1
|
Mohanty S, Kuldeep, Subuddhi U. Spectroscopic investigation on the interaction of CHAPS, the zwitterionic steroidal surfactant, with bovine and human serum albumins: A comparative study. Int J Biol Macromol 2024; 282:136789. [PMID: 39490863 DOI: 10.1016/j.ijbiomac.2024.136789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
CHAPS, the zwitterionic derivative of cholic acid, has garnered significant research attention owing to its biocompatibility, electro-neutrality over a wide pH range, and non-denaturing nature towards proteins. The escalating demand of CHAPS in biomedical and pharmaceutical industries mandates information on its interaction with various biological macromolecules, especially proteins. The present study involves a comprehensive investigation on the interaction of CHAPS in a wide concentration range (0.001 mM-32 mM), with two extensively used transport proteins, BSA (Bovine Serum Albumin) and HSA (Human Serum Albumin). The study suggests a concentration dependent sequential interaction of CHAPS in discreet stages with the two proteins. A detailed study using warfarin and ibuprofen as site markers provides information about the sites of interaction at different stages. The study indicates significant difference in the effect of CHAPS on these two homologous proteins in terms of their esterase-like activity and effect of chemical denaturant. Moreover, a comparison between CHAPS and its structural bile salt analogues, Sodium cholate and Sodium taurocholate, towards their interaction and effect on the two serum albumins, reveals the mildness of CHAPS towards the proteins, thus endorsing it as a more suitable drug carrier in comparison to its bile salt analogues.
Collapse
Affiliation(s)
- Subhrajit Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Kuldeep
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Usharani Subuddhi
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
2
|
Sarangi AN, Gupta AN. Impedance Spectroscopy Unveiled the Surfactant-Induced Unfolding and Subsequent Refolding of Human Serum Albumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19022-19031. [PMID: 39189867 DOI: 10.1021/acs.langmuir.4c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Protein-surfactant interaction is a dynamic interplay of electrostatic and hydrophobic forces that ensues from the folding of a protein. We employ impedance spectroscopy (IS), a label-free method, to investigate the unfolding and refolding of human serum albumin (HSA), a globular plasma protein, in the presence of two surfactants: polysorbate-20 (Tween-20), a nonionic surfactant, and sodium dodecyl sulfate (SDS), an anionic surfactant. The equivalent electrical analog circuit was predicted from impedance spectra of HSA in an aqueous solution at physiological pH and room temperature, focusing on varying the concentration of codissolved surfactants. A change in the dielectric constant (ε') and ionic conductivity (κ) is observed by comparing the surfactant-treated protein samples to the bare surfactant solutions to assess the conformational changes induced by surfactants in HSA. Far-UV circular dichroism analysis revealed a decrease in α-helices and an increase in β-sheets and random coils upon SDS addition, which were reversed by Tween-20. Dynamic light scattering supported the findings by measuring changes in the hydrodynamic diameter (dh) of HSA. Unfolding and refolding of HSA with surfactants were also observed through photoluminescence spectroscopy by examining the microenvironment surrounding the single tryptophan (W) within the protein, and the thermodynamic parameters were obtained using the modified Stern-Volmer equation. Our research explores the intriguing domain of protein-surfactant interactions, offering insights with promising applications across diverse biological processes and IS as a suitable alternative technique for investigating protein conformational changes by studying the electrical response of the samples.
Collapse
Affiliation(s)
- Akshay Narayan Sarangi
- Biophysics and Soft Matter Laboratory, Department of Physics, IIT Kharagpur, Kharagpur 721302, India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, IIT Kharagpur, Kharagpur 721302, India
| |
Collapse
|
3
|
Oliveira IS, Garcia MSA, Cassani NM, Oliveira ALC, Freitas LCF, Bertolini VKS, Castro J, Clauss G, Honorato J, Gadelha FR, Miguel DC, Jardim ACG, Abbehausen C. Exploring antiviral and antiparasitic activity of gold N-heterocyclic carbenes with thiolate ligands. Dalton Trans 2024. [PMID: 39171417 DOI: 10.1039/d4dt01879f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Gold(I) N-heterocyclic carbenes have been explored for their therapeutic potential against several diseases. Neglected tropical diseases, including leishmaniasis, Chagas disease, and viral infections, such as zika, mayaro, and chikungunya, urgently require new treatment options. The emergent SARS-CoV-2 also demands significant attention. Gold complexes have shown promise as alternative treatments for these conditions. Previously, gold(I)(1,3-bis(mesityl)imidazole-2-ylidene)Cl (AuIMesCl) demonstrated significant leishmanicidal and anti-Chikungunya virus activities. In this study, we synthesized and fully characterized a series of gold(I)(1,3-bis(mesityl)imidazole-2-ylidene)(SR) complexes, where SR includes thiolate donor species such as 1,3-thiazolidine-2-thione, 1,3-benzothiazole-2-thione, 2-mercaptopyrimidine, and 2-thiouracil. These compounds were stable in solution, and ligand exchange reactions with N-acetyl-L-cysteine indicated that complexes with SR ligands are more labile than those with chloride. Although the reactions are rapid, they reach equilibrium at varying molar ratios depending on the SR ligand. The increased lability of these compounds results in higher cytotoxicity to host cells, such as Vero E6 and bone marrow-differentiated macrophages, compared to AuIMesCl. Despite this, the compounds effectively inhibited viral replication, achieving 95.5% inhibition of Zika virus replication at 2 μM with 96% host cell viability. Although active at low concentrations (∼2 μM) against Leishmania (L.) amazonensis and Trypanosoma cruzi, their high cytotoxicity for macrophages confirmed AuIMesCl as a better candidate with a higher selectivity index. This work correlates the coordination chemistry of pyrimidines and thiazolidines with their in vitro biological activities against significant diseases.
Collapse
Affiliation(s)
- Igor S Oliveira
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| | - Marcus S A Garcia
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Natasha M Cassani
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Ana L C Oliveira
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Lara C F Freitas
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | | | - Jennyfer Castro
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| | - Gustavo Clauss
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| | - João Honorato
- Institute of Chemistry, University of São Paulo, Brazil
| | - Fernanda R Gadelha
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana C G Jardim
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Jain A, Judy E, Kishore N. Analytical Aspects of ANSA-BSA Association: A Thermodynamic and Conformational Approach. J Phys Chem B 2024; 128:5344-5362. [PMID: 38773936 DOI: 10.1021/acs.jpcb.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Many studies have demonstrated the manner in which ANS interacts with bovine serum albumin (BSA), although they are limited by the extremely low solubility of dye. The present study demonstrates the binding of ANSA dye with BSA, and since this dye can easily replace ANS, it not only simplifies research but also improves sensor accuracy for serum albumin. A combination of calorimetry and spectroscopy has been employed to establish the thermodynamic signatures associated with the interaction of ANSA with the protein and the consequent conformational changes in the latter. The results of differential scanning calorimetry reveal that when the concentration of ANSA in solution is increased, the thermal stability of the protein increases substantially. The fluorescence data demonstrated a decrease in the binding affinity of ANSA with the protein when pH increased but was unable to identify a change in the mode of interaction of the ligand. ITC has demonstrated that the mode of interaction between ANSA and the protein varies from a single set of binding sites at pH 5 and 7.4 to a sequential binding site at pH 10, emphasizing the potential relevance of protein conformational changes. TCSPC experiments suggested a dynamic type in the presence of ANSA. Molecular docking studies suggest that ANSA molecules are able to find ionic centers in the hydrophobic pockets of BSA. The findings further imply that given its ease of use in experiments, ANSA may be a useful probe for tracking the presence of serum albumin and partially folded protein states.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Eva Judy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Mohanty S, Mishra SS, Kuldeep, Maharana J, Subuddhi U. Insight into the Effect of Submicellar Concentrations of Sodium Deoxycholate on the Structure, Stability, and Activity of Bovine and Human Serum Albumin: An Interesting Comparison between Single and Double Tryptophan Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5228-5244. [PMID: 38413419 DOI: 10.1021/acs.langmuir.3c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The progressive escalation in the applications of bile salts in diverse fields has triggered research on their interaction with various biological macromolecules, especially with proteins. A proper understanding of the interaction process of bile salts, particularly in the lower concentrations range, with the serum albumin seems important since the normal serum concentration of bile salts is approximately in the micromolar range. The current study deals with a comprehensive and comparative analysis of the interaction of submicellar concentrations of sodium deoxycholate (NaDC) with two homologous transport proteins: bovine serum albumin (BSA) and human serum albumin (HSA). HSA and BSA with one and two tryptophans, respectively, provide the opportunity for an interesting comparison of tryptophan fluorescence behavior on interaction with NaDC. The study suggests a sequential interaction of NaDC in three discrete stages with the two proteins. A detailed study using warfarin and ibuprofen as site markers provides information about the sites of interaction, which is further confirmed by inclusive molecular dynamics simulation analysis. Moreover, the comparison of the thermodynamics and stability of the NaDC-serum albumin complexes confirms the stronger interaction of NaDC with BSA as compared to that with HSA. The differential interaction between the bile salt and the two serum albumins is further established from the difference in the extent of decrease in the esterase-like activity assay of the proteins in the presence of NaDC. Therefore, the present study provides important insight into the effect of submicellar concentrations of NaDC on the structure, stability, and activity of the two homologous serum albumins and thus can contribute not only to the general understanding of the complex nature of serum albumin-bile salt interactions but also to the design of more effective pharmaceutical formulations in the field of drug delivery and biomedical research.
