliated Hospital to Soochow University, Suzhou 215006, PR China.
| | - Shou Ju Wang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, PR China.
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China.
| |
Collapse
|
5
|
de la Encarnación C, Jimenez de Aberasturi D, Liz-Marzán LM. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Adv Drug Deliv Rev 2022; 189:114484. [PMID: 35944586 DOI: 10.1016/j.addr.2022.114484] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Multicompartment nanoparticles have raised great interest for different biomedical applications, thanks to the combined properties of different materials within a single entity. These hybrid systems have opened new avenues toward diagnosis and combination therapies, thus becoming preferred theranostic agents. When hybrid nanoparticles comprise magnetic and plasmonic components, both magnetic and optical properties can be achieved, which are potentially useful for multimodal bioimaging, hyperthermal therapies and magnetically driven selective delivery. Nanostructures comprising iron oxide and gold are usually selected for biomedical applications, as they display size-dependent properties, biocompatibility, and unique physical and chemical characteristics that can be tuned through highly precise synthetic protocols. We provide herein an overview of the most recent synthetic protocols to prepare magnetic-plasmonic nanostructures made of iron oxide and gold, to then highlight the progress made on multifunctional magnetic-plasmonic bioimaging and heating-based therapies. We discuss the advantages and limitations of the various systems in these directions.
Collapse
Affiliation(s)
- Cristina de la Encarnación
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; CIBER-BBN, ISCIII, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
6
|
Candreva A, Parisi F, Bartucci R, Guzzi R, Di Maio G, Scarpelli F, Aiello I, Godbert N, La Deda M. Synthesis and Characterization of Hyper‐Branched Nanoparticles with Magnetic and Plasmonic Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202201375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Angela Candreva
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
| | - Francesco Parisi
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Rosa Bartucci
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- Department of Physics Molecular Biophysics Laboratory University of Calabria 87036 Rende CS Italy
| | - Rita Guzzi
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
- Department of Physics Molecular Biophysics Laboratory University of Calabria 87036 Rende CS Italy
| | - Giuseppe Di Maio
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Francesca Scarpelli
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Iolinda Aiello
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
| | - Nicolas Godbert
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
| |
Collapse
|
7
|
Stavitskaya A, Rubtsova M, Glotov A, Vinokurov V, Vutolkina A, Fakhrullin R, Lvov Y. Architectural design of core-shell nanotube systems based on aluminosilicate clay. NANOSCALE ADVANCES 2022; 4:2823-2835. [PMID: 36132000 PMCID: PMC9419087 DOI: 10.1039/d2na00163b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/17/2022] [Indexed: 05/25/2023]
Abstract
A nanoarchitectural approach to the design of functional nanomaterials based on natural aluminosilicate nanotubes and their catalysis, and practical applications are described in this paper. We focused on the buildup of hybrid core-shell systems with metallic or organic molecules encased in aluminosilicate walls, and nanotube templates for structured silica and zeolite preparation. The basis for such an architectural design is a unique Al2O3/SiO2 dual chemistry of 50 nm diameter halloysite tubes. Their structure and site dependent properties are well combined with biocompatibility, environmental safety, and abundant availability, which makes the described functional systems scalable for industrial applications. In these organic/ceramic hetero systems, we outline drug, dye and chemical inhibitor loading inside the clay nanotubes, accomplished with their silane or amphiphile molecule surface modifications. For metal-ceramic tubule composites, we detailed the encapsulation of 2-5 nm Au, Ru, Pt, and Ag particles, Ni and Co oxides, NiMo, and quantum dots of CdZn sulfides into the lumens or their attachment at the outside surface. These metal-clay core-shell nanosystems show high catalytic efficiency with increased mechanical and temperature stabilities. The combination of halloysite nanotubes with mesoporous MCM-41 silica allowed for a synergetic enhancement of catalysis properties. Finally, we outlined the clay nanotubes' self-assembly into organized arrays with orientation and ordering similar to nematic liquid crystals, and these systems are applicable for life-related applications, such as petroleum spill bioremediation, antimicrobial protection, wound healing, and human hair coloring.
Collapse
Affiliation(s)
- Anna Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas Moscow 119991 Russian Federation
| | - Maria Rubtsova
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas Moscow 119991 Russian Federation
| | - Aleksandr Glotov
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas Moscow 119991 Russian Federation
| | - Vladimir Vinokurov
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas Moscow 119991 Russian Federation
| | - Anna Vutolkina
- Chemistry Department, M. Lomonosov Moscow State University Moscow 119991 Russian Federation
| | - Rawil Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan Republic of Tatarstan 420008 Russian Federation
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University Ruston LA 71272 USA
| |
Collapse
|
8
|
Fiorito S, Soni N, Silvestri N, Brescia R, Gavilán H, Conteh JS, Mai BT, Pellegrino T. Fe 3 O 4 @Au@Cu 2-x S Heterostructures Designed for Tri-Modal Therapy: Photo- Magnetic Hyperthermia and 64 Cu Radio-Insertion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200174. [PMID: 35294104 DOI: 10.1002/smll.202200174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Here, the synthesis and proof of exploitation of three-material inorganic heterostructures made of iron oxide-gold-copper sulfide (Fe3 O4 @Au@Cu2-x S) are reported. Starting with Fe3 O4 -Au dumbbell heterostructure as seeds, a third Cu2-x S domain is selectively grown on the Au domain. The as-synthesized trimers are transferred to water by a two-step ligand exchange procedure exploiting thiol-polyethylene glycol to coordinate Au and Cu2-x S surfaces and polycatechol-polyethylene glycol to bind the Fe3 O4 surface. The saline stable trimers possess multi-functional properties: the Fe3 O4 domain, of appropriate size and crystallinity, guarantees optimal heating losses in magnetic hyperthermia (MHT) under magnetic field conditions of clinical use. These trimers have indeed record values of specific adsorption rate among the inorganic-heterostructures so far reported. The presence of Au and Cu2-x S domains ensures a large adsorption which falls in the first near-infrared (NIR) biological window and is here exploited, under laser excitation at 808 nm, to produce photo-thermal heat alone or in combination with MHT obtained from the Fe3 O4 domain. Finally, an intercalation protocol with radioactive 64 Cu ions is developed on the Cu2-x S domain, reaching high radiochemical yield and specific activity making the Fe3 O4 @Au@Cu2-x S trimers suitable as carriers for 64 Cu in internal radiotherapy (iRT) and traceable by positron emission tomography (PET).
Collapse
Affiliation(s)
- Sergio Fiorito
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - Nisarg Soni
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - Niccolo' Silvestri
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - Rosaria Brescia
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - Helena Gavilán
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - John S Conteh
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - Binh T Mai
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova, 16163, Italy
| |
Collapse
|
9
|
Abdel-Hady EE, Shaban M, Abdel-Hamed MO, Gamal A, Yehia H, Ahmed AM. Synthesis and Characterization of NiCoPt/CNFs Nanoparticles as an Effective Electrocatalyst for Energy Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:492. [PMID: 35159837 PMCID: PMC8840489 DOI: 10.3390/nano12030492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 11/23/2022]
Abstract
In this work, three nanoparticle samples, Ni4Co2Pt/CNFs, Ni5CoPt/CNFs and Ni6Pt/CNFs, were designed according to the molar ratio during loading on carbon nanofibers (CNFs) using electrospinning and carbonization at 900 °C for 7 h in an argon atmosphere. The metal loading and carbon ratio were fixed at 20 and 80 wt%, respectively. Various analysis tools were used to investigate the chemical composition, structural, morphological, and electrochemical (EC) properties. For samples with varying Co%, the carbonization process reduces the fiber diameter of the obtained electrospun nanofibers from 200-580 nm to 150-200 nm. The EDX mapping revealed that nickel, platinum, and cobalt were evenly and uniformly incorporated into the carbonized PVANFs. The prepared Ni-Co-Pt/CNFs have a face-centered cubic (FCC) structure with slightly increased crystallite size as the Co% decreased. The electrocatalytic properties of the samples were investigated for ethanol, methanol and urea electrooxidation. Using cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance measurements, the catalytic performance and electrode stability were investigated as a function of electrolyte concentration, scan rate, and reaction time. When Co is added to Ni, the activation energy required for the electrooxidation reaction decreases and the electrode stability increases. In 1.5 M methanol, the Ni5CoPt/CNFs electrode showed the lowest onset potential and the highest current density (30.6 A/g). This current density is reduced to 28.2 and 21.2 A/g for 1.5 M ethanol and 0.33 M urea, respectively. The electrooxidation of ethanol, methanol, and urea using our electrocatalysts is a combination of kinetic/diffusion control limiting reactions. This research provided a unique approach to developing an efficient Ni-Co-Pt-based electrooxidation catalyst for ethanol, methanol and urea.
Collapse
Affiliation(s)
- Esam E. Abdel-Hady
- Physics Department, Faculty of Science, Minia University, Minia 61519, Egypt; (E.E.A.-H.); (M.O.A.-H.); (H.Y.)
- Academy of Scientific Research and Technology (ASRT) of the Arab Republic of Egypt, Cairo 11516, Egypt
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.)
| | - Mohamed O. Abdel-Hamed
- Physics Department, Faculty of Science, Minia University, Minia 61519, Egypt; (E.E.A.-H.); (M.O.A.-H.); (H.Y.)
