1
|
de Lavor TS, Teixeira MHS, de Matos PA, Lino RC, Silva CMF, do Carmo MEG, Beletti ME, Patrocinio AOT, de Oliveira Júnior RJ, Tsubone TM. The impact of biomolecule interactions on the cytotoxic effects of rhenium(I) tricarbonyl complexes. J Inorg Biochem 2024; 257:112600. [PMID: 38759261 DOI: 10.1016/j.jinorgbio.2024.112600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Rhenium complexes show great promise as anticancer drug candidates. Specifically, compounds with a Re(CO)3(NN)(py)+ core in their architecture have shown cytotoxicity equal to or greater than that of well-established anticancer drugs based on platinum or organic molecules. This study aimed to evaluate how the strength of the interaction between rhenium(I) tricarbonyl complexes fac-[Re(CO)3(NN)(py)]+, NN = 1,10-phenanthroline (phen), dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) or dipyrido[3,2-a:2'3'-c]phenazine (dppz) and biomolecules (protein, lipid and DNA) impacted the corresponding cytotoxic effect in cells. Results showed that fac-[Re(CO)3(dppz)(py)]+ has higher Log Po/w and binding constant (Kb) with biomolecules (protein, lipid and DNA) compared to complexes of fac-[Re(CO)3(phen)(py)]+ and fac-[Re(CO)3(dpq)(py)]+. As consequence, fac-[Re(CO)3(dppz)(py)]+ exhibited the highest cytotoxicity (IC50 = 8.5 μM for HeLa cells) for fac-[Re(CO)3(dppz)(py)]+ among the studied compounds (IC50 > 15 μM). This highest cytotoxicity of fac-[Re(CO)3(dppz)(py)]+ are probably related to its lipophilicity, higher permeation of the lipid bilayers of cells, and a more potent interaction of the dppz ligand with biomolecules (protein and DNA). Our findings open novel avenues for rational drug design and highlight the importance of considering the chemical structures of rhenium complexes that strongly interact with biomolecules (proteins, lipids, and DNA).
Collapse
Affiliation(s)
- Tayná Saraiva de Lavor
- Laboratório Interdisciplinar de Fototerapia e Biomoléculas (LIFeBio), Instituto de Química (IQ), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | | - Patrícia Alves de Matos
- Laboratório Interdisciplinar de Fototerapia e Biomoléculas (LIFeBio), Instituto de Química (IQ), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Ricardo Campos Lino
- Laboratório de Citogenética, Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Clara Maria Faria Silva
- Laboratório de Citogenética, Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Marcos Eduardo Gomes do Carmo
- Laboratory of Photochemistry and Materials Science, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcelo Emílio Beletti
- Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Antonio Otavio T Patrocinio
- Laboratory of Photochemistry and Materials Science, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Robson José de Oliveira Júnior
- Laboratório de Citogenética, Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil.
| | - Tayana Mazin Tsubone
- Laboratório Interdisciplinar de Fototerapia e Biomoléculas (LIFeBio), Instituto de Química (IQ), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Belykh DV, Pylina YI, Kustov AV, Startseva OM, Belykh ES, Smirnova NL, Shukhto OV, Berezin DB. Photosensitizing effects and physicochemical properties of chlorophyll a derivatives with hydrophilic oligoethylene glycol fragments at the macrocycle periphery. Photochem Photobiol Sci 2024; 23:409-420. [PMID: 38319518 DOI: 10.1007/s43630-023-00527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
In this work, screening studies of the cytotoxic effect of chlorins with fragments of di-, tri-, and pentaethylene glycol at the macrocycle periphery in relation to HeLa, A549, and HT29 cells were performed. It is shown that, despite different hydrophobicity, all the compounds studied have a comparable photodynamic effect. The conjugate of chlorin e6 with pentaethylene glycol, which has the lowest tendency to association among the studied compounds with tropism for low density lipoproteins and the best characteristics of the formation of molecular complexes with Tween 80, has a significant difference in dark and photoinduced toxicity (ratio IC50(dark)/IC50(photo) approximately 2 orders of magnitude for all cell lines), which allows to hope for a sufficiently large "therapeutic window". A study of the interaction of this compound with HeLa cells shows that the substance penetrates the cell and, after red light irradiation induces ROS appearance inside the cell, associated, apparently, with the photogeneration of singlet oxygen. These data indicate that photoinduced toxic effects are caused by damage to intracellular structures as a result of oxidative stress. Programmed type of cell death characterized with caspase-3 induction is prevailing. So, the conjugate of chlorin e6 with pentaethylene glycol is a promising antitumor PS that can be successfully solubilized with Tween 80, which makes it suitable for further in vivo studies.
Collapse
Affiliation(s)
- D V Belykh
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, 48, Pervomaiskaya St., Syktyvkar, 167982, Russia.
| | - Y I Pylina
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28, Kommunisticheskaya St., Syktyvkar, 167982, Russian Federation
| | - A V Kustov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences (ISC RAS), 1, Akademicheskaya St., 153045, Ivanovo, Russian Federation
| | - O M Startseva
- Pitirim Sorokin Syktyvkar State University, 55, Oktyabrskiy Pr., Syktyvkar, 167001, Russian Federation
| | - E S Belykh
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28, Kommunisticheskaya St., Syktyvkar, 167982, Russian Federation
| | - N L Smirnova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences (ISC RAS), 1, Akademicheskaya St., 153045, Ivanovo, Russian Federation
| | - O V Shukhto
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevskiy Ave., 153012, Ivanovo, Russian Federation
| | - D B Berezin
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevskiy Ave., 153012, Ivanovo, Russian Federation
| |
Collapse
|
3
|
Wang G, Yang C, Shan M, Jia H, Zhang S, Chen X, Liu W, Liu X, Chen J, Wang X. Synergistic Poly(lactic acid) Antibacterial Surface Combining Superhydrophobicity for Antiadhesion and Chlorophyll for Photodynamic Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8987-8998. [PMID: 35839422 DOI: 10.1021/acs.langmuir.2c01377] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The problem of nosocomial infections caused by bacterial growth on material surfaces is an urgent threat to public health. Although numerous materials and methods have been explored to fight against infections, the methods are complicated and the materials are slightly toxic. It is highly desirable to develop an antibacterial strategy that kills bacteria effectively without drug resistance and cytotoxicity. Herein, we present a synergistic antibacterial polylactic acid (PLA) surface with superhydrophobic antibacterial adhesion and photodynamic bactericidal activity. Initially, the surface displayed low-adhesion superhydrophobicity and resisted most bacterial adhesion. Furthermore, completely non-toxic chlorophyll possessed excellent photodynamic bactericidal properties under non-toxic visible light, which was incorporated into micro-/nanoscale PLA surfaces. We achieved efficient antibacterial activity using completely non-toxic materials and a facile non-solvent-induced phase separation process. This non-toxic, simple, good biocompatible, and no drug-resistant strategy has great advantages in combating bacterial infections.