Collapse
Affiliation(s)
- Subhrajit Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Smruti Snigdha Mishra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Kuldeep
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Jitendra Maharana
- Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Usharani Subuddhi
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
6
|
Rajan D, Muraleedharan A, Variyar A, Verma P, Pinhero F, Lakshmanna YA, Sabari Sankar T, Thomas KG. Single- and two-photon-induced Förster resonance energy transfer in InP-mCherry bioconjugates. J Chem Phys 2024; 160:044712. [PMID: 38294316 DOI: 10.1063/5.0186483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Indium phosphide (InP) quantum dots (QDs) have recently garnered considerable interest in the design of bioprobes due to their non-toxic nature and excellent optical properties. Several attempts for the conjunction of InP QDs with various entities such as organic dyes and dye-labeled proteins have been reported, while that with fluorescent proteins remains largely uncharted. This study reports the development of a Förster resonance energy transfer pair comprising glutathione-capped InP/GaP/ZnS QDs [InP(G)] and the fluorescent protein mCherry. Glutathione on InP(G) undergoes effective bioconjugation with mCherry consisting of a hexahistidine tag, and the nonradiative energy transfer is investigated using steady-state and time-resolved measurements. Selective one-photon excitation of InP(G) in the presence of mCherry shows a decay of the emission of the QDs and a concomitant growth of acceptor emission. Time-resolved investigations prove the nonradiative transfer of energy between InP(G) and mCherry. Furthermore, the scope of two-photon-induced energy transfer between InP(G) and mCherry is investigated by exciting the donor in the optical transparency range. The two-photon absorption is confirmed by the quadratic relationship between the emission intensity and the excitation power. In general, near-infrared excitation provides a path for effective light penetration into the tissues and reduces the photodamage of the sample. The two-photon-induced energy transfer in such assemblies could set the stage for a wide range of biological and optoelectronic applications in the foreseeable future.
Collapse
Affiliation(s)
- Devika Rajan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Ananthu Muraleedharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Anjali Variyar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Preetika Verma
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Faina Pinhero
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Yapamanu Adithya Lakshmanna
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - T Sabari Sankar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
7
|
Zhang J, Fu X, Yan C, Wang G. The Morphology Dependent Interaction between Silver Nanoparticles and Bovine Serum Albumin. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5821. [PMID: 37687517 PMCID: PMC10488934 DOI: 10.3390/ma16175821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Biological applications of silver nanoparticles (AgNPs) depend on the covalently attached or adsorbed proteins. A series of biological effects of AgNPs within cells are determined by the size, shape, aspect ratio, surface charge, and modifiers. Herein, the morphology dependent interaction between AgNPs and protein was investigated. AgNPs with three different morphologies, such as silver nanospheres, silver nanorods, and silver nanotriangles, were employed to investigate the morphological effect on the interaction with a model protein: bovine serum albumin (BSA). The adsorptive interactions between BSA and the AgNPs were probed by UV-Vis spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), Fourier transform infrared spectrometry (FTIR), transmission electron microscopy (TEM), and circular dichroism (CD) techniques. The results revealed that the particle size, shape, and dispersion of the three types of AgNPs markedly influence the interaction with BSA. Silver nanospheres and nanorods were capsulated by protein coronas, which led to slightly enlarged outer size. The silver nanotriangles evolved gradually into nanodisks in the presence of BSA. Fluorescence spectroscopy confirmed the static quenching the fluorescence emission of BSA by the three AgNPs. The FTIR and CD results suggested that the AgNPs with different morphologies had different effects on the secondary structure of BSA. The silver nanospheres and silver nanorods induced more pronounced structural changes than silver nanotriangles. These results suggest that the formation of a protein corona and the aggregation behaviors of AgNPs are markedly determined by their inherent morphologies.
Collapse
Affiliation(s)
- Jingyi Zhang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xianjun Fu
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| | - Changling Yan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Gongke Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Alam M. Exploration of Binding Affinities of a 3β,6β-Diacetoxy-5α-cholestan-5-ol with Human Serum Albumin: Insights from Synthesis, Characterization, Crystal Structure, Antioxidant and Molecular Docking. Molecules 2023; 28:5942. [PMID: 37630192 PMCID: PMC10459092 DOI: 10.3390/molecules28165942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The present study describes the synthesis, characterization, and in vitro molecular interactions of a steroid 3β,6β-diacetoxy-5α-cholestan-5-ol. Through conventional and solid-state methods, a cholestane derivative was successfully synthesized, and a variety of analytical techniques were employed to confirm its identity, including high-resolution mass spectrometry (HRMS), Fourier transforms infrared (FT-IR), nuclear magnetic resonance (NMR), elemental analysis, and X-ray single-crystal diffraction. Optimizing the geometry of the steroid was undertaken using density functional theory (DFT), and the results showed great concordance with the data from the experiments. Fluorescence spectral methods and ultraviolet-vis absorption titration were employed to study the in vitro molecular interaction of the steroid regarding human serum albumin (HSA). The Stern-Volmer, modified Stern-Volmer, and thermodynamic parameters' findings showed that steroids had a significant binding affinity to HSA and were further investigated by molecular docking studies to understand the participation of active amino acids in forming non-bonding interactions with steroids. Fluorescence studies have shown that compound 3 interacts with human serum albumin (HSA) through a static quenching mechanism. The binding affinity of compound 3 for HSA was found to be 3.18 × 104 mol-1, and the Gibbs free energy change (ΔG) for the binding reaction was -9.86 kcal mol-1 at 298 K. This indicates that the binding of compound 3 to HSA is thermodynamically favorable. The thermodynamic parameters as well as the binding score obtained from molecular docking at various Sudlow's sites was -8.2, -8.5, and -8.6 kcal/mol for Sites I, II, and III, respectively, supporting the system's spontaneity. Aside from its structural properties, the steroid demonstrated noteworthy antioxidant activity, as evidenced by its IC50 value of 58.5 μM, which is comparable to that of ascorbic acid. The findings presented here contribute to a better understanding of the pharmacodynamics of steroids.
Collapse
Affiliation(s)
- Mahboob Alam
- Department of Safety Engineering, Dongguk University Wise, 123 Dongdae-ro, Gyeongju-si 780714, Gyeongbuk, Republic of Korea
| |
Collapse
|
9
|
Preeyanka N, Akhuli A, Dey H, Chakraborty D, Rahaman A, Sarkar M. Realization of a Model-Free Pathway for Quantum Dot-Protein Interaction Beyond Classical Protein Corona or Protein Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10704-10715. [PMID: 35970517 DOI: 10.1021/acs.langmuir.2c01789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although in recent times nanoparticles (NPs) are being used in various biological applications, their mechanism of binding interactions still remains hazy. Usually, the binding mechanism is perceived to be mediated through either the protein corona (PC) or protein complex (PCx). Herein, we report that the nanoparticle (NP)-protein interaction can also proceed via a different pathway without forming the commonly observed PC or PCx. In the present study, the NP-protein interaction between less-toxic zinc-silver-indium-sulfide (ZAIS) quantum dots (QDs) and bovine serum albumin (BSA) was investigated by employing spectroscopic and microscopic techniques. Although the analyses of data obtained from fluorescence and thermodynamic studies do indicate the binding between QDs and BSA, they do not provide clear experimental evidence in favor of PC or PCx. Quite interestingly, high-resolution transmission electron microscopy (HRTEM) studies have shown the formation of a new type of species where BSA protein molecules are adsorbed onto some portion of a QD surface rather than the entire surface. To the best of our knowledge, we believe that this is the first direct experimental evidence in favor of a model-free pathway for NP-protein interaction events. Thus, the outcome of the present study, through experimental evidence, clearly suggests that NP-protein interaction can proceed by following a pathway that is different from classical PC and PCx.
Collapse
Affiliation(s)
- Naupada Preeyanka
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Amit Akhuli
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Himani Dey
- School of Biological Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Debabrata Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Abdur Rahaman
- School of Biological Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar, 752050 Odisha, India
| |
Collapse
|
10
|
Kanemitsu S, Morita K, Tominaga Y, Nishimura K, Yashiro T, Sakurai H, Yamamoto Y, Kurisaki I, Tanaka S, Matsui M, Ooya T, Tamura A, Maruyama T. Inhibition of Melittin Activity Using a Small Molecule with an Indole Ring. J Phys Chem B 2022; 126:5793-5802. [PMID: 35913127 DOI: 10.1021/acs.jpcb.2c03595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated d-amino acids as potential inhibitors targeting l-peptide toxins. Among the l- and d-amino acids tested, we found that d-tryptophan (d-Trp) acted as an inhibitor of melittin-induced hemolysis. We then evaluated various Trp derivatives and found that 5-chlorotryptamine (5CT) had the largest inhibitory effect on melittin. The indole ring, amino group, and steric hindrance of an inhibitor played important roles in the inhibition of melittin activity. Despite the small size and simple molecular structure of 5CT, its IC50 was approximately 13 μg/mL. Fluorescence quenching, circular dichroism measurements, and size-exclusion chromatography revealed that 5CT interacted with Trp19 in melittin and affected the formation of the melittin tetramer involved in hemolysis. Molecular dynamics simulation of melittin also indicated that the interaction of 5CT with Trp19 in melittin affected the formation of the tetramer.
Collapse
Affiliation(s)
- Sayuki Kanemitsu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yudai Tominaga
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kanon Nishimura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tomoko Yashiro
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Haruka Sakurai
- Graduate School of Science, Department of Chemistry, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yumemi Yamamoto
- Graduate School of Science, Department of Chemistry, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Ikuo Kurisaki
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Masaki Matsui
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tooru Ooya
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Atsuo Tamura
- Graduate School of Science, Department of Chemistry, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
11
|
Agarwala P, Bera T, Sasmal DK. Molecular Mechanism of Interaction of Curcumin with BSA, Surfactants and Live E. Coli Cell Membrane Revealed by Fluorescence Spectroscopy and Confocal Microscopy. Chemphyschem 2022; 23:e202200265. [DOI: 10.1002/cphc.202200265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pratibha Agarwala
- Indian Institute of Technology Rajasthan: Indian Institute of Technology Jodhpur Department of chemistry 342037 Jodhpur INDIA
| | - Turban Bera
- Indian Institute of Technology Jodhpur Department of chemistry INDIA
| | - Dibyendu Kumar Sasmal
- Indian Institute of Technology Jodhpur Chemistry NH65, Surpura bypass roadkarwar 342037 Jodhpur INDIA
| |
Collapse
|
12
|
Biswas B, Dogra S, Dey G, Murugan NA, Mondal P, Ghosh S. Near-infrared emissive cyanine probes for selective visualization of the physiological and pathophysiological modulation of albumin levels. J Mater Chem B 2022; 10:3657-3666. [PMID: 35421884 DOI: 10.1039/d1tb02613e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the promising advantages of the near-infrared region (NIR) emissive markers for serum albumin becoming very prominent recently, we devised CyG-NHS as the cyanine derived longest NIR-I emissive optical marker possessing albumin selective recognition ability in diverse biological milieu. Multiscale modeling involving molecular docking, molecular dynamics, and implicit solvent binding free energy calculations have been employed to gain insights into the unique binding ability of the developed probe at domain-I of albumin, in contrast to the good number of domain IIA or IIIA binding probes available in the literature reports. The binding free energy was found to be -31.8 kcal mol-1 majorly predominated by hydrophobic interactions. Besides, the conformational dynamics of CyG-NHS in an aqueous medium and the albumin microenvironment have been comprehensively studied and discussed. The potentiality of this optical platform to monitor the intracellular albumin levels in human hepatoma (HepG2) cells in different pathophysiological states has been demonstrated here. Also, the competency of the phenformin drug in restoring the albumin levels in chronic hyperinsulinemic and hypercholesterolemic in vitro models has been established through the visualization approach. Altogether, the findings of this study throw light on the significance of the development of a suitable optical marker for the visualization of critical bioevents related to albumin.
Collapse
Affiliation(s)
- Bidisha Biswas
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| | - Surbhi Dogra
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| | - Gourab Dey
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| | - N Arul Murugan
- Department of Computer Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, S-100 44 Stockholm, Sweden. .,Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020, India
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| | - Subrata Ghosh
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, 175001, Himachal Pradesh, India.
| |
Collapse
|
13
|
Hooda P, Ishtikhar M, Saraswat S, Bhatia P, Mishra D, Trivedi A, Kulandaisamy R, Aggarwal S, Munde M, Ali N, AlAsmari AF, Rauf MA, Inampudi KK, Sehgal D. Biochemical and Biophysical Characterisation of the Hepatitis E Virus Guanine-7-Methyltransferase. Molecules 2022; 27:1505. [PMID: 35268608 PMCID: PMC8911963 DOI: 10.3390/molecules27051505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatitis E virus (HEV) is an understudied pathogen that causes infection through fecal contaminated drinking water and is prominently found in South Asian countries. The virus affects ~20 million people annually, leading to ~60,000 infections per year. The positive-stranded RNA genome of the HEV genotype 1 has four conserved open reading frames (ORFs), of which ORF1 encodes a polyprotein of 180 kDa in size, which is processed into four non-structural enzymes: methyltransferase (MTase), papain-like cysteine protease, RNA-dependent RNA polymerase, and RNA helicase. MTase is known to methylate guanosine triphosphate at the 5'-end of viral RNA, thereby preventing its degradation by host nucleases. In the present study, we cloned, expressed, and purified MTase spanning 33-353 amino acids of HEV genotype 1. The activity of the purified enzyme and the conformational changes were established through biochemical and biophysical studies. The binding affinity of MTase with magnesium ions (Mg2+) was studied by isothermal calorimetry (ITC), microscale thermophoresis (MST), far-UV CD analysis and, fluorescence quenching. In summary, a short stretch of nucleotides has been cloned, coding for the HEV MTase of 37 kDa, which binds Mg2+ and modulate its activity. The chelation of magnesium reversed the changes, confirming its role in enzyme activity.
Collapse
Affiliation(s)
- Preeti Hooda
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Mohd Ishtikhar
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Shweta Saraswat
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Pooja Bhatia
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Deepali Mishra
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Aditya Trivedi
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Rajkumar Kulandaisamy
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| | - Soumya Aggarwal
- School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India; (S.A.); (M.M.)
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India; (S.A.); (M.M.)
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.F.A.)
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.F.A.)
| | - Mohd A. Rauf
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Krishna K. Inampudi
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| | - Deepak Sehgal
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| |
Collapse
|
14
|
SreedharanNair S, Unni KK, Sasidharanpillai S, Kumar S, Aravindakumar CT, Aravind UK. Bio-physical and Computational Studies on Serum Albumin / Target Protein Binding of a Potential Anti-Cancer Agent. Eur J Pharm Sci 2022; 172:106141. [PMID: 35143979 DOI: 10.1016/j.ejps.2022.106141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 11/03/2022]
Abstract
The successful evolution of an effective drug depends on its pharmacokinetics, efficiency and safety and these in turn depend on the drug-target/drug-carrier protein binding. This work, deals with the interaction of a pyridine derivative, 2-hydroxy-5-(4-methoxyphenyl)-6-phenylpyridine 3-carbonitrile (HDN) with serum albumins at physiological conditions utilizing the steady state and time-resolved fluorescence techniques by probing the emission behavior of Trp in BSA and HSA. In-silico studies revealed a combined static and dynamic quenching mechanism for the interactions. The binding studies suggests a spontaneous binding between HDN and the albumins with a moderate binding affinity (Kb ∼ 10-5 M-1) with a single class of binding site. The FRET mediated emission from HDN indicates preferential binding of HDN in subdomain IIA of the albumins with Trp residue in close proximity. Circular dichroism results indicate HDN induced conformational changes for BSA and HSA, but the α-helical secondary structure was well preserved even up to a concentration of 10 µM HDN. Moderate binding affinity of HDN with BSA and HSA and the unaltered secondary structure of proteins on binding propose the potential application of HDN as an efficient drug. The application of docking method on the affinity of HDN towards the proposed target/receptor is discussed.
Collapse
Affiliation(s)
- Sreedhanya SreedharanNair
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam 686560, India; N. S. S. College, Pandalam, Pathanamthitta, 689501, India
| | | | | | - Satheesh Kumar
- Government Medical College Kottayam, Arpookara, Kottayam, 686008, Kerala, India
| | | | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science and Technology, Kerala, 686 560, India.
| |
Collapse
|
15
|
Żamojć K, Wyrzykowski D, Chmurzyński L. On the Effect of pH, Temperature, and Surfactant Structure on Bovine Serum Albumin-Cationic/Anionic/Nonionic Surfactants Interactions in Cacodylate Buffer-Fluorescence Quenching Studies Supported by UV Spectrophotometry and CD Spectroscopy. Int J Mol Sci 2021; 23:ijms23010041. [PMID: 35008466 PMCID: PMC8744808 DOI: 10.3390/ijms23010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 01/19/2023] Open
Abstract
Due to the fact that surfactant molecules are known to alter the structure (and consequently the function) of a protein, protein–surfactant interactions are very important in the biological, pharmaceutical, and cosmetic industries. Although there are numerous studies on the interactions of albumins with surfactants, the investigations are often performed at fixed environmental conditions and limited to separate surface-active agents and consequently do not present an appropriate comparison between their different types and structures. In the present paper, the interactions between selected cationic, anionic, and nonionic surfactants, namely hexadecylpyridinium chloride (CPC), hexadecyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), polyethylene glycol sorbitan monolaurate, monopalmitate, and monooleate (TWEEN 20, TWEEN 40, and TWEEN 80, respectively) with bovine serum albumin (BSA) were studied qualitatively and quantitatively in an aqueous solution (10 mM cacodylate buffer; pH 5.0 and 7.0) by steady-state fluorescence spectroscopy supported by UV spectrophotometry and CD spectroscopy. Since in the case of all studied systems, the fluorescence intensity of BSA decreased regularly and significantly under the action of the surfactants added, the fluorescence quenching mechanism was analyzed thoroughly with the use of the Stern–Volmer equation (and its modification) and attributed to the formation of BSA–surfactant complexes. The binding efficiency and mode of interactions were evaluated among others by the determination, comparison, and discussion of the values of binding (association) constants of the newly formed complexes and the corresponding thermodynamic parameters (ΔG, ΔH, ΔS). Furthermore, the influence of the structure of the chosen surfactants (charge of hydrophilic head and length of hydrophobic chain) as well as different environmental conditions (pH, temperature) on the binding mode and the strength of the interaction has been investigated and elucidated.
Collapse
|
16
|
Maity R, Sepay N, Pramanik U, Jana K, Mukherjee S, Maity S, Mal D, Maity T, Samanta BC. Exploring the Noncovalent Interactions of the Dinuclear Cu(II) Schiff Base Complex with Bovine Serum Albumin and Cell Viability against the SiHa Cancer Cell Line. J Phys Chem B 2021; 125:11364-11373. [PMID: 34613719 DOI: 10.1021/acs.jpcb.1c05794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, a dinuclear bis(μ-acetate) dicopper(II) complex [Cu2L2(μ1.1-CH3COO-)2] has been synthesized from a tridentate NNO Schiff Base ligand L (L = 2,4-dibromo-6-((3-(methylamino)propylimino)methyl)phenol) and characterized by elemental, ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), 1H NMR, and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic studies. The single-crystal X-ray structure, different noncovalent interactions, Hirshfeld surface analysis, and density functional theory (DFT) studies of the dinuclear complex were determined by crystallographic computational studies. The structural study exposed that the complex consists of the penta-coordinated double μ1.1-acetato-bridged dinuclear units of Cu(II), and it is a centrosymmetric dimer in which the center of inversion lies at the midpoint of two Cu(II) ions. Hirshfeld surface and DFT studies pointed out the probable potentiality of the crystal in prospective binding with the protein. This was experimentally verified by carrying out the binding interaction studies against bovine serum albumin (BSA) protein using various spectroscopic methods. It was observed that the copper(II) complex could strongly bind to BSA and could quench the intrinsic fluorescence of BSA. Further, the studied complex was appraised for cell viability studies against SiHa cancer cells. It is observed that cell viability increases with time, demonstrating the biocompatible nature of the complex.
Collapse
Affiliation(s)
- Ribhu Maity
- Department of Chemistry, Mugberia Gangadhar Mahavidyalaya, Bhupatinagar, Purba Medinipur 721425, West Bengal, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata700017, West Bengal, India
| | - Ushasi Pramanik
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Kalyanmoy Jana
- Department of Chemistry, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Saptarshi Mukherjee
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Swapan Maity
- School of Materials Science and Technology (SMST), Indian Institute of Technology (IIT), BHU, Varanasi 221005, India
| | - Dasarath Mal
- Department of Chemistry, Vijaygarh Jyotish Ray College, Jadavpur, Kolkata 700032, West Bengal, India
| | - Tithi Maity
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur, Contai 721401, West Bengal, India
| | - Bidhan Chandra Samanta
- Department of Chemistry, Mugberia Gangadhar Mahavidyalaya, Bhupatinagar, Purba Medinipur 721425, West Bengal, India
| |
Collapse
|
17
|
Chelerythrine Chloride: A Potential Rumen Microbial Urease Inhibitor Screened by Targeting UreG. Int J Mol Sci 2021; 22:ijms22158212. [PMID: 34360977 PMCID: PMC8347364 DOI: 10.3390/ijms22158212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Inhibition of ruminal microbial urease is of particular interest due to its crucial role in regulating urea-N utilization efficiency and nitrogen pollution in the livestock industry. Acetohydroxamic acid (AHA) is currently the only commercially available urease inhibitor, but it has adverse side effects. The urease accessory protein UreG, which facilitates the functional incorporation of the urease nickel metallocentre, has been proposed in developing urease inhibitor through disrupting urease maturation. The objective of this study was to screen natural compounds as potential urease inhibitors by targeting UreG in a predominant ruminal microbial urease. In silico screening and in vitro tests for potential inhibitors were performed using molecular docking and an assay for the GTPase activity of UreG. Chelerythrine chloride was selected as a potential urease inhibitor of UreG with an inhibition concentration IC50 value of 18.13 μM. It exhibited mixed inhibition, with the Ki value being 26.28 μM. We further explored its inhibition mechanism using isothermal titration calorimetry (ITC) and circular dichroism (CD) spectroscopy, and we found that chelerythrine chloride inhibited the binding of nickel to UreG and induced changes in the secondary structure, especially the α-helix and β-sheet of UreG. Chelerythrine chloride formed a pi-anion interaction with the Asp41 residue of UreG, which is an important residue in initiating the conformational changes of UreG. In conclusion, chelerythrine chloride exhibited a potential inhibitory effect on urease, which provided new evidence for strategies to develop novel urease inhibitors targeting UreG to reduce nitrogen excretion from ruminants.
Collapse
|
18
|
Allakhverdiev ES, Maksimov GV, Rodnenkov OV, Luneva OG, Tsoraev GV, Ivanov AD, Yusipovich AI, Martynyuk TV. Effect of Dinitrosyl Iron Complex on Albumin Conformation. BIOCHEMISTRY (MOSCOW) 2021; 86:533-539. [PMID: 33993863 DOI: 10.1134/s0006297921050023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Binding of dinitrosyl iron complex (DNIC) to albumin was studied using time-resolved fluorescence (TRF) and electron spin resonance (ESR) spectroscopy. It was found that the fluorescence lifetime of bovine serum albumin (BSA) and human serum albumin (HSA) decreases with binding and depends on DNIC concentration. The observed biexponential pattern of the BSA tryptophan (Trp) fluorescence decay is explained by the presence of two tryptophan residues in the protein molecule. We believe that DNIC forms stable complexes with the cysteine (Cys34) residue in the domain I of albumin. It was shown that the lifetime of albumin tryptophan fluorescence decreased during co-incubation of BSA with DNICs and glutathione. Effects of DNIC on the binding of specific spin-labeled fatty acids with albumin in human blood plasma were studied in vitro. The presence of DNIC in blood plasma does not change conformation of albumin domains II and III. We suggest that the most possible interaction between DNICs and albumin is the formation of a complex; and nitrosylation of the cysteine residue in the albumin domain I occurs without the changes in albumin conformation.
Collapse
Affiliation(s)
- Elvin S Allakhverdiev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Russian National Medical Research Center of Cardiology, Moscow, 121552, Russia
| | - Georgy V Maksimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Federal State Autonomous Educational Institution of Higher Education "National Research Technological University "MISIS", Moscow, 119049, Russia
| | - Oleg V Rodnenkov
- Russian National Medical Research Center of Cardiology, Moscow, 121552, Russia
| | - Oksana G Luneva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Georgy V Tsoraev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Aleksey D Ivanov
- Federal State Autonomous Educational Institution of Higher Education "National Research Technological University "MISIS", Moscow, 119049, Russia
| | | | - Tamila V Martynyuk
- Russian National Medical Research Center of Cardiology, Moscow, 121552, Russia
| |
Collapse
|
19
|
Kumar Singh Tanwar L, Kumar Banjare M, Sharma S, Ghosh KK. Physicochemical studies on the micellization of anionic surfactants in the presence of long alkyl chain ionic liquid. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Kumar Singh Tanwar L, Kumar Banjare M, Sharma S, Ghosh KK. Physicochemical studies on the micellization of anionic surfactants in the presence of long alkyl chain ionic liquid. Chem Phys Lett 2021; 769:138399. [DOI: https:/doi.org/10.1016/j.cplett.2021.138399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
21
|
Akhuli A, Chakraborty D, Agrawal AK, Sarkar M. Probing the Interaction of Bovine Serum Albumin with Copper Nanoclusters: Realization of Binding Pathway Different from Protein Corona. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1823-1837. [PMID: 33502208 DOI: 10.1021/acs.langmuir.0c03176] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With an aim to understand the interaction mechanism of bovine serum albumin (BSA) with copper nanoclusters (CuNCs), three different types CuNCs having chemically different surface ligands, namely, tannic acid (TA), chitosan, and cysteine (Cys), have been fabricated, and investigations are carried out in the absence and presence of protein (BSA) at ensemble-averaged and single-molecule levels. The CuNCs, capped with different surface ligands, are consciously chosen so that the role of surface ligands in the overall protein-NCs interactions is clearly understood, but, more importantly, to find whether these CuNCs can interact with protein in a new pathway without forming the "protein corona", which otherwise has been observed in relatively larger nanoparticles when they are exposed to biological fluids. Analysis of the data obtained from fluorescence, ζ-potential, and ITC measurements has clearly indicated that the BSA protein in the presence of CuNCs does not attain the binding stoichiometry (BSA/CuNCs > 1) that is required for the formation of "protein corona". This conclusion is further substantiated by the outcome of the fluorescence correlation spectroscopy (FCS) study. Further analysis of data and thermodynamic calculations have revealed that the surface ligands of the CuNCs play an important role in the protein-NCs binding events, and they can alter the mode and thermodynamics of the process. Specifically, the data have demonstrated that the binding of BSA with TA-CuNCs and Chitosan-CuNCs follows two types of binding modes; however, the same with Cys-CuNCs goes through only one type of binding mode. Circular dichroism (CD) measurements have indicated that the basic structure of BSA remains almost unaltered in the presence of CuNCs. The outcome of the present study is expected to encourage and enable better application of NCs in biological applications.
Collapse
Affiliation(s)
- Amit Akhuli
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhimpur-Padanpur, Jatni, Khorda, Bhubaneswar 752050, Odisha, India
| | - Debabrata Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhimpur-Padanpur, Jatni, Khorda, Bhubaneswar 752050, Odisha, India
| | - Aman Kumar Agrawal
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhimpur-Padanpur, Jatni, Khorda, Bhubaneswar 752050, Odisha, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhimpur-Padanpur, Jatni, Khorda, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
22
|
Mathew M, T V D, Aravindakumar CT, Aravind UK. Potential involvement of environmental triggers in protein aggregation with mercuric chloride as a model. Int J Biol Macromol 2021; 174:153-161. [PMID: 33484803 DOI: 10.1016/j.ijbiomac.2021.01.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Heavy metal based toxicity has a direct relation with the perturbation of protein structure. We have investigated the progressive unfolding of ovalbumin, in the presence of increasing concentration mercury (0-6.25 μM) using different spectroscopic techniques. Formation of amorphous aggregate has been observed at the physiological pH. Initial addition of HgCl2 resulted in the association of monomers to oligomers that proceeded to non-fibrillar aggregates on further addition. The sigmoidal curve obtained from the Stern-Volmer plot clearly divided into three stage transition. A strong lag phase is observed indicating the time dependence for the association of competent monomers. The second stage was resolved into non-cooperative binding. These results match very well with the data from atomic force microscopy and the free energy change observed in the regions. Raman spectroscopic studies indicated toxic antiparallel β-sheets structure. Time dependent atomic force microscopy study revealed the off-pathway nature of amorphous aggregates. At molten globular state, similar quenching behaviour is observed. The atomic force microscopy images clearly indicate at pH 2.2 the initiation of fibril formation occurs at lower concentration of HgCl2 itself. Our results revealed the conformation switch of ovalbumin upon the contact of an environmental toxin and its possible way of toxicity.
Collapse
Affiliation(s)
- Manjumol Mathew
- Advanced Centre of Environmental Studies and Sustainable Development, Mahatma Gandhi University, Kottayam 686 560, India
| | - Divyalakshmi T V
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686 560, India
| | | | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science and Technology, Kochi 682022, India.
| |
Collapse
|
23
|
9-N-substituted novel berberine derivative for selective and sensitive nanomolar level fluorometric detection of human hemoglobin: A synthesis, sensing and interaction study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Khatun R, Dolai M, Sasmal M, Sepay N, Ali M. Bovine serum albumin interactive one dimensional hexanuclear manganese( iii) complex: synthesis, structure, binding and molecular docking studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01492g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A hexanuclear Mn(III) complex was synthesized and structiurally characterized which exhibits fluorescence quenching of BSA probably through site selective binding at the mouth of site I in subdomain IIA.
Collapse
Affiliation(s)
- Rousunara Khatun
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata-700032
- India
| | - Malay Dolai
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata-700032
- India
| | - Mihir Sasmal
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata-700032
- India
| | - Nayim Sepay
- Department of Chemistry
- Lady Brabourne College
- Kolkata 700 017
- India
| | - Mahammad Ali
- Department of Chemistry
- Inorganic Chemistry Section
- Jadavpur University
- Kolkata-700032
- India
| |
Collapse
|
25
|
Unveiling the thermodynamic signature underlying the interaction of human serum albumin with sub-micellar concentrations of a surface active ionic liquid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Samant V, Dey A, Naresh Patwari G. Probing the interaction between human serum albumin and the sodium dodecyl sulphate with fluorescence correlation spectroscopy. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Han W, Hou M, He F, Zhang W, Shi B. Ecotoxicity and interacting mechanism of anionic surfactant sodium dodecyl sulfate (SDS) and its mixtures with nonionic surfactant fatty alcohol-polyoxyethlene ether (AEO). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105467. [PMID: 32208300 DOI: 10.1016/j.aquatox.2020.105467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/20/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
This paper reports the proportion-dependent toxicity of binary surfactant mixtures containing anionic sodium dodecyl sulfate (SDS) and nonionic fatty alcohol-polyoxyethlene ether (AEO) toward Photobacterium phosphoreum. The crucial role of toxicity interactions was elucidated by spectroscopic probing the refolding of the unfolded bovine serum albumin (BSA) induced by SDS and theoretical calculating the interaction parameter of mixed surfactants based on Rubingh's model from the critical micelle concentrations. The SDS/AEO mixtures can be divided into two groups based on the toxicity response to the proportion of AEO in the mixtures: Group I contained low mass proportions of AEO, that is, SDS:AEO = 4:1, 3:1; Group II featured high AEO proportions, that is, SDS:AEO = 3:2, 1:1, 2:3, 1:4. The toxicity of SDS/AEO mixtures decreased with the enhanced proportion of AEO in Group I and then fluctuated slightly when the AEO proportion increased to that of Group II. The mixture with the mass ratio of 1:1 showed a slightly higher toxicity than the others in Group II. Scanning electron microscopy (SEM) images illustrated that the addition of AEO hindered the action of SDS against the cell membrane. Fluorescence measurement indicated that AEO could extract SDS molecules embedded in the BSA matrix, except for those bound to the highly active sites of BSA, and refold stepwise the unfolded protein. The results were in excellent analogy to the proportion-dependent toxicity of SDS/AEO mixture, indicating the formation of mixed micelles playing a key role. The interaction parameter further revealed that antagonism led to the mixture with equal mass ratio (1:1) showing higher toxicity than other mass ratios in Group II. These results can be useful for compounding SDS/AEO mixtures in application efficiently and eco-friendly.
Collapse
Affiliation(s)
- Weimo Han
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Mengchun Hou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Faming He
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wenhua Zhang
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Bi Shi
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
28
|
Srivastava R, Alam MS. Influence of micelles on protein's denaturation. Int J Biol Macromol 2020; 145:252-261. [PMID: 31874269 DOI: 10.1016/j.ijbiomac.2019.12.154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/05/2019] [Accepted: 12/17/2019] [Indexed: 11/15/2022]
Abstract
To evaluate the role of micelles for protein-surfactant interaction, we have studied the binding modes of serum albumin proteins (human (HSA) and rabbit (RSA)) with anionic-surfactant, sodium dodecyl sulfate (SDS) by using UV-visible, fluorescence, circular dichroism, fluorescence lifetime, atomic force microscopy (AFM) techniques. The study performed with three different pHs (below (4.0), at (4.7), and above (7.0) isoelectric point). Hydrocarbon chain of the surfactant, dominant role of hydrophobic forces and electrostatic interactions helped in polar interaction on protein on binding surfaces. The change above and below the critical micelle concentration (CMC) in fluorescence spectra was due to polarity of the microenvironment. The CD spectra different binding aspects as below CMC and above CMC, explain about folding and unfolding in secondary structure. Surfactant's binding induces fluctuations in the microenvironment of aromatic amino acid's residues of both proteins at different pHs. AFM images clarify the structural changes in both proteins (HSA & RSA). AFM images also indicate some different interesting conformational and structural changes in both proteins below/above the CMC of the surfactant. The molecular docking studies indicate the binding energy -4.8 kcal mol-1 and -4.7 kcal mol-1 for HSA-SDS and RSA-SDS, respectively. Structural changes can be seen above and below the CMC.
Collapse
Affiliation(s)
- Rachana Srivastava
- Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science &Technology Laboratory, Chennai 600020, India
| | - Md Sayem Alam
- Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science &Technology Laboratory, Chennai 600020, India; Chemical Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
29
|
Parveen M, Aslam A, Nami SAA, Ahmad M. Z-Acrylonitrile Derivatives: Improved Synthesis, X-ray Structure, and Interaction with Human Serum Albumin. Curr Org Synth 2020; 16:1149-1160. [PMID: 31984921 DOI: 10.2174/1570179416666191008085806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/22/2019] [Accepted: 08/05/2019] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVE In the synthesis of heterocyclic compounds, acrylonitrile derivatives are the most important and appropriate precursors. These compounds are the most important intermediates and subunits for the enhancement of molecules having pharmaceutical or biological interests. Nitrogen-containing compounds have received extensive consideration in the literature over the years. MATERIALS AND METHODS A facile, economic and efficient method has been developed for the synthesis of acrylonitrile derivatives using p-nitrophenylacetonitrile and aromatic/heterocyclic aldehydes in the presence of zinc chloride at room temperature. Spectroscopic data were obtained using the following instruments: Fourier transform infrared spectra (KBr discs, 4000-400 cm-1) by Shimadzu IR-408 Perkin-Elmer 1800 instrument; 1H NMR and 13C NMR spectra by Bruker Avance-II 400 MHz using DMSO-d6 as a solvent containing TMS as the internal standard. RESULTS To continue our ongoing studies to synthesize heterocyclic and pharmaceutical compounds by mild, facile and efficient protocols, herein we wish to report our experimental results on the synthesis of acrylonitrile derivatives, using various aromatic/heterocyclic aldehydes and p-nitrophenylacetonitrile in the presence of zinc chloride in ethanolic media at room temperature. Some of the new compounds were tested for their human serum albumin activity (HSA) while a study of interaction with HSA protein was performed for compounds 3a and 3b. The results show that compound 3b binds tightly to HSA as compared to compound 3a. CONCLUSION It can be concluded that acrylonitrile derivatives can be synthesized by an efficient method via the reaction of p-nitrophenylacetonitrile with aromatic/heterocyclic aldehydes by the use of zinc chloride as an effective solid catalyst. The remarkable features of this procedure include excellent yields (90-95%), short reaction period (30 min.), moderate reaction environment, easy workup procedure and managing of the catalyst. This method may find a wide significance in organic synthesis for the synthesis of the Z-acrylonitrile.
Collapse
Affiliation(s)
- Mehtab Parveen
- Division of Organic Synthesis, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Afroz Aslam
- Division of Organic Synthesis, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Shahab A A Nami
- Department of Kulliyat, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh 202002, India
| | - Musheer Ahmad
- Department of Applied Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
30
|
Ishtikhar M, Siddiqui Z, Husain FM, Khan RA, Hassan I. Comparative refolding of guanidinium hydrochloride denatured bovine serum albumin assisted by cationic and anionic surfactants via artificial chaperone protocol: Biophysical insight. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117510. [PMID: 31520999 DOI: 10.1016/j.saa.2019.117510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we report the cooperative refolding/renaturation behaviour of guanidinium hydrochloride (GdnHCl) denatured bovine serum albumin (BSA) in the presence of cationic surfactant cetyltrimethylammonium bromide (CTAB), anionic surfactant sodium dodecyl sulphate (SDS) and their catanionic mixture in the solution of 60 mM sodium phosphate buffer of physiological pH 7.4, using artificial chaperone-assisted two-step method. Here, we have employed biophysical techniques to characterize the refolding mechanism of denatured BSA after 200 times of dilution in the presence of cationic, anionic surfactants and their catanionic mixture, separately. We have found that minimum refolding of diluted BSA in the presence of 1:1 rational mixture of CTAB and SDS (CTAB/SDS = 50/50), it may be due to the micelles formation which is responsible for the unordered microstructure aggregate formation. Other mixtures (CTAB/SDS = 20/80 and 80/20) slightly played an effective role during refolding process in the presence of methyl-β-cyclodextrin. On other hand, CTAB and SDS are more effective and reflect a good renaturation tendency of denatured BSA solution separately and in existence of methyl-β-cyclodextrin as compare to their mixture compositions. But overall, CTAB has the better renaturation tendency as compare to SDS in the existence of methyl-β-cyclodextrin. These results ascribed the presence of charge head group and length of hydrophobic tail of CTAB surfactant that plays an important task during electrostatic and hydrophobic interactions at pH 7.4 at which BSA carries negative charge on their surface. These biophysical parameters suggest that, CTAB surfactant assisted artificial chaperone protocol may be utilized in the protein renaturation/refolding studies, which may address the associated problems of biotechnological industries for the development of efficient and inexpensive folding aides, which may also be used to produced genetically engineered cells related diseases, resulting from protein misfolding/aggregation.
Collapse
Affiliation(s)
- Mohd Ishtikhar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Zeba Siddiqui
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
31
|
Gupta S, Tiwari N, Verma J, Waseem M, Subbarao N, Munde M. Estimation of a stronger heparin binding locus in fibronectin domain III14using thermodynamics and molecular dynamics. RSC Adv 2020; 10:20288-20301. [PMID: 35520402 PMCID: PMC9054198 DOI: 10.1039/d0ra01773f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 01/04/2023] Open
Abstract
The HEP II (Heparin-binding site II) region of fibronectin (FN) containing domain III14 plays a crucial role in cell adhesion and migration through heparin-binding on the cell surface. There are two such fibronectin heparin interacting peptide (FHIP I and FHIP II) sequences present in HEP II. However, the molecular principles by which these sites orchestrate heparin-binding processes are poorly understood. Such knowledge would have great implications in the therapeutic targeting of FN. With this aim, we have explored the binding studies of FHIP I and FHIP II with heparin using various biophysical methods. A fluorescence melting study specifically revealed the preference of heparin for domain III in FN, indicating the key contribution of FHIP I and FHIP II in heparin binding. In isothermal titration calorimetry (ITC), the higher binding affinity observed for FHIP II (∼107 mol−1) compared to FHIP I (∼106 mol−1) is expected due to the presence of a superior cluster of Arg and Lys residues in FHIP II, which can facilitate specific H-bonding interactions with heparin. Based on heat capacity changes, the key role of H-bonding, electrostatic and hydrophobic interactions was demonstrated in binding. Finally, the molecular docking and MD simulation results reinforced that the interaction of heparin (dodecasaccharide) is stronger and stable with the FHIP II peptide. The results described here suggest that these peptides provide all the structural and thermodynamic elements necessary for heparin-binding of HEP II of FN. Subsequently, it can be concluded that FHIP II could be a better location for therapeutic intervention in cell adhesion activity by FN. Binding Thermodynamics of FHIP I and FHIP II with heparin.![]()
Collapse
Affiliation(s)
- Sakshi Gupta
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Neha Tiwari
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Jyoti Verma
- School of Computational and Integrative Sciences
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Mohd Waseem
- School of Computational and Integrative Sciences
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Manoj Munde
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi-110067
- India
| |
Collapse
|
32
|
Comparison of the Quenching Effects of Two Main Components of Ziziphi Spinosae Semen on Serum Albumin Fluorescence. J Fluoresc 2019; 29:1113-1123. [PMID: 31396829 DOI: 10.1007/s10895-019-02422-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Swertisin (6-glucosyl flavonoid) and spinosin (2″-β-O-glucopyranosyl swertisin) are two main components from Ziziphi Spinosae Semen, with anti-anxiety and hypnosis effects. The paper aims to compare the differences between the two compounds binding with serum albumins (BSA and HSA). Swertisin and spinosin statically quench intrinsic fluorescence of serum proteins by binding to proteins to form complexes. The fluorescence quenching rates of BSA induced by swertisin or spinosin are faster than those of HSA resulted by swertisin or spinosin, respectively. Each serum protein has only one binding site respectively accessible to the two compounds. Hydrophobic force and hydrogen bond play the important roles during the biding process of swertisin with proteins, but van der Waals force and hydrogen bond are major driving forces for spinosin binding to proteins. Synchronous fluorescence data show that spinosin binds to BSA and HSA and thus changes Tyr and Trp residue microenvironments, and has a greater effect on the latter. Compared with swertisin, spinosin has a stronger effect on the α-helix of proteins. But the distance between swertisin and proteins is slightly closer than spinosin. These findings will contribute to further understand the reaction of Ziziphi Spinosae Semen in the liver phase I oxidation, intestinal hydrolysis and deparaffin metabolism.
Collapse
|
33
|
Berberine derivatives as heteroatom induced hydrophobic sensor: An analytical approach for the selective and sensitive fluorometric detection and discrimination of serum albumins. Anal Chim Acta 2019; 1065:124-133. [DOI: 10.1016/j.aca.2019.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022]
|
34
|
Modi R, Khamari L, Nandy A, Mukherjee S. Spectroscopic probing of the refolding of an unfolded protein through the formation of mixed-micelles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:52-60. [PMID: 30878845 DOI: 10.1016/j.saa.2019.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/17/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
We report the unfolding of the globular protein, Bovine Serum Albumin (BSA) induced by anionic surfactant sodium dodecyl sulfate (SDS) and subsequently monitored the refolding of this denatured BSA using triblock copolymers F127 and P123 through the formation of mixed micelles. Our study exclusively represents the reversibility of this unfolding-refolding process using pluronic triblock copolymers F127/P123 as refolding agents. We confirm the recovery of its native state from its denatured state estimating the α-helical structure of the denatured protein from the CD data which support our steady state fluorescence spectra monitoring the fluorescence of the intrinsic Trp molecules present in BSA. Time resolved study also corroborates the stepwise recovery of the denatured BSA as well as the reversibility of the processes. Isothermal Titration Calorimetry (ITC) data explain the negligible interactions between the triblock copolymers and the native state of BSA. The high binding constant of SDS and triblock copolymers probably play the crucial role in the stepwise recovery of the unfolded BSA followed by reversibility of the refolding processes through the formation of the mixed micelles. The mechanism of mixed-micelle formation has been substantiated by the fact that the Guanidine Hydrochloride denatured BSA does not react with F127/P123 whereby no recovery of the protein was observed.
Collapse
Affiliation(s)
- Riya Modi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Atanu Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India.
| |
Collapse
|
35
|
Li Y, Guo Q, Yan Y, Chen T, Du C, Du H. Different effects of Forsythia suspensa metabolites on bovine serum albumin (BSA). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:309-319. [PMID: 30798212 DOI: 10.1016/j.saa.2019.02.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/21/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Forsythia suspensa metabolites have many bioactivities, such as selective immuno suppression, antioxidation, anti-hepatic injury, etc. In the present study, the interactions of the three metabolites with BSA have been investigated in a buffer (pH 7.40) using multi-spectroscopic techniques in combination with molecular docking methods. Two isoformers, forsythoside A and forsythoside I can statically quench BSA intrinsic fluorescence by forming the complexes with BSA at stoichiometric ratio of 1:1 that is again proved by UV-visible absorption. During the binding, the proportion of α-helix in BSA increases, the microenvironment around Tryptophan 213 changes and FRET is one of the major factors to quench fluorescence. Forsythoside E forms BSA-forsythoside E complex (1:1) and thus enhances the intrinsic fluorescence of BSA. During the process, forsythoside E affects not only Tryptophan residues but also Tyrosine residues so that the conformation of BSA is consequently changed. All above binding processes are spontaneous mainly through hydrogen bonding and the hydrophobic force interaction, which is supported by docking analysis and thermodynamic parameters. In addition, three compounds do not induce BSA aggregation. These findings are beneficial to understand the detailed information of the interactions of Forsythia suspensa metabolites with BSA.
Collapse
Affiliation(s)
- Yu Li
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Qin Guo
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yan Yan
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Tinggui Chen
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Chenhui Du
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan 030619, China.
| | - Huizhi Du
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
36
|
Islam MM, Barik S, Sarkar M. Probing the Interactions of 1-Alkyl-3-methylimidazolium Tetrafluoroborate (Alkyl = Octyl, Hexyl, Butyl, and Ethyl) Ionic Liquids with Bovine Serum Albumin: An Alkyl Chain Length-Dependent Study. J Phys Chem B 2019; 123:1512-1526. [DOI: 10.1021/acs.jpcb.8b10795] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mullah Muhaiminul Islam
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Bhimpur-Padanpur,
Jatni, Khurda 752050, Odisha, India
| | - Sahadev Barik
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Bhimpur-Padanpur,
Jatni, Khurda 752050, Odisha, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, HBNI, Bhimpur-Padanpur,
Jatni, Khurda 752050, Odisha, India
| |
Collapse
|
37
|
Maurya N, Maurya JK, Singh UK, Dohare R, Zafaryab M, Moshahid Alam Rizvi M, Kumari M, Patel R. In Vitro Cytotoxicity and Interaction of Noscapine with Human Serum Albumin: Effect on Structure and Esterase Activity of HSA. Mol Pharm 2019; 16:952-966. [DOI: 10.1021/acs.molpharmaceut.8b00864] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Jitendra Kumar Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Upendra Kumar Singh
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Ravins Dohare
- Nonlinear Dynamic Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Md Zafaryab
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - M. Moshahid Alam Rizvi
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Meena Kumari
- Biophysical Chemistry Laboratory, Department of Chemistry, IIT Delhi, Hauzkhas, New Delhi 110016, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
38
|
Arumugam V, Rajamanikandan R, Ilanchelian M, Moodley KG, Redhi GG. Elucidation of interactions of BSA with [EPMpyr]+[Cl]− using spectroscopic techniques with reference to theoretical thermodynamic and molecular docking studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
Ahmad Khan R, Al-Lohedan HA, Abul Farah M, Sajid Ali M, Alsalme A, Mashay Al-Anazi K, Tabassum S. Evaluation of (ɳ 6- p-cymene) ruthenium diclofenac complex as anticancer chemotherapeutic agent: interaction with biomolecules, cytotoxicity assays. J Biomol Struct Dyn 2018; 37:3905-3913. [PMID: 30257617 DOI: 10.1080/07391102.2018.1528180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The designing of metal-based anticancer therapeutic agents can be optimized in a better and rapid way if the ligands utilized have standalone properties. Therefore, even when the organometallic/coordination complex (i.e., metallodrug) gets dissociated in extreme conditions, the ligand can endorse its biological properties. Herein, we have synthesized and characterized ɳ6-p-cymene ruthenium diclofenac complex. Furthermore, the ruthenium complex interactions with human serum albumin (HSA) and ct-DNA have been studied using various spectroscopic studies viz., UV, fluorescence, and circular dichroism and exhibited a significant binding propensity. Furthermore, in vitro cytotoxicity assays were carried out against human breast cancer "MCF-7" cell line. The ɳ6-p-cymene ruthenium diclofenac complex registered significant cytotoxicity with an IC50 value of ∼25.0 µM which is comparable to the standard drugs. The ɳ6-p-cymene ruthenium diclofenac complex was able to decrease the MCF-7 cell proliferation and induced significant levels of apoptosis with relatively low toxicity.
Collapse
Affiliation(s)
- Rais Ahmad Khan
- a Department of Chemistry, College of Sciences, King Saud University , Riyadh , KSA
| | | | - Mohammad Abul Farah
- c Department of Zoology, College of Sciences, King Saud University , Riyadh , KSA
| | - Mohd Sajid Ali
- b Surfactant Research Chair , King Saud University , Riyadh , KSA
| | - Ali Alsalme
- a Department of Chemistry, College of Sciences, King Saud University , Riyadh , KSA
| | | | - Sartaj Tabassum
- b Surfactant Research Chair , King Saud University , Riyadh , KSA
| |
Collapse
|
40
|
Philip S, Thomas PS, Mohanan K. Synthesis, characterization, fluorescence imaging, and cytotoxicity studies of a uracil-based azo derivative and its metal complexes. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Surya Philip
- Department of Chemistry; University of Kerala; Trivandrum India
| | | | | |
Collapse
|
41
|
Ali MS, Al-Lohedan HA. Spectroscopic and computational evaluation on the binding of safranal with human serum albumin: Role of inner filter effect in fluorescence spectral correction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:434-442. [PMID: 29894957 DOI: 10.1016/j.saa.2018.05.102] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 05/21/2023]
Abstract
For determining the pharmacological properties of medicinal compounds, their binding with serum albumins is very crucial. Herein, we have selected safranal, a major constituent of saffron which is known to retain a number of medicinal properties including antioxidant, anti-inflammatory, tumoricidal, anti-genotoxic, and anti-aging activities; and studied its mechanism of binding with human serum albumin at physiological pH using various spectroscopic methods along with computational approach using molecular docking. A change in the difference UV-visible spectrum of HSA in presence of safranal was found which is due to the complex formation. Owing to the strong absorption of safranal at the fluorescence excitation wavelength of HSA (295 nm) and in the whole range of emission, the fluorescence spectra of HSA in presence of safranal were corrected for the inner filter effect. After the correction the spectra were free from the safranal absorption effect and it was found that addition of safranal causes the quenching of HSA fluorescence and a blue shift of the emission maximum which are attributed to the binding of safranal to the protein and dominance of hydrophobic forces in the interaction, respectively. It was evident from the comparison of observed and corrected fluorescence spectra that before correction there was a large red shift while after correction appearance of blue shift was occurred. The involvement of hydrophobic interaction was also found from the extrinsic fluorescence measurements using ANS dye as well as from the analyzed thermodynamic parameters. Safranal was found to partially induce the secondary structure of HSA as construed from the CD measurements. The size of the HSA was also decreased as evident from the DLS and RLS measurements. Both site marker studies and molecular docking simulations suggested that the primary binding site of the safranal in the HSA is Sudlow's site 1 located in the subdomain IIA. Hydrophobic interaction provides the major contribution to the binding forces along with a little amount of hydrogen bonding.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
42
|
Save SN, Choudhary S. Elucidation of energetics and mode of recognition of green tea polyphenols by human serum albumin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Khan Z, Al-Thabaiti SA. Micellization and aggregation behavior of crocin with bovine serum albumin: A biophysical study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Bhat IA, Roy B, Kabir-ud-Din. Synthesis and biophysical analysis of a novel gemini surfactant with lysozyme: Industrial perspective. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Sasmal M, Bhowmick R, Musha Islam AS, Bhuiya S, Das S, Ali M. Domain-Specific Association of a Phenanthrene-Pyrene-Based Synthetic Fluorescent Probe with Bovine Serum Albumin: Spectroscopic and Molecular Docking Analysis. ACS OMEGA 2018; 3:6293-6304. [PMID: 31458811 PMCID: PMC6644396 DOI: 10.1021/acsomega.8b00186] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/01/2018] [Indexed: 05/20/2023]
Abstract
In this report, the interaction between a phenanthrene-pyrene-based fluorescent probe (PPI) and bovine serum albumin (BSA), a transport protein, has been explored by steady-state emission spectroscopy, fluorescence anisotropy, far-ultraviolet circular dichroism (CD), time-resolved spectral measurements, and molecular docking simulation study. The blue shift along with emission enhancement indicates the interaction between PPI and BSA. The binding of the probe causes quenching of BSA fluorescence through both static and dynamic quenching mechanisms, revealing a 1:1 interaction, as delineated from Benesi-Hildebrand plot, with a binding constant of ∼105 M-1, which is in excellent agreement with the binding constant extracted from fluorescence anisotropy measurements. The thermodynamic parameters, ΔH°, ΔS°, and ΔG°, as determined from van't Hoff relationship indicate the predominance of van der Waals/extensive hydrogen-bonding interactions for the binding phenomenon. The molecular docking and site-selective binding studies reveal the predominant binding of PPI in subdomain IIA of BSA. From the fluorescence resonance energy transfer study, the average distance between tryptophan 213 of the BSA donor and the PPI acceptor is found to be 3.04 nm. CD study demonstrates the reduction of α-helical content of BSA protein on binding with PPI, clearly indicating the change of conformation of BSA.
Collapse
|
46
|
A Diversified Spectrometric and Molecular Docking Technique to Biophysical Study of Interaction between Bovine Serum Albumin and Sodium Salt of Risedronic Acid, a Bisphosphonate for Skeletal Disorders. Bioinorg Chem Appl 2018; 2018:6954951. [PMID: 30050563 PMCID: PMC6046188 DOI: 10.1155/2018/6954951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
The binding interaction between bovine serum albumin (BSA) and sodium salt of risedronic acid (RSN) was studied by using the FT-IR (Fourier transform infrared), UV-Vis (ultraviolet–visible), fluorescence (emission and synchronous), CD (circular dichroism) spectrometric, and computational (molecular docking) techniques at 289, 297, and 305 K temperatures with physiological buffer of pH 7.40. The conformational and secondary structural changes observed for BSA from CD spectra and by curve fitting procedure were applied to Fourier self-deconvolution in FT-IR spectra. The formation of a BSA-RSN complex was confirmed from UV-Vis spectroscopy. The static type of quenching shown for RSN to BSA was verified from Stern–Volmer and modified Stern–Volmer equations. The binding constant of order 105 was obtained to be confirming that there exists a strong binding interaction between BSA and RSN. Synchronous fluorescence shows that the microenvironment of tryptophan was altered, not tyrosine of BSA; in addition to this, the distance between tryptophan of BSA and RSN was found out from Forster's theory of nonradiation energy transfer. The interaction between BSA and RSN mainly occurred as a result of hydrogen bonds and van der Waals forces, the process is exothermic and spontaneous, and it was achieved through van 't Hoff equation. This interaction was affected by the presence of biologically active Fe2+, Ni2+, Ca2+, Mg2+, and Cd2+ ions and was also studied. The subdomain IIIA of BSA involved with RSN interaction was authenticated from molecular docking analysis.
Collapse
|
47
|
Analysis of β-tubulin-carbendazim interaction reveals that binding site for MBC fungicides does not include residues involved in fungicide resistance. Sci Rep 2018; 8:7161. [PMID: 29740047 PMCID: PMC5940828 DOI: 10.1038/s41598-018-25336-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/20/2018] [Indexed: 01/06/2023] Open
Abstract
Methyl benzimidazole carbamate (MBC) fungicides are fungicidal compounds that exert their biological activities by preventing cell division through the inhibition of tubulin polymerization, which is the major component of microtubules. Several mutations in the β-tubulin gene contribute to MBC resistance, the most common and significant of which occur at residues 198 and 200. Despite nearly 50 years of agricultural use, the binding site of MBCs and the precise mechanism by which those mutations affect fungicide efficacy have not been determined. The aim of this work was to clarify the mode of action and the mechanism of resistance to MBC fungicides in Podosphaera xanthii, the primary causal agent of cucurbit powdery mildew, using a combination of biochemical, biophysical and computational approaches. The results allow us to propose an MBC binding site in β-tubulin that lies close to the GTP binding site and does not include residue 198 involved in MBC resistance.
Collapse
|
48
|
Ali MS, Amina M, Al-Lohedan HA, Al Musayeib NM. Human serum albumin binding to the biologically active labdane diterpene “leoheterin”: Spectroscopic and in silico analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 182:9-17. [DOI: 10.1016/j.jphotobiol.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
|
49
|
Deshmukh AL, Chandra S, Singh DK, Siddiqi MI, Banerjee D. Identification of human flap endonuclease 1 (FEN1) inhibitors using a machine learning based consensus virtual screening. MOLECULAR BIOSYSTEMS 2018; 13:1630-1639. [PMID: 28685785 DOI: 10.1039/c7mb00118e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human Flap endonuclease1 (FEN1) is an enzyme that is indispensable for DNA replication and repair processes and inhibition of its Flap cleavage activity results in increased cellular sensitivity to DNA damaging agents (cisplatin, temozolomide, MMS, etc.), with the potential to improve cancer prognosis. Reports of the high expression levels of FEN1 in several cancer cells support the idea that FEN1 inhibitors may target cancer cells with minimum side effects to normal cells. In this study, we used large publicly available, high-throughput screening data of small molecule compounds targeted against FEN1. Two machine learning algorithms, Support Vector Machine (SVM) and Random Forest (RF), were utilized to generate four classification models from huge PubChem bioassay data containing probable FEN1 inhibitors and non-inhibitors. We also investigated the influence of randomly selected Zinc-database compounds as negative data on the outcome of classification modelling. The results show that the SVM model with inactive compounds was superior to RF with Matthews's correlation coefficient (MCC) of 0.67 for the test set. A Maybridge database containing approximately 53 000 compounds was screened and top ranking 5 compounds were selected for enzyme and cell-based in vitro screening. The compound JFD00950 was identified as a novel FEN1 inhibitor with in vitro inhibition of flap cleavage activity as well as cytotoxic activity against a colon cancer cell line, DLD-1.
Collapse
Affiliation(s)
- Amit Laxmikant Deshmukh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | - Sharat Chandra
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India. and AcSIR (Academy of Scientific and Innovative Research), India
| | - Deependra Kumar Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India. and AcSIR (Academy of Scientific and Innovative Research), India
| | - Dibyendu Banerjee
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India. and AcSIR (Academy of Scientific and Innovative Research), India
| |
Collapse
|
50
|
Ling I, Taha M, Al-Sharji NA, Abou-Zied OK. Selective binding of pyrene in subdomain IB of human serum albumin: Combining energy transfer spectroscopy and molecular modelling to understand protein binding flexibility. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 194:36-44. [PMID: 29316482 DOI: 10.1016/j.saa.2018.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/08/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
The ability of human serum albumin (HSA) to bind medium-sized hydrophobic molecules is important for the distribution, metabolism, and efficacy of many drugs. Herein, the interaction between pyrene, a hydrophobic fluorescent probe, and HSA was thoroughly investigated using steady-state and time-resolved fluorescence techniques, ligand docking, and molecular dynamics (MD) simulations. A slight quenching of the fluorescence signal from Trp214 (the sole tryptophan residue in the protein) in the presence of pyrene was used to determine the ligand binding site in the protein, using Förster's resonance energy transfer (FRET) theory. The estimated FRET apparent distance between pyrene and Trp214 was 27Å, which was closely reproduced by the docking analysis (29Å) and MD simulation (32Å). The highest affinity site for pyrene was found to be in subdomain IB from the docking results. The calculated equilibrium structure of the complex using MD simulation shows that the ligand is largely stabilized by hydrophobic interaction with Phe165, Phe127, and the nonpolar moieties of Tyr138 and Tyr161. The fluorescence vibronic peak ratio I1/I3 of bound pyrene inside HSA indicates the presence of polar effect in the local environment of pyrene which is less than that of free pyrene in buffer. This was clarified by the MD simulation results in which an average of 5.7 water molecules were found within 0.5nm of pyrene in the binding site. Comparing the fluorescence signals and lifetimes of pyrene inside HSA to that free in buffer, the high tendency of pyrene to form dimer was almost completely suppressed inside HSA, indicating a high selectivity of the binding pocket toward pyrene monomer. The current results emphasize the ability of HSA, as a major carrier of several drugs and ligands in blood, to bind hydrophobic molecules in cavities other than subdomain IIA which is known to bind most hydrophobic drugs. This ability stems from the nature of the amino acids forming the binding sites of the protein that can easily adapt their shape to accommodate a variety of molecular structures.
Collapse
Affiliation(s)
- Irene Ling
- School of Science, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Mohamed Taha
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt; Department of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123 Muscat, Oman
| | - Nada A Al-Sharji
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123 Muscat, Oman
| | - Osama K Abou-Zied
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123 Muscat, Oman.
| |
Collapse
|