- Academy of Scientific Research and Technology (ASRT) of the Arab Republic of Egypt, Cairo 11516, Egypt
| | - Ahmed Gamal
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.)
| | - Heba Yehia
- Physics Department, Faculty of Science, Minia University, Minia 61519, Egypt; (E.E.A.-H.); (M.O.A.-H.); (H.Y.)
| | - Ashour M. Ahmed
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (A.G.); (A.M.A.)
| |
Collapse
|
10
|
Cheng Q, Yue L, Li J, Gao C, Ding Y, Sun C, Xu M, Yuan Z, Wang R. Supramolecular Tropism Driven Aggregation of Nanoparticles In Situ for Tumor-Specific Bioimaging and Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101332. [PMID: 34405525 DOI: 10.1002/smll.202101332] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Inorganic nanomedicine has attracted increasing attentions in biomedical sciences due to their excellent biocompatibility and tunable, versatile functionality. However, the relatively poor accumulation and retention of these nanomedicines in targeted tissues have often hindered their clinical translation. Herein, highly efficient, targeted delivery, and in situ aggregation of ferrocene (Fc)-capped Au nanoparticles (NPs) are reported to cucurbit[7]uril (CB[7])-capped Fe3 O4 NPs (as an artificial target) that are magnetically deposited into the tumor, driven by strong, multipoint CB[7]-Fc host-guest interactions (here defined as "supramolecular tropism" for the first time), leading to high tumor accumulation and retention of these NPs. The in vitro and in vivo studies demonstrate the precisely controlled, specific accumulation, and retention of Au NPs in the tumor cells and tissue via supramolecular tropism and in situ aggregation, which afford locally enhanced CT imaging of cancer and enable tumor-specific photothermal therapy attributed to the plasmonic coupling effects between adjacent Au NPs within the supramolecular aggregations. This work provides a novel concept of supramolecular tropism, which may drive targeted delivery and enable specific accumulation, retention, and activation of nanomedicine for improved bioimaging and therapy of cancer.
Collapse
Affiliation(s)
- Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Ludan Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Junyan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Mengze Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, 999078, China
| |
Collapse
|
11
|
Wang L, Yan Y. A Review of pH-Responsive Organic-Inorganic Hybrid Nanoparticles for RNAi-Based Therapeutics. Macromol Biosci 2021; 21:e2100183. [PMID: 34160896 DOI: 10.1002/mabi.202100183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Indexed: 12/13/2022]
Abstract
RNA interference (RNAi) shows great potential in the treatment of varying cancer and genetic disorders. The lack of safe and effective delivery methods is an ongoing challenge to realize the full potential of RNAi-based therapeutics. pH-responsive hybrid nanoparticle is a promising non-virus platform for small interfering RNA (siRNA) delivery with unique properties including the robust response to the acidic microenvironment and the capability of theranostic and combined therapeutics. The mechanism of RNAi and the delivery barriers for RNAi-based therapeutics are first discussed. Then, the general patterns of pH-response and the typical construction of hybrid nanoparticles are demonstrated. The recent advances in pH-responsive organic-inorganic hybrid nanoparticles for siRNA delivery are highlighted, in particular, how pH-response of ionizable groups, acid-labile bonds, and decomposition of inorganic components affect the physicochemical properties of hybrid nanoparticles and benefit the cellular uptake and intracellular trafficking of siRNA payloads are discussed. At last, the remaining problems and the prospects for pH-responsive hybrid nanoparticles for siRNA delivery are analyzed.
Collapse
Affiliation(s)
- Lu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
12
|
Crețu BEB, Dodi G, Shavandi A, Gardikiotis I, Șerban IL, Balan V. Imaging Constructs: The Rise of Iron Oxide Nanoparticles. Molecules 2021; 26:3437. [PMID: 34198906 PMCID: PMC8201099 DOI: 10.3390/molecules26113437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, an important challenge in nanomedicine imaging has been the work to design multifunctional agents that can be detected by single and/or multimodal techniques. Among the broad spectrum of nanoscale materials being investigated for imaging use, iron oxide nanoparticles have gained significant attention due to their intrinsic magnetic properties, low toxicity, large magnetic moments, superparamagnetic behaviour and large surface area-the latter being a particular advantage in its conjunction with specific moieties, dye molecules, and imaging probes. Tracers-based nanoparticles are promising candidates, since they combine synergistic advantages for non-invasive, highly sensitive, high-resolution, and quantitative imaging on different modalities. This study represents an overview of current advancements in magnetic materials with clinical potential that will hopefully provide an effective system for diagnosis in the near future. Further exploration is still needed to reveal their potential as promising candidates from simple functionalization of metal oxide nanomaterials up to medical imaging.
Collapse
Affiliation(s)
- Bianca Elena-Beatrice Crețu
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Amin Shavandi
- BioMatter-Biomass Transformation Lab, École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Ioannis Gardikiotis
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (B.E.-B.C.); (I.G.)
| | - Ionela Lăcrămioara Șerban
- Physiology Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
| | - Vera Balan
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
| |
Collapse
|
13
|
Ehsani S, Saatchian E, Sarikhani A, Montazerabadi A. 1H-MRS application in the evaluation of response to photo-thermal therapy using iron oxide-gold core-shell nanoparticles, an in vivo study. Photochem Photobiol Sci 2021; 20:245-254. [PMID: 33721249 DOI: 10.1007/s43630-021-00012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Photo-thermal therapy (PTT) has been at the center of attention as a new method for cancer treatment in recent years. It is important to predict the response to treatment in the PTT procedure. Using magnetic resonance spectroscopy (MRS) can be considered a novel technique in evaluating changes in metabolites resulted from PTT. METHODS In the present project, we conducted an in vivo study to assess the efficacy of 1H-MRS as a noninvasive technique to evaluate the response to treatment in the early hours following PTT. The BALB/c mice subcutaneously bearing tumor cells (CT26 cell line) were scanned by 1H-MRS before and after PTT. Iron oxide-gold core-shell (Fe3O4@Au) as PTT agent was injected into intra-peritoneal at first and then irradiated by NIR laser. Single-voxel Point RESolved Spectroscopy (PRESS) sequence (TE = 144) was used, and metabolites alternations were evaluated by the non-parametric Wilcoxon test. Besides, Nanoparticle (NP) relaxometry was conducted for negative contrast agents' potentials. RESULTS MRS choline (Cho) peak dramatically reduced 24 h post-PTT (p = 0.01) and lipid peak as a marker for necrosis of tumor elevated (p = 0.01) just in group 3 (NPs injection + laser irradiation) 24 h after the procedure. CONCLUSION 1H-MRS showed its potential as a method in detecting the changes in metabolites and revealing the outcome accurately. Response to photo-thermal therapy evaluation was achievable only one day after PTT and proved by a 10-day follow-up of the tumor size. Iron oxide-gold core-shell can also be used as a negative contrast agent in MRI images during therapy.
Collapse
Affiliation(s)
- Sina Ehsani
- Department of Medical Physics, Medicine Faculty, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Erfan Saatchian
- Department of Medical Physics, Medicine Faculty, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Sarikhani
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Montazerabadi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Saatchian E, Ehsani S, Sarikhani A, Ghaznavi H, Montazerabadi A, Shakeri-Zadeh A. Monitoring of the choline/lipid ratio by 1H-MRS can be helpful for prediction and early detection of tumor response to nano-photo-thermal therapy. Lasers Med Sci 2021; 37:335-343. [PMID: 33523392 DOI: 10.1007/s10103-021-03256-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology-based photothermal therapy (NPTT) is a new emerging modality of cancer therapy. To have the right prediction and early detection of response to NPTT, it is necessary to get rapid feedback from a tumor treated by NPTT procedure and stay informed of what happens in the tumor site. We performed this study to find if proton magnetic resonance spectroscopy (1H-MRS) can be well responsive to such an imperative requirement. We considered various treatment groups including gold nanoparticles (AuNPs), laser, and the combination of AuNPs and laser (NPTT group). Therapeutic effects on CT26 colon tumor-bearing BALB/c mice were studied by looking at alterations that happened in 1H-MRS signals and tumor size after conducting treatment procedures. In MRS studies, the alterations of choline and lipid concentrations and their ratio were investigated. Having normalized the metabolite peak to water peak, we found a significant decrease in choline concentration post-NPTT (from (1.25 ± 0.05) × 10-3 to (0.43 ± 0.04) × 10-3), while the level of lipid concentration in the tumor was slightly increased (from (2.91 ± 0.23) × 10-3 to (3.52 ± 0.31) × 10-3). As a result, the choline/lipid ratio was significantly decreased post-NPTT (from 0.41 ± 0.11 to 0.11 ± 0.02). Such alterations appeared just 1 day after NPTT. Tumor shrinkage in all groups was studied and significant changes were significantly detectable on day 7 post-NPTT procedure. In conclusion, the study of choline/lipid ratio using 1H-MRS may help us estimate what happens in a tumor treated by the NPTT method. Such an in vivo assessment is interestingly feasible as soon as just 1 day post-NPTT. This would undoubtedly help the oncologists make a more precise decision about treatment planning strategies. Monitoring of the choline/lipid ratio by 1H-MRS can be helpful for prediction and early detection of response to nano-photo-thermal therapy.
Collapse
Affiliation(s)
- Erfan Saatchian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Ehsani
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Sarikhani
- Finetech in Medicine Research Center, Iran University of Medical Science, Tehran, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran.
| | - Alireza Montazerabadi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Shakeri-Zadeh
- Finetech in Medicine Research Center, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
15
|
Mochizuki C, Nakamura J, Nakamura M. Development of Non-Porous Silica Nanoparticles towards Cancer Photo-Theranostics. Biomedicines 2021; 9:73. [PMID: 33451074 PMCID: PMC7828543 DOI: 10.3390/biomedicines9010073] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles have demonstrated several advantages for biomedical applications, including for the development of multifunctional agents as innovative medicine. Silica nanoparticles hold a special position among the various types of functional nanoparticles, due to their unique structural and functional properties. The recent development of silica nanoparticles has led to a new trend in light-based nanomedicines. The application of light provides many advantages for in vivo imaging and therapy of certain diseases, including cancer. Mesoporous and non-porous silica nanoparticles have high potential for light-based nanomedicine. Each silica nanoparticle has a unique structure, which incorporates various functions to utilize optical properties. Such advantages enable silica nanoparticles to perform powerful and advanced optical imaging, from the in vivo level to the nano and micro levels, using not only visible light but also near-infrared light. Furthermore, applications such as photodynamic therapy, in which a lesion site is specifically irradiated with light to treat it, have also been advancing. Silica nanoparticles have shown the potential to play important roles in the integration of light-based diagnostics and therapeutics, termed "photo-theranostics". Here, we review the recent development and progress of non-porous silica nanoparticles toward cancer "photo-theranostics".
Collapse
Affiliation(s)
- Chihiro Mochizuki
- Department of Organ Anatomy & Nanomedicine, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; (C.M.); (J.N.)
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Junna Nakamura
- Department of Organ Anatomy & Nanomedicine, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; (C.M.); (J.N.)
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Michihiro Nakamura
- Department of Organ Anatomy & Nanomedicine, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; (C.M.); (J.N.)
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
16
|
Dheyab MA, Aziz AA, Khaniabadi PM, Jameel MS. Potential of a sonochemical approach to generate MRI-PPT theranostic agents for breast cancer. Photodiagnosis Photodyn Ther 2021; 33:102177. [PMID: 33429101 DOI: 10.1016/j.pdpdt.2021.102177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 01/25/2023]
Abstract
The production of nanomaterials integrating diagnostic and therapeutic roles within one nanoplatform is important for medical applications. Such theranostics nanoplatforms could provide information on imaging, accurate diagnosis and, at the same time, could eradicate cancer cells. Fe3O4@Au core@shell nanoparticles (Fe3O4@AuNPs) have gained broad attention due to their unique innovations in magnetic resonance imaging (MRI) and photothermal therapy (PTT). Seed-mediated growth procedures were used to produce the Fe3O4@AuNPs. In these processes, complicated surface modifications, resulted in unsatisfactory properties. This work used the ability of the sonochemical approach to synthesize highly efficient theranostics agent Fe3O4@AuNPs with a size of approximately 22 nm in 5 min. The inner core of Fe3O4 acts as an MRI agent, whereas the photothermal effect stands accomplished by near-infrared absorption of the gold shell (Au shell), which results in the eradication of cancer cells. We have shown that Fe3O4@AuNPs have great biocompatibility and no major cytotoxicity has been identified. Relaxivity value (r2) of synthesized Fe3O4@Au NPs, measured at 233 mM-1s-1, is significantly higher than those reported previously. The as-synthesized NPs have shown substantial photothermal ablation ability on MCF-7 in vitro under near-infrared laser irradiation. Consequently, Fe3O4@AuNPs synthesized in this study have great potential as an ideal candidate for MR imaging and PTT.
Collapse
Affiliation(s)
- Mohammed Ali Dheyab
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| | - Azlan Abdul Aziz
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| | - Pegah Moradi Khaniabadi
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University. PO. Box: 35, 123, Al Khod, Muscat, Oman
| | - Mahmood S Jameel
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
17
|
Taniguchi K, Cuya Huaman JL, Iwata D, Yokoyama S, Matsumoto T, Suzuki K, Miyamura H, Balachandran J. Pt distribution-controlled Ni–Pt nanocrystals via an alcohol reduction technique for the oxygen reduction reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj01360b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic performance and durability of Ni–Pt alloy nanoparticles synthesized using an alcohol reduction technique were enhanced by controlling the metallic Pt distribution.
Collapse
Affiliation(s)
- Kaneyuki Taniguchi
- Department of Materials Science
- The University of Shiga Prefecture
- Hikone 522-8533
- Japan
| | - Jhon L. Cuya Huaman
- Department of Materials Science
- The University of Shiga Prefecture
- Hikone 522-8533
- Japan
| | - Daichi Iwata
- Department of Materials Science
- The University of Shiga Prefecture
- Hikone 522-8533
- Japan
| | - Shun Yokoyama
- Graduate School of Environmental Studies
- Tohoku University
- Sendai 980-8579
- Japan
| | - Takatoshi Matsumoto
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| | - Kazumasa Suzuki
- Department of Materials Science
- The University of Shiga Prefecture
- Hikone 522-8533
- Japan
| | - Hiroshi Miyamura
- Department of Materials Science
- The University of Shiga Prefecture
- Hikone 522-8533
- Japan
| | | |
Collapse
|
18
|
Borri C, Albino M, Innocenti C, Pineider F, Cavigli L, Centi S, Sangregorio C, Ratto F, Pini R. A bionic shuttle carrying multi-modular particles and holding tumor-tropic features. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111338. [PMID: 32919687 DOI: 10.1016/j.msec.2020.111338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 01/08/2023]
Abstract
The systemic delivery of composite nanoparticles remains an outstanding challenge in cancer nanomedicine, and the principal reason is a complex interplay of biological barriers. In this regard, adaptive cell transfer may represent an alternative solution to circumvent these barriers down to the tumor microenvironment. Here, tumor-tropic macrophages are proposed as a tool to draw and vehiculate modular nanoparticles integrating magnetic and plasmonic components. The end result is a bionic shuttle that exhibits a plasmonic band within the so-called therapeutic window arising from as much as 40 pg Au per cell, magnetization in the order of 150 pemu per cell, and more than 90% of the pristine viability and chemotactic activity of its biological component, until at least two days of preparation. Its synergistic combination of plasmonic, magnetic and tumor-tropic functions is assessed in vitro for applications as magnetic guidance or sorting, with a propulsion around 4 μm s-1 for a magnetic gradient of 0.8 T m-1, the optical hyperthermia of cancer, with stability of photothermal conversion to temperatures exceeding 50∘C, and the photoacoustic imaging of cancer under realistic conditions. These results collectively suggest that a bionic design may be a promising roadmap to reconcile the efforts for multifunctionality and targeted delivery, which are both key goals in nanomedicine.
Collapse
Affiliation(s)
- Claudia Borri
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Martin Albino
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Claudia Innocenti
- Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, (FI), Italy
| | - Francesco Pineider
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Lucia Cavigli
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Sonia Centi
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Claudio Sangregorio
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy; Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, (FI), Italy.
| | - Fulvio Ratto
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy.
| | - Roberto Pini
- Istituto di Fisica Applicata "Nello Carrara", Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
19
|
Tabish TA, Dey P, Mosca S, Salimi M, Palombo F, Matousek P, Stone N. Smart Gold Nanostructures for Light Mediated Cancer Theranostics: Combining Optical Diagnostics with Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903441. [PMID: 32775148 PMCID: PMC7404179 DOI: 10.1002/advs.201903441] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/24/2020] [Indexed: 05/13/2023]
Abstract
Nanotheranostics, which combines optical multiplexed disease detection with therapeutic monitoring in a single modality, has the potential to propel the field of nanomedicine toward genuine personalized medicine. Currently employed mainstream modalities using gold nanoparticles (AuNPs) in diagnosis and treatment are limited by a lack of specificity and potential issues associated with systemic toxicity. Light-mediated nanotheranostics offers a relatively non-invasive alternative for cancer diagnosis and treatment by using AuNPs of specific shapes and sizes that absorb near infrared (NIR) light, inducing plasmon resonance for enhanced tumor detection and generating localized heat for tumor ablation. Over the last decade, significant progress has been made in the field of nanotheranostics, however the main biological and translational barriers to nanotheranostics leading to a new paradigm in anti-cancer nanomedicine stem from the molecular complexities of cancer and an incomplete mechanistic understanding of utilization of Au-NPs in living systems. This work provides a comprehensive overview on the biological, physical and translational barriers facing the development of nanotheranostics. It will also summarise the recent advances in engineering specific AuNPs, their unique characteristics and, importantly, tunability to achieve the desired optical/photothermal properties.
