1
|
Zimmer C, Brauer J, Ferenc D, Meyr J, Müller P, Räder HJ, Engels B, Opatz T, Schirmeister T. Substitution-Induced Mechanistic Switching in S NAr-Warheads for Cysteine Proteases. Molecules 2024; 29:2660. [PMID: 38893535 PMCID: PMC11173422 DOI: 10.3390/molecules29112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of this study was to investigate the transition from non-covalent reversible over covalent reversible to covalent irreversible inhibition of cysteine proteases by making delicate structural changes to the warhead scaffold. To this end, dipeptidic rhodesain inhibitors with different N-terminal electrophilic arenes as warheads relying on the SNAr mechanism were synthesized and investigated. Strong structure-activity relationships of the inhibition potency, the degree of covalency, and the reversibility of binding on the arene substitution pattern were found. The studies were complemented and substantiated by molecular docking and quantum-mechanical calculations of model systems. Furthermore, the improvement in the membrane permeability of peptide esters in comparison to their corresponding carboxylic acids was exemplified.
Collapse
Affiliation(s)
- Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany; (C.Z.); (P.M.)
| | - Jan Brauer
- Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany; (J.B.); (D.F.)
| | - Dorota Ferenc
- Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany; (J.B.); (D.F.)
| | - Jessica Meyr
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany; (J.M.); (B.E.)
| | - Patrick Müller
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany; (C.Z.); (P.M.)
| | - Hans-Joachim Räder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;
| | - Bernd Engels
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany; (J.M.); (B.E.)
| | - Till Opatz
- Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany; (J.B.); (D.F.)
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany; (C.Z.); (P.M.)
| |
Collapse
|
2
|
Sahin I, Ceylan Ç, Bayraktar O. Ruscogenin interacts with DPPC and DPPG model membranes and increases the membrane fluidity: FTIR and DSC studies. Arch Biochem Biophys 2023; 733:109481. [PMID: 36522815 DOI: 10.1016/j.abb.2022.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Ruscogenin, a kind of steroid saponin, has been shown to have significant anti-oxidant, anti-inflammatory, and anti-thrombotic characteristics. Furthermore, it has the potential to be employed as a medicinal medication to treat a variety of acute and chronic disorders. The interaction of a drug molecule with cell membranes can help to elucidate its system-wide protective and therapeutic effects, and it's also important for its pharmacological activity. The molecular mechanism by which ruscogenin affects membrane architecture is still a mystery. Ruscogenin's interaction with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) and anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) was studied utilizing two non-invasive approaches, including: Fourier Transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry. Ruscogenin caused considerable alterations in the phase transition profile, order, dynamics and hydration state of head groups and glycerol backbone of DPPC and DPPG MLVs at all concentrations. The DSC results indicated that the presence of ruscogenin decreased the main phase transition temperature (Tm) and enthalpy (ΔH) values of both membranes and increased half height width of the main transition (ΔT1/2). The FTIR results demonstrated that all concentrations (1, 3, 6, 9, 15, 24 and 30 mol percent) of ruscogenin disordered the DPPC MLVs both in the gel and liquid crystalline phases while it increased the order of DPPG MLVs in the liquid crystalline phase. Moreover, ruscogenin caused an increase in the dynamics of DPPC and DPPG MLVs in both phases. Additionally, it enhanced the hydration of the head groups of lipids and the surrounding water molecules implying ruscogenin to interact strongly with both zwitterionic and charged model membranes.
Collapse
Affiliation(s)
- Ipek Sahin
- Department of Physics, Faculty of Science, Ege University, 35100, Bornova, İzmir, Turkey.
| | - Çağatay Ceylan
- Department of Food Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Oguz Bayraktar
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, İzmir, Turkey
| |
Collapse
|
3
|
Insights into molecular mechanism of action of citrus flavonoids hesperidin and naringin on lipid bilayers using spectroscopic, calorimetric, microscopic and theoretical studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
5
|
Yang Y, Dong H, Zhou HX. Effects of Cholesterol on the Partitioning of a Drug Molecule in Lipid Bilayers. J Phys Chem B 2021; 125:5338-5345. [PMID: 33984232 DOI: 10.1021/acs.jpcb.1c02436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug molecules either bind to membrane-bound targets or permeate through cell membranes to reach intracellular targets, and hence, their membrane partition and permeation are of great importance. Here, we studied the effects of cholesterol on the partition of amantadine, an antiflu drug molecule, into 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayers using molecular dynamics simulations. The membrane partition of amantadine is sensitive to the cholesterol mole fraction (xchol). In the absence of cholesterol, amantadine is stably bound in membranes, but at xchol = 32%, it can escape to the aqueous phase, in agreement with recent experiments. The reduced membrane partition of amantadine at a high cholesterol content is mainly due to the perturbation of the bilayer structure and dynamics. Surrounding lipids stabilize amantadine by having their tails wrapped around the drug molecule, and this ability is compromised when cholesterol is present to increase the order in lipid tails. The atomic details on interactions with lipids and perturbations by cholesterol revealed here provide insight into membrane partition and delivery of drug molecules to their targets.
Collapse
Affiliation(s)
- Yuqin Yang
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China.,Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
6
|
A Differential Scanning Calorimetry (DSC) Experimental Protocol for Evaluating the Modified Thermotropic Behavior of Liposomes with Incorporated Guest Molecules. Methods Mol Biol 2021; 2207:299-312. [PMID: 33113143 DOI: 10.1007/978-1-0716-0920-0_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Differential scanning calorimetry (DSC) is a well-established technique, suitable to monitor the interactions that may take place among the drug delivery systems of liposomes and the potential bioactive molecules that are incorporated inside them. Moreover, the DSC technique is considered to be a useful tool to characterize the thermal behavior of lipidic bilayers in the absence and presence of drugs and to highlight parameters, such as the cooperativity between the lipids and the guest molecules (i.e. drugs, polymers, dendrimers), providing also a prediction of the behavior of potential future drug delivery liposomal platforms. In this study, a protocol for DSC measurements on liposomal systems with incorporated guest molecules is described.
Collapse
|
7
|
Chontzopoulou E, Tzakos AG, Mavromoustakos T. On the Rational Drug Design for Hypertension through NMR Spectroscopy. Molecules 2020; 26:E12. [PMID: 33375119 PMCID: PMC7792925 DOI: 10.3390/molecules26010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Antagonists of the AT1receptor (AT1R) are beneficial molecules that can prevent the peptide hormone angiotensin II from binding and activating the specific receptor causing hypertension in pathological states. This review article summarizes the multifaced applications of solid and liquid state high resolution nuclear magnetic resonance (NMR) spectroscopy in antihypertensive commercial drugs that act as AT1R antagonists. The 3D architecture of these compounds is explored through 2D NOESY spectroscopy and their interactions with micelles and lipid bilayers are described using solid state 13CP/MAS, 31P and 2H static solid state NMR spectroscopy. Due to their hydrophobic character, AT1R antagonists do not exert their optimum profile on the AT1R. Therefore, various vehicles are explored so as to effectively deliver these molecules to the site of action and to enhance their pharmaceutical efficacy. Cyclodextrins and polymers comprise successful examples of effective drug delivery vehicles, widely used for the delivery of hydrophobic drugs to the active site of the receptor. High resolution NMR spectroscopy provides valuable information on the physical-chemical forces that govern these drug:vehicle interactions, knowledge required to get a deeper understanding on the stability of the formed complexes and therefore the appropriateness and usefulness of the drug delivery system. In addition, it provides valuable information on the rational design towards the synthesis of more stable and efficient drug formulations.
Collapse
Affiliation(s)
- Eleni Chontzopoulou
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| |
Collapse
|
8
|
Kiriakidi S, Chatzigiannis C, Papaemmanouil C, Tzakos AG, Mavromoustakos T. Exploring the role of the membrane bilayer in the recognition of candesartan by its GPCR AT1 receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183142. [PMID: 31830465 DOI: 10.1016/j.bbamem.2019.183142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases and hypertension in particular are major health risks worldwide and the improvement on their treatment will be beneficial for the human health. AT1R antagonists belong to the sartans family that targets the renin-angiotensin aldosterone system (RAAS) through blocking the hormone angiotensin II to exert its detrimental effects in pathological states. As a consequence, they are beneficial to treat hypertension, diabetes related kidney failure and hyperaemic episodes. Long unbiased Molecular Dynamics (MD) simulations are performed in order to explore candesartan's possible 2D and 3D diffusion mechanisms towards AT1R receptor. 3D diffusion mechanism is referred to the direct binding of the AT1 antagonist candesartan to the AT1R 3D structure (PDB ID: 4YAY). 2D diffusion mechanism involves first, the incorporation of candesartan in the bilayer core and then its localization on the AT1R binding cavity, through a diffusion mechanism. The obtained results indicate that membranes interact significantly with the neutral form of candesartan, which is indeed approaching the receptors' active site through diffusion via the lipids. On the other hand, the deprotonated form of the drug is interacting with AT1R's extracellular loop and fails to enter the membrane, pointing out the importance of the pH microenvironment around the receptor. To validate the calculated diffusion coefficients of the drug in the lipid bilayers 2D DOSY NMR experiments were recorded and they were in good agreement. Information on the impact that has the interaction of candesartan with the membrane is very important for the rationally design and development of potent ARBs. Thus, its conformational features as well as its localization in the membrane core have to be thoroughly explored.
Collapse
Affiliation(s)
- Sofia Kiriakidi
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece
| | - Christos Chatzigiannis
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Christina Papaemmanouil
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, Ioannina, Greece
| | - Thomas Mavromoustakos
- National and Kapodistrian University of Athens, Department of Chemistry, Athens, Greece.
| |
Collapse
|
9
|
Onselaer MB, Nagy M, Pallini C, Pike JA, Perrella G, Quintanilla LG, Eble JA, Poulter NS, Heemskerk JWM, Watson SP. Comparison of the GPVI inhibitors losartan and honokiol. Platelets 2019; 31:187-197. [PMID: 30849265 PMCID: PMC7034533 DOI: 10.1080/09537104.2019.1585526] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Losartan and honokiol are small molecules which have been described to inhibit aggregation of platelets by collagen. Losartan has been proposed to block clustering of GPVI but not to affect binding of collagen. Honokiol has been reported to bind directly to GPVI but only at a concentration that is three orders of magnitude higher than that needed for inhibition of aggregation. The mechanism of action of both inhibitors is so far unclear. In the present study, we confirm the inhibitory effects of both agents on platelet aggregation by collagen and show that both also block the aggregation induced by the activation of CLEC-2 or the low affinity immune receptor FcγRIIa at similar concentrations. For GPVI and CLEC-2, this inhibition is associated with a reduction in protein tyrosine phosphorylation of multiple proteins including Syk. In contrast, on a collagen surface, spreading of platelets and clustering of GPVI (measured by single molecule localisation microscopy) was not altered by losartan or honokiol. Furthermore, in flow whole-blood, both inhibitors suppressed the formation of multi-layered platelet thrombi at arteriolar shear rates at concentrations that hardly affect collagen-induced platelet aggregation in platelet rich plasma. Together, these results demonstrate that losartan and honokiol have multiple effects on platelets which should be considered in the use of these compounds as anti-platelet agents.
