1
|
Michael E, Polydorides S, Simonson T, Archontis G. Hybrid MC/MD for protein design. J Chem Phys 2021; 153:054113. [PMID: 32770896 DOI: 10.1063/5.0013320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Computational protein design relies on simulations of a protein structure, where selected amino acids can mutate randomly, and mutations are selected to enhance a target property, such as stability. Often, the protein backbone is held fixed and its degrees of freedom are modeled implicitly to reduce the complexity of the conformational space. We present a hybrid method where short molecular dynamics (MD) segments are used to explore conformations and alternate with Monte Carlo (MC) moves that apply mutations to side chains. The backbone is fully flexible during MD. As a test, we computed side chain acid/base constants or pKa's in five proteins. This problem can be considered a special case of protein design, with protonation/deprotonation playing the role of mutations. The solvent was modeled as a dielectric continuum. Due to cost, in each protein we allowed just one side chain position to change its protonation state and the other position to change its type or mutate. The pKa's were computed with a standard method that scans a range of pH values and with a new method that uses adaptive landscape flattening (ALF) to sample all protonation states in a single simulation. The hybrid method gave notably better accuracy than standard, fixed-backbone MC. ALF decreased the computational cost a factor of 13.
Collapse
Affiliation(s)
- Eleni Michael
- Department of Physics, University of Cyprus, P.O 20537, CY678 Nicosia, Cyprus
| | - Savvas Polydorides
- Department of Physics, University of Cyprus, P.O 20537, CY678 Nicosia, Cyprus
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| | - Georgios Archontis
- Department of Physics, University of Cyprus, P.O 20537, CY678 Nicosia, Cyprus
| |
Collapse
|
2
|
Tang J, Katashima T, Li X, Mitsukami Y, Yokoyama Y, Sakumichi N, Chung UI, Shibayama M, Sakai T. Swelling Behaviors of Hydrogels with Alternating Neutral/Highly Charged Sequences. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jian Tang
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Xiang Li
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Yoshiro Mitsukami
- Superabsorbents Research Department, Nippon Shokubai Co., Ltd., 992-1 Aza Nishioki Okihama, Aboshi-ku, Himeji, Hyogo 671-1292, Japan
| | - Yuki Yokoyama
- Superabsorbents Research Department, Nippon Shokubai Co., Ltd., 992-1 Aza Nishioki Okihama, Aboshi-ku, Himeji, Hyogo 671-1292, Japan
| | - Naoyuki Sakumichi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ung-il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuhiro Shibayama
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Tokai, Ibaraki 319-1106, Japan
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
3
|
Aleksandrov A, Roux B, MacKerell AD. p Ka Calculations with the Polarizable Drude Force Field and Poisson-Boltzmann Solvation Model. J Chem Theory Comput 2020; 16:4655-4668. [PMID: 32464053 DOI: 10.1021/acs.jctc.0c00111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electronic polarization effects have been suggested to play an important role in proton binding to titratable residues in proteins. In this work, we describe a new computational method for pKa calculations, using Monte Carlo (MC) simulations to sample protein protonation states with the Drude polarizable force field and Poisson-Boltzmann (PB) continuum electrostatic solvent model. While the most populated protonation states at the selected pH, corresponding to residues that are half-protonated at that pH, are sampled using the exact relative free energies computed with Drude particles optimized in the field of the PB implicit solvation model, we introduce an approximation for the protein polarization of low-populated protonation states to reduce the computational cost. The highly populated protonation states used to compute the polarization and pKa's are then iteratively improved until convergence. It is shown that for lysozyme, when considering 9 of the 18 titratable residues, the new method converged within two iterations with computed pKa's differing only by 0.02 pH units from pKa's estimated with the exact approach. Application of the method to predict pKa's of 94 titratable side chains in 8 proteins shows the Drude-PB model to produce physically more correct results as compared to the additive CHARMM36 (C36) force field (FF). With a dielectric constant of two assigned to the protein interior the Root Mean Square (RMS) deviation between computed and experimental pKa's is 2.07 and 3.19 pH units with the Drude and C36 models, respectively, and the RMS deviation using the Drude-PB model is relatively insensitive to the choice of the internal dielectric constant in contrast to the additive C36 model. At the higher internal dielectric constant of 20, pKa's computed with the additive C36 model converge to the results obtained with the Drude polarizable force field, indicating the need to artificially overestimate electrostatic screening in a nonphysical way with the additive FF. In addition, inclusion of both syn and anti orientations of the proton in the neutral state of acidic groups is shown to yield improved agreement with experiment. The present work, which is the first example of the use of a polarizable model for the prediction of pKa's in proteins, shows that the use of a polarizable model represents a more physically correct model for the treatment of electrostatic contributions to pKa shifts in proteins.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, IP Paris, F-91128 Palaiseau, France
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, 929 E57th Street, Chicago, Illinois 60637, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
4
|
Zänker H, Heine K, Weiss S, Brendler V, Husar R, Bernhard G, Gloe K, Henle T, Barkleit A. Strong Uranium(VI) Binding onto Bovine Milk Proteins, Selected Protein Sequences, and Model Peptides. Inorg Chem 2019; 58:4173-4189. [PMID: 30860361 DOI: 10.1021/acs.inorgchem.8b03231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hexavalent uranium is ubiquitous in the environment. In view of the chemical and radiochemical toxicity of uranium(VI), a good knowledge of its possible interactions in the environment is crucial. The aim of this work was to identify typical binding and sorption characteristics of uranium(VI) with both the pure bovine milk protein β-casein and diverse related protein mixtures (caseins, whey proteins). For comparison, selected model peptides representing the amino acid sequence 13-16 of β-casein and dephosphorylated β-casein were also studied. Complexation studies using potentiometric titration and time-resolved laser-induced fluorescence spectroscopy revealed that the phosphoryl-containing proteins form uranium(VI) complexes of higher stability than the structure-analog phosphoryl-free proteins. That is in agreement with the sorption experiments showing a significantly higher affinity of caseins toward uranium(VI) in comparison to whey proteins. On the other hand, the total sorption capacity of caseins is lower than that of whey proteins. The discussed binding behavior of milk proteins to uranium(VI) might open up interesting perspectives for sustainable techniques of uranium(VI) removal from aqueous solutions. This was further demonstrated by batch experiments on the removal of uranium(VI) from mineral water samples.
Collapse
Affiliation(s)
- Harald Zänker
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Katja Heine
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany.,Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| | - Stephan Weiss
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Vinzenz Brendler
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Richard Husar
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Gert Bernhard
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Karsten Gloe
- Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| | - Thomas Henle
- Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| | - Astrid Barkleit
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| |
Collapse
|
5
|
Villa F, Simonson T. Protein pKa’s from Adaptive Landscape Flattening Instead of Constant-pH Simulations. J Chem Theory Comput 2018; 14:6714-6721. [DOI: 10.1021/acs.jctc.8b00970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Francesco Villa
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
6
|
Blanco PM, Madurga S, Mas F, Garcés JL. Coupling of Charge Regulation and Conformational Equilibria in Linear Weak Polyelectrolytes: Treatment of Long-Range Interactions via Effective Short-Ranged and pH-Dependent Interaction Parameters. Polymers (Basel) 2018; 10:E811. [PMID: 30960736 PMCID: PMC6403780 DOI: 10.3390/polym10080811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 01/26/2023] Open
Abstract
The classical Rotational Isomeric State (RIS) model, originally proposed by Flory, has been used to rationalize a wide range of physicochemical properties of neutral polymers. However, many weak polyelectrolytes of interest are able to regulate their charge depending on the conformational state of the bonds. Recently, it has been shown that the RIS model can be coupled with the Site Binding (SB) model, for which the ionizable sites can adopt two states: protonated or deprotonated. The resulting combined scheme, the SBRIS model, allows for analyzing ionization and conformational equilibria on the same foot. In the present work, this approach is extended to include pH-dependent electrostatic Long-Range (LR) interactions, ubiquitous in weak polyelectrolytes at moderate and low ionic strengths. With this aim, the original LR interactions are taken into account by defining effective Short-Range (SR) and pH-dependent parameters, such as effective microscopic protonation constants and rotational bond energies. The new parameters are systematically calculated using variational methods. The machinery of statistical mechanics for SR interactions, including the powerful and fast transfer matrix methods, can then be applied. The resulting technique, which we will refer to as the Local Effective Interaction Parameters (LEIP) method, is illustrated with a minimal model of a flexible linear polyelectrolyte containing only one type of rotating bond. LEIP reproduces very well the pH dependence of the degree of protonation and bond probabilities obtained by semi-grand canonical Monte Carlo simulations, where LR interactions are explicitly taken into account. The reduction in the computational time in several orders of magnitude suggests that the LEIP technique could be useful in a range of areas involving linear weak polyelectrolytes, allowing direct fitting of the relevant physical parameters to the experimental quantities.