Collapse
Affiliation(s)
| | - Priyanka Dey
- School of Physics and AstronomyUniversity of ExeterExeterEX4 4QLUK
| | - Sara Mosca
- Central Laser FacilitySTFC Rutherford Appleton LaboratoryOxfordOX11 0QXUK
| | - Marzieh Salimi
- School of Physics and AstronomyUniversity of ExeterExeterEX4 4QLUK
| | | | - Pavel Matousek
- Central Laser FacilitySTFC Rutherford Appleton LaboratoryOxfordOX11 0QXUK
| | - Nicholas Stone
- School of Physics and AstronomyUniversity of ExeterExeterEX4 4QLUK
| |
Collapse
|
20
|
Singh MR, Persaud PD, Yastrebov S. A study of two-photon florescence in metallic nanoshells. NANOTECHNOLOGY 2020; 31:265203. [PMID: 32197263 DOI: 10.1088/1361-6528/ab81c9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A theory of the two-photon florescence for a metallic nanoshell in the presence of quantum emitters has been developed. The metallic nanoshell is made of a metallic nanosphere as a core and a dielectric material as a shell. An ensemble of quantum emitters is deposited on the surface of the dielectric shell. A probe field is applied to study the two-photon process in the metallic nanoshell. Surface plasmon polaritons are created at the interface between the core and shell due to coupling between probe photons and surface plasmons present at the surface of the metallic nanosphere. The intensity of the surface plasmon polariton field is huge when the probe photon energy is in resonance with the polariton resonance energy. Induced electric dipoles are created in each quantum emitter due to the surface plasmon polariton field and the probe field. Dipoles in quantum emitters interact with each other via the dipole-dipole interaction. The dipole-dipole interaction is calculated using the many-body theory and mean field approximation. It is found that the dipole-dipole interaction has new term which is induced by the surface plasmon polariton field. An analytical expression of the two-photon florescence is derived in the presence the dipole-dipole interaction. Our theory predicts that the intensity of the two-photon florescence is enhanced in the presence of quantum emitters relative to the florescence of the metallic nanoshell in isolation. Physics behind the enhancement is the presence of the dipole-dipole interaction between the ensemble of quantum emitters. It is also found that as the concentration of quantum emitters increases, the dipole-dipole field also increases. This in turn, increases the two-photon florescence as function of the concentration. Finally, we have compared our theory with experiments of a metallic nanoshell which is made for Au nanosphere core and the SiO2 shell. The metallic nanoshell is surrounded by various concentrations of Cadmium-Selenium quantum dots as quantum emitters. A good agreement between theory and experiment is found.
Collapse
Affiliation(s)
- Mahi R Singh
- Department of Physics and Astronomy, The University of Western Ontario, London N6A 3K7, Canada. F Ioffe Physical-Technical Institute Laboratory of Electrical and Optical Phenomena in Semiconductors, St Petersburg 194021, Russia
| | | | | |
Collapse
|
21
|
Gold Nanoparticles in Glioma Theranostics. Pharmacol Res 2020; 156:104753. [PMID: 32209363 DOI: 10.1016/j.phrs.2020.104753] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Abstract
Despite many endeavors to treat malignant gliomas in the last decades, the median survival of patients has not significantly improved. The infiltrative nature of high-grade gliomas and the impermeability of the blood-brain barrier to the most therapeutic agents remain major hurdles, impeding an efficacious treatment. Theranostic platforms bridging diagnosis and therapeutic modalities aim to surmount the current limitations in diagnosis and therapy of glioma. Gold nanoparticles (AuNPs) due to their biocompatibility and tunable optical properties have widely been utilized for an assortment of theranostic purposes. In this Review, applications of AuNPs as imaging probes, drug/gene delivery systems, radiosensitizers, photothermal transducers, and multimodal theranostic agents in malignant gliomas are discussed. This Review also aims to provide a perspective on cancer theranostic applications of AuNPs in future clinical trials.
Collapse
|
22
|
Espinosa A, Reguera J, Curcio A, Muñoz-Noval Á, Kuttner C, Van de Walle A, Liz-Marzán LM, Wilhelm C. Janus Magnetic-Plasmonic Nanoparticles for Magnetically Guided and Thermally Activated Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904960. [PMID: 32077633 DOI: 10.1002/smll.201904960] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/15/2020] [Indexed: 04/14/2023]
Abstract
Progress of thermal tumor therapies and their translation into clinical practice are limited by insufficient nanoparticle concentration to release therapeutic heating at the tumor site after systemic administration. Herein, the use of Janus magneto-plasmonic nanoparticles, made of gold nanostars and iron oxide nanospheres, as efficient therapeutic nanoheaters whose on-site delivery can be improved by magnetic targeting, is proposed. Single and combined magneto- and photo-thermal heating properties of Janus nanoparticles render them as compelling heating elements, depending on the nanoparticle dose, magnetic lobe size, and milieu conditions. In cancer cells, a much more effective effect is observed for photothermia compared to magnetic hyperthermia, while combination of the two modalities into a magneto-photothermal treatment results in a synergistic cytotoxic effect in vitro. The high potential of the Janus nanoparticles for magnetic guiding confirms them to be excellent nanostructures for in vivo magnetically enhanced photothermal therapy, leading to efficient tumor growth inhibition.
Collapse
Affiliation(s)
- Ana Espinosa
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205, Paris cedex 13, France
- IMDEA Nanociencia, c/ Faraday, 9, 28049, Madrid, Spain
| | - Javier Reguera
- CIC biomaGUNE and Ciber-BBN, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Alberto Curcio
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205, Paris cedex 13, France
| | - Álvaro Muñoz-Noval
- Dpto. Física Materiales, Facultad CC. Físicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Christian Kuttner
- CIC biomaGUNE and Ciber-BBN, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain
| | - Aurore Van de Walle
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205, Paris cedex 13, France
| | - Luis M Liz-Marzán
- CIC biomaGUNE and Ciber-BBN, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205, Paris cedex 13, France
| |
Collapse
|
23
|
Yadav N, Chhillar AK, Rana JS. Detection of pathogenic bacteria with special emphasis to biosensors integrated with AuNPs. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
24
|
Han D, Li B, Chen Y, Wu T, Kou Y, Xue X, Chen L, Liu Y, Duan Q. Facile synthesis of Fe 3O 4@Au core-shell nanocomposite as a recyclable magnetic surface enhanced Raman scattering substrate for thiram detection. NANOTECHNOLOGY 2019; 30:465703. [PMID: 31476137 DOI: 10.1088/1361-6528/ab3a84] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The Fe3O4@Au core-shell nanocomposites, as the multifunctional magnetic surface enhanced Raman scattering (SERS) substrates, were fabricated successfully by the seeds growth method based on the Fe3O4-Au core-satellite nanocomposites. The SERS properties of the Fe3O4-Au core-satellite nanocomposites and the Fe3O4@Au core-shell nanocomposites were compared using 4-aminothiophenol (4-ATP) as the probe molecule. It was found that Fe3O4@Au core-shell nanocomposites showed better SERS performance than Fe3O4-Au core-satellite nanocomposites. The Au shell provided an effectively large surface area for forming sufficient plasmonic hot spots and capturing target molecules. The integration of magnetic core and plasmonic Au nanocrystals endowed the Fe3O4@Au core-shell nanocomposites with highly efficient magnetic separation and enrichment ability and abundant interparticle hot spots. The Fe3O4@Au core-shell nanocomposites could be easily recycled because of the intrinsic magnetism of the Fe3O4 cores and had good reproducibility of the SERS signals. For practical application, the Fe3O4@Au core-shell nanocomposites were also used to detect thiram. There was a good linear relationship between the SERS signal intensity and the concentration of thiram from 1 × 10-3 to 1 × 10-8 M and the limit of detection was 7.69 × 10-9 M. Moreover, residual thiram on apple peel was extracted and detected with a recovery rate range of 99.3%. The resulting substrate with high SERS activity, stability and strong magnetic responsivity makes the Fe3O4@Au core-shell nanocomposites a perfect choice for practical SERS detection applications.
Collapse
Affiliation(s)
- Donglai Han
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China. Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun 130022, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Soysal F, Çıplak Z, Getiren B, Gökalp C, Yıldız N. Synthesis of GO-Fe3O4-PANI nanocomposite with excellent NIR absorption property. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123623] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Yuan M, Wang Y, Hwang D, Longtin JP. Thermocouple-tip-exposing temperature assessment technique for evaluating photothermal conversion efficiency of plasmonic nanoparticles at low laser power density. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:094902. [PMID: 31575270 DOI: 10.1063/1.5109117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
A new thermocouple (TC) tip-exposing temperature assessment technique that combines experimental temperature measurements with a numerical model of the photothermal conversion efficiency η is presented. The proposed technique is designed to evaluate η for a gold-coated superparamagnetic iron oxide nanoparticle (SPIO-Au NP) solution (26 nm, 12-70 ppm) at low continuous wave laser power (103 mW, 532 nm) irradiation in a convenient manner under ambient conditions. The TC tip temperature is measured during the first 30 s of the laser exposure, and the results are combined with a finite element model to simulate the temperature rise of the NP solution for a given concentration. The value of η is adjusted in the model until the model agrees with the measured transient TC temperature rise. Values of η = 1.00 were observed for all concentrations. Theoretical predictions of η derived by Mie theory confirmed the near unity conversion efficiency of the as-synthesized SPIO-Au NPs. Advantages of the current technique include co-locating the TC tip in the geometric center of the laser-heated region, rather than outside of this region. In addition, the technique can be done under ambient room conditions using unmodified commercially available hardware.
Collapse
Affiliation(s)
- Muzhaozi Yuan
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77840-3123, USA
| | - Ya Wang
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77840-3123, USA
| | - David Hwang
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794-2300, USA
| | - Jon P Longtin
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794-2300, USA
| |
Collapse
|
27
|
Degrauwe N, Hocquelet A, Digklia A, Schaefer N, Denys A, Duran R. Theranostics in Interventional Oncology: Versatile Carriers for Diagnosis and Targeted Image-Guided Minimally Invasive Procedures. Front Pharmacol 2019; 10:450. [PMID: 31143114 PMCID: PMC6521126 DOI: 10.3389/fphar.2019.00450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
We are continuously progressing in our understanding of cancer and other diseases and learned how they can be heterogeneous among patients. Therefore, there is an increasing need for accurate characterization of diseases at the molecular level. In parallel, medical imaging and image-guided therapies are rapidly developing fields with new interventions and procedures entering constantly in clinical practice. Theranostics, a relatively new branch of medicine, refers to procedures combining diagnosis and treatment, often based on patient and disease-specific features or molecular markers. Interventional oncology which is at the convergence point of diagnosis and treatment employs several methods related to theranostics to provide minimally invasive procedures tailored to the patient characteristics. The aim is to develop more personalized procedures able to identify cancer cells, selectively reach and treat them, and to assess drug delivery and uptake in real-time in order to perform adjustments in the treatment being delivered based on obtained procedure feedback and ultimately predict response. Here, we review several interventional oncology procedures referring to the field of theranostics, and describe innovative methods that are under development as well as future directions in the field.
Collapse
Affiliation(s)
- Nils Degrauwe
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Arnaud Hocquelet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alban Denys
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Lee SB, Lee JE, Cho SJ, Chin J, Kim SK, Lee IK, Lee SW, Lee J, Jeon YH. Crushed Gold Shell Nanoparticles Labeled with Radioactive Iodine as a Theranostic Nanoplatform for Macrophage-Mediated Photothermal Therapy. NANO-MICRO LETTERS 2019; 11:36. [PMID: 34137977 PMCID: PMC7770679 DOI: 10.1007/s40820-019-0266-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/06/2019] [Indexed: 05/20/2023]
Abstract
Plasmonic nanostructure-mediated photothermal therapy (PTT) has proven to be a promising approach for cancer treatment, and new approaches for its effective delivery to tumor lesions are currently being developed. This study aimed to assess macrophage-mediated delivery of PTT using radioiodine-124-labeled gold nanoparticles with crushed gold shells (124I-Au@AuCBs) as a theranostic nanoplatform. 124I-Au@AuCBs exhibited effective photothermal conversion effects both in vitro and in vivo and were efficiently taken up by macrophages without cytotoxicity. After the administration of 124I-Au@AuCB-labeled macrophages to colon tumors, intensive signals were observed at tumor lesions, and subsequent in vivo PTT with laser irradiation yielded potent antitumor effects. The results indicate the considerable potential of 124I-Au@AuCBs as novel theranostic nanomaterials and the prominent advantages of macrophage-mediated cellular therapies in treating cancer and other diseases.
Collapse
Affiliation(s)
- Sang Bong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Jae-Eon Lee
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Pusan, South Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 702-210, South Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 360-4, South Korea
| | - In-Kyu Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 702-210, South Korea
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, 700-721, South Korea
| | - Sang-Woo Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 702-210, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 702-210, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 702-210, South Korea
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 360-4, South Korea
| | - Yong Hyun Jeon
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 702-210, South Korea.
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 360-4, South Korea.
| |
Collapse
|
29
|
Taniguchi K, Shinoda K, Cuya Huaman JL, Yokoyama S, Uchikoshi M, Matsumoto T, Suzuki K, Miyamura H, Jeyadevan B. Designed synthesis of highly catalytic Ni–Pt nanoparticles for fuel cell applications. SN APPLIED SCIENCES 2018. [DOI: 10.1007/s42452-018-0133-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
30
|
Vines JB, Lim DJ, Park H. Contemporary Polymer-Based Nanoparticle Systems for Photothermal Therapy. Polymers (Basel) 2018; 10:E1357. [PMID: 30961282 PMCID: PMC6401975 DOI: 10.3390/polym10121357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023] Open
Abstract
Current approaches for the treatment of cancer, such as chemotherapy, radiotherapy, immunotherapy, and surgery, are limited by various factors, such as inadvertent necrosis of healthy cells, immunological destruction, or secondary cancer development. Hyperthermic therapy is a promising strategy intended to mitigate many of the shortcomings associated with traditional therapeutic approaches. However, to utilize this approach effectively, it must be targeted to specific tumor sites to prevent adverse side effects. In this regard, photothermal therapy, using intravenously-administered nanoparticle materials capable of eliciting hyperthermic effects in combination with the precise application of light in the near-infrared spectrum, has shown promise. Many different materials have been proposed, including various inorganic materials such as Au, Ag, and Germanium, and C-based materials. Unfortunately, these materials are limited by concerns about accumulation and potential cytotoxicity. Polymer-based nanoparticle systems have been investigated to overcome limitations associated with traditional inorganic nanoparticle systems. Some of the materials that have been investigated for this purpose include polypyrrole, poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), polydopamine, and polyaniline. The purpose of this review is to summarize these contemporary polymer-based nanoparticle technologies to acquire an understanding of their current applications and explore the potential for future improvements.
Collapse
Affiliation(s)
- Jeremy B Vines
- Organogenesis, Surgical and Sports Medicine, Birmingham, AL 35216, USA.
| | - Dong-Jin Lim
- Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
31
|
Woodard LE, Dennis CL, Borchers JA, Attaluri A, Velarde E, Dawidczyk C, Searson PC, Pomper MG, Ivkov R. Nanoparticle architecture preserves magnetic properties during coating to enable robust multi-modal functionality. Sci Rep 2018; 8:12706. [PMID: 30139940 PMCID: PMC6107675 DOI: 10.1038/s41598-018-29711-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/17/2018] [Indexed: 11/09/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MIONs) have established a niche as a nanomedicine platform for diagnosis and therapy, but they present a challenging surface for ligand functionalization which limits their applications. On the other hand, coating MIONs with another material such as gold to enhance these attachments introduces other complications. Incomplete coating may expose portions of the iron oxide core, or the coating process may alter their magnetic properties. We describe synthesis and characterization of iron oxide/silica/gold core-shell nanoparticles to elucidate the effects of a silica-gold coating process and its impact on the resulting performance. In particular, small angle neutron scattering reveals silica intercalates between iron oxide crystallites that form the dense core, likely preserving the magnetic properties while enabling formation of a continuous gold shell. The synthesized silica-gold-coated MIONs demonstrate magnetic heating properties consistent with the original iron oxide core, with added x-ray contrast for imaging and laser heating.
Collapse
Affiliation(s)
- Lauren E Woodard
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Cindi L Dennis
- Material Measurement Laboratory, NIST, Gaithersburg, MD, 20899-8550, USA
| | - Julie A Borchers
- NIST Center for Neutron Research, NIST, Gaithersburg, MD, 20899-6102, USA
| | - Anilchandra Attaluri
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, Pennsylvania State University, Harrisburg,Middletown, PA, 17057, USA
| | - Esteban Velarde
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Charlene Dawidczyk
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter C Searson
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Martin G Pomper
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Robert Ivkov
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
- NIST Center for Neutron Research, NIST, Gaithersburg, MD, 20899-6102, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
32
|
Su G, Miao D, Yu Y, Zhou M, Jiao P, Cao X, Yan B, Zhu H. Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy. J Drug Target 2018; 27:201-210. [PMID: 29993296 DOI: 10.1080/1061186x.2018.1499746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combined chemo-photothermal therapy is attracting increasing attention in the treatment of cancers. In this work, PEGylated mesoporous SiO2-coated gold nanostars (GNS@mSiO2-PEG) were synthesised without using the cytotoxic surfactant cetyltrimethylammonium bromide as the template. Mesoporous nanostructures were obtained by poly(vinylpyrrolidone) protection of the outer silica shell and NaOH etching of the inner shell. GNS@mSiO2-PEG exhibited good dispersity in medium and excellent photothermal effects. Loading capacity for the anticancer drug doxorubicin (DOX) was ∼17.9%, and the drug release profile was pH- and light-responsive. In vitro studies revealed that the as-prepared nanocomposites featured good biocompatibility. Furthermore, the nanocomposites were readily internalised by cancer cells, and a combined chemo-photothermal therapy assay revealed that DOX-loaded GNS@mSiO2-PEG have a higher therapeutic efficiency than individual therapies, demonstrating suitable synergistic effects.
Collapse
Affiliation(s)
- Gaoxing Su
- a School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets , Nantong University , Nantong , China
| | - Dandan Miao
- a School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets , Nantong University , Nantong , China
| | - Yanyan Yu
- a School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets , Nantong University , Nantong , China
| | - Min Zhou
- a School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets , Nantong University , Nantong , China
| | - Peifu Jiao
- b Department of Chemistry , Qilu Normal University , Jinan , China
| | - Xiaolong Cao
- a School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets , Nantong University , Nantong , China
| | - Bing Yan
- c School of Environmental Science and Engineering , Shandong University , Jinan , China
| | - Hongyan Zhu
- a School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets , Nantong University , Nantong , China
| |
Collapse
|
33
|
Hosseini V, Mirrahimi M, Shakeri-Zadeh A, Koosha F, Ghalandari B, Maleki S, Komeili A, Kamrava SK. Multimodal cancer cell therapy using Au@Fe 2O 3 core-shell nanoparticles in combination with photo-thermo-radiotherapy. Photodiagnosis Photodyn Ther 2018; 24:129-135. [PMID: 30077650 DOI: 10.1016/j.pdpdt.2018.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/18/2018] [Accepted: 08/01/2018] [Indexed: 11/30/2022]
Abstract
In this study, gold coated iron oxide nanoparticle (Au@Fe2O3 NP) was synthesized in a core-shell structure. Photothermal and radiosensitization effects of Au@Fe2O3 NPs were investigated on KB human mouth epidermal carcinoma cell line. Cell death and apoptosis were measured to study the effects of nanoparticles in combination with both radiotherapy (RT) and photothermal therapy (PTT). The KB cells were treated with Au@Fe2O3 NPs (20 μg/ml; 4 h) and then received different treatment regimens of PTT and/or RT using laser (808 nm, 6 W/cm2, 10 min) and/or 6 MV X-ray (single dose of 2 Gy). Following the various treatments, MTT assay was performed to evaluate the cell survival rate. Also, the mode of cell death was determined by flow cytometry using an annexinV-fluorescein isothiocyanate/propidium iodide apoptosis detection kit. No significant cell death was observed due to laser irradiation. The viability of the cells firstly incubated with NPs and then exposed to the laser was significantly decreased. Additionally, our results demonstrated that Au@Fe2O3 NP is a good radiosensitizer at megavoltage energies of X-ray. When nanoparticles loaded KB cells were received both laser and X-ray, the cell viability substantially decreased. Following such a combinatorial treatment, flow cytometry determined that the majority of cell death relates to apoptosis. In conclusion, Au@Fe2O3 NP has a great potential to be applied as a photo-thermo-radiotherapy sensitizer for treatment of head and neck tumors.
Collapse
Affiliation(s)
- Vahid Hosseini
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehri Mirrahimi
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Shakeri-Zadeh
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Fereshteh Koosha
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behafarid Ghalandari
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shayan Maleki
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Komeili
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - S Kamran Kamrava
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
34
|
Tanjim M, Rahman MA, Rahman MM, Minami H, Hoque SM, Sharafat MK, Gafur MA, Ahmad H. Mesoporous magnetic silica particles modified with stimuli-responsive P(NIPAM-DMA) valve for controlled loading and release of biologically active molecules. SOFT MATTER 2018; 14:5469-5479. [PMID: 29923579 DOI: 10.1039/c8sm00560e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mesoporous magnetic silica particles bearing a stimuli-responsive polymer valve were prepared and their performance as a microcapsule was evaluated. In this study, first, mesoporous magnetic iron oxide (Fe3O4) particles were prepared by a solvothermal method. Then, the magnetic particles were coated with silica and functionalized with vinyl groups using 3-(trimethoxysilyl)-propyl methacrylate (MPS). Subsequently, the Fe3O4/SiO2 composite particles grafted with MPS were used to carry out the seeded precipitation copolymerization of N-isopropylacrylamide (NIPAM) and 2,2-dimethylaminoethyl methacrylate (DMA). Here N,N'-methylenebisacrylamide (MBA) was used as a cross-linker. Brunauer-Emmett-Teller (BET) surface analysis suggested that the mesoporous structure was retained in the final Fe3O4/SiO2/P(NIPAM-DMA-MBA) composite hydrogel particles. The prepared Fe3O4/SiO2/P(NIPAM-DMA-MBA) composite hydrogel microspheres exhibited a pH-dependent volume phase transition. At lower pH values (<7), the inclusion of DMA shifted the volume phase transition to higher temperature because of the protonation of the tertiary amine groups. The composite hydrogel particles possessed a high saturation magnetization (51 emu g-1) and moved under the influence of an external magnetic field. The loading-release behaviour of these biologically active molecules suggested that a portion of the encapsulated guest molecules was released at a temperature below the lower critical solution temperature, LCST (<35 °C).
Collapse
Affiliation(s)
- Mustahida Tanjim
- Department of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Estelrich J, Busquets MA. Iron Oxide Nanoparticles in Photothermal Therapy. Molecules 2018; 23:E1567. [PMID: 29958427 PMCID: PMC6100614 DOI: 10.3390/molecules23071567] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022] Open
Abstract
Photothermal therapy is a kind of therapy based on increasing the temperature of tumoral cells above 42 °C. To this aim, cells must be illuminated with a laser, and the energy of the radiation is transformed in heat. Usually, the employed radiation belongs to the near-infrared radiation range. At this range, the absorption and scattering of the radiation by the body is minimal. Thus, tissues are almost transparent. To improve the efficacy and selectivity of the energy-to-heat transduction, a light-absorbing material, the photothermal agent, must be introduced into the tumor. At present, a vast array of compounds are available as photothermal agents. Among the substances used as photothermal agents, gold-based compounds are one of the most employed. However, the undefined toxicity of this metal hinders their clinical investigations in the long run. Magnetic nanoparticles are a good alternative for use as a photothermal agent in the treatment of tumors. Such nanoparticles, especially those formed by iron oxides, can be used in combination with other substances or used themselves as photothermal agents. The combination of magnetic nanoparticles with other photothermal agents adds more capabilities to the therapeutic system: the nanoparticles can be directed magnetically to the site of interest (the tumor) and their distribution in tumors and other organs can be imaged. When used alone, magnetic nanoparticles present, in theory, an important limitation: their molar absorption coefficient in the near infrared region is low. The controlled clustering of the nanoparticles can solve this drawback. In such conditions, the absorption of the indicated radiation is higher and the conversion of energy in heat is more efficient than in individual nanoparticles. On the other hand, it can be designed as a therapeutic system, in which the heat generated by magnetic nanoparticles after irradiation with infrared light can release a drug attached to the nanoparticles in a controlled manner. This form of targeted drug delivery seems to be a promising tool of chemo-phototherapy. Finally, the heating efficiency of iron oxide nanoparticles can be increased if the infrared radiation is combined with an alternating magnetic field.
Collapse
Affiliation(s)
- Joan Estelrich
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda., Joan XXIII, 27⁻31, 08028 Barcelona, Catalonia, Spain.
- Nstitut de Nanociència i Nanotecnologia, IN2UB, Facultat de Química, Diagonal 645, 08028 Barcelona, Catalonia, Spain.
| | - Maria Antònia Busquets
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda., Joan XXIII, 27⁻31, 08028 Barcelona, Catalonia, Spain.
- Nstitut de Nanociència i Nanotecnologia, IN2UB, Facultat de Química, Diagonal 645, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
36
|
Nassireslami E, Ajdarzade M. Gold Coated Superparamagnetic Iron Oxide Nanoparticles as Effective Nanoparticles to Eradicate Breast Cancer Cells via Photothermal Therapy. Adv Pharm Bull 2018; 8:201-209. [PMID: 30023321 PMCID: PMC6046429 DOI: 10.15171/apb.2018.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
Purpose: Unique physiochemical properties of Fe2O3 nanoparticles make them great agents to serve as therapeutic and diagnostic nanoparticles (NPs). In this study, we developed gold coated Fe2O3 nanoparticles for photothermal therapy of breast cancer cells. Methods: Fe2O3 nanoparticles was prepared via microemulsion method and their surface was modified via gold. Differential light scattering (DLS) and transmission electron microscopy (TEM) methods were applied to evaluate physicochemical properties of NPs. Gold coated NP was further modified with MUC-1 aptamer as a targeting agent to increase drug delivery into the desired tissue. To evaluate cytotoxicity of prepared cells, MTT assay was employed. Targeting ability of aptamer modified NPs was assessed through confocal microscopy and flow cytometry method. Subsequently, MCF-7 and CHO cells were treated with aptamer modified NPs and were then irradiated via near infrared light (NIR) to produce heat. Results: The morphology of NPs was spherical and monodisperse with the size of 16 nm, which was confirmed via DLS and TEM. Confocal microscopy and flow cytometry results indicated that aptamer modified NPs had higher uptake compared to bare NPs. Finally, NIR exposure results revealed that higher uptake of NPs and application of NIR led to significant death of MCF-7 cells compared to CHO cells. Conclusion: To sum up, aptamer modified Fe2O3 nanoparticles showed higher uptake by cancerous cells and led to eradication of cancerous cells after exposure to NIR light.
Collapse
Affiliation(s)
- Ehsan Nassireslami
- Department of Pharmacology &Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Morteza Ajdarzade
- Department of Pharmacology &Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Kurdtabar M, Nezam H, Rezanejade Bardajee G, Dezfulian M, Salimi H. Biocompatible Magnetic Hydrogel Nanocomposite Based on Carboxymethylcellulose: Synthesis, Cell Culture Property and Drug Delivery. POLYMER SCIENCE SERIES B 2018. [DOI: 10.1134/s1560090418020021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Qiao Y, Gumin J, MacLellan CJ, Gao F, Bouchard R, Lang FF, Stafford RJ, Melancon MP. Magnetic resonance and photoacoustic imaging of brain tumor mediated by mesenchymal stem cell labeled with multifunctional nanoparticle introduced via carotid artery injection. NANOTECHNOLOGY 2018; 29:165101. [PMID: 29438105 PMCID: PMC5863233 DOI: 10.1088/1361-6528/aaaf16] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
OBJECTIVE To evaluate the feasibility of visualizing bone marrow-derived human mesenchymal stem cells (MSCs) labeled with a gold-coated magnetic resonance (MR)-active multifunctional nanoparticle and injected via the carotid artery for assessing the extent of MSC homing in glioma-bearing mice. MATERIALS AND METHODS Nanoparticles containing superparamagnetic iron oxide coated with gold (SPIO@Au) with a diameter of ∼82 nm and maximum absorbance in the near infrared region were synthesized. Bone marrow-derived MSCs conjugated with green fluorescent protein (GFP) were successfully labeled with SPIO@Au at 4 μg ml-1 and injected via the internal carotid artery in six mice bearing orthotopic U87 tumors. Unlabeled MSCs were used as a control. The ability of SPIO@Au-loaded MSCs to be imaged using MR and photoacoustic (PA) imaging at t = 0 h, 2 h, 24 h, and 72 h was assessed using a 7 T Bruker Biospec experimental MR scanner and a Vevo LAZR PA imaging system with a 5 ns laser as the excitation source. Histological analysis of the brain tissue was performed 72 h after MSC injection using GFP fluorescence, Prussian blue staining, and hematoxylin-and-eosin staining. RESULTS MSCs labeled with SPIO@Au at 4 μg ml-1 did not exhibit cell death or any adverse effects on differentiation or migration. The PA signal in tumors injected with SPIO@Au-loaded MSCs was clearly more enhanced post-injection, as compared with the tumors injected with unlabeled MSCs at t = 72 h. Using the same mice, T2-weighted MR imaging results taken before injection and at t = 2 h, 24 h, and 72 h were consistent with the PA imaging results, showing significant hypointensity of the tumor in the presence of SPIO@Au-loaded MSCs. Histological analysis also showed co-localization of GFP fluorescence and iron, thereby confirming that SPIO@Au-labeled MSCs continue to carry their nanoparticle payloads even at 72 h after injection. CONCLUSIONS Our results demonstrated the feasibility of tracking carotid artery-injected SPIO@Au-labeled MSCs in vivo via MR and PA imaging.
Collapse
Affiliation(s)
- Yang Qiao
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Texas A&M University College of Medicine, 8447 Riverside Pkwy., Bryan, TX 77807, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Christopher J. MacLellan
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave., Houston, TX 77225, USA
| | - Feng Gao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Richard Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave., Houston, TX 77225, USA
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - R. Jason Stafford
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave., Houston, TX 77225, USA
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave., Houston, TX 77225, USA
| |
Collapse
|
39
|
Mesoporous 3D carbon framework encapsulated manganese oxide nanoparticles as biocompatible T1 MR imaging probe. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Kostevšek N, Abramovič I, Hudoklin S, Kreft ME, Serša I, Sepe A, Vidmar J, Šturm S, Spreitzer M, Ščančar J, Kobe S, Žužek Rožman K. Hybrid FePt/SiO 2/Au nanoparticles as a theranostic tool: in vitro photo-thermal treatment and MRI imaging. NANOSCALE 2018; 10:1308-1321. [PMID: 29296980 DOI: 10.1039/c7nr07810b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We have produced an innovative, theranostic material based on FePt/SiO2/Au hybrid nanoparticles (NPs) for both, photo-thermal therapy and magnetic resonance imaging (MRI). Furthermore, a new synthesis approach, i.e., Au double seeding, for the preparation of Au nanoshells around the FePt/SiO2 cores, is proposed. The photo-thermal and the MRI response were first demonstrated on an aqueous suspension of hybrid FePt/SiO2/Au NPs. The cytotoxicity together with the internalization mechanism and the intracellular fate of the hybrid NPs were evaluated in vitro on a normal (NPU) and a half-differentiated cancerous cell line (RT4). The control samples as well as the normal cell line incubated with the NPs showed no significant temperature increase during the in vitro photo-thermal treatment (ΔT < 0.8 °C) and thus the cell viability remained high (∼90%). In contrast, due to the high NP uptake by the cancerous RT4 cell line, significant heating of the sample was observed (ΔT = 4 °C) and, consequently, after laser irradiation the cell viability dropped significantly to ∼60%. These results further confirm that the hybrid FePt/SiO2/Au NPs developed in the scope of this work were not only efficient but also highly selective photo-thermal agents. Furthermore, the improvement in the contrast and the easier distinction between the healthy and the cancerous tissues were clearly demonstrated with in vitro MRI experiments, proving that hybrid NPs have an excellent potential to be used as contrast agents.
Collapse
Affiliation(s)
- N Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bertorelle F, Pinto M, Zappon R, Pilot R, Litti L, Fiameni S, Conti G, Gobbo M, Toffoli G, Colombatti M, Fracasso G, Meneghetti M. Safe core-satellite magneto-plasmonic nanostructures for efficient targeting and photothermal treatment of tumor cells. NANOSCALE 2018; 10:976-984. [PMID: 29264608 DOI: 10.1039/c7nr07844g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magneto-plasmonic nanostructures functionalized with cell targeting units are of great interest for nanobiotechnology applications. Photothermal treatment of cells targeted with antibody functionalized nanostructures and followed by magnetic isolation, allows killing selected cells and hence is one of the applications of great interest. The magneto-plasmonic nanostructures reported herein were synthesized using naked gold and magnetite nanoparticles obtained through a green approach based on laser ablation of bulk materials in water. These particles do not need purifications steps for biocompatibility and are functionalized with a SERRS (surface enhanced resonance Raman scattering) active molecule for detection and with an antibody for targeting prostate tumor cells. Quantitative results for the cell targeting and selection efficiency show an overall accuracy of 94% at picomolar concentrations. The photothermal treatment efficiently kills targeted and magneto-selected cells producing a viability below 5% after 3 min of irradiation, compared with almost 100% viability of incubated and irradiated, but non targeted cells.
Collapse
Affiliation(s)
- F Bertorelle
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 31033, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
43
|
Ghaznavi H, Hosseini-Nami S, Kamrava SK, Irajirad R, Maleki S, Shakeri-Zadeh A, Montazerabadi A. Folic acid conjugated PEG coated gold-iron oxide core-shell nanocomplex as a potential agent for targeted photothermal therapy of cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1594-1604. [PMID: 28994325 DOI: 10.1080/21691401.2017.1384384] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study reports the synthesis and characterization of poly(ethylene glycol) coated gold@iron oxide core-shell nanoparticles conjugated with folic acid (FA-PEG-Au@IONP). Also, targeted therapeutic properties of such a nanocomplex were studied on human nasopharyngeal carcinoma cell line KB and human breast adenocarcinoma cell line MCF-7 in vitro. The synthesized nanocomplex was characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-Vis spectroscopy, vibrating sample magnetometry (VSM), and Fourier transform infrared (FTIR) spectroscopy. The photothermal effects of nanocomplex on both KB and MCF-7 cell lines were studied. Cell death and apoptosis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry using an annexin V-fluorescein isothiocyanate/propidiumiodide apoptosis detection kit. It was found that nanocomplex is spherical in shape and its size is approximately 60 nm. UV-vis spectrum showed that nanocomplex has appropriate absorption near infrared region. FTIR spectra obtained from nanocomplex before and after conjugation with FA confirmed the formation of folate conjugated nanocomplex. Significant cell lethality was observed for KB (∼62%) and MCF-7 (∼33%) cells following photothermal therapy. Also, it was found that majority of the cell deaths were related to apoptosis process. It can be concluded that, the synthesized nanocomplex is an effective and promising multifunctional nanoplatform for targeted photothermal therapy of cancer.
Collapse
Affiliation(s)
- Habib Ghaznavi
- a Health Promotion Research Centre, Zahedan University of Medical Sciences , Zahedan , Iran
| | - Samira Hosseini-Nami
- b Department of Medical Physics , School of Medicine, Iran University of Medical Sciences , Tehran , Iran
| | - S Kamran Kamrava
- c Department of ENT, Head and Neck Research Centre , Iran University of Medical Sciences , Tehran , Iran
| | - Rasoul Irajirad
- d Département de chimie, faculté des sciences et technologies , Université Claude Bernard Lyon 1 , Lyon , France
| | - Shayan Maleki
- c Department of ENT, Head and Neck Research Centre , Iran University of Medical Sciences , Tehran , Iran
| | - Ali Shakeri-Zadeh
- b Department of Medical Physics , School of Medicine, Iran University of Medical Sciences , Tehran , Iran.,e Radiation Biology Research Centre, Iran University of Medical Sciences , Tehran , Iran
| | - Alireza Montazerabadi
- f Department of Medical Physics, School of Medicine , Gonabad University of Medical Sciences , Gonabad, Iran
| |
Collapse
|
44
|
Chen YT, Kolhatkar AG, Zenasni O, Xu S, Lee TR. Biosensing Using Magnetic Particle Detection Techniques. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2300. [PMID: 28994727 PMCID: PMC5676660 DOI: 10.3390/s17102300] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/26/2017] [Accepted: 08/30/2017] [Indexed: 02/03/2023]
Abstract
Magnetic particles are widely used as signal labels in a variety of biological sensing applications, such as molecular detection and related strategies that rely on ligand-receptor binding. In this review, we explore the fundamental concepts involved in designing magnetic particles for biosensing applications and the techniques used to detect them. First, we briefly describe the magnetic properties that are important for bio-sensing applications and highlight the associated key parameters (such as the starting materials, size, functionalization methods, and bio-conjugation strategies). Subsequently, we focus on magnetic sensing applications that utilize several types of magnetic detection techniques: spintronic sensors, nuclear magnetic resonance (NMR) sensors, superconducting quantum interference devices (SQUIDs), sensors based on the atomic magnetometer (AM), and others. From the studies reported, we note that the size of the MPs is one of the most important factors in choosing a sensing technique.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA.
| | - Arati G Kolhatkar
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA.
| | - Oussama Zenasni
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA.
| | - Shoujun Xu
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA.
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
45
|
Vittur V, Kolhatkar AG, Shah S, Rusakova I, Litvinov D, Lee TR. Near-infrared-responsive, superparamagnetic Au@Co nanochains. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1680-1687. [PMID: 28875105 PMCID: PMC5564264 DOI: 10.3762/bjnano.8.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
This manuscript describes a new type of nanomaterial, namely superparamagnetic Au@Co nanochains with optical extinctions in the near infrared (NIR). The Au@Co nanochains were synthesized via a one-pot galvanic replacement route involving a redox-transmetalation process in aqueous medium, where Au salt was reduced to form Au shells on Co seed templates, affording hollow Au@Co nanochains. The Au shells serve not only as a protective coating for the Co nanochain cores, but also to give rise to the optical properties of these unique nanostructures. Importantly, these bifunctional, magneto-optical Au@Co nanochains combine the advantages of nanophotonics (extinction at ca. 900 nm) and nanomagnetism (superparamagnetism) and provide a potentially useful new nanoarchitecture for biomedical or catalytic applications that can benefit from both activation by light and manipulation using an external magnetic field.
Collapse
Affiliation(s)
- Varadee Vittur
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - Arati G Kolhatkar
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - Shreya Shah
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - Irene Rusakova
- Department of Physics and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - Dmitri Litvinov
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
- Department of Electrical and Computer Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA
| |
Collapse
|
46
|
Song J, Yang X, Yang Z, Lin L, Liu Y, Zhou Z, Shen Z, Yu G, Dai Y, Jacobson O, Munasinghe J, Yung B, Teng GJ, Chen X. Rational Design of Branched Nanoporous Gold Nanoshells with Enhanced Physico-Optical Properties for Optical Imaging and Cancer Therapy. ACS NANO 2017; 11:6102-6113. [PMID: 28605594 DOI: 10.1021/acsnano.7b02048] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reported procedures on the synthesis of gold nanoshells with smooth surfaces have merely demonstrated efficient control of shell thickness and particle size, yet no branch and nanoporous features on the nanoshell have been implemented to date. Herein, we demonstrate the ability to control the roughness and nanoscale porosity of gold nanoshells by using redox-active polymer poly(vinylphenol)-b-(styrene) nanoparticles as reducing agent and template. The porosity and size of the branches on this branched nanoporous gold nanoshell (BAuNSP) material can be facilely adjusted by control of the reaction speed or the reaction time between the redox-active polymer nanoparticles and gold ions (Au3+). Due to the strong reduction ability of the redox-active polymer, the yield of BAuNSP was virtually 100%. By taking advantage of the sharp branches and nanoporous features, BAuNSP exhibited greatly enhanced physico-optical properties, including photothermal effect, surface-enhanced Raman scattering (SERS), and photoacoustic (PA) signals. The photothermal conversion efficiency can reach as high as 75.5%, which is greater than most gold nanocrystals. Furthermore, the nanoporous nature of the shells allows for effective drug loading and controlled drug release. The thermoresponsive polymer coated on the BAuNSP surface serves as a gate keeper, governing the drug release behavior through photothermal heating. Positron emission tomography imaging demonstrated a high passive tumor accumulation of 64Cu-labeled BAuNSP. The strong SERS signal generated by the SERS-active BAuNSP in vivo, accompanied by enhanced PA signals in the tumor region, provide significant tumor information, including size, morphology, position, and boundaries between tumor and healthy tissues. In vivo tumor therapy experiments demonstrated a highly synergistic chemo-photothermal therapy effect of drug-loaded BAuNSPs, guided by three modes of optical imaging.
Collapse
Affiliation(s)
| | - Xiangyu Yang
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University , Nanjing 210009, China
| | | | | | | | | | | | | | | | | | | | | | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University , Nanjing 210009, China
| | | |
Collapse
|
47
|
Rucinskaite G, Thompson SA, Paterson S, de la Rica R. Enzyme-coated Janus nanoparticles that selectively bind cell receptors as a function of the concentration of glucose. NANOSCALE 2017; 9:5404-5407. [PMID: 28426045 DOI: 10.1039/c7nr00298j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A method is proposed for controlling the number of nanoparticles bound to cell membranes via RGDS peptide-integrin interactions. It consists of propelling nanoparticles bearing the peptides with enzymes (glucose oxidase), which disrupts biomolecular interactions as a function of the concentration of enzyme substrate (glucose).
Collapse
Affiliation(s)
- Gabriele Rucinskaite
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, Scotland, UK.
| | | | | | | |
Collapse
|
48
|
Monaco I, Arena F, Biffi S, Locatelli E, Bortot B, La Cava F, Marini GM, Severini GM, Terreno E, Comes Franchini M. Synthesis of Lipophilic Core–Shell Fe3O4@SiO2@Au Nanoparticles and Polymeric Entrapment into Nanomicelles: A Novel Nanosystem for in Vivo Active Targeting and Magnetic Resonance–Photoacoustic Dual Imaging. Bioconjug Chem 2017; 28:1382-1390. [DOI: 10.1021/acs.bioconjchem.7b00076] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ilaria Monaco
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Francesca Arena
- Molecular
and Preclinical Imaging Centers, Department of Molecular Biotechnology
and Healthy Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Stefania Biffi
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, Trieste 34137, Italy
| | - Erica Locatelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Barbara Bortot
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, Trieste 34137, Italy
| | - Francesca La Cava
- Molecular
and Preclinical Imaging Centers, Department of Molecular Biotechnology
and Healthy Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Giada Maria Marini
- Molecular
and Preclinical Imaging Centers, Department of Molecular Biotechnology
and Healthy Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Giovanni Maria Severini
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, Trieste 34137, Italy
| | - Enzo Terreno
- Molecular
and Preclinical Imaging Centers, Department of Molecular Biotechnology
and Healthy Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Mauro Comes Franchini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| |
Collapse
|
49
|
Mendez N, Liberman A, Corbeil J, Barback C, Viveros R, Wang J, Wang-Rodriguez J, Blair SL, Mattrey R, Vera D, Trogler W, Kummel AC. Assessment of in vivo systemic toxicity and biodistribution of iron-doped silica nanoshells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:933-942. [DOI: 10.1016/j.nano.2016.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
|
50
|
Singh RK, Patel KD, Leong KW, Kim HW. Progress in Nanotheranostics Based on Mesoporous Silica Nanomaterial Platforms. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10309-10337. [PMID: 28274115 DOI: 10.1021/acsami.6b16505] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Theranostics based on nanoparticles (NPs) is a promising paradigm in nanomedicine. Mesoporous silica nanoparticle (MSN)-based systems offer unique characteristics to enable multimodal imaging or simultaneous diagnosis and therapy. They include large surface area and volume, tunable pore size, functionalizable surface, and acceptable biological safety. Hybridization with other NPs and chemical modification can further potentiate the multifunctionality of MSN-based systems toward translation. Here, we update the recent progress on MSN-based systems for theranostic purposes. We discuss various synthetic approaches used to construct the theranostic platforms either via intrinsic chemistry or extrinsic combination. These include defect generation in the silica structure, encapsulation of diagnostic NPs within silica, their assembly on the silica surface, and direct conjugation of dye chemicals. Collectively, in vitro and in vivo results demonstrate that multimodal imaging capacities can be integrated with the therapeutic functions of these MSN systems for therapy. With further improvement in bioimaging sensitivity and targeting specificity, the multifunctional MSN-based theranostic systems will find many clinical applications in the near future.
Collapse
Affiliation(s)
- Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Kapil D Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
| | - Kam W Leong
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan 330-714, South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 330-714, South Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University , Cheonan 330-714, South Korea
| |
Collapse
|