Collapse
Affiliation(s)
- Marie-Blanche Onselaer
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, MD, The Netherlands
| | - Chiara Pallini
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy A Pike
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands
| | - Gina Perrella
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, MD, The Netherlands
| | - Lourdes Garcia Quintanilla
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, MD, The Netherlands
| | - Steve P Watson
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands
| |
Collapse
|
10
|
Ntountaniotis D, Andreadelis I, Kellici TF, Karageorgos V, Leonis G, Christodoulou E, Kiriakidi S, Becker-Baldus J, Stylos EK, Chatziathanasiadou MV, Chatzigiannis CM, Damalas DE, Aksoydan B, Javornik U, Valsami G, Glaubitz C, Durdagi S, Thomaidis NS, Kolocouris A, Plavec J, Tzakos AG, Liapakis G, Mavromoustakos T. Host-Guest Interactions between Candesartan and Its Prodrug Candesartan Cilexetil in Complex with 2-Hydroxypropyl-β-cyclodextrin: On the Biological Potency for Angiotensin II Antagonism. Mol Pharm 2019; 16:1255-1271. [PMID: 30681344 DOI: 10.1021/acs.molpharmaceut.8b01212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Renin-angiotensin aldosterone system inhibitors are for a long time extensively used for the treatment of cardiovascular and renal diseases. AT1 receptor blockers (ARBs or sartans) act as antihypertensive drugs by blocking the octapeptide hormone Angiotensin II to stimulate AT1 receptors. The antihypertensive drug candesartan (CAN) is the active metabolite of candesartan cilexetil (Atacand, CC). Complexes of candesartan and candesartan cilexetil with 2-hydroxylpropyl-β-cyclodextrin (2-HP-β-CD) were characterized using high-resolution electrospray ionization mass spectrometry and solid state 13C cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) spectroscopy. The 13C CP/MAS results showed broad peaks especially in the aromatic region, thus confirming the strong interactions between cyclodextrin and drugs. This experimental evidence was in accordance with molecular dynamics simulations and quantum mechanical calculations. The synthesized and characterized complexes were evaluated biologically in vitro. It was shown that as a result of CAN's complexation, CAN exerts higher antagonistic activity than CC. Therefore, a formulation of CC with 2-HP-β-CD is not indicated, while the formulation with CAN is promising and needs further investigation. This intriguing result is justified by the binding free energy calculations, which predicted efficient CC binding to 2-HP-β-CD, and thus, the molecule's availability for release and action on the target is diminished. In contrast, CAN binding was not favored, and this may allow easy release for the drug to exert its bioactivity.
Collapse
Affiliation(s)
- Dimitrios Ntountaniotis
- Department of Chemistry, Laboratory of Organic Chemistry , National and Kapodistrian University of Athens , Panepistimioupolis, Zografou 15771 , Greece
| | - Ioannis Andreadelis
- Department of Chemistry, Laboratory of Organic Chemistry , National and Kapodistrian University of Athens , Panepistimioupolis, Zografou 15771 , Greece
| | - Tahsin F Kellici
- Department of Chemistry, Laboratory of Organic Chemistry , National and Kapodistrian University of Athens , Panepistimioupolis, Zografou 15771 , Greece
| | - Vlasios Karageorgos
- Department of Pharmacology, School of Medicine , University of Crete , Heraklion, Crete 70013 , Greece
| | - Georgios Leonis
- Department of Chemistry, Laboratory of Organic Chemistry , National and Kapodistrian University of Athens , Panepistimioupolis, Zografou 15771 , Greece
| | - Eirini Christodoulou
- Department of Pharmacy, Laboratory of Pharmaceutical Technology , National and Kapodistrian University of Athens , Panepistimioupolis, Zografou 15771 , Greece
| | - Sofia Kiriakidi
- Department of Chemistry, Laboratory of Organic Chemistry , National and Kapodistrian University of Athens , Panepistimioupolis, Zografou 15771 , Greece
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt , Germany
| | - Evgenios K Stylos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry , University of Ioannina , Ioannina 45110 , Greece.,Department of Biological Applications and Technology, Biotechnology Laboratory , University of Ioannina , Ioannina 45110 , Greece
| | - Maria V Chatziathanasiadou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry , University of Ioannina , Ioannina 45110 , Greece
| | - Christos M Chatzigiannis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry , University of Ioannina , Ioannina 45110 , Greece
| | - Dimitrios E Damalas
- Department of Chemistry, Laboratory of Analytical Chemistry , National and Kapodistrian University of Athens , Panepistimioupolis, Zografou 15771 , Greece
| | - Busecan Aksoydan
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory , Bahcesehir University , Istanbul 34349 , Turkey
| | - Uroš Javornik
- National Institute of Chemistry, Slovenian NMR Centre , SI-1001 Ljubljana , Slovenia
| | - Georgia Valsami
- Department of Pharmacy, Laboratory of Pharmaceutical Technology , National and Kapodistrian University of Athens , Panepistimioupolis, Zografou 15771 , Greece
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt , Germany
| | - Serdar Durdagi
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory , Bahcesehir University , Istanbul 34349 , Turkey
| | - Nikolaos S Thomaidis
- Department of Chemistry, Laboratory of Analytical Chemistry , National and Kapodistrian University of Athens , Panepistimioupolis, Zografou 15771 , Greece
| | - Antonios Kolocouris
- Department of Pharmacy, Section of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , Athens 15771 , Greece
| | - Janez Plavec
- National Institute of Chemistry, Slovenian NMR Centre , SI-1001 Ljubljana , Slovenia
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry , University of Ioannina , Ioannina 45110 , Greece
| | - George Liapakis
- Department of Pharmacology, School of Medicine , University of Crete , Heraklion, Crete 70013 , Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry , National and Kapodistrian University of Athens , Panepistimioupolis, Zografou 15771 , Greece
| |
Collapse
|
11
|
Vauquelin G. Link between a high k on for drug binding and a fast clinical action: to be or not to be? MEDCHEMCOMM 2018; 9:1426-1438. [PMID: 30288218 PMCID: PMC6151451 DOI: 10.1039/c8md00296g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/15/2018] [Indexed: 01/21/2023]
Abstract
Review articles on binding kinetics essentially focus on drugs that dissociate slowly from their target since this is required for the successful treatment of many pathophysiological conditions. Recently, the therapeutic benefit of a high k on (i.e. the second order association rate constant) has also been linked to fast association and to a fast clinical action. Other studies, however, called this assertion into question since additional factors, like the dosing paradigm and the binding mechanism, are important as well. The still ongoing reticence about integrating binding kinetics in lead optimization programs motivated us to critically review the link between the drug's kinetic rate constants and their in vitro and in vivo target occupancy profile, with special focus on k on. The presented simulations tally with a positive link between a drug's effective/observed association rate (which is quite easy to determine in vitro) and the swiftness of its clinical action. On the other hand, the simulations show that the k on-concept should not be confounded with the effective association process since increasing this parameter only enhances the drug's in vitro and in vivo association under certain conditions: the binding mechanism should be suitable, rebinding (and thus the factors within the target's micro-environment that favour this mechanism) should not be too prominent and the dosage should not be kept in par with the drug's affinity. Otherwise, increasing k on could be ineffective or even be counter-productive.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology , Vrije Universiteit Brussel , Pleinlaan 2 , B-1050 Brussels , Belgium .
| |
Collapse
|
12
|
Popović-Nikolić MR, Popović GV, Grujić M, Nikolić KM, Agbaba DD. А theoretical study on ionization of sartans in aqueous media and on interactions with surfactant micelles. J Mol Graph Model 2018; 82:67-73. [PMID: 29704812 DOI: 10.1016/j.jmgm.2018.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 11/30/2022]
Abstract
The ionization order of sartans in aqueous media and possible way of interactions between their equilibrium forms and surfactant micelles have been theoretically investigated. The examined sartans are ampholytes (irbesartan and losartan) and a diacid (valsartan) with the close values of ionization constants. In order to get a better insight in the overlapped protolytic equilibria of sartans and to predict an affinity of the equilibrium forms interacting with micelles as biomembrane mimetic systems, the theoretical study was performed. Energy calculation of the optimized structures of the equilibrium forms was performed at the B3LYP/6-31G (d,p) level of the Density Functional Theory (DFT). The results of the theoretical study helped to assign the experimentally determined pKa values to the corresponding ionizable centers and confirmed that in all examined compounds, the higher pKa values can be attributed to ionization of tetrazole. The molecular descriptor values showed that sartans interact predominantly with the micelle surfaces. The equilibrium forms of ampholytes demonstrate higher affinity to the micelles, as compared to the forms of the diprotic acid. Additionally, it was shown that the uncharged molecular forms of ampholytes are more lipophylic then their zwitterionic forms.
Collapse
Affiliation(s)
- Marija R Popović-Nikolić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia.
| | - Gordana V Popović
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Maja Grujić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Katarina M Nikolić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Danica D Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia
| |
Collapse
|
13
|
Yang Y, Tang R. Magnetically Recyclable Pd/Fe3O4/g-C3N4 as Efficient Catalyst for the Reduction of Nitrophenol and Suzuki-Miyaura Reaction at Room Temperature. CHEM LETT 2018. [DOI: 10.1246/cl.180007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yingwei Yang
- School of Chemistry and Chemical Engineering, Central South University, Hunan 410083, P. R. China
| | - Ruiren Tang
- School of Chemistry and Chemical Engineering, Central South University, Hunan 410083, P. R. China
| |
Collapse
|
14
|
Vauquelin G. Cell membranes… and how long drugs may exert beneficial pharmacological activity in vivo. Br J Clin Pharmacol 2016; 82:673-82. [PMID: 27135195 PMCID: PMC5338106 DOI: 10.1111/bcp.12996] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
The time course of the beneficial pharmacological effect of a drug has long been considered to depend merely on the temporal fluctuation of its free concentration. Only in the last decade has it become widely accepted that target-binding kinetics can also affect in vivo pharmacological activity. Although current reviews still essentially focus on genuine dissociation rates, evidence is accumulating that additional micro-pharmacokinetic (PK) and -pharmacodynamic (PD) mechanisms, in which the cell membrane plays a central role, may also increase the residence time of a drug on its target. The present review provides a compilation of otherwise widely dispersed information on this topic. The cell membrane can intervene in drug binding via the following three major mechanisms: (i) by acting as a sink/repository for the drug; (ii) by modulating the conformation of the drug and even by participating in the binding process; and (iii) by facilitating the approach (and rebinding) of the drug to the target. To highlight these mechanisms, we focus on drugs that are currently used in clinical therapy, such as the antihypertensive angiotensin II type 1 receptor antagonist candesartan, the atypical antipsychotic agent clozapine and the bronchodilator salmeterol. Although the role of cell membranes in PK-PD modelling is gaining increasing interest, many issues remain unresolved. It is likely that novel biophysical and computational approaches will provide improved insights in the near future.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department Molecular and Biochemical PharmacologyVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
15
|
Experimental and DFT characterization, antioxidant and anticancer activities of a Cu(II)-irbesartan complex: structure-antihypertensive activity relationships in Cu(II)-sartan complexes. J Biol Inorg Chem 2016; 21:851-63. [PMID: 27507083 DOI: 10.1007/s00775-016-1384-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
Abstract
The coordination compound of the antihypertensive ligand irbesartan (irb) with copper(II) (CuIrb) was synthesized and characterized by FTIR, FT-Raman, UV-visible, reflectance and EPR spectroscopies. Experimental evidence allowed the implementation of structural and vibrational studies by theoretical calculations made in the light of the density functional theory (DFT). This compound was designed to induce structural modifications on the ligand. No antioxidant effects were displayed by both compounds, though CuIrb behaved as a weak 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(·)) scavenger (IC50 = 425 μM). The measurements of the contractile capacity on human mesangial cell lines showed that CuIrb improved the antihypertensive effects of the parent medication. In vitro cell growth inhibition against prostate cancer cell lines (LNCaP and DU 145) was measured for CuIrb, irbesartan and copper(II). These cell lines have been selected since the angiotensin II type 1 (AT1) receptor (that was blocked by the angiotensin receptor blockers, ARB) has been identified in them. The complex exerted anticancer behavior (at 100 μM) improving the activity of the ligand. Flow cytometry determinations were used to determine late apoptotic mechanisms of cell death. Experimental and DFT characterization of an irbesartan copper(II) complex has been performed. The complex exhibits low scavenging activity against DPPH(·) and significant growth inhibition of LNCaP and DU 145 prostate cancer cell lines. Flow cytometry determinations were used to determine late apoptotic mechanisms of cell death. This compound improved the antihypertensive effect of irbesartan. This effect was observed earlier for the mononuclear Cu-candesartan complex, but not in structurally modified sartans forming dinuclear or octanuclear Cu-sartan compounds.
Collapse
|
16
|
Grujić M, Popović M, Popović G, Nikolic K, Agbaba D. Protolytic Equilibria of Sartans in Micellar Solutions of Differently Charged Surfactants. J Pharm Sci 2016; 105:2444-52. [DOI: 10.1016/j.xphs.2016.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 11/27/2022]
|
17
|
Vauquelin G. Effects of target binding kinetics on in vivo drug efficacy: koff , kon and rebinding. Br J Pharmacol 2016; 173:2319-34. [PMID: 27129075 PMCID: PMC4945762 DOI: 10.1111/bph.13504] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/07/2016] [Accepted: 04/19/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Optimal drug therapy often requires continuing high levels of target occupancy. Besides the traditional pharmacokinetic contribution, target binding kinetics is increasingly considered to play an important role as well. While most attention has been focused on the dissociation rate of the complex, recent reports expressed doubt about the unreserved translatability of this pharmacodynamic property into clinical efficacy. 'Micro'-pharmacokinetic mechanisms like drug rebinding and partitioning into the cell membrane may constitute a potential fix. EXPERIMENTAL APPROACH Simulations were based on solving differential equations. KEY RESULTS Based on a selected range of association and dissociation rate constants, kon and koff , and rebinding potencies of the drugs as variables, their effects on the temporal in vivo occupancy profile of their targets, after one or multiple repetitive dosings, have here been simulated. CONCLUSIONS AND IMPLICATIONS Most strikingly, the simulations show that, when rebinding is also taken into account, increasing kon may produce closely the same outcome as decreasing koff when dosing is performed in accordance with the therapeutically most relevant constant [Lmax ]/KD ratio paradigm. Also, under certain conditions, rebinding may produce closely the same outcome as invoking slow diffusion of the drug between the plasma compartment and a target-containing 'effect' compartment. Although the present simulations should only be regarded as a 'proof of principle', these findings may help pharmacologists and medicinal chemists to devise ex vivo and in vitro binding kinetic assays that are more relevant and translatable to in vivo settings.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical PharmacologyVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
18
|
Vauquelin G. On the 'micro'-pharmacodynamic and pharmacokinetic mechanisms that contribute to long-lasting drug action. Expert Opin Drug Discov 2015; 10:1085-98. [PMID: 26165720 DOI: 10.1517/17460441.2015.1067196] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Optimal drug therapy often requires continuing high levels of target occupancy. Besides the traditional pharmacokinetic (PK) contribution thereto, drug-target interactions that comprise successive 'microscopic' steps as well as the intervention of the cell membrane and other 'micro'-anatomical structures nearby may help attaining this objective. AREAS COVERED This article reviews the 'micro'-pharmacodynamic (PD) and PK mechanisms that may increase a drug's residence time. Special focus is on induced-fit- and bivalent ligand binding models as well as on the ability of the plasma membrane surrounding the target to act as a repository for the drug (e.g., microkinetic model), to actively participate in the binding process (e.g., exosite model) and, along with microanatomical elements like synapses and interstitial spaces, to act on the drug's diffusion properties (reduction in dimensionality and drug-rebinding models). EXPERT OPINION The PK profile, as well as the target dissociation kinetics of a drug, may fail to account for its long-lasting efficiency in intact tissues and in vivo. This lacuna could potentially be alleviated by incorporating some of the enumerated 'microscopic' mechanisms and, to unveil them, dedicated experiments on sufficiently physiologically relevant biological material like cell monolayers can already be implemented early on in the lead optimization process.
Collapse
Affiliation(s)
- Georges Vauquelin
- a Free University Brussels (VUB), Molecular and Biochemical Pharmacology Department , Pleinlaan 2, B-1050 Brussels, Belgium +32 2 6291955 ; +32 2 6291358 ;
| |
Collapse
|
19
|
Sadeghpour A, Rappolt M, Ntountaniotis D, Chatzigeorgiou P, Viras K, Megariotis G, Papadopoulos M, Siapi E, Mali G, Mavromoustakos T. Comparative study of interactions of aliskiren and AT 1 receptor antagonists with lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:984-94. [DOI: 10.1016/j.bbamem.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/29/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022]
|
20
|
Kellici TF, Tzakos AG, Mavromoustakos T. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors. Molecules 2015; 20:3868-97. [PMID: 25738535 PMCID: PMC6272512 DOI: 10.3390/molecules20033868] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/06/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
The angiotensin II (Ang II) type 1 and type 2 receptors (AT1R and AT2R) orchestrate an array of biological processes that regulate human health. Aberrant function of these receptors triggers pathophysiological responses that can ultimately lead to death. Therefore, it is important to design and synthesize compounds that affect beneficially these two receptors. Cardiovascular disease, which is attributed to the overactivation of the vasoactive peptide hormone Αng II, can now be treated with commercial AT1R antagonists. Herein, recent achievements in rational drug design and synthesis of molecules acting on the two AT receptors are reviewed. Quantitative structure activity relationships (QSAR) and molecular modeling on the two receptors aim to assist the search for new active compounds. As AT1R and AT2R are GPCRs and drug action is localized in the transmembrane region the role of membrane bilayers is exploited. The future perspectives in this field are outlined. Tremendous progress in the field is expected if the two receptors are crystallized, as this will assist the structure based screening of the chemical space and lead to new potent therapeutic agents in cardiovascular and other diseases.
Collapse
Affiliation(s)
- Tahsin F Kellici
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Andreas G Tzakos
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece.
| |
Collapse
|
21
|
Agomelatine strongly interacts with zwitterionic DPPC and charged DPPG membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2798-806. [PMID: 25091390 DOI: 10.1016/j.bbamem.2014.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 07/07/2014] [Accepted: 07/25/2014] [Indexed: 01/01/2023]
Abstract
Depression is one of the most common psychiatric diseases in the population. Agomelatine is a novel antidepressant drug with melatonin receptor agonistic and serotonin 5-HT2C antagonistic properties. Furthermore, being a melatonergic drug, agomelatine has the potential of being used in therapeutic applications like melatonin as an antioxidant, anti-inflammatory and antiapoptotic drug. The action mechanism of agomelatine on the membrane structure has not been clarified yet. In the present study, we aimed to investigate the interaction of agomelatine with model membranes of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylgylcerol (DPPG) by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). We found that agomelatine interacts with the head group in such a manner that it destabilizes the membrane architecture to a large extent. Thus, agomelatine causes alterations in the order, packing and dynamics of the DPPC and DPPG model membranes. Our results suggest that agomelatine strongly interacts with zwitterionic and charged membrane phospholipids. Because lipid structure and dynamics may have influence on the structure of membrane bound proteins and affect the signal transduction systems of membranes, these effects of agomelatine may be important in its action mechanism.
Collapse
|
22
|
Ntountaniotis D, Kellici T, Tzakos A, Kolokotroni P, Tselios T, Becker-Baldus J, Glaubitz C, Lin S, Makriyannis A, Mavromoustakos T. The application of solid-state NMR spectroscopy to study candesartan cilexetil (TCV-116) membrane interactions. Comparative study with the AT1R antagonist drug olmesartan. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2439-50. [PMID: 24946142 DOI: 10.1016/j.bbamem.2014.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
ΑΤ1 receptor (AT1R) antagonists exert their antihypertensive effects by preventing the vasoconstrictive hormone AngII to bind to the AT1 receptor. It has been proposed that these biological effects are mediated through a two-step mechanism reaction. In the first step, they are incorporated in the core of the lipid bilayers and in the second step they reach the active site of the receptor through lateral diffusion. In this model, drug/membrane interactions are key elements for the drugs achieving inhibition at the AT1 receptor. In this work, the interactions of the prodrug candesartan cilexetil (TCV-116) with lipid bilayers are studied at molecular detail. Solid-state (13)C-CP/MAS, 2D (1)H-(1)H NOESY NMR spectroscopy and in silico calculations are used. TCV-116 and olmesartan, another drug which acts as an AT1R antagonist are compared for their dynamic effects in lipid bilayers using solid-state (2)H-NMR. We find a similar localization of TCV-116 compared to other AT1 antagonists in the intermediate polar region. In addition, we can identify specific local interactions. These interactions may be associated in part with the discrete pharmacological profiles observed for different antagonists.
Collapse
Affiliation(s)
- Dimitrios Ntountaniotis
- National and Kapodistrian University of Athens, Department of Chemistry, Panepistimioupolis Zografou 15771, Athens, Greece.
| | - Tahsin Kellici
- National and Kapodistrian University of Athens, Department of Chemistry, Panepistimioupolis Zografou 15771, Athens, Greece; University of Ioannina, Department of Chemistry, 45110 Ioannina, Greece
| | - Andreas Tzakos
- University of Ioannina, Department of Chemistry, 45110 Ioannina, Greece
| | | | - Theodore Tselios
- University of Patras, Department of Chemistry, Patras 26500, Greece
| | - Johanna Becker-Baldus
- Goethe University Frankfurt, Institute of Biophysical Chemistry, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Clemens Glaubitz
- Goethe University Frankfurt, Institute of Biophysical Chemistry, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Sonyan Lin
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, USA
| | | | - Thomas Mavromoustakos
- National and Kapodistrian University of Athens, Department of Chemistry, Panepistimioupolis Zografou 15771, Athens, Greece.
| |
Collapse
|
23
|
Insights into the molecular basis of action of the AT1 antagonist losartan using a combined NMR spectroscopy and computational approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1031-46. [PMID: 24374319 DOI: 10.1016/j.bbamem.2013.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 01/11/2023]
Abstract
The drug:membrane interactions for the antihypertensive AT1 antagonist losartan, the prototype of the sartans class, are studied herein using an integrated approach. The pharmacophore arrangement of the drug was revealed by rotating frame nuclear Overhauser effect spectroscopy (2D ROESY) NMR spectroscopy in three different environments, namely water, dimethyl sulfoxide (DMSO), and sodium dodecyl sulfate (SDS) micellar solutions mimicking conditions of biological transport fluids and membrane lipid bilayers. Drug association with micelles was monitored by diffusion ordered spectroscopy (2D DOSY) and drug:micelle intermolecular interactions were characterized by ROESY spectroscopy. The localisation of the drug in the micellar environment was investigated by introducing 5-doxyl and 16-doxyl stearic acids. The use of spin labels confirmed that losartan resides close to the micelle:water interface with the hydroxymethyl group and the tetrazole heterocyclic aromatic ring facing the polar surface with the potential to interact with SDS charged polar head groups in order to increase amphiphilic interactions. The spontaneous insertion, the diffusion pathway and the conformational features of losartan were monitored by Molecular Dynamics (MD) simulations in a modeled SDS micellar aggregate environment and a long exploratory MD run (580ns) in a phospholipid dipalmitoylphosphatidylcholine (DPPC) bilayer with the AT1 receptor embedded. MD simulations were in excellent agreement with experimental results and further revealed the molecular basis of losartan:membrane interactions in atomic-level detail. This applied integrated approach aims to explore the role of membranes in losartan's pathway towards the AT1 receptor.
Collapse
|
24
|
Mavromoustakos T, Agelis G, Durdagi S. AT1 antagonists: a patent review (2008 – 2012). Expert Opin Ther Pat 2013; 23:1483-94. [DOI: 10.1517/13543776.2013.830104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Agelis G, Resvani A, Ntountaniotis D, Chatzigeorgiou P, Koukoulitsa C, Androutsou ME, Plotas P, Matsoukas J, Mavromoustakos T, Cendak T, Godec TU, Mali G. Interactions of the potent synthetic AT1 antagonist analog BV6 with membrane bilayers and mesoporous silicate matrices. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1846-55. [PMID: 23506680 DOI: 10.1016/j.bbamem.2013.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 11/27/2022]
Abstract
The present work describes the drug:membrane interactions and a drug delivery system of the novel potent AT1 blocker BV6. This designed analog has most of the pharmacological segments of losartan and an additional biphenyltetrazole moiety resulting in increased lipophilicity. We found that BV6:membrane interactions lead to compact bilayers that may in part explain its higher in vitro activity compared to losartan since such environment may facilitate its approach to AT1 receptor. Its high docking score to AT1 receptor stems from more hydrophobic interactions compared to losartan. X-ray powder diffraction (XRPD) and thermogravimetric analysis (TGA) have shown that BV6 has a crystalline form that is not decomposed completely up to 600°C. These properties are desirable for a drug molecule. BV6 can also be incorporated into a mesoporous silicate drug-delivery matrix SBA-15. The properties of the obtained drug-delivery system have been inspected by XRD, (13)C CP/MAS, TGA and nitrogen sorption experiments.
Collapse
Affiliation(s)
- G Agelis
- Eldrug S.A., Patras Science Park, Stadiou, Platani, Rio Patras, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang C, Zhang L, Yang R, Liang K, Han D. Time-correlated Raman and fluorescence spectroscopy based on a silicon photomultiplier and time-correlated single photon counting technique. APPLIED SPECTROSCOPY 2013; 67:136-40. [PMID: 23622431 DOI: 10.1366/12-06736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report a time-correlated Raman spectroscopy technique based on a silicon photomultiplier (SiPM) and a time-correlated single photon counting (TCSPC) technique to exploit the natural temporal separation between Raman and fluorescence phenomena to alleviate the high fluorescence background with conventional Raman detection. The TCSPC technique employed can greatly reduce the effect of high dark count rate (DCR) and crosstalk of SiPM that seriously hinder its application in low light level detection. The operating principle and performance of the 400 ps time resolution system are discussed along with the improvement of the peak-to-background ratio (PBR) for bulk trinitrotoluene (TNT) Raman spectrum relative to a commercial Raman spectrometer with charge coupled device (CCD). The fluorescence lifetime for solid TNT and Surface Enhanced Raman Scattering (SERS) spectrum for 10(-6) mol/L trace TNT have also been obtained by this system, showing excellent versatility and convenience in spectroscopy measurement.
Collapse
Affiliation(s)
- Chunling Zhang
- The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|
27
|
Molecular insights into the AT1 antagonism based on biophysical and in silico studies of telmisartan. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0464-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Agelis G, Resvani A, Koukoulitsa C, Tůmová T, Slaninová J, Kalavrizioti D, Spyridaki K, Afantitis A, Melagraki G, Siafaka A, Gkini E, Megariotis G, Grdadolnik SG, Papadopoulos MG, Vlahakos D, Maragoudakis M, Liapakis G, Mavromoustakos T, Matsoukas J. Rational design, efficient syntheses and biological evaluation of N,N'-symmetrically bis-substituted butylimidazole analogs as a new class of potent Angiotensin II receptor blockers. Eur J Med Chem 2013; 62:352-70. [PMID: 23376252 DOI: 10.1016/j.ejmech.2012.12.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
A series of symmetrically bis-substituted imidazole analogs bearing at the N-1 and N-3 two biphenyl moieties ortho substituted either with tetrazole or carboxylate functional groups was designed based on docking studies and utilizing for the first time an extra hydrophobic binding cleft of AT1 receptor. The synthesized analogs were evaluated for their in vitro antagonistic activities (pA2 values) and binding affinities (-logIC50 values) to the Angiotensin II AT1 receptor. Among them, the potassium (-logIC50 = 9.04) and the sodium (-logIC50 = 8.54) salts of 4-butyl-N,N'-bis{[2'-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium bromide (12a and 12b, respectively) as well as its free acid 11 (-logIC50 = 9.46) and the 4-butyl-2-hydroxymethyl-N,N'-bis{[2'-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium bromide (14) (-logIC50 = 8.37, pA2 = 8.58) showed high binding affinity to the AT1 receptor and high antagonistic activity (potency). The potency was similar or even superior to that of Losartan (-logIC50 = 8.25, pA2 = 8.25). On the contrary, 2-butyl-N,N'-bis{[2'-[2H-tetrazol-5-yl)]biphenyl-4-yl]methyl}imidazolium bromide (27) (-logIC50 = 5.77) and 2-butyl-4-chloro-5-hydroxymethyl-N,N'-bis{[2'-[2H-tetrazol-5-yl)]biphenyl-4-yl]methyl}imidazolium bromide (30) (-logIC50 = 6.38) displayed very low binding affinity indicating that the orientation of the n-butyl group is of primary importance. Docking studies of the representative highly active 12b clearly showed that this molecule has an extra hydrophobic binding feature compared to prototype drug Losartan and it fits to the extra hydrophobic cavity. These results may contribute to the discovery and development of a new class of biologically active molecules through bis-alkylation of the imidazole ring by a convenient and cost effective synthetic strategy.
Collapse
Affiliation(s)
- George Agelis
- Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fotakis C, Megariotis G, Christodouleas D, Kritsi E, Zoumpoulakis P, Ntountaniotis D, Zervou M, Potamitis C, Hodzic A, Pabst G, Rappolt M, Mali G, Baldus J, Glaubitz C, Papadopoulos MG, Afantitis A, Melagraki G, Mavromoustakos T. Comparative study of the AT1 receptor prodrug antagonist candesartan cilexetil with other sartans on the interactions with membrane bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3107-20. [DOI: 10.1016/j.bbamem.2012.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/26/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022]
|
30
|
Cao C, Mao J, Li F, Yang M, He H, Jiang L, Liu M. Understanding the interaction between valsartan and detergents by NMR techniques and molecular dynamics simulation. J Phys Chem B 2012; 116:7470-8. [PMID: 22708715 DOI: 10.1021/jp304304v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Valsartan (VST) is one of the Angiotensin II receptor antagonists, which is widely used in clinical hypertension treatment. It is believed that VST incorporates into biological membranes before it binds to AT(1) receptor. Herein the interactions between VST and detergents, mimicking the membrane environment, were investigated by using nuclear magnetic resonance (NMR) techniques and molecular dynamics (MD) simulation. We observed that VST has two conformers (trans and cis) exchanging slowly in DPC (dodecyl-phosphocholine) micelles, a widely used detergent. The changes of chemical shifts, relaxation rates, and self-diffusion coefficients of VST protons indicate that both conformers have strong interactions with DPC. NOE cross peaks and MD simulation reveal that DPC interacts with VST not only through the hydrophobic lipid chain, but also the hydrophilic headgroup, locating VST at the charged headgroup and upper part of the micelles. Our results are in good agreement with the Raman spectroscopic studies of VST in the DPPC (dipalmitoyl-phosphatidylcholine) bilayers by Potamitis et al. (Biochim. Biophys. Acta. 2011). The concentration ratio of trans over cis conformers is 0.94, showing that two conformers have the same affinities with the detergent, which is significantly smaller than our previous results obtained in SDS (sodium dodecyl sulfate) micelles. MD simulation suggested that the cis conformer has slightly lower binding free energy than the trans conformer when interacting with DPC. The conformational change of VST was further investigated in two detergents, CTAB (hexadecyltrimethylammonium bromide) and Tween-20 (polysorbate 20). Ratios of conformer A and B in the presence of detergents are in the order of DPC, CTAB < Tween-20 < SDS, which is correlated with the charge characters of their head groups. NMR investigations and MD simulations indicate that the electrostatic interaction plays an essential role in the binding process of VST with detergents, and the hydrophobic interaction influences the packing of the drug in the micelles. These results may be of help in understanding delivery processes of sartan drugs in cell membranes.
Collapse
Affiliation(s)
- Chenyu Cao
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Hodzic A, Zoumpoulakis P, Pabst G, Mavromoustakos T, Rappolt M. Losartan's affinity to fluid bilayers modulates lipid-cholesterol interactions. Phys Chem Chem Phys 2012; 14:4780-8. [PMID: 22395854 DOI: 10.1039/c2cp40134g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Losartan is an angiotensin II receptor antagonist mainly used for the regulation of high blood pressure. Since it was anticipated that losartan reaches the receptor site via membrane diffusion, the impact of losartan on model membranes has been investigated by small angle X-ray scattering. For this purpose 2-20 mol% losartan was incorporated into dimyristoyl-phosphatidylcholine (DMPC) and palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers and into their binary mixtures with cholesterol in the concentration range of 0 to 40 mol%. Effects of losartan on single component bilayers are alike. Partitioning of losartan into the membranes confers a negative charge to the lipid bilayers that causes the formation of unilamellar vesicles and a reduction of the bilayer thickness by 3-4%. Analysis of the structural data resulted in an estimate for the partial area of losartan, A(Los) ≈ 40 Å(2). In the presence of cholesterol, differences between the effects of losartan on POPC and DMPC are striking. Membrane condensation by cholesterol is retarded by losartan in POPC. This contrasts with DMPC, where an increase of the cholesterol content shifts the partitioning equilibrium of losartan towards the aqueous phase, such that losartan gets depleted from the bilayers from 20 mol% cholesterol onwards. This indicates (i) a chain-saturation dependent competition of losartan with lipid-cholesterol interactions, and (ii) the insolubility of losartan in the liquid ordered phase of PCs. Consequently, losartan's action is more likely to take place in fluid plasma membrane patches rather than in domains rich in cholesterol and saturated lipid species such as in membrane rafts.
Collapse
Affiliation(s)
- A Hodzic
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Science, 8042 Graz, Austria
| | | | | | | | | |
Collapse
|
32
|
Ntountaniotis D, Mali G, Grdadolnik SG, Halabalaki M, Maria H, Skaltsounis AL, Potamitis C, Siapi E, Chatzigeorgiou P, Rappolt M, Mavromoustakos T. Thermal, dynamic and structural properties of drug AT1 antagonist olmesartan in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2995-3006. [PMID: 21843501 DOI: 10.1016/j.bbamem.2011.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/14/2011] [Accepted: 08/01/2011] [Indexed: 01/13/2023]
Abstract
It is proposed that AT1 antagonists (ARBs) exert their biological action by inserting into the lipid membrane and then diffuse to the active site of AT1 receptor. Thus, lipid bilayers are expected to be actively involved and play a critical role in drug action. For this reason, the thermal, dynamic and structural effects of olmesartan alone and together with cholesterol were studied using differential scanning calorimetry (DSC), 13C magic-angle spinning (MAS) nuclear magnetic resonance (NMR), cross-polarization (CP) MAS NMR, and Raman spectroscopy as well as small- and wide angle X-ray scattering (SAXS and WAXS) on dipalmitoyl-phosphatidylcholine (DPPC) multilamellar vesicles. 13C CP/MAS spectra provided direct evidence for the incorporation of olmesartan and cholesterol in lipid bilayers. Raman and X-ray data revealed how both molecules modify the bilayer's properties. Olmesartan locates itself at the head-group region and upper segment of the lipid bilayers as 13C CP/MAS spectra show that its presence causes significant chemical shift changes mainly in the A ring of the steroidal part of cholesterol. The influence of olmesartan on DPPC/cholesterol bilayers is less pronounced. Although, olmesartan and cholesterol are residing at the same region of the lipid bilayers, due to their different sizes, display distinct impacts on the bilayer's properties. Cholesterol broadens significantly the main transition, abolishes the pre-transition, and decreases the membrane fluidity above the main transition. Olmesartan is the only so far studied ARB that increases the gauche:trans ratio in the liquid crystalline phase. These significant differences of olmesartan may in part explain its distinct pharmacological profile.
Collapse
|