Collapse
Affiliation(s)
- Pablo M Blanco
- Physical Chemistry Unit, Department of Materials Science and Physical Chemistry & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), 08028 Barcelona, Catalonia, Spain.
| | - Sergio Madurga
- Physical Chemistry Unit, Department of Materials Science and Physical Chemistry & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), 08028 Barcelona, Catalonia, Spain.
| | - Francesc Mas
- Physical Chemistry Unit, Department of Materials Science and Physical Chemistry & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), 08028 Barcelona, Catalonia, Spain.
| | - Josep L Garcés
- Department of Chemistry, Technical School of Agricultural Engineering & Agrotecnio of Lleida University (UdL), 25003 Lleida, Catalonia, Spain.
| |
Collapse
|
7
|
Gaillard T, Simonson T. Full Protein Sequence Redesign with an MMGBSA Energy Function. J Chem Theory Comput 2017; 13:4932-4943. [DOI: 10.1021/acs.jctc.7b00202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Gaillard
- Laboratoire de Biochimie
(CNRS UMR7654), Department of Biology, Ecole Polytechnique, 91128 Palaiseau, France
| | - Thomas Simonson
- Laboratoire de Biochimie
(CNRS UMR7654), Department of Biology, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
8
|
Villa F, Mignon D, Polydorides S, Simonson T. Comparing pairwise-additive and many-body generalized Born models for acid/base calculations and protein design. J Comput Chem 2017; 38:2396-2410. [PMID: 28749575 DOI: 10.1002/jcc.24898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022]
Abstract
Generalized Born (GB) solvent models are common in acid/base calculations and protein design. With GB, the interaction between a pair of solute atoms depends on the shape of the protein/solvent boundary and, therefore, the positions of all solute atoms, so that GB is a many-body potential. For compute-intensive applications, the model is often simplified further, by introducing a mean, native-like protein/solvent boundary, which removes the many-body property. We investigate a method for both acid/base calculations and protein design that uses Monte Carlo simulations in which side chains can explore rotamers, bind/release protons, or mutate. The fluctuating protein/solvent dielectric boundary is treated in a way that is numerically exact (within the GB framework), in contrast to a mean boundary. Its originality is that it captures the many-body character while retaining the residue-pairwise complexity given by a fixed boundary. The method is implemented in the Proteus protein design software. It yields a slight but systematic improvement for acid/base constants in nine proteins and a significant improvement for the computational design of three PDZ domains. It eliminates a source of model uncertainty, which will facilitate the analysis of other model limitations. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francesco Villa
- Ecole Polytechnique, Laboratoire de Biochimie (CNRS UMR7654), Palaiseau, 91128, France
| | - David Mignon
- Ecole Polytechnique, Laboratoire de Biochimie (CNRS UMR7654), Palaiseau, 91128, France
| | - Savvas Polydorides
- Ecole Polytechnique, Laboratoire de Biochimie (CNRS UMR7654), Palaiseau, 91128, France
| | - Thomas Simonson
- Ecole Polytechnique, Laboratoire de Biochimie (CNRS UMR7654), Palaiseau, 91128, France
| |
Collapse
|
9
|
Mignon D, Panel N, Chen X, Fuentes EJ, Simonson T. Computational Design of the Tiam1 PDZ Domain and Its Ligand Binding. J Chem Theory Comput 2017; 13:2271-2289. [PMID: 28394603 DOI: 10.1021/acs.jctc.6b01255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PDZ domains direct protein-protein interactions and serve as models for protein design. Here, we optimized a protein design energy function for the Tiam1 and Cask PDZ domains that combines a molecular mechanics energy, Generalized Born solvent, and an empirical unfolded state model. Designed sequences were recognized as PDZ domains by the Superfamily fold recognition tool and had similarity scores comparable to natural PDZ sequences. The optimized model was used to redesign the two PDZ domains, by gradually varying the chemical potential of hydrophobic amino acids; the tendency of each position to lose or gain a hydrophobic character represents a novel hydrophobicity index. We also redesigned four positions in the Tiam1 PDZ domain involved in peptide binding specificity. The calculated affinity differences between designed variants reproduced experimental data and suggest substitutions with altered specificities.
Collapse
Affiliation(s)
- David Mignon
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique , Palaiseau, France
| | - Nicolas Panel
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique , Palaiseau, France
| | - Xingyu Chen
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique , Palaiseau, France
| | - Ernesto J Fuentes
- Department of Biochemistry, Roy J. & Lucille A. Carver College of Medicine and Holden Comprehensive Cancer Center, University of Iowa , Iowa City, Iowa 52242-1109, United States
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique , Palaiseau, France
| |
Collapse
|
10
|
Bodnarchuk MS, Doncom KEB, Wright DB, Heyes DM, Dini D, O'Reilly RK. Polyelectrolyte pKa from experiment and molecular dynamics simulation. RSC Adv 2017. [DOI: 10.1039/c6ra27785c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pKa of a polyelectrolyte has been determined experimentally by potentiometric titration and computed using Molecular Dynamics (MD) constant pH (CpH) methodology, which allows the pKa of each titratable site along the polymer backbone.
Collapse
Affiliation(s)
| | | | | | - David M. Heyes
- Department of Mechanical Engineering
- Imperial College
- London SW7 2AZ
- UK
| | - Daniele Dini
- Department of Mechanical Engineering
- Imperial College
- London SW7 2AZ
- UK
| | | |
Collapse
|
11
|
Garcés JL, Madurga S, Rey-Castro C, Mas F. Dealing with long-range interactions in the determination of polyelectrolyte ionization properties. Extension of the transfer matrix formalism to the full range of ionic strengths. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Josep L. Garcés
- Chemistry Department; Technical School of Agricultural Engineering & AGROTECNIO of Lleida University (UdL); Lleida Catalonia Spain
| | - Sergio Madurga
- Physical Chemistry Unit; Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB); Barcelona Catalonia Spain
| | - Carlos Rey-Castro
- Chemistry Department; Technical School of Agricultural Engineering & AGROTECNIO of Lleida University (UdL); Lleida Catalonia Spain
| | - Francesc Mas
- Physical Chemistry Unit; Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB); Barcelona Catalonia Spain
| |
Collapse
|
12
|
Druart K, Bigot J, Audit E, Simonson T. A Hybrid Monte Carlo Scheme for Multibackbone Protein Design. J Chem Theory Comput 2016; 12:6035-6048. [DOI: 10.1021/acs.jctc.6b00421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karen Druart
- Laboratoire
de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
- Maison
de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Julien Bigot
- Maison
de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Edouard Audit
- Maison
de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Thomas Simonson
- Laboratoire
de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
13
|
Mignon D, Simonson T. Comparing three stochastic search algorithms for computational protein design: Monte Carlo, replica exchange Monte Carlo, and a multistart, steepest-descent heuristic. J Comput Chem 2016; 37:1781-93. [PMID: 27197555 DOI: 10.1002/jcc.24393] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/26/2016] [Accepted: 03/27/2016] [Indexed: 01/11/2023]
Abstract
Computational protein design depends on an energy function and an algorithm to search the sequence/conformation space. We compare three stochastic search algorithms: a heuristic, Monte Carlo (MC), and a Replica Exchange Monte Carlo method (REMC). The heuristic performs a steepest-descent minimization starting from thousands of random starting points. The methods are applied to nine test proteins from three structural families, with a fixed backbone structure, a molecular mechanics energy function, and with 1, 5, 10, 20, 30, or all amino acids allowed to mutate. Results are compared to an exact, "Cost Function Network" method that identifies the global minimum energy conformation (GMEC) in favorable cases. The designed sequences accurately reproduce experimental sequences in the hydrophobic core. The heuristic and REMC agree closely and reproduce the GMEC when it is known, with a few exceptions. Plain MC performs well for most cases, occasionally departing from the GMEC by 3-4 kcal/mol. With REMC, the diversity of the sequences sampled agrees with exact enumeration where the latter is possible: up to 2 kcal/mol above the GMEC. Beyond, room temperature replicas sample sequences up to 10 kcal/mol above the GMEC, providing thermal averages and a solution to the inverse protein folding problem. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Mignon
- Laboratoire De Biochimie (UMR CNRS 7654), Department Of Biology, Ecole Polytechnique, Palaiseau, France
| | - Thomas Simonson
- Laboratoire De Biochimie (UMR CNRS 7654), Department Of Biology, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
14
|
Gaillard T, Panel N, Simonson T. Protein side chain conformation predictions with an MMGBSA energy function. Proteins 2016; 84:803-19. [PMID: 26948696 DOI: 10.1002/prot.25030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/22/2016] [Accepted: 02/27/2016] [Indexed: 12/17/2022]
Abstract
The prediction of protein side chain conformations from backbone coordinates is an important task in structural biology, with applications in structure prediction and protein design. It is a difficult problem due to its combinatorial nature. We study the performance of an "MMGBSA" energy function, implemented in our protein design program Proteus, which combines molecular mechanics terms, a Generalized Born and Surface Area (GBSA) solvent model, with approximations that make the model pairwise additive. Proteus is not a competitor to specialized side chain prediction programs due to its cost, but it allows protein design applications, where side chain prediction is an important step and MMGBSA an effective energy model. We predict the side chain conformations for 18 proteins. The side chains are first predicted individually, with the rest of the protein in its crystallographic conformation. Next, all side chains are predicted together. The contributions of individual energy terms are evaluated and various parameterizations are compared. We find that the GB and SA terms, with an appropriate choice of the dielectric constant and surface energy coefficients, are beneficial for single side chain predictions. For the prediction of all side chains, however, errors due to the pairwise additive approximation overcome the improvement brought by these terms. We also show the crucial contribution of side chain minimization to alleviate the rigid rotamer approximation. Even without GB and SA terms, we obtain accuracies comparable to SCWRL4, a specialized side chain prediction program. In particular, we obtain a better RMSD than SCWRL4 for core residues (at a higher cost), despite our simpler rotamer library. Proteins 2016; 84:803-819. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas Gaillard
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Nicolas Panel
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Thomas Simonson
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| |
Collapse
|
15
|
Bodnarchuk MS, Heyes DM, Dini D, Chahine S, Edwards S. Role of Deprotonation Free Energies in pKa Prediction and Molecule Ranking. J Chem Theory Comput 2015; 10:2537-45. [PMID: 26580774 DOI: 10.1021/ct400914w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A computationally efficient classical molecular simulation technique is derived for ranking the pKa values of a set of chemically similar congeneric molecules in an implicit solvent model of water. This uses the deprotonation free energy of the titratable group in the gas and aqueous phases obtained by thermodynamic integration (TI). For a series of alcohols and acids a strong linear correlation is demonstrated between the experimental pKa and the deprotonation free energy difference in the gas and liquid phases. These calculations also show that classical TI is more efficient than slow-growth TI in calculating deprotonation free energies for the series of molecules considered herein.
Collapse
Affiliation(s)
- M S Bodnarchuk
- Department of Mechanical Engineering, Imperial College London , Exhibition Road, London, SW7 2AZ, U.K
| | - D M Heyes
- Department of Mechanical Engineering, Imperial College London , Exhibition Road, London, SW7 2AZ, U.K
| | - D Dini
- Department of Mechanical Engineering, Imperial College London , Exhibition Road, London, SW7 2AZ, U.K
| | - S Chahine
- BP Marine Limited, Marine Technology Centre , Whitchurch Hill, Pangbourne, RG8 7QR, U.K
| | - S Edwards
- BP Marine Limited, Marine Technology Centre , Whitchurch Hill, Pangbourne, RG8 7QR, U.K
| |
Collapse
|
16
|
Druart K, Palmai Z, Omarjee E, Simonson T. Protein:Ligand binding free energies: A stringent test for computational protein design. J Comput Chem 2015; 37:404-15. [PMID: 26503829 DOI: 10.1002/jcc.24230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 01/29/2023]
Abstract
A computational protein design method is extended to allow Monte Carlo simulations where two ligands are titrated into a protein binding pocket, yielding binding free energy differences. These provide a stringent test of the physical model, including the energy surface and sidechain rotamer definition. As a test, we consider tyrosyl-tRNA synthetase (TyrRS), which has been extensively redesigned experimentally. We consider its specificity for its substrate l-tyrosine (l-Tyr), compared to the analogs d-Tyr, p-acetyl-, and p-azido-phenylalanine (ac-Phe, az-Phe). We simulate l- and d-Tyr binding to TyrRS and six mutants, and compare the structures and binding free energies to a more rigorous "MD/GBSA" procedure: molecular dynamics with explicit solvent for structures and a Generalized Born + Surface Area model for binding free energies. Next, we consider l-Tyr, ac- and az-Phe binding to six other TyrRS variants. The titration results are sensitive to the precise rotamer definition, which involves a short energy minimization for each sidechain pair to help relax bad contacts induced by the discrete rotamer set. However, when designed mutant structures are rescored with a standard GBSA energy model, results agree well with the more rigorous MD/GBSA. As a third test, we redesign three amino acid positions in the substrate coordination sphere, with either l-Tyr or d-Tyr as the ligand. For two, we obtain good agreement with experiment, recovering the wildtype residue when l-Tyr is the ligand and a d-Tyr specific mutant when d-Tyr is the ligand. For the third, we recover His with either ligand, instead of wildtype Gln.
Collapse
Affiliation(s)
- Karen Druart
- Laboratoire De Biochimie (UMR CNRS 7654), Department of Biology, Ecole Polytechnique, Palaiseau, France
| | - Zoltan Palmai
- Laboratoire De Biochimie (UMR CNRS 7654), Department of Biology, Ecole Polytechnique, Palaiseau, France
| | - Eyaz Omarjee
- Laboratoire De Biochimie (UMR CNRS 7654), Department of Biology, Ecole Polytechnique, Palaiseau, France
| | - Thomas Simonson
- Laboratoire De Biochimie (UMR CNRS 7654), Department of Biology, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
17
|
Richman DE, Majumdar A, García-Moreno E B. pH dependence of conformational fluctuations of the protein backbone. Proteins 2014; 82:3132-43. [PMID: 25137073 DOI: 10.1002/prot.24673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/25/2014] [Accepted: 08/04/2014] [Indexed: 01/08/2023]
Abstract
Proton binding equilibria (pK(a) values) of ionizable groups in proteins are exquisitely sensitive to their microenvironments. Apparent pK(a) values measured for individual ionizable residues with NMR spectroscopy are actually population-weighted averages of the pK(a) in different conformational microstates. NMR spectroscopy experiments with staphylococcal nuclease were used to test the hypothesis that pK(a) values of surface Glu and Asp residues are affected by pH-sensitive fluctuations of the backbone between folded and locally unfolded conformations. (15)N spin relaxation studies showed that as the pH decreases from the neutral into the acidic range the amplitudes of backbone fluctuations in the ps-ns timescale increase near carboxylic residues. Hydrogen exchange experiments suggested that backbone conformational fluctuations promoted by decreasing pH also reflect slower local or sub-global unfolding near carboxylic groups. This study has implications for structure-based pKa calculations: (1) The timescale of the backbone's response to ionization events in proteins can range from ps to ms, and even longer; (2) pH-sensitive fluctuations of the backbone can be localized to both the segment the ionizable residue is attached to or the one that occludes the ionizable group; (3) Structural perturbations are not necessarily propagated through Coulomb interactions; instead, local fluctuations appear to be coupled through the co-operativity inherent to elements of secondary structure and to networks of hydrogen bonds. These results are consistent with the idea that local conformational fluctuations and stabilities are important determinants of apparent pK(a) values of ionizable residues in proteins.
Collapse
Affiliation(s)
- Daniel E Richman
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland, 21218
| | | | | |
Collapse
|
18
|
Garcés JL, Madurga S, Borkovec M. Coupling of conformational and ionization equilibria in linear poly(ethylenimine): a study based on the site binding/rotational isomeric state (SBRIS) model. Phys Chem Chem Phys 2014; 16:4626-38. [DOI: 10.1039/c3cp54211d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Polydorides S, Simonson T. Monte Carlo simulations of proteins at constant pH with generalized Born solvent, flexible sidechains, and an effective dielectric boundary. J Comput Chem 2013; 34:2742-56. [PMID: 24122878 DOI: 10.1002/jcc.23450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 12/11/2022]
Abstract
Titratable residues determine the acid/base behavior of proteins, strongly influencing their function; in addition, proton binding is a valuable reporter on electrostatic interactions. We describe a method for pK(a) calculations, using constant-pH Monte Carlo (MC) simulations to explore the space of sidechain conformations and protonation states, with an efficient and accurate generalized Born model (GB) for the solvent effects. To overcome the many-body dependency of the GB model, we use a "Native Environment" approximation, whose accuracy is shown to be good. It allows the precalculation and storage of interactions between all sidechain pairs, a strategy borrowed from computational protein design, which makes the MC simulations themselves very fast. The method is tested for 12 proteins and 167 titratable sidechains. It gives an rms error of 1.1 pH units, similar to the trivial "Null" model. The only adjustable parameter is the protein dielectric constant. The best accuracy is achieved for values between 4 and 8, a range that is physically plausible for a protein interior. For sidechains with large pKa shifts, ≥2, the rms error is 1.6, compared to 2.5 with the Null model and 1.5 with the empirical PROPKA method.
Collapse
Affiliation(s)
- Savvas Polydorides
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91128, Palaiseau, France
| | | |
Collapse
|
20
|
Simonson T. What Is the Dielectric Constant of a Protein When Its Backbone Is Fixed? J Chem Theory Comput 2013; 9:4603-8. [DOI: 10.1021/ct400398e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Simonson
- Laboratoire de Biochimie
(CNRS UMR7654), Department of Biology, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
21
|
Karshikoff A, Nilsson L, Foloppe N. Understanding the −C–X1–X2–C– Motif in the Active Site of the Thioredoxin Superfamily: E. coli DsbA and Its Mutants as a Model System. Biochemistry 2013; 52:5730-45. [DOI: 10.1021/bi400500e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrey Karshikoff
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str.,
bl. 21, Sofia 1113, Bulgaria
| | - Lennart Nilsson
- Department of Biosciences and
Nutrition, Center for Biosciences, Karolinska Institutet, S-141 83 Huddinge, Sweden
| | | |
Collapse
|
22
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
23
|
Machuqueiro M, Baptista AM. Is the prediction of pK
a
values by constant-pH molecular dynamics being hindered by inherited problems? Proteins 2011; 79:3437-47. [DOI: 10.1002/prot.23115] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 01/20/2023]
|
24
|
Jimenez-Cruz CA, Makhatadze GI, Garcia AE. Protonation/deprotonation effects on the stability of the Trp-cage miniprotein. Phys Chem Chem Phys 2011; 13:17056-63. [PMID: 21773639 DOI: 10.1039/c1cp21193e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Trp-cage miniprotein is a 20 amino acid peptide that exhibits many of the properties of globular proteins. In this protein, the hydrophobic core is formed by a buried Trp side chain. The folded state is stabilized by an ion pair between aspartic acid and an arginine side chain. The effect of protonating the aspartic acid on the Trp-cage miniprotein folding/unfolding equilibrium is studied by explicit solvent molecular dynamics simulations of the protein in the charged and protonated Asp9 states. Unbiased Replica Exchange Molecular Dynamics (REMD) simulations, spanning a wide temperature range, are carried out to the microsecond time scale, using the AMBER99SB forcefield in explicit TIP3P water. The protein structural ensembles are studied in terms of various order parameters that differentiate the folded and unfolded states. We observe that in the folded state the root mean square distance (rmsd) from the backbone of the NMR structure shows two highly populated basins close to the native state with peaks at 0.06 nm and 0.16 nm, which are consistent with previous simulations using the same forcefield. The fraction of folded replicas shows a drastic decrease because of the absence of the salt bridge. However, significant populations of conformations with the arginine side chain exposed to the solvent, but within the folded basin, are found. This shows the possibility to reach the folded state without formation of the ion pair. We also characterize changes in the unfolded state. The equilibrium populations of the folded and unfolded states are used to characterize the thermodynamics of the system. We find that the change in free energy difference due to the protonation of the Asp amino acid is 3 kJ mol(-1) at 297 K, favoring the charged state, and resulting in ΔpK(1) = 0.5 units for Asp9. We also study the differences in the unfolded state ensembles for the two charge states and find significant changes at low temperature, where the protonated Asp side chain makes multiple hydrogen bonds to the protein backbone.
Collapse
Affiliation(s)
- Camilo A Jimenez-Cruz
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | |
Collapse
|
25
|
Carstensen T, Farrell D, Huang Y, Baker NA, Nielsen JE. On the development of protein pKa calculation algorithms. Proteins 2011; 79:3287-98. [PMID: 21744393 DOI: 10.1002/prot.23091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/16/2011] [Accepted: 05/04/2011] [Indexed: 11/10/2022]
Abstract
Protein pK(a) calculation methods are developed partly to provide fast non-experimental estimates of the ionization constants of protein side chains. However, the most significant reason for developing such methods is that a good pK(a) calculation method is presumed to provide an accurate physical model of protein electrostatics, which can be applied in methods for drug design, protein design, and other structure-based energy calculation methods. We explore the validity of this presumption by simulating the development of a pK(a) calculation method using artificial experimental data derived from a human-defined physical reality. We examine the ability of an RMSD-guided development protocol to retrieve the correct (artificial) physical reality and find that a rugged optimization landscape and a huge parameter space prevent the identification of the correct physical reality. We examine the importance of the training set in developing pK(a) calculation methods and investigate the effect of experimental noise on our ability to identify the correct physical reality, and find that both effects have a significant and detrimental impact on the physical reality of the optimal model identified. Our findings are of relevance to all structure-based methods for protein energy calculations and simulation, and have large implications for all types of current pK(a) calculation methods. Our analysis furthermore suggests that careful and extensive validation on many types of experimental data can go some way in making current models more realistic.
Collapse
Affiliation(s)
- Tommy Carstensen
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
26
|
Nilsson L, Karshikoff A. Multiple pH regime molecular dynamics simulation for pK calculations. PLoS One 2011; 6:e20116. [PMID: 21647418 PMCID: PMC3103538 DOI: 10.1371/journal.pone.0020116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/25/2011] [Indexed: 11/25/2022] Open
Abstract
Ionisation equilibria in proteins are influenced by conformational flexibility, which can in principle be accounted for by molecular dynamics simulation. One problem in this method is the bias arising from the fixed protonation state during the simulation. Its effect is mostly exhibited when the ionisation behaviour of the titratable groups is extrapolated to pH regions where the predetermined protonation state of the protein may not be statistically relevant, leading to conformational sampling that is not representative of the true state. In this work we consider a simple approach which can essentially reduce this problem. Three molecular dynamics structure sets are generated, each with a different protonation state of the protein molecule expected to be relevant at three pH regions, and pK calculations from the three sets are combined to predict pK over the entire pH range of interest. This multiple pH molecular dynamics approach was tested on the GCN4 leucine zipper, a protein for which a full data set of experimental data is available. The pK values were predicted with a mean deviation from the experimental data of 0.29 pH units, and with a precision of 0.13 pH units, evaluated on the basis of equivalent sites in the dimeric GCN4 leucine zipper.
Collapse
Affiliation(s)
- Lennart Nilsson
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Huddinge, Sweden.
| | | |
Collapse
|
27
|
Polydorides S, Amara N, Aubard C, Plateau P, Simonson T, Archontis G. Computational protein design with a generalized Born solvent model: application to Asparaginyl-tRNA synthetase. Proteins 2011; 79:3448-68. [PMID: 21563215 DOI: 10.1002/prot.23042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/25/2011] [Accepted: 03/03/2011] [Indexed: 12/13/2022]
Abstract
Computational Protein Design (CPD) is a promising method for high throughput protein and ligand mutagenesis. Recently, we developed a CPD method that used a polar-hydrogen energy function for protein interactions and a Coulomb/Accessible Surface Area (CASA) model for solvent effects. We applied this method to engineer aspartyl-adenylate (AspAMP) specificity into Asparaginyl-tRNA synthetase (AsnRS), whose substrate is asparaginyl-adenylate (AsnAMP). Here, we implement a more accurate function, with an all-atom energy for protein interactions and a residue-pairwise generalized Born model for solvent effects. As a first test, we compute aminoacid affinities for several point mutants of Aspartyl-tRNA synthetase (AspRS) and Tyrosyl-tRNA synthetase and stability changes for three helical peptides and compare with experiment. As a second test, we readdress the problem of AsnRS aminoacid engineering. We compare three design criteria, which optimize the folding free-energy, the absolute AspAMP affinity, and the relative (AspAMP-AsnAMP) affinity. The sequences and conformations are improved with respect to our previous, polar-hydrogen/CASA study: For several designed complexes, the AspAMP carboxylate forms three interactions with a conserved arginine and a designed lysine, as in the active site of the AspRS:AspAMP complex. The conformations and interactions are well maintained in molecular dynamics simulations and the sequences have an inverted specificity, favoring AspAMP over AsnAMP. The method is not fully successful, since experimental measurements with the seven most promising sequences show that they do not catalyze at a detectable level the adenylation of Asp (or Asn) with ATP. This may be due to weak AspAMP binding and/or disruption of transition-state stabilization.
Collapse
|