1
|
Smith LO, Thatcher KM, Henderson-Walshe OJ, Crittenden DL. Redox Behaviour and Redox Potentials of Dyes in Aqueous Buffers and Protic Ionic Liquids. Chemistry 2024; 30:e202400573. [PMID: 38660913 DOI: 10.1002/chem.202400573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Organic dyes hold promise as inexpensive electrochemically-active building blocks for new renewable energy technologies such as redox-flow batteries and dye-sensitised solar cells, especially if they display high oxidation and/or low reduction potentials in cheap, non-flammable solvents such as water or protic ionic liquids. Systematic computational and experimental characterisation of a representative selection of acidic and basic dyes in buffered aqueous solutions and propylammonium formate confirm that quinoid-type mechanisms impart electrochemical reversibility for the majority of systems investigated, including quinones, fused tricyclic heteroaromatics, indigo carmine and some aromatic nitrogenous species. Conversely, systems that generate longlived radical intermediates - arylmethanes, hydroquinones at high pH, azocyclic systems - tend to display irreversible electrochemistry, likely undergoing ring-opening, dimerisation and/or disproportionation reactions.
Collapse
Affiliation(s)
- Lachlan O Smith
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Kathryn M Thatcher
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Deborah L Crittenden
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
2
|
Gerroll BR, Kulesa KM, Ault CA, Baker LA. Legion: An Instrument for High-Throughput Electrochemistry. ACS MEASUREMENT SCIENCE AU 2023; 3:371-379. [PMID: 37868360 PMCID: PMC10588931 DOI: 10.1021/acsmeasuresciau.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 10/24/2023]
Abstract
Electrochemical arrays promise utility for accelerated hypothesis testing and breakthrough discoveries. Herein, we report a new high-throughput electrochemistry platform, colloquially called "Legion," for applications in electroanalysis and electrosynthesis. Legion consists of 96 electrochemical cells dimensioned to match common 96-well plates that are independently controlled with a field-programmable gate array. We demonstrate the utility of Legion by measuring model electrochemical probes, pH-dependent electron transfers, and electrocatalytic dehalogenation reactions. We consider advantages and disadvantages of this new instrumentation, with the hope of expanding the electrochemical toolbox.
Collapse
Affiliation(s)
| | - Krista M. Kulesa
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Charles A. Ault
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Lane A. Baker
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Abstract
The increasing interest and need to shift to sustainable energy give rise to the utilization of fuel cell technologies in various applications. The challenging task of hydrogen storage and transport led to the development of liquid hydrogen carriers (LHCs) as fuels for direct LHC fuel cells, such as methanol in direct methanol fuel cells (DMFCs). Although simpler to handle, most direct LHC fuel cells suffer from durability and price issues derived from high catalysts' loadings and byproducts of the oxidation reaction of the fuel. Herein, we report on the development of direct hydroquinone fuel cells (DQFCs) based on anthraquinone-2,7-disulfonic acid (AQDS) as an LHC. We have shown that DQFC can operate with a continuous flow of quinone as a hydrogen carrier, outperforming the incumbent state-of-the-art DMFC by a factor of 3 in peak power density while completely removing the need for any catalyst at the anode. In addition, we demonstrate that quinone can be charged with protons in the same system, making it a reversible fuel cell system. We optimized the operating conditions and discussed the governing conditions to reach the best performance.
Collapse
Affiliation(s)
- Yan Yurko
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Lior Elbaz
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
4
|
Petrov M, Chikin D, Abunaeva L, Glazkov A, Pichugov R, Vinyukov A, Levina I, Motyakin M, Mezhuev Y, Konev D, Antipov A. Mixture of Anthraquinone Sulfo-Derivatives as an Inexpensive Organic Flow Battery Negolyte: Optimization of Battery Cell. MEMBRANES 2022; 12:912. [PMID: 36295671 PMCID: PMC9607404 DOI: 10.3390/membranes12100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Anthraquinone-2,7-disulfonic acid (2,7-AQDS) is a promising organic compound, which is considered as a negolyte for redox flow batteries as well as for other applications. In this work we carried out a well-known reaction of anthraquinone sulfonation to synthesize 2,7-AQDS in mixture with other sulfo-derivatives, namely 2,6-AQDS and 2-AQS. Redox behavior of this mixture was evaluated with cyclic voltammetry and was almost identical to 2,7-AQDS. Mixture was then assessed as a potential negolyte of anthraquinone-bromine redox flow battery. After adjusting membrane-electrode assembly composition (membrane material and flow field)), the cell demonstrated peak power density of 335 mW cm-2 (at SOC 90%) and capacity utilization, capacity retention and energy efficiency of 87.9, 99.6 and 64.2%, respectively. These values are almost identical or even higher than similar values for flow battery with 2,7-AQDS as a negolyte, while the price of mixture is significantly lower. Therefore, this work unveils the promising possibility of using a mixture of crude sulfonated anthraquinone derivatives mixture as an inexpensive negolyte of RFB.
Collapse
Affiliation(s)
- Mikhail Petrov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Dmitry Chikin
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Lilia Abunaeva
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Artem Glazkov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Roman Pichugov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexey Vinyukov
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Irina Levina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mikhail Motyakin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yaroslav Mezhuev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Dmitry Konev
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Anatoly Antipov
- EMCPS Department, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
5
|
Gallmetzer JM, Kröll S, Werner D, Wielend D, Irimia-Vladu M, Portenkirchner E, Sariciftci NS, Hofer TS. Anthraquinone and its derivatives as sustainable materials for electrochemical applications - a joint experimental and theoretical investigation of the redox potential in solution. Phys Chem Chem Phys 2022; 24:16207-16219. [PMID: 35757985 PMCID: PMC9258729 DOI: 10.1039/d2cp01717b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022]
Abstract
Anthraquinone (AQ) has long been identified as a highly promising lead structure for various applications in organic electronics. Considering the enormous number of possible substitution patterns of the AQ lead structure, with only a minority being commercially available, a systematic experimental screening of the associated electrochemical potentials represents a highly challenging and time consuming task, which can be greatly enhanced via suitable virtual pre-screening techniques. In this work the calculated electrochemical reduction potentials of pristine AQ and 12 hydroxy- or/and amino-substituted AQ derivatives in N,N-dimethylformamide have been correlated against newly measured experimental data. In addition to the calculations performed using density functional theory (DFT), the performance of different semi-empirical density functional tight binding (DFTB) approaches has been critically assessed. It was shown that the SCC DFTB/3ob parametrization in conjunction with the COSMO solvation model provides a highly adequate description of the electrochemical potentials also in the case of the two-fold reduced species. While the quality in the correlation against the experimental data proved to be slightly inferior compared to the employed DFT approach, the highly advantageous cost-accuracy ratio of the SCC DFTB/3ob/COSMO framework has important implications in the formulation of hierarchical screening strategies for materials associated with organic electronics. Based on the observed performance, the low-cost method provides sufficiently accurate results to execute efficient pre-screening protocols, which may then be followed by a DFT-based refinement of the best candidate structures to facilitate a systematic search for new, high-performance organic electronic materials.
Collapse
Affiliation(s)
- Josef M Gallmetzer
- Theoretical Chemistry, Division, Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - Stefanie Kröll
- Theoretical Chemistry, Division, Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - Daniel Werner
- Institute of Physical Chemistry, Josef-Möller-Haus, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria.
| | - Dominik Wielend
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Mihai Irimia-Vladu
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Engelbert Portenkirchner
- Institute of Physical Chemistry, Josef-Möller-Haus, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria.
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Thomas S Hofer
- Theoretical Chemistry, Division, Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
6
|
Goia S, Turner MAP, Woolley JM, Horbury MD, Borrill AJ, Tully JJ, Cobb SJ, Staniforth M, Hine NDM, Burriss A, Macpherson JV, Robinson BR, Stavros VG. Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple. Chem Sci 2022; 13:486-496. [PMID: 35126981 PMCID: PMC8730129 DOI: 10.1039/d1sc04993c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
Many photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce a combined ultrafast transient absorption-spectroelectrochemistry (TA-SEC) approach using freestanding boron doped diamond (BDD) mesh electrodes, which also extends the time domain of conventional spectrochemical measurements. The BDD electrodes offer a wide solvent window, low background currents, and a tuneable mesh size which minimises light scattering from the electrode itself. Importantly, reactive intermediates are generated electrochemically, via oxidation/reduction of the starting stable species, enabling their dynamic interrogation using ultrafast TA-SEC, through which the early stages of the photoinduced relaxation mechanisms are elucidated. As a model system, we investigate the ultrafast spectroscopy of both anthraquinone-2-sulfonate (AQS) and its less stable counterpart, anthrahydroquinone-2-sulfonate (AH2QS). This is achieved by generating AH2QS in situ from AQS via electrochemical means, whilst simultaneously probing the associated early-stage photoinduced dynamical processes. Using this approach we unravel the relaxation mechanisms occurring in the first 2.5 ns, following absorption of ultraviolet radiation; for AQS as an extension to previous studies, and for the first time for AH2QS. AQS relaxation occurs via formation of triplet states, with some of these states interacting with the buffered solution to form a transient species within approximately 600 ps. In contrast, all AH2QS undergoes excited-state single proton transfer with the buffered solution, resulting in formation of ground state AHQS- within approximately 150 ps.
Collapse
Affiliation(s)
- Sofia Goia
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Molecular Analytical Science CDT, Senate House, University of Warwick Coventry CV4 7AL UK
| | - Matthew A P Turner
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Molecular Analytical Science CDT, Senate House, University of Warwick Coventry CV4 7AL UK
- Department of Physics, University of Warwick Coventry CV4 7AL UK
| | - Jack M Woolley
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Michael D Horbury
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- School of Electronic and Electrical Engineering, University of Leeds LS2 9JT UK
| | - Alexandra J Borrill
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Diamond Science and Technology CDT, University of Warwick Coventry CV4 7AL UK
| | - Joshua J Tully
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Diamond Science and Technology CDT, University of Warwick Coventry CV4 7AL UK
| | - Samuel J Cobb
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Diamond Science and Technology CDT, University of Warwick Coventry CV4 7AL UK
- Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | | | | | | | | | | | | |
Collapse
|
7
|
Moriyama H, Ogata G, Nashimoto H, Sawamura S, Furukawa Y, Hibino H, Kusuhara H, Einaga Y. A rapid and simple electrochemical detection of the free drug concentration in human serum using boron-doped diamond electrodes. Analyst 2022; 147:4442-4449. [DOI: 10.1039/d2an01037b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monitoring drug concentration in blood and reflecting this in the dosage are crucial for safe and effective drug treatment.
Collapse
Affiliation(s)
- Hideto Moriyama
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Genki Ogata
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Haruma Nashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Seishiro Sawamura
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Furukawa
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Hiroshi Hibino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
8
|
McKenzie ECR, Hosseini S, Petro AGC, Rudman KK, Gerroll BHR, Mubarak MS, Baker LA, Little RD. Versatile Tools for Understanding Electrosynthetic Mechanisms. Chem Rev 2021; 122:3292-3335. [PMID: 34919393 DOI: 10.1021/acs.chemrev.1c00471] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrosynthesis is a popular, green alternative to traditional organic methods. Understanding the mechanisms is not trivial yet is necessary to optimize reaction processes. To this end, a multitude of analytical tools is available to identify and quantitate reaction products and intermediates. The first portion of this review serves as a guide that underscores electrosynthesis fundamentals, including instrumentation, electrode selection, impacts of electrolyte and solvent, cell configuration, and methods of electrosynthesis. Next, the broad base of analytical techniques that aid in mechanism elucidation are covered in detail. These methods are divided into electrochemical, spectroscopic, chromatographic, microscopic, and computational. Technique selection is dependent on predicted reaction pathways and electrogenerated intermediates. Often, a combination of techniques must be utilized to ensure accuracy of the proposed model. To conclude, future prospects that aim to enhance the field are discussed.
Collapse
Affiliation(s)
- Eric C R McKenzie
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Seyyedamirhossein Hosseini
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ana G Couto Petro
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly K Rudman
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin H R Gerroll
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | | - Lane A Baker
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - R Daniel Little
- Department of Chemistry, University of California Santa Barbara, Building 232, Santa Barbara, California 93106, United States
| |
Collapse
|
9
|
Functionalizable Glyconanoparticles for a Versatile Redox Platform. NANOMATERIALS 2021; 11:nano11051162. [PMID: 33946727 PMCID: PMC8146528 DOI: 10.3390/nano11051162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
A series of new glyconanoparticles (GNPs) was obtained by self-assembly by direct nanoprecipitation of a mixture of two carbohydrate amphiphilic copolymers consisting of polystyrene-block-β-cyclodextrin and polystyrene-block-maltoheptaose with different mass ratios, respectively 0–100, 10–90, 50–50 and 0–100%. Characterizations for all these GNPs were achieved using dynamic light scattering, scanning and transmission electron microscopy techniques, highlighting their spherical morphology and their nanometric size (diameter range 20–40 nm). In addition, by using the inclusion properties of cyclodextrin, these glyconanoparticles were successfully post-functionalized using a water-soluble redox compound, such as anthraquinone sulfonate (AQS) and characterized by cyclic voltammetry. The resulting glyconanoparticles exhibit the classical electroactivity of free AQS in solution. The amount of AQS immobilized by host–guest interactions is proportional to the percentage of polystyrene-block-β-cyclodextrin entering into the composition of GNPs. The modulation of the surface density of the β-cyclodextrin at the shell of the GNPs may constitute an attractive way for the elaboration of different electroactive GNPs and even GNPs modified by biotinylated proteins.
Collapse
|
10
|
Electrochemical sensor based on 1,8-dihydroxyanthraquinone adsorbed on a glassy carbon electrode for the detection of [Cu(CN)3](aq)2− in alkaline cyanide copper plating baths waste. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
The electrochemical response of core-functionalized naphthalene Diimides (NDI) – a combined computational and experimental investigation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Hickey KP, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. A Unified Linear Free Energy Relationship for Abiotic Reduction Rate of Nitroaromatics and Hydroquinones Using Quantum Chemically Estimated Energies. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2389-2395. [PMID: 32897583 DOI: 10.1002/etc.4867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/16/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Determining the fate of nitroaromatic compounds (NACs) in the environment requires the use of predictive models for compounds and conditions for which experimental data are insufficient. Previous studies have developed linear free energy relationships (LFERs) that relate the thermodynamic energy of NAC reduction to its corresponding rate constant. We present a comprehensive LFER that incorporates both the reduction and oxidation half-reactions through quantum chemically calculated energies. Environ Toxicol Chem 2020;39:2389-2395. © 2020 SETAC.
Collapse
Affiliation(s)
- Kevin P Hickey
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York, USA
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
13
|
Sobek J, Schlapbach R. Dependence of Fluorescence Quenching of CY3 Oligonucleotide Conjugates on the Oxidation Potential of the Stacking Base Pair. Molecules 2020; 25:molecules25225369. [PMID: 33212871 PMCID: PMC7698394 DOI: 10.3390/molecules25225369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023] Open
Abstract
To understand the complex fluorescence properties of astraphloxin (CY3)-labelled oligonucleotides, it is necessary to take into account the redox properties of the nucleobases. In oligonucleotide hybrids, we observed a dependence of the fluorescence intensity on the oxidation potential of the neighbouring base pair. For the series I < A < G < 8-oxoG, the extent of fluorescence quenching follows the trend of decreasing oxidation potentials. In a series of 7 nt hybrids, stacking interactions of CY3 with perfect match and mismatch base pairs were found to stabilise the hybrid by 7–8 kJ/mol. The fluorescence measurements can be explained by complex formation resulting in fluorescence quenching that prevails over the steric effect of a reduced excited state trans-cis isomerisation, which was expected to increase the fluorescence efficiency of the dye when stacking to a base pair. This can be explained by the fact that, in a double strand, base pairing and stacking cause a dramatic change in the oxidation potential of the nucleobases. In single-molecule fluorescence measurements, the oxidation of G to 8-oxoG was observed as a result of photoinduced electron transfer and subsequent chemical reactions. Our results demonstrate that covalently linked CY3 is a potent oxidant towards dsDNA. Sulfonated derivatives should be used instead.
Collapse
|
14
|
Deschanels M, Favier F, Fontaine O, Vot SL. Electrochemical evidence of the modification of carbon materials with anthraquinone moiety by a Diels Alder process. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Bai Y, Sun T, Angenent LT, Haderlein SB, Kappler A. Electron Hopping Enables Rapid Electron Transfer between Quinone-/Hydroquinone-Containing Organic Molecules in Microbial Iron(III) Mineral Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10646-10653. [PMID: 32867481 DOI: 10.1021/acs.est.0c02521] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mechanism of long-distance electron transfer via redox-active particulate natural organic matter (NOM) is still unclear, especially considering its aggregated nature and the resulting low diffusivity of its quinone- and hydroquinone-containing molecules. Here we conducted microbial iron(III) mineral reduction experiments in which anthraquinone-2,6-disulfonate (AQDS, a widely used analogue for quinone- and hydroquinone-containing molecules in NOM) was immobilized in agar to achieve a spatial separation between the iron-reducing bacteria and ferrihydrite mineral. Immobilizing AQDS in agar also limited its diffusion, which resembled electron-transfer behavior of quinone- and hydroquinone-containing molecules in particulate NOM. We found that, although the diffusion coefficient of the immobilized AQDS/AH2QDS was 10 times lower in agar than in water, the iron(III) mineral reduction rate (1.60 ± 0.28 mmol L-1 Fe(II) d-1) was still comparable in both media, indicating the existence of another mechanism that accelerated the electron transfer under low diffusive conditions. We found the correlation between the heterogeneous electron-transfer rate constant (10-3 cm s-1) and the diffusion coefficient (10-7 cm2 s-1) fitting well with the "diffusion-electron hopping" model, suggesting that electron transfer via the immobilized AQDS/AH2QDS couple was accomplished through a combination of diffusion and electron hopping. Electron hopping increased the diffusion concentration gradient up to 106-fold, which largely promoted the overall electron-transfer rate during microbial iron(III) mineral reduction. Our results are helpful to explain the electron-transfer mechanisms in particulate NOM.
Collapse
Affiliation(s)
- Yuge Bai
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, D-72074 Tübingen, Germany
| | - Tianran Sun
- Environmental Biotechnology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, D-72074 Tübingen, Germany
| | - Largus T Angenent
- Environmental Biotechnology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, D-72074 Tübingen, Germany
| | - Stefan B Haderlein
- Environmental Mineralogy and Chemistry, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, D-72074 Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Hölderlinstrasse 12, D-72074 Tübingen, Germany
| |
Collapse
|
16
|
Goodchild SA, Gao R, Shenton DP, McIntosh AJS, Brown T, Bartlett PN. Direct Detection and Discrimination of Nucleotide Polymorphisms Using Anthraquinone Labeled DNA Probes. Front Chem 2020; 8:381. [PMID: 32478035 PMCID: PMC7235368 DOI: 10.3389/fchem.2020.00381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/14/2020] [Indexed: 02/04/2023] Open
Abstract
A novel electrochemical detection approach using DNA probes labeled with Anthraquinone (AQ) as a reporter moiety has been successfully exploited as a method for the direct detection of DNA targets. This assay uses simple voltammetry techniques (Differential Pulse Voltammetry) to exploit the unique responsiveness of AQ to its chemical environments within oxygenated aqueous buffers, providing a specific detection mechanism as a result of DNA hybridization. This measurement is based on a cathodic shift of the reduction potential of the AQ tag and the concurrent reduction in peak current upon DNA binding. The further utility of this approach for discrimination of closely related DNA targets is demonstrated using DNA strands specific to B. anthracis and closely related bacillus species. DNA targets were designed to the rpoB gene incorporating nucleotide polymorphisms associated with different bacillus species. This assay was used to demonstrate that the shift in reduction potential is directly related to the homology of the target DNA. The discriminatory mechanism is dependent on the presence of oxygen in the measurement buffer and is strongly linked to the position of the nucleotide polymorphisms; with homology at the terminus carrying the AQ functionalised nucleotide critical to achieving accurate discrimination. This understanding of assay design was used to demonstrate an optimized assay capable of discriminating between Yersinia pestis (the causative agent of plague) and closely related species based on the groEL gene. This method is attractive as it can not only detect DNA binding, but can also discriminate between multiple Single Nucleotide Polymorphisms (SNPs) within that DNA without the need for any additional reagents, reporters, or processes such as melting of DNA strands. This indicates that this approach may have great potential to be exploited within novel biosensors for detection and diagnosis of infectious disease in future Point of Care (PoC) devices.
Collapse
Affiliation(s)
- Sarah A Goodchild
- Defence Science and Technology Laboratory, Salisbury, United Kingdom.,University of Southampton, Southampton, United Kingdom
| | - Rachel Gao
- University of Southampton, Southampton, United Kingdom
| | - Daniel P Shenton
- Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | | | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Philip N Bartlett
- Defence Science and Technology Laboratory, Salisbury, United Kingdom
| |
Collapse
|
17
|
Calitri G, Bollella P, Ciogli L, Tortolini C, Mazzei F, Antiochia R, Favero G. Evaluation of different storage processes of passion fruit (Passiflora edulis Sims) using a new dual biosensor platform based on a conducting polymer. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Farzin L, Sadjadi S, Shamsipur M, Sheibani S. Electrochemical genosensor based on carbon nanotube/amine-ionic liquid functionalized reduced graphene oxide nanoplatform for detection of human papillomavirus (HPV16)-related head and neck cancer. J Pharm Biomed Anal 2020; 179:112989. [DOI: 10.1016/j.jpba.2019.112989] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
|
19
|
Sakaushi K. Quantum electrocatalysts: theoretical picture, electrochemical kinetic isotope effect analysis, and conjecture to understand microscopic mechanisms. Phys Chem Chem Phys 2020; 22:11219-11243. [DOI: 10.1039/d0cp01052a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fundamental aspects of quantum electrocatalysts are discussed together with the newly developed electrochemical kinetic isotope effect (EC-KIE) approach.
Collapse
Affiliation(s)
- Ken Sakaushi
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| |
Collapse
|
20
|
Wiberg C, Carney TJ, Brushett F, Ahlberg E, Wang E. Dimerization of 9,10-anthraquinone-2,7-Disulfonic acid (AQDS). Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.134] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Gao F, Li X, Zhang Y, Huang C, Zhang W. Electrocatalytic Activity of Modified Graphite Felt in Five Anthraquinone Derivative Solutions for Redox Flow Batteries. ACS OMEGA 2019; 4:13721-13732. [PMID: 31497689 PMCID: PMC6714531 DOI: 10.1021/acsomega.9b01103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Redox flow batteries have received wide attention because of their unique advantages such as high efficiency, long cycle life, low operating cost, and independent adjustment of energy power. In this study, five types of anthraquinone derivative organic redox couple were selected, and the surfaces of graphite felt were modified. When the number of functional groups is increased or the substitution position is closer to the carbonyl (C=O) groups, a more pronounced hindrance for the C=O reaction on the benzene ring is observed; thus, the electrochemical performance and reversibility decreases. Sodium 9,10-anthraquinone-2-sulfonate solution is the best organic redox couple in terms of both reversibility and electrochemical performance. It was also found that all the surface treatment methods of graphite felt are beneficial for improving their electrochemical performances. All these superior results demonstrate that the graphite felt treated under air exposure at 550 °C for 3 h exhibited the best electrochemical performance, which might be attributed to the increase in the content of C-OH functional groups.
Collapse
Affiliation(s)
- Fanfan Gao
- Department
of Applied Chemistry, School of Chemical Engineering and Technology, and State Key Laboratory
of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xinyu Li
- Department
of Applied Chemistry, School of Chemical Engineering and Technology, and State Key Laboratory
of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yue Zhang
- Department
of Applied Chemistry, School of Chemical Engineering and Technology, and State Key Laboratory
of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Chengde Huang
- Department
of Applied Chemistry, School of Chemical Engineering and Technology, and State Key Laboratory
of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wen Zhang
- Department
of Applied Chemistry, School of Chemical Engineering and Technology, and State Key Laboratory
of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
22
|
Mevers E, Su L, Pishchany G, Baruch M, Cornejo J, Hobert E, Dimise E, Ajo-Franklin CM, Clardy J. An elusive electron shuttle from a facultative anaerobe. eLife 2019; 8:48054. [PMID: 31232690 PMCID: PMC6687433 DOI: 10.7554/elife.48054] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/24/2019] [Indexed: 01/06/2023] Open
Abstract
Some anaerobic bacteria use insoluble minerals as terminal electron acceptors and discovering the ways in which electrons move through the membrane barrier to the exterior acceptor forms an active field of research with implications for both bacterial physiology and bioenergy. A previous study suggested that Shewanella oneidensis MR-1 utilizes a small, polar, redox active molecule that serves as an electron shuttle between the bacteria and insoluble acceptors, but the shuttle itself has never been identified. Through isolation and synthesis, we identify it as ACNQ (2-amino-3-carboxy-1,4-naphthoquinone), a soluble analog of menaquinone. ACNQ is derived from DHNA (1,4-dihydroxy-2-naphthoic acid) in a non-enzymatic process that frustrated genetic approaches to identify the shuttle. Both ACNQ and DHNA restore reduction of AQDS under anaerobic growth in menaquinone-deficient mutants. Bioelectrochemistry analyses reveal that ACNQ (−0.32 VAg/AgCl) contributes to the extracellular electron transfer (EET) as an electron shuttle, without altering menaquinone generation or EET related cytochrome c expression. In order to survive, we break down food through a series of chemical reactions that release energy to power our cells. In these metabolic reactions, small electrically charged particles called electrons are removed from the food molecule, and transferred, via a series of reactions, to a terminal electron acceptor. For humans and many other organisms, oxygen is the terminal electron acceptor. Bacteria generate energy through a similar series of chemical reactions, but many species of bacteria live in environments where oxygen is absent. Some bacteria solve this problem by transferring the electrons released in their metabolic reactions to acceptor compounds in the external environment. These species must therefore employ a small molecule ‘shuttle’ to carry the electrons to the acceptor. Previous work has shown the bacterial strain Shewanella oneidensis MR-1 releases a small molecule into its surrounding environment, which serves as its electron shuttle. Despite identifying a mutant strain of MR-1 that cannot produce this shuttle, researchers have been unable to determine the exact chemical identity of this critical molecule. Now, Mevers, Su et al. have identified this elusive electron shuttle. This involved growing MR-1 and isolating the active molecule which restores the mutant bacteria’s ability to shuttle electrons. Further experiments characterizing the structure of this compound using techniques involving analytical and synthetic organic chemistry revealed it be a small molecule known as ACNQ. Mevers, Su et al. showed MR-1 produces this elusive electron shuttle by releasing a precursor structure into the environment where it spontaneously converts into ACNQ. As a result, there are no genes present in the genome of MR-1 or other bacterial strains that are required for the production of ACNQ. This genetic absence and low production levels of ACNQ has frustrated previous attempts to identify MR-1’s electron shuttle. Bacterial metabolism is studied for its applications in bioenergy (producing renewable energy using living organisms) and bioremediation (detoxification of substances using the reactions of bacterial metabolism). A better understanding of bacterial metabolism is thus essential for the continued development of these useful technologies.
Collapse
Affiliation(s)
- Emily Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Lin Su
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, United States.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Gleb Pishchany
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States.,Department of Microbiology, Harvard Medical School, Boston, United States
| | - Moshe Baruch
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, United States
| | - Jose Cornejo
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, United States
| | - Elissa Hobert
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Eric Dimise
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Caroline M Ajo-Franklin
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| |
Collapse
|
23
|
Wang H, Johs A, Browning JF, Tennant DA, Liang L. Electrochemical properties of the interaction between cytochrome c and a hematite nanowire array electrode. Bioelectrochemistry 2019; 129:162-169. [PMID: 31176253 DOI: 10.1016/j.bioelechem.2019.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022]
Abstract
We investigate the interaction of horse heart cytochrome c (cyt c) with hematite nanowire array electrodes by cyclic voltammetry to study the electron transfer between redox active proteins and mineral surfaces. Using this model system, we quantify electron transfer rates between cyt c and hematite under varying electric potential and pH conditions. The results are consistent with two cyt c conformations adsorbed at the hematite surface: the native and a partially unfolded form. The partially unfolded protein maintained redox activity, but at a lower redox potential than the native protein. Adsorption of cyt c allowed direct electron transfer between cyt c and hematite, with an interfacial electron transfer rate, k°ET, of 0.4 s-1 for the native form and 0.55 s-1 for the partially unfolded protein at pH 7.07. At pH 4.66, protein adsorption decreased compared to neutral pH and the fraction of partially unfolded protein increased. Additionally, the diffusion controlled electron transfer rate between hematite and the electron shuttling compound anthraquinone-2,6-disulfonate (AQDS) was determined to be k°ET = 8.0·10-3 cm·s-1 at pH 7.07. Modulation of electron transfer rates as a result of conformational changes by redox active proteins has broad implications for describing chemical transformations at biological-mineral interfaces.
Collapse
Affiliation(s)
- Hanyu Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - James F Browning
- Neutron Scattering Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - David Alan Tennant
- Materials Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA
| | - Liyuan Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA.
| |
Collapse
|
24
|
Wagner M, Qvortrup K, Grier KE, Ottosen MR, Petersen JO, Tanner D, Ulstrup J, Zhang J. Gold-carbonyl group interactions in the electrochemistry of anthraquinone thiols self-assembled on Au(111)-surfaces. Chem Sci 2019; 10:3927-3936. [PMID: 31015932 PMCID: PMC6457334 DOI: 10.1039/c9sc00061e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/02/2019] [Indexed: 11/21/2022] Open
Abstract
New anthraquinone derivatives with either a single or two thiol groups (AQ1 and AQ2) were synthesized and immobilized in self-assembled monolayers (SAMs) on Au(111) electrodes via Au-S bonds. The resultant AQ1- and AQ2-SAMs were studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which enabled mapping of the gold-carbonyl group interactions and other dynamics in the Au-S bound molecular framework. Understanding of these interactions is important for research on thiol-coated gold nanoclusters, since (I) anthraquinone derivatives are a major compound family for providing desired redox functionality in multifarious assays or devices, and (II) the gold-carbonyl interactions can strongly affect anthraquinone electrochemistry. Based on equivalent circuit analysis, it was found that there is a significant rise in polarization resistance (related to SAM structural reorganization) at potentials that can be attributed to the quinone/semi-quinone interconversion. The equivalent circuit model was validated by calculation of pseudocapacitance for quinone-to-hydroquinone interconversion, in good agreement with the values derived from CV. The EIS and CV patterns obtained provide consistent evidence for two different ECEC (i.e. proton-controlled ET steps, PCET) pathways in AQ1- and AQ2-SAMs. Notably, it was found that the formal reorganization (free) energies obtained for the elementary PCET steps are unexpectedly small for both SAMs studied. This anomaly suggests high layer rigidity and recumbent molecular orientation on gold surfaces, especially for the AQ2-SAMs. The results strongly indicate that gold-carbonyl group interactions can be controlled by favorable structural organization of anthraquinone-based molecules on gold surfaces.
Collapse
Affiliation(s)
- Michal Wagner
- Department of Chemistry , Technical University of Denmark , Kemitorvet, Building 207 , 2800 Kgs. Lyngby , Denmark .
| | - Katrine Qvortrup
- Department of Chemistry , Technical University of Denmark , Kemitorvet, Building 207 , 2800 Kgs. Lyngby , Denmark .
| | - Katja E Grier
- Department of Chemistry , Technical University of Denmark , Kemitorvet, Building 207 , 2800 Kgs. Lyngby , Denmark .
| | - Mikkel R Ottosen
- Department of Chemistry , Technical University of Denmark , Kemitorvet, Building 207 , 2800 Kgs. Lyngby , Denmark .
| | - Jonas O Petersen
- Department of Chemistry , Technical University of Denmark , Kemitorvet, Building 207 , 2800 Kgs. Lyngby , Denmark .
| | - David Tanner
- Department of Chemistry , Technical University of Denmark , Kemitorvet, Building 207 , 2800 Kgs. Lyngby , Denmark .
| | - Jens Ulstrup
- Department of Chemistry , Technical University of Denmark , Kemitorvet, Building 207 , 2800 Kgs. Lyngby , Denmark .
| | - Jingdong Zhang
- Department of Chemistry , Technical University of Denmark , Kemitorvet, Building 207 , 2800 Kgs. Lyngby , Denmark .
| |
Collapse
|
25
|
Yang M, Compton RG. A New Composite Electrode Applied for Studying the Electrochemistry of Insoluble Particles: α-HgS. Chemistry 2018; 24:10208-10215. [PMID: 29786909 DOI: 10.1002/chem.201801609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Indexed: 01/24/2023]
Abstract
The redox chemistry of solid α-HgS particles is revealed using a carbon/PVDF composite containing α-HgS, carbon black, polyvinylidene fluoride (PVDF). The electrochemical behaviour of the carbon/PVDF composite is first characterised with three water insoluble organic solids. Then the reduction of solid α-HgS particles is investigated and found to occur at a high negative potential, -1.82 V versus saturated mercury sulphate reference electrode, to form metallic mercury and sulphide ions. The subsequent oxidation of metallic mercury and sulphide occurs at +0.24 and -0.49 V versus MSE respectively.
Collapse
Affiliation(s)
- Minjun Yang
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
26
|
Dieterich V, Milshtein JD, Barton JL, Carney TJ, Darling RM, Brushett FR. Estimating the cost of organic battery active materials: a case study on anthraquinone disulfonic acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/2053-1613/aacb0e] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Jamaluddin RZAR, Heng LY, Tan LL, Chong KF. A Biosensor for Genetic Modified Soybean DNA Determination via Adsorption of Anthraquinone-2-sulphonic Acid in Reduced Graphene Oxide. ELECTROANAL 2017. [DOI: 10.1002/elan.201700612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Raja Zaidatul Akhmar Raja Jamaluddin
- School of chemical Sciences and Food Technology; Faculty of Science & Technology; Universiti Kebangsaan Malaysia; 43600 UKM Bangi, Selangor Darul Ehsan Malaysia
| | - Lee Yook Heng
- School of chemical Sciences and Food Technology; Faculty of Science & Technology; Universiti Kebangsaan Malaysia; 43600 UKM Bangi, Selangor Darul Ehsan Malaysia
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM),
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM),
| | - Kwok Feng Chong
- Faculty of Industrial Sciences & Technology; Universiti Malaysia Pahang, Lebuhraya Tun Razak; 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| |
Collapse
|
28
|
Astudillo-Sánchez PD, Morales-Martínez D, Sánchez A, Rocha-Ortiz G, Salas-Reyes M. Electrochemical study of the interactions between anionic species of menadione and alkylated nucleobases in dimethylsulfoxide. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Oxygen reduction in alkaline solution at glassy carbon surfaces and the role of adsorbed intermediates. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Yang M, Batchelor-McAuley C, Kätelhön E, Compton RG. Reaction Layer Imaging Using Fluorescence Electrochemical Microscopy. Anal Chem 2017; 89:6870-6877. [PMID: 28520391 DOI: 10.1021/acs.analchem.7b01360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chemical confinement of a pH sensitive fluorophore to a thin-reaction layer adjacent to an electrode surface is explored as a potentially innovative route to improving the spatial resolution of fluorescence electrochemical microscopy. A thin layer opto-electrochemical cell is designed, facilitating the visualization of a carbon fiber (diameter 7.0 μm) electrochemical interface. Proton consumption is driven at the interface by the reduction of benzoquinone to hydroquinone and the resulting interfacial pH change is revealed using the fluorophore 8-hydoxypyrene-1,3,6-trisulfonic acid. It is demonstrated that the proton depletion zone may be constrained and controlled by the addition of a finite acid concentration to the system. Simulation of the resulting fluorescence intensity profiles is achieved on the basis of a finite difference model, with excellent agreement between the theoretical and experimental results.
Collapse
Affiliation(s)
- Minjun Yang
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Enno Kätelhön
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
31
|
Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility. Sci Rep 2016; 6:39101. [PMID: 27966605 PMCID: PMC5155426 DOI: 10.1038/srep39101] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/01/2016] [Indexed: 01/20/2023] Open
Abstract
Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.
Collapse
|
32
|
Batchelor-McAuley C, Little CA, Sokolov SV, Kätelhön E, Zampardi G, Compton RG. Fluorescence Monitored Voltammetry of Single Attoliter Droplets. Anal Chem 2016; 88:11213-11221. [DOI: 10.1021/acs.analchem.6b03524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christopher Batchelor-McAuley
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Christopher A. Little
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Stanislav V. Sokolov
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Enno Kätelhön
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Giorgia Zampardi
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| | - Richard G. Compton
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, Oxford University, South
Parks Road, Oxford OX1
3QZ, U.K
| |
Collapse
|
33
|
Staircase, cyclic and differential voltammetries of the nine-member square scheme at microelectrodes of any geometry with arbitrary chemical stabilization of the three redox states. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3308-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Zhu GL, Zhang LW, Liu YC, Cui ZF, Xu XS, Wu GZ. Laser Flash Photolysis Mechanism of Anthraquinone-2-Sodium Sulfonate in Pyridine Ionic Liquid/Water Mixed System. CHINESE J CHEM PHYS 2016. [DOI: 10.1063/1674-0068/29/cjcp1509192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
35
|
Zhou J, Zhang L, Tian Y. Micro Electrochemical pH Sensor Applicable for Real-Time Ratiometric Monitoring of pH Values in Rat Brains. Anal Chem 2016; 88:2113-8. [DOI: 10.1021/acs.analchem.5b03634] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jie Zhou
- Department
of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Limin Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhoangshan Road 3663, Shanghai 200062, China
| | - Yang Tian
- Department
of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhoangshan Road 3663, Shanghai 200062, China
| |
Collapse
|
36
|
Milshtein JD, Su L, Liou C, Badel AF, Brushett FR. Voltammetry study of quinoxaline in aqueous electrolytes. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Mann MA, Bottomley LA. Cyclic Square Wave Voltammetry of Surface-Confined Quasireversible Electron Transfer Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9511-9520. [PMID: 26295501 DOI: 10.1021/acs.langmuir.5b01684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The theory for cyclic square wave voltammetry of surface-confined quasireversible electrode reactions is presented and experimentally verified. Theoretical voltammograms were calculated following systematic variation of empirical parameters to assess their impact on the shape of the voltammogram. From the trends obtained, diagnostic criteria for this mechanism were deduced. These criteria were experimentally confirmed using two well-established surface-confined analytes. When properly applied, these criteria will enable non-experts in voltammetry to assign the electrode reaction mechanism and accurately measure electrode reaction kinetics.
Collapse
Affiliation(s)
- Megan A Mann
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| | - Lawrence A Bottomley
- School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
38
|
Lu M, Compton RG. Voltammetric pH sensor based on an edge plane pyrolytic graphite electrode. Analyst 2015; 139:2397-403. [PMID: 24671261 DOI: 10.1039/c4an00147h] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple sensor for pH determination is reported using unmodified edge plane pyrolytic graphite (EPPG) electrodes. The analysis is based on the electro-reduction of surface quinone groups on the EPPG which was characterised using cyclic voltammetry (CV) and optimised with square-wave voltammetry (SWV). Under optimised conditions, a linear response is observed between the peak potential and pH with a gradient of ∼59 mV per pH (at 25 °C), which corresponds well with Nernstian behaviour based on a 2 proton, 2 electron system over the aqueous pH range 1.0 to 13.0. As such, an EPPG is suggested as a reagent free and robust pH sensing material.
Collapse
Affiliation(s)
- Min Lu
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| | | |
Collapse
|
39
|
Batchelor-McAuley C, Kätelhön E, Barnes EO, Compton RG, Laborda E, Molina A. Recent Advances in Voltammetry. ChemistryOpen 2015; 4:224-60. [PMID: 26246984 PMCID: PMC4522172 DOI: 10.1002/open.201500042] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 11/10/2022] Open
Abstract
Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler-Volmer and Marcus-Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of 'nano-impacts'.
Collapse
Affiliation(s)
- Christopher Batchelor-McAuley
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks Road, Oxford, OX1 3QZ, UK
| | - Enno Kätelhön
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks Road, Oxford, OX1 3QZ, UK
| | - Edward O Barnes
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks Road, Oxford, OX1 3QZ, UK
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks Road, Oxford, OX1 3QZ, UK
| | - Eduardo Laborda
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence ‘Campus Mare Nostrum’, Universidad de Murcia30100, Murcia, Spain
| | - Angela Molina
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence ‘Campus Mare Nostrum’, Universidad de Murcia30100, Murcia, Spain
| |
Collapse
|
40
|
Salter-Blanc AJ, Bylaska EJ, Johnston HJ, Tratnyek PG. Predicting reduction rates of energetic nitroaromatic compounds using calculated one-electron reduction potentials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3778-86. [PMID: 25671710 DOI: 10.1021/es505092s] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The evaluation of new energetic nitroaromatic compounds (NACs) for use in green munitions formulations requires models that can predict their environmental fate. Previously invoked linear free energy relationships (LFER) relating the log of the rate constant for this reaction (log(k)) and one-electron reduction potentials for the NAC (E1NAC) normalized to 0.059 V have been re-evaluated and compared to a new analysis using a (nonlinear) free-energy relationship (FER) based on the Marcus theory of outer-sphere electron transfer. For most reductants, the results are inconsistent with simple rate limitation by an initial, outer-sphere electron transfer, suggesting that the linear correlation between log(k) and E1NAC is best regarded as an empirical model. This correlation was used to calibrate a new quantitative structure-activity relationship (QSAR) using previously reported values of log(k) for nonenergetic NAC reduction by Fe(II) porphyrin and newly reported values of E1NAC determined using density functional theory at the M06-2X/6-311++G(2d,2p) level with the COSMO solvation model. The QSAR was then validated for energetic NACs using newly measured kinetic data for 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,4-dinitroanisole (DNAN). The data show close agreement with the QSAR, supporting its applicability to other energetic NACs.
Collapse
Affiliation(s)
| | - Eric J Bylaska
- ‡William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | | | | |
Collapse
|
41
|
Molina A, Laborda E, Martínez-Ortiz F, Gómez-Gil JM. Normal Pulse Voltammetry and Steady State Voltammetry of the Square Mechanism at Spherical Microelectrodes. ELECTROANAL 2015. [DOI: 10.1002/elan.201400639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Electrochemical behavior of anthraquinone- and nitrophenyl-labeled deoxynucleoside triphosphates: a contribution to development of multipotential redox labeling of DNA. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1435-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Poon J, Batchelor-McAuley C, Tschulik K, Palgrave RG, Compton RG. Bifunctional redox tagging of carbon nanoparticles. NANOSCALE 2015; 7:2069-2075. [PMID: 25553653 DOI: 10.1039/c4nr06058j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Despite extensive work on the controlled surface modification of carbon with redox moieties, to date almost all available methodologies involve complex chemistry and are prone to the formation of polymerized multi-layer surface structures. Herein, the facile bifunctional redox tagging of carbon nanoparticles (diameter 27 nm) and its characterization is undertaken using the industrial dye Reactive Blue 2. The modification route is demonstrated to be via exceptionally strong physisorption. The modified carbon is found to exhibit both well-defined oxidative and reductive voltammetric redox features which are quantitatively interpreted. The method provides a generic approach to monolayer modifications of carbon and carbon nanoparticle surfaces.
Collapse
Affiliation(s)
- Jeffrey Poon
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | | | | | | | | |
Collapse
|
44
|
Laborda E, Olmos JM, Torralba E, Molina A. Application of voltammetric techniques at microelectrodes to the study of the chemical stability of highly reactive species. Anal Chem 2015; 87:1676-84. [PMID: 25551335 DOI: 10.1021/ac503582t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The application of voltammetric techniques to the study of chemical speciation and stability is addressed both theoretically and experimentally in this work. In such systems, electrode reactions are coupled to homogeneous chemical equilibria (complexations, protonations, ion associations, ...) that can be studied in a simple, economical, and accurate way by means of electrochemical methods. These are of particular interest when some of the participating species are unstable given that the generation and characterization of the species are performed in situ and on a short time scale. With the above aim, simple explicit solutions are presented in this article for quantitative characterization with any voltammetric technique and with the most common electrode geometries. From the theoretical results obtained, it is pointed out that the use of square-wave voltammetry in combination with microelectrodes is very suitable. Finally, the theory is applied to the investigation of the ion association between the anthraquinone radical monoanion and the tetrabutylammonium cation in acetonitrile medium.
Collapse
Affiliation(s)
- Eduardo Laborda
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia , 30100 Murcia, Spain
| | | | | | | |
Collapse
|
45
|
|
46
|
Hasnat MA, Gross AJ, Dale SEC, Barnes EO, Compton RG, Marken F. A dual-plate ITO–ITO generator–collector microtrench sensor: surface activation, spatial separation and suppression of irreversible oxygen and ascorbate interference. Analyst 2014; 139:569-75. [DOI: 10.1039/c3an01826a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Kim YR, Kim RS, Kang SK, Choi MG, Kim HY, Cho D, Lee JY, Chang SK, Chung TD. Modulation of Quinone PCET Reaction by Ca2+ Ion Captured by Calix[4]quinone in Water. J Am Chem Soc 2013; 135:18957-67. [DOI: 10.1021/ja410406e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang-Rae Kim
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - R. Soyoung Kim
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Sun Kil Kang
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| | - Myung Gil Choi
- Department
of Chemistry, Chung-Ang University, Seoul 156-756, Korea
| | - Hong Yeong Kim
- Department
of Chemistry, Chung-Ang University, Seoul 156-756, Korea
| | - Daeheum Cho
- Department
of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin Yong Lee
- Department
of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Suk-Kyu Chang
- Department
of Chemistry, Chung-Ang University, Seoul 156-756, Korea
| | - Taek Dong Chung
- Department
of Chemistry, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
48
|
Mason J, Batchelor-McAuley C, Compton RG. Surface modification imparts selectivity, facilitating redox catalytic studies: quinone mediated oxygen reduction. Phys Chem Chem Phys 2013; 15:8362-6. [DOI: 10.1039/c3cp50607j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Zhang Q, Piro B, Ramsay S, Noël V, Reisberg S, Pham MC. Electrochemical investigation of interactions between quinone derivatives and single stranded DNA. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Batchelor-McAuley C, Compton RG. Voltammetry of multi-electron electrode processes of organic species. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2012.01.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|