Collapse
Affiliation(s)
- Gege Wang
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Cao Yang
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Shan
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Hanyu Jia
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Shike Zhang
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Chen
- College of Food Science and Engineering, National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
| | - Wentao Liu
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Xuying Liu
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Jinzhou Chen
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghong Wang
- School of Materials Science and Engineering, the Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Kustov AV, Berezin DB, Kruchin SO, Batov DV. Interaction of Macrocyclic Dicationic Photosensitizers with Tween 80. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Szafraniec MJ, Toporkiewicz M, Gamian A. Zinc-Substituted Pheophorbide A Is a Safe and Efficient Antivascular Photodynamic Agent. Pharmaceuticals (Basel) 2022; 15:ph15020235. [PMID: 35215347 PMCID: PMC8874758 DOI: 10.3390/ph15020235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/20/2022] Open
Abstract
The present study focuses on the photodynamic activity of zinc-substituted pheophorbide a against human endothelial cells. Previously, zinc pheophorbide a has been shown to be a very potent photosensitizer but also a strong albumin binder. Binding to albumin significantly reduces its availability to cancer cells, which may necessitate the use of relatively high doses. Here we show that zinc pheophorbide a is very effective against vascular endothelial cells, even in its albumin-complexed form. Albumin complexation increases the lysosomal accumulation of the drug, thus enhancing its efficiency. Zinc pheophorbide a at nanomolar concentrations induces endothelial cell death via apoptosis, which in many cases is considered a desirable cell death mode because of its anti-inflammatory effect. Additionally, we demonstrate that in comparison to tumor cells, endothelial cells are much more susceptible to photodynamic treatment with the use of the investigated compound. Our findings demonstrate that zinc pheophorbide a is a very promising photosensitizer for use in vascular-targeted photodynamic therapy against solid tumors, acting as a vascular shutdown inducer. It can also possibly find application in the treatment of a range of vascular disorders. Numerous properties of zinc pheophorbide a are comparable or even more favorable than those of the well-known photosensitizer of a similar structure, palladium bacteriopheophorbide (TOOKAD®).
Collapse
Affiliation(s)
- Milena J. Szafraniec
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
- Correspondence:
| | - Monika Toporkiewicz
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland;
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| |
Collapse
|
6
|
Lei S, yuane Z, Yuting C, Lu C, Kang C, Fu C. Effects of different processing methods on the chlorophyll structure in kiwifruit. Food Funct 2022; 13:2109-2119. [DOI: 10.1039/d1fo03568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kiwifruit puree was treated with high and normal temperature withal pressure as independent variables to determinate the structural changes of chlorophyll derivatives. Two groups of colored elution samples were identified...
Collapse
|
7
|
Mazière C, Bodo M, Perdrau MA, Cravo-Laureau C, Duran R, Dupuy C, Hubas C. Climate change influences chlorophylls and bacteriochlorophylls metabolism in hypersaline microbial mat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149787. [PMID: 34464796 DOI: 10.1016/j.scitotenv.2021.149787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to determine the effect of the climatic change on the phototrophic communities of hypersaline microbial mats. Ocean acidification and warming were simulated alone and together on microbial mats placed into mesocosms. As expected, the temperature in the warming treatments increased by 4 °C from the initial temperature. Surprisingly, no significance difference was observed between the water pH of the different treatments despite of a decrease of 0.4 unit pH in the water reserves of acidification treatments. The salinity increased on the warming treatments and the dissolved oxygen concentration increased and was higher on the acidification treatments. A total of 37 pigments were identified belonging to chlorophylls, carotenes and xanthophylls families. The higher abundance of unknown chlorophyll molecules called chlorophyll derivatives was observed in the acidification alone treatment with a decrease in chlorophyll a abundance. This change in pigmentary composition was accompanied by a higher production of bound extracellular carbohydrates but didn't affect the photosynthetic efficiency of the microbial mats. A careful analysis of the absorption properties of these molecules indicated that these chlorophyll derivatives were likely bacteriochlorophyll c contained in the chlorosomes of green anoxygenic phototroph bacteria. Two hypotheses can be drawn from these results: 1/ the phototrophic communities of the microbial mats were modified under acidification treatment leading to a higher relative abundance of green anoxygenic bacteria, or 2/ the highest availability of CO2 in the environment has led to a shift in the metabolism of green anoxygenic bacteria being more competitive than other phototrophs.
Collapse
Affiliation(s)
- C Mazière
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 525, Bât. IBEAS, BP1155, 64013 Pau cedex, France; La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés), 2, rue Olympe de Gouges, Bât. ILE, 17000 La Rochelle, France.
| | - M Bodo
- Muséum National d'Histoire Naturelle, UMR BOREA 8067, MNHN-IRD-CNRS-SU-UCN-UA, Station Marine de Concarneau, 29900 Concarneau, France
| | - M A Perdrau
- La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés), 2, rue Olympe de Gouges, Bât. ILE, 17000 La Rochelle, France
| | - C Cravo-Laureau
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 525, Bât. IBEAS, BP1155, 64013 Pau cedex, France
| | - R Duran
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 525, Bât. IBEAS, BP1155, 64013 Pau cedex, France
| | - C Dupuy
- La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés), 2, rue Olympe de Gouges, Bât. ILE, 17000 La Rochelle, France
| | - C Hubas
- Muséum National d'Histoire Naturelle, UMR BOREA 8067, MNHN-IRD-CNRS-SU-UCN-UA, Station Marine de Concarneau, 29900 Concarneau, France
| |
Collapse
|
8
|
Composition and Antioxidant Properties of Pigments of Mediterranean Herbs and Spices as Affected by Different Extraction Methods. Foods 2021; 10:foods10102477. [PMID: 34681526 PMCID: PMC8535699 DOI: 10.3390/foods10102477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
This study examined the composition and properties of chlorophyll and carotenoid extracted from the leaves of several Mediterranean evergreen shrubs and subshrubs (Myrtus communis L., Pistacia lentiscus L., Thymus vulgaris L., Salvia officinalis L. and Laurus nobilis L.) commonly used as herbs and spices. In order to fully assess their composition over a wide polarity range, pigments were extracted by successive solvent extraction with hexane, 80% acetone and 96% ethanol. Agitation-assisted extraction (AAE), ultrasound-assisted extraction (UAE) and pressurized liquid extraction (PLE) were employed and compared regarding their effect on the pigments’ yield and composition. Individual chlorophylls and carotenoids were analyzed by HPLC-DAD, while the content of total pigments and the extracts’ antioxidant capacity were determined spectrophotometrically. Throughout the experiments, pheophytin a, b and b’ were dominant chlorophyll molecules, while lutein and β-carotene were dominant carotenoids. Overall, the extracted pigments were determined as being in the range of 73.84–127.60 mg 100 g−1 and were the lowest in T. vulgaris, with no significant differences between other species. M. communis and P. lentiscus had the highest antioxidant capacities, showing a moderate positive correlation with carotenoid and chlorophyll levels. Significant differences were found in the levels of individual pigments with most of them showing a medium level of polarity due to the dissolution in acetone as a medium polar solvent. AAE and PLE demonstrated similar efficacy in the extraction of both carotenoids and chlorophylls; however, preference can be given to PLE, being a novel method with numerous advantages, e.g., shorter extraction time and lower solvent consumption. The examined plant species certainly expressed great diversity and showed the potential for application in the production of various functional products.
Collapse
|
9
|
Khunnawutmanotham N, Chimnoi N, Nangkoed P, Hasakunpaisarn A, Wiwattanapaisarn W, Techasakul S. Facile Extraction of Three Main Indole Alkaloids from
Mitragyna speciosa
by Using Hot Water. ChemistrySelect 2021. [DOI: 10.1002/slct.202102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nisachon Khunnawutmanotham
- Laboratory of Organic Synthesis Chulabhorn Research Institute 54 Kamphaeng Phet6, Talat Bang Khen Lak Si, Bangkok 10210 Thailand
| | - Nitirat Chimnoi
- Laboratory of Natural Products Chulabhorn Research Institute 54 Kamphaeng Phet6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand
| | - Phonchanok Nangkoed
- Laboratory of Organic Synthesis Chulabhorn Research Institute 54 Kamphaeng Phet6, Talat Bang Khen Lak Si, Bangkok 10210 Thailand
| | - Anuch Hasakunpaisarn
- Office of Police Forensic Science Royal Thai PoliceHenry Dunant Road, Patumwan Bangkok 10330 Thailand
| | - Waraporn Wiwattanapaisarn
- Office of Police Forensic Science Royal Thai PoliceHenry Dunant Road, Patumwan Bangkok 10330 Thailand
| | - Supanna Techasakul
- Laboratory of Organic Synthesis Chulabhorn Research Institute 54 Kamphaeng Phet6, Talat Bang Khen Lak Si, Bangkok 10210 Thailand
| |
Collapse
|
10
|
Conrado PCV, Sakita KM, Arita GS, Gonçalves RS, Cesar GB, Caetano W, Hioka N, Voidaleski MF, Vicente VA, Svidzinski TIE, Bonfim-Mendonça PS, Kioshima ES. Hypericin-P123-photodynamic therapy in an ex vivo model as an alternative treatment approach for onychomycosis caused by Fusarium spp. Photodiagnosis Photodyn Ther 2021; 35:102414. [PMID: 34186264 DOI: 10.1016/j.pdpdt.2021.102414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
BackgroundFusarium has been considered an opportunistic pathogen, causing several infections in humans, including onychomycosis. In addition, a high resistance to conventional antifungals has been linked to this genus. Photodynamic Therapy (PDT), known as a non-invasive therapy, can be an alternative treatment for fungal infections, based on the excitation of a photosensitizing compound (PS) by a specific length of light, causing damage to the target. The aim of this study was to evaluate the effects of a formulation of Hypericin (Hyp) encapsulated in Pluronic™ (P123), via photodynamic therapy (PDT), on planktonic cells and biofilms in Fusarium spp. using in vitro and ex vivo assays. Materials & Methods epidemiology studies about Fusarium spp. in onychomycosis was perfomed, carried out molecular identification, compared the antifungal activity of the conventional antifungals with PDT with encapsulated Hypericin (Hyp-P123), carried out detection of reactive oxygen species, and measured the antibiofilm effect of the Hyp-P123-PDT in vitro and in an ex vivo model of onychomycosis. Results Hyp-P123-PDT exhibited a fungicidal effect in vitro with reductions ≥ 3 log10. ROS generation increased post-Hyp-P123-PDT in Fusarium spp. Hyp-P123-PDT showed a potent inhibitory effect on adhesion-phase and mature biofilms in vitro tests and an ex vivo model of onychomycosis (p<0.0001). Conclusion Hyp-P123-PDT had a potent effect against Fusarium spp., suggesting that photodynamic therapy with Hyp-P123 is a safe and promising treatment for onychomycosis in clinical practice.
Collapse
Affiliation(s)
- Pollyanna C V Conrado
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Karina M Sakita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Glaucia S Arita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | | | - Gabriel B Cesar
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Morgana F Voidaleski
- Department of Pathology Basic, State Federal University of Parana, Parana, Brazil
| | - Vania A Vicente
- Department of Pathology Basic, State Federal University of Parana, Parana, Brazil
| | | | | | - Erika S Kioshima
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil.
| |
Collapse
|
11
|
Kustov AV, Krestyaninov MA, Kruchin SO, Shukhto OV, Kustova TV, Belykh DV, Khudyaeva IS, Koifman MO, Razgovorov PB, Berezin DB. Interaction of cationic chlorin photosensitizers with non-ionic surfactant Tween 80. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Estevão BM, de Freitas CF, Franciscato DS, de Assis FF, de Oliveira KT, Hioka N, Caetano W, Muniz EC. Synthetic chlorin derivative self-prevented from aggregation: Behavior in homogeneous medium for PDT applications. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Shamaei A, Mahmoudi B, Kazemnejadi M, Nasseri MA. Mg‐catalyzed one‐pot preparation of benzimidazoles and spirooxindoles by an immobilized chlorophyll
b
on magnetic nanoparticles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arezoo Shamaei
- Department of Chemistry, Faculty of Science University of Birjand Birjand Iran
| | - Boshra Mahmoudi
- Department of Chemistry, Faculty of Science University of Birjand Birjand Iran
- Research Center Sulaimani Polytechnic University Sulaimani Iraq
| | - Milad Kazemnejadi
- Department of Chemistry, Faculty of Science University of Birjand Birjand Iran
| | | |
Collapse
|
14
|
Dodge N, Russo DA, Blossom BM, Singh RK, van Oort B, Croce R, Bjerrum MJ, Jensen PE. Water-soluble chlorophyll-binding proteins from Brassica oleracea allow for stable photobiocatalytic oxidation of cellulose by a lytic polysaccharide monooxygenase. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:192. [PMID: 33292428 PMCID: PMC7708235 DOI: 10.1186/s13068-020-01832-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/16/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lytic polysaccharide monooxygenases (LPMOs) are indispensable redox enzymes used in industry for the saccharification of plant biomass. LPMO-driven cellulose oxidation can be enhanced considerably through photobiocatalysis using chlorophyll derivatives and light. Water soluble chlorophyll binding proteins (WSCPs) make it is possible to stabilize and solubilize chlorophyll in aqueous solution, allowing for in vitro studies on photostability and ROS production. Here we aim to apply WSCP-Chl a as a photosensitizing complex for photobiocatalysis with the LPMO, TtAA9. RESULTS We have in this study demonstrated how WSCP reconstituted with chlorophyll a (WSCP-Chl a) can create a stable photosensitizing complex which produces controlled amounts of H2O2 in the presence of ascorbic acid and light. WSCP-Chl a is highly reactive and allows for tightly controlled formation of H2O2 by regulating light intensity. TtAA9 together with WSCP-Chl a shows increased cellulose oxidation under low light conditions, and the WSCP-Chl a complex remains stable after 24 h of light exposure. Additionally, the WSCP-Chl a complex demonstrates stability over a range of temperatures and pH conditions relevant for enzyme activity in industrial settings. CONCLUSION With WSCP-Chl a as the photosensitizer, the need to replenish Chl is greatly reduced, enhancing the catalytic lifetime of light-driven LPMOs and increasing the efficiency of cellulose depolymerization. WSCP-Chl a allows for stable photobiocatalysis providing a sustainable solution for biomass processing.
Collapse
Affiliation(s)
- N Dodge
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - D A Russo
- Department of Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - B M Blossom
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - R K Singh
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - B van Oort
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - R Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M J Bjerrum
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - P E Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark.
| |
Collapse
|
15
|
Berezin DB, Makarov VV, Znoyko SA, Mayzlish VE, Kustov AV. Aggregation of water soluble octaanionic phthalocyanines and their photoinactivation antimicrobial effect in vitro. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Wang F, Terazono Y, Liu J, Fefer M, Pelton RH. Adsorption of aqueous copper chlorophyllin mixtures on model surfaces. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Zhou YM, Liu XC, Li YQ, Wang P, Han RM, Zhang JP, Skibsted LH. Synergy between plant phenols and carotenoids in stabilizing lipid-bilayer membranes of giant unilamellar vesicles against oxidative destruction. SOFT MATTER 2020; 16:1792-1800. [PMID: 31970380 DOI: 10.1039/c9sm01415b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have investigated the synergism between plant phenols and carotenoids in protecting the phosphatidylcholine (PC) membranes of giant unilamellar vesicles (GUVs) from oxidative destruction, for which chlorophyll-a (Chl-a) was used as a lipophilic photosensitizer. The effect was examined for seven different combinations of β-carotene (β-CAR) and plant phenols. The light-induced change in GUV morphology was monitored via conventional optical microscopy, and quantified by a dimensionless image-entropy parameter, ΔE. The ΔE-t time evolution profiles exhibiting successive lag phase, budding phase and ending phase could be accounted for by a Boltzmann model function. The length of the lag phase (LP in s) for the combination of syringic acid and β-CAR was more than seven fold longer than for β-CAR alone, and those for other different combinations followed the order: salicylic acid < vanillic acid < syringic acid > rutin > caffeic acid > quercetin > catechin, indicating that moderately reducing phenols appeared to be the most efficient membrane co-stabilizers. The same order held for the residual contents of β-CAR in membranes after light-induced oxidative degradation as determined by resonance Raman spectroscopy. The dependence of LP on the reducing power of phenols coincided with the Marcus theory plot for the rate of electron transfer from phenols to the radical cation β-CAR˙+ as a primary oxidative product, suggesting that the plant phenol regeneration of β-CAR plays an important role in stabilizing the GUV membranes, as further supported by the involvement of CAR˙+ and the distinct shortening of its lifetime as shown by transient absorption spectroscopy.
Collapse
Affiliation(s)
- Yi-Ming Zhou
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Effects of gold nanoparticles on photophysical behaviour of chlorophyll and pheophytin. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
da Silva Souza Campanholi K, Jaski JM, da Silva Junior RC, Zanqui AB, Lazarin-Bidóia D, da Silva CM, da Silva EA, Hioka N, Nakamura CV, Cardozo-Filho L, Caetano W. Photodamage on Staphylococcus aureus by natural extract from Tetragonia tetragonoides (Pall.) Kuntze: Clean method of extraction, characterization and photophysical studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111763. [PMID: 31931382 DOI: 10.1016/j.jphotobiol.2019.111763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) is a clinical modality that allows the destruction of tumor cells and microorganisms by reactive oxygen species, formed by the combination of photosensitizer (PS), molecular oxygen and adequate wavelength light. This research, through a clean methodology that involves pressurized liquids extraction (PLE), obtained a highly antimicrobial extract of Tetragonia tetragonoides, which rich in chlorophylls as photosensitizers. The Chlorophylls-based extract (Cbe-PLE) presented pharmacological safety, through the maintenance of cellular viability. In addition, Cbe-PLE showed great efficacy against Staphylococcus aureus, with severe dose-dependent damage to the cell wall of the pathogen. The obtained product has a high potential for the development of photostimulated phytotherapic formulations for clinical applications in localized infections, as a complementary therapeutic alternative to antibiotics.
Collapse
Affiliation(s)
| | - Jonas Marcelo Jaski
- Department of Agronomy, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | | | - Ana Beatriz Zanqui
- Department of Chemical Engineering, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | | | | | - Edson Antonio da Silva
- State University of Western Paraná, 645 Faculdade Street, 85903-000, Toledo, Paraná, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Celso Vataru Nakamura
- Department of Microbiology, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Lucio Cardozo-Filho
- Department of Chemical Engineering, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná 87020-900, Brazil
| |
Collapse
|
20
|
Radchenko AS, Kostyukov AA, Markova AA, Shtil AA, Nekipelova TD, Borissevitch IE, Kuzmin VA. Photoactivated biscarbocyanine dye with two conjugated chromophores: complexes with albumin, photochemical and phototoxic properties. Photochem Photobiol Sci 2019; 18:2461-2468. [PMID: 31410432 DOI: 10.1039/c9pp00241c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexes of photosensitizers with blood proteins play an essential role in their delivery to the cell, as well as in the efficacy of photodynamic therapy. Biscarbocyanine dye non-covalently binds human serum albumin (HSA), the dissociation constant of the dye with albumin being Kd = (1.7 ± 0.1) × 10-5 M. According to time correlated single photon counting (TCSPC) fluorescence lifetime spectroscopy data, two types of complexes with lifetimes of 1.0 ns and 2.5 ns are formed between the dye and HSA. Confocal fluorescence microscopy has unambiguously shown the penetration of biscarbocyanine into endoplasmic reticulum, lysosomes, mitochondria and nuclei of the cells. The dye demonstrates photocytotoxicity towards the colon carcinoma HCT116 cells with IC50 = 0.3 μM. Hydrophobicity of the polymethine chain and the presence of two positive charges on the dye molecule contribute to the effective binding of the dye with HSA and the penetration into cells. These facts allow considering the biscarbocyanine dye as a promising agent for the photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Alexandra S Radchenko
- Emanuel Institute of Biochemical Physics RAS, Kosygin st., 4, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
21
|
The behavior of monocationic chlorin in water and aqueous solutions of non-ionic surfactant Tween 80 and potassium iodide. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Sakita KM, Conrado PCV, Faria DR, Arita GS, Capoci IRG, Rodrigues-Vendramini FAV, Pieralisi N, Cesar GB, Gonçalves RS, Caetano W, Hioka N, Kioshima ES, Svidzinski TIE, Bonfim-Mendonça PS. Copolymeric micelles as efficient inert nanocarrier for hypericin in the photodynamic inactivation of Candida species. Future Microbiol 2019; 14:519-531. [DOI: 10.2217/fmb-2018-0304] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the efficacy of photodynamic inactivation (PDI) mediated by hypericin encapsulated in P-123 copolymeric micelles (P123-Hyp) alone and in combination with fluconazole (FLU) against planktonic cells and biofilm formation of Candida species Materials & methods: PDI was performed using P123-Hyp and an LED device with irradiance of 3.0 mW/cm2 . Results: Most of isolates (70%) were completely inhibited with concentrations up to 2.0 μmol/l of HYP and light fluence of 16.2 J/cm2. FLU-resistant strains had synergic effect with P123-HYP-PDI and FLU. The biofilm formation was inhibited in all species, in additional the changes in Candida morphology observed by scanning electron microscopy. Conclusion: P123-Hyp-PDI is a promising option to treat fungal infections and medical devices to prevent biofilm formation and fungal spread.
Collapse
Affiliation(s)
- Karina M Sakita
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Pollyanna CV Conrado
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Daniella R Faria
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Glaucia S Arita
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | - Isis RG Capoci
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | | | - Neli Pieralisi
- Department of Odontology, State University of Maringá, Paraná, Brazil
| | - Gabriel B Cesar
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | | | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Paraná, Brazil
| | - Erika S Kioshima
- Department of Analysis Clinics & Biomedicine, State University of Maringá, Paraná, Brazil
| | | | | |
Collapse
|
23
|
Gerola AP, Costa PFA, de Morais FAP, Tsubone TM, Caleare AO, Nakamura CV, Brunaldi K, Caetano W, Kimura E, Hioka N. Liposome and polymeric micelle-based delivery systems for chlorophylls: Photodamage effects on Staphylococcus aureus. Colloids Surf B Biointerfaces 2019; 177:487-495. [PMID: 30807963 DOI: 10.1016/j.colsurfb.2019.02.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/22/2019] [Accepted: 02/17/2019] [Indexed: 01/25/2023]
Abstract
Chlorophyll derivatives (Chls), loaded in F-127 polymeric micelles and DPPC liposomes as drug delivery systems (DDS), have been shown to be remarkable photosensitizers for photodynamic inactivation (PDI). Assays of photoinactivation of Staphylococcus aureus bacteria (as biological models) showed that the effectiveness of Chls in these nanocarriers is dependent on photobleaching processes, photosensitizer locations in DDS, singlet oxygen quantum yields, and Chl uptake to bacteria. These are factors related to changes in Chl structure, such as the presence of metals, charge, and the phytyl chain. The photodynamic activity was significantly greater for Chls without the phytyl chain, i.e., phorbides derivatives. Furthermore, the inactivation of S. aureus was increased by the use of liposomes compared to micelles. Therefore, this research details and shows the high significance of the Chl structure and delivery system to enhance the photodynamic activity. It also highlights the chlorophylls (particularly phorbides) in liposomes as promising photosensitizers for PDI.
Collapse
Affiliation(s)
- Adriana P Gerola
- Chemistry Department, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil; Chemistry Department, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Paulo F A Costa
- Chemistry Department, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil; Chemistry Department, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Flávia A P de Morais
- Chemistry Department, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Tayana M Tsubone
- Institute of Chemistry, Universidade de São Paulo, São Paulo, São Paulo, 05508-000, Brazil
| | - Angelo O Caleare
- Department of Clinical Analyzes and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Celso V Nakamura
- Department of Physiological Sciences, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Kellen Brunaldi
- Department of Pharmacy and Pharmacology, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Wilker Caetano
- Chemistry Department, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Elza Kimura
- Department of Pharmacy and Pharmacology, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Noboru Hioka
- Chemistry Department, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
24
|
Oxygen distribution in the fluid/gel phases of lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:879-886. [PMID: 30716292 DOI: 10.1016/j.bbamem.2019.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/25/2023]
Abstract
The interactions between oxygen and lipid membranes play fundamental roles in basic biological processes (e.g., cellular respiration). Obviously, membrane oxidation is expected to be critically dependent on the distribution and concentration of oxygen in the membrane. Here, we combined theoretical and experimental methods to investigate oxygen partition and distribution in lipid membranes of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in a temperature range between 298 and 323 K, specifically focusing on the changes caused by the lipid phase and phase transition. Even though oxygen is known to be more concentrated in the center of fluid phase membranes than on the headgroup regions, the distribution profile of oxygen inside gel-phase bilayers remained to be determined. Molecular dynamics simulations now show that the distribution of oxygen inside DPPC bilayers dramatically changes upon crossing the main transition temperature, with oxygen being nearly depleted halfway from the headgroups to the membrane center below the transition temperature. In a parallel approach, singlet oxygen luminescence emission measurements employing the photosensitizer Pheophorbide-a (Pheo) confirmed the differences in oxygen distribution and concentration profiles between gel- and fluid-phase membranes, revealing changes in the microenvironment of the embedded photosensitizer. Our results also reveal that excited triplet state lifetime, as it can be determined from the singlet oxygen luminescence kinetics, is a useful probe to assess oxygen distribution in lipid membranes with distinct lipid compositions.
Collapse
|
25
|
Chlorophylls B formulated in nanostructured colloidal solutions: Interaction, spectroscopic, and photophysical studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Berezin DB, Solodukhin TN, Shukhto OV, Belykh DV, Startseva OM, Khudyaeva IS, Kustov AV. Association of hydrophilic derivatives of chlorophyll a in ethanol–water and ethanol–water–solubilizer systems. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2212-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Wang HC, Hou YT, Hsieh BC. Direct Photometric Assay for Copper Chlorophyll Adulterants in Edible Oil by the Aid of an Ultraviolet-Photobleaching Pretreatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8859-8863. [PMID: 30067024 DOI: 10.1021/acs.jafc.8b02170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Adulterating edible oil with copper chlorophyll derivatives (E141i) has made a substantial impact on the edible oil industry and food safety. This study demonstrates an efficient and reliable screening method to directly identify the color adulteration by the aid of a simple photobleaching pretreatment using a 365 nm ultraviolet-light-emitting diode working at a photon flux density of 480 mmol m-2 s-1 for 24 min. The content of copper chlorophyll [predominantly Cu-pyropheophytin a (Cu-py a)] can be calculated by A600, A650, and A700 with satisfactory spike recovery [97.9-103.6%; six kinds of edible oils spiked with 1 ppm of Cu-py a; n = 3 for each kind of oil; relative standard deviation (RSD) < 5%], linearity ( R2 = 0.9961 when spiking 0.1-10 ppm of Cu-py a into soybean oil standard; n = 3 for each concentration; RSD < 5%), and reproducibility (RSD < 5% for spiking 1 ppm of Cu-py a into soybean oil standard; n = 3 over 3 days). The detection limit (S/N > 5) was 0.05 ppm. The analytical results of 50 commercially available oil samples were verified by the official high-performance liquid chromatography method.
Collapse
Affiliation(s)
- Hung-Cheng Wang
- Department of Bio-Industrial Mechatronics Engineering , National Taiwan University , Number 1, Section 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Yung-Te Hou
- Department of Bio-Industrial Mechatronics Engineering , National Taiwan University , Number 1, Section 4, Roosevelt Road , Taipei 10617 , Taiwan
| | - Bo-Chuan Hsieh
- Department of Bio-Industrial Mechatronics Engineering , National Taiwan University , Number 1, Section 4, Roosevelt Road , Taipei 10617 , Taiwan
| |
Collapse
|
28
|
Delpino-Rius A, Cosovanu D, Eras J, Vilaró F, Balcells M, Canela-Garayoa R. A fast and reliable ultrahigh-performance liquid chromatography method to assess the fate of chlorophylls in teas and processed vegetable foodstuff. J Chromatogr A 2018; 1568:69-79. [PMID: 30122167 DOI: 10.1016/j.chroma.2018.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/09/2023]
Abstract
A total of 48 chlorophylls and derivatives were identified and successfully determined in tea and processed vegetable and fruit foodstuff by UHPLC with photodiode-array and mass spectrometry detection. The method allowed the proper separation of chlorophyll derivatives resulting from demetallation, dephytilation, decarbomethoxylation, epimerisation and copperisation. The method was performed in less than 12 min, using an optimised ternary gradient (MeOH, iPrOH, MeCN and H2O with 10 mM of ammonium acetate) on an ACQUITY HSS T3 column. Mass spectrometry, applying both ESI and APCI ionization sources, was used for identification purposes. The method was applied to evaluate the degree of processing in teas of different origin and quality. It allowed differentiation between supermarket own-brand tea bags and teas sold by specialised shops. Pheophytins, pheophorbides and pyro derivatives were found mainly in processed green vegetable and fruit products thereof. However, chlorophyll-derived food colorants, such as Cu-chlorophyllins, Cu-pheophytins, Cu-pyropheophytins, Cu-pheophorbides and Cu-pyropheophorbides, were also detected in several products.
Collapse
Affiliation(s)
| | - Diana Cosovanu
- Chemistry Department, ETSEA, University of Lleida, 25198, Lleida, Spain
| | - Jordi Eras
- Chemistry Department, ETSEA, University of Lleida, 25198, Lleida, Spain; DATCEM Scientific Technical Services, University of Lleida, 25198, Lleida, Spain.
| | - Francesca Vilaró
- DATCEM Scientific Technical Services, University of Lleida, 25198, Lleida, Spain
| | - Mercè Balcells
- Chemistry Department, ETSEA, University of Lleida, 25198, Lleida, Spain.
| | | |
Collapse
|
29
|
Kolbas A, Kolbas N, Marchand L, Herzig R, Mench M. Morphological and functional responses of a metal-tolerant sunflower mutant line to a copper-contaminated soil series. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16686-16701. [PMID: 29611120 DOI: 10.1007/s11356-018-1837-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The potential use of a metal-tolerant sunflower mutant line for biomonitoring Cu phytoavailability, Cu-induced soil phytotoxicity, and Cu phytoextraction was assessed on a Cu-contaminated soil series (13-1020 mg Cu kg-1) obtained by fading a sandy topsoil from a wood preservation site with a similar uncontaminated soil. Morphological and functional plant responses as well as shoot, leaf, and root ionomes were measured after a 1-month pot experiment. Hypocotyl length, shoot and root dry weight (DW) yields, and leaf area gradually decreased as soil Cu exposure rose. Their dose-response curves (DRC) plotted against indicators of Cu exposure were generally well fitted by sigmoidal curves. The half-maximal effective concentration (EC50) of morphological parameters ranged between 203 and 333 mg Cu kg-1 soil, corresponding to 290-430 μg Cu L-1 in the soil pore water, and 20 ± 5 mg Cu kg-1 DW in the shoots. The EC10 for shoot Cu concentration (13-15 mg Cu kg-1 DW) coincided to 166 mg Cu kg-1 soil. Total chlorophyll content and total antioxidant capacity (TAC) were early biomarkers (EC10: 23 and 51 mg Cu kg-1 soil). Their DRC displayed a biphasic response. Photosynthetic pigment contents, e.g., carotenoids, correlated with TAC. Ionome was changed in Cu-stressed roots, shoots, and leaves. Shoot Cu removal peaked roughly at 280 μg Cu L-1 in the soil pore water.
Collapse
Affiliation(s)
- Aliaksandr Kolbas
- BIOGECO, INRA, Univ. Bordeaux, Bât. B2, allée G. St-Hilaire, CS50023, F-33615, Pessac cedex, France
- Brest State University named after A.S. Pushkin, Boulevard of Cosmonauts, 21, 224016, Brest, Belarus
| | - Natallia Kolbas
- Brest State University named after A.S. Pushkin, Boulevard of Cosmonauts, 21, 224016, Brest, Belarus
| | - Lilian Marchand
- BIOGECO, INRA, Univ. Bordeaux, Bât. B2, allée G. St-Hilaire, CS50023, F-33615, Pessac cedex, France
| | - Rolf Herzig
- Phytotech Foundation, Quartiergasse 12, 3013, Berne, Switzerland
| | - Michel Mench
- BIOGECO, INRA, Univ. Bordeaux, Bât. B2, allée G. St-Hilaire, CS50023, F-33615, Pessac cedex, France.
- INRA, UMR BIOGECO 1202, Diversity and Functioning of Communities, University of Bordeaux, Bât. B2, allée G. St-Hilaire, CS50023, F-33615, Pessac cedex, France.
| |
Collapse
|
30
|
Abstract
Kinetics of acid-induced chlorophyll demetallation was recorded in microdroplets by fusing a stream of microdroplets containing 40 μM chlorophyll a or b dissolved in methanol with a stream of aqueous microdroplets containing 35 mM hydrochloric acid (pH = 1·46). The kinetics of the demetallation of chlorophyll in the fused microdroplets (14 ± 6 μm diameter; 84 ± 18 m s−1 velocity) was recorded by controlling the traveling distance of the fused microdroplets between the fusion region and the inlet of a mass spectrometer. The rate of acid-induced chlorophyll demetallation was about 960 ± 120 times faster in the charged microdroplets compared with that reported in bulk solution. If no voltage was applied to the sprayed microdroplets, then the acceleration factor was about 580 ± 90, suggesting that the applied voltage is not a major factor determining the acceleration. Chlorophyll a was more rapidly demetallated than chlorophyll b by a factor of ~26 in bulk solution and ~5 in charged microdroplets. The demetallation kinetics was second order in the H+ concentration, but the acceleration factor of microdroplets compared with bulk solution appeared to be unchanged in going from pH = 1·3 to 7·0. The water:methanol ratio of the fused microdroplets was varied from 7:3 to 3:7 causing an increase in the reaction rate of chlorophyll a demetallation by 20%. This observation demonstrates that the solvent composition, which has different evaporation rates, does not significantly affect the acceleration. We believe that a major portion of the acceleration can be attributed to confinement effects involving surface reactions rather than either to evaporation of solvents or to the introduction of charges to the microdroplets.
Collapse
|
31
|
Mancini JA, Sheehan M, Kodali G, Chow BY, Bryant DA, Dutton PL, Moser CC. De novo synthetic biliprotein design, assembly and excitation energy transfer. J R Soc Interface 2018; 15:20180021. [PMID: 29618529 PMCID: PMC5938588 DOI: 10.1098/rsif.2018.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022] Open
Abstract
Bilins are linear tetrapyrrole chromophores with a wide range of visible and near-visible light absorption and emission properties. These properties are tuned upon binding to natural proteins and exploited in photosynthetic light-harvesting and non-photosynthetic light-sensitive signalling. These pigmented proteins are now being manipulated to develop fluorescent experimental tools. To engineer the optical properties of bound bilins for specific applications more flexibly, we have used first principles of protein folding to design novel, stable and highly adaptable bilin-binding four-α-helix bundle protein frames, called maquettes, and explored the minimal requirements underlying covalent bilin ligation and conformational restriction responsible for the strong and variable absorption, fluorescence and excitation energy transfer of these proteins. Biliverdin, phycocyanobilin and phycoerythrobilin bind covalently to maquette Cys in vitro A blue-shifted tripyrrole formed from maquette-bound phycocyanobilin displays a quantum yield of 26%. Although unrelated in fold and sequence to natural phycobiliproteins, bilin lyases nevertheless interact with maquettes during co-expression in Escherichia coli to improve the efficiency of bilin binding and influence bilin structure. Bilins bind in vitro and in vivo to Cys residues placed in loops, towards the amino end or in the middle of helices but bind poorly at the carboxyl end of helices. Bilin-binding efficiency and fluorescence yield are improved by Arg and Asp residues adjacent to the ligating Cys on the same helix and by His residues on adjacent helices.
Collapse
Affiliation(s)
- Joshua A Mancini
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Molly Sheehan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Goutham Kodali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Nanda Kumar D, Chandrasekaran N, Mukherjee A. Horseradish peroxidase-mediated in situ synthesis of silver nanoparticles: application for sensing of mercury. NEW J CHEM 2018; 42:13763-13769. [DOI: 10.1039/c8nj02083c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Schematic representation for spectrophotometric detection of Hg2+ using an enzyme-mediated formation of silver nanoparticles.
Collapse
Affiliation(s)
| | | | - A. Mukherjee
- Centre for Nanobiotechnology
- VIT
- Vellore – 632014
- India
| |
Collapse
|
33
|
Mancini JA, Kodali G, Jiang J, Reddy KR, Lindsey JS, Bryant DA, Dutton PL, Moser CC. Multi-step excitation energy transfer engineered in genetic fusions of natural and synthetic light-harvesting proteins. J R Soc Interface 2017; 14:rsif.2016.0896. [PMID: 28179548 DOI: 10.1098/rsif.2016.0896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/16/2017] [Indexed: 11/12/2022] Open
Abstract
Synthetic proteins designed and constructed from first principles with minimal reference to the sequence of any natural protein have proven robust and extraordinarily adaptable for engineering a range of functions. Here for the first time we describe the expression and genetic fusion of a natural photosynthetic light-harvesting subunit with a synthetic protein designed for light energy capture and multi-step transfer. We demonstrate excitation energy transfer from the bilin of the CpcA subunit (phycocyanin α subunit) of the cyanobacterial photosynthetic light-harvesting phycobilisome to synthetic four-helix-bundle proteins accommodating sites that specifically bind a variety of selected photoactive tetrapyrroles positioned to enhance energy transfer by relay. The examination of combinations of different bilin, chlorin and bacteriochlorin cofactors has led to identification of the preconditions for directing energy from the bilin light-harvesting antenna into synthetic protein-cofactor constructs that can be customized for light-activated chemistry in the cell.
Collapse
Affiliation(s)
- Joshua A Mancini
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Goutham Kodali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianbing Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Meares A, Satraitis A, Akhigbe J, Santhanam N, Swaminathan S, Ehudin M, Ptaszek M. Amphiphilic BODIPY-Hydroporphyrin Energy Transfer Arrays with Broadly Tunable Absorption and Deep Red/Near-Infrared Emission in Aqueous Micelles. J Org Chem 2017; 82:6054-6070. [PMID: 28516773 PMCID: PMC5873324 DOI: 10.1021/acs.joc.7b00357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BODIPY-hydroporphyrin energy transfer arrays allow for development of a family of fluorophores featuring a common excitation band at 500 nm, tunable excitation band in the deep red/near-infrared window, and tunable emission. Their biomedical applications are contingent upon retaining their optical properties in an aqueous environment. Amphiphilic arrays containing PEG-substituted BODIPY and chlorins or bacteriochlorins were prepared and their optical and fluorescence properties were determined in organic solvents and aqueous surfactants. The first series of arrays contains BODIPYs with PEG substituents attached to the boron, whereas in the second series, PEG substituents are attached to the aryl at the meso positions of BODIPY. For both series of arrays, excitation of BODIPY at 500 nm results in efficient energy transfer to and bright emission of hydroporphyrin in the deep-red (640-660 nm) or near-infrared (740-760 nm) spectral windows. In aqueous solution of nonionic surfactants (Triton X-100 and Tween 20) arrays from the second series exhibit significant quenching of fluorescence, whereas properties of arrays from the first series are comparable to those observed in polar organic solvents. Reported arrays possess large effective Stokes shift (115-260 nm), multiple excitation wavelengths, and narrow, tunable deep-red/near-IR fluorescence in aqueous surfactants, and are promising candidates for a variety of biomedical-related applications.
Collapse
Affiliation(s)
- Adam Meares
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| | - Andrius Satraitis
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| | - Joshua Akhigbe
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| | - Nithya Santhanam
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| | - Subramani Swaminathan
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| | - Melanie Ehudin
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| | - Marcin Ptaszek
- University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, 21250 Maryland, United States
| |
Collapse
|
35
|
Managa M, Ngoy BP, Nyokong T. The photophysical studies of Pluronic F127/P123 micelle mixture system loaded with metal free and Zn 5,10,15,20-tetrakis[4-(benzyloxy) phenyl]porphyrins. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Gerola AP, de Morais FAP, Costa PFA, Kimura E, Caetano W, Hioka N. Characterization of chlorophyll derivatives in micelles of polymeric surfactants aiming photodynamic applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:213-221. [PMID: 27665188 DOI: 10.1016/j.saa.2016.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/06/2016] [Accepted: 09/17/2016] [Indexed: 05/20/2023]
Abstract
The spectrophotometric properties of chlorophylls' derivatives (Chls) formulated in the Pluronics® F-127 and P-123 were evaluated and the results have shown that the Chls were efficiently solubilized in these drug delivery systems as monomers. The relative location of the Chls in the Pluronics® was estimated from the Stokes shift and micropolarity of the micellar environment. Chls with phytyl chain were located in the micellar core, where the micropolarity is similar to ethanol, while phorbides' derivatives (without phytyl chain) were located in the outer shell of the micelle, i.e., more polar environment. In addition, the thermal stability of the micellar formulations was evaluated through electronic absorption, fluorescence emission and resonance light scattering with lowering the temperature. The Chls promote the stability of the micelles at temperatures below the Critical Micellar Temperature (CMT) of these surfactants. For F-127 formulations, the water molecules drive through inside the nano-structure at temperatures below the CMT, which increased the polarity of this microenvironment and directly affected the spectrophotometric properties of the Chls with phytyl chain. The properties of the micellar microenvironment of P-123, with more hydrophobic core due to the small PEO/PPO fraction, were less affected by lowering the temperature than for F-127. These results enable us to better understand the Chls behavior in micellar copolymers and allowed us to design new drug delivery system that maintains the photosensitizer's properties for photodynamic applications.
Collapse
Affiliation(s)
- Adriana Passarella Gerola
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo 5.790, 87020-900 Maringá, PR, Brazil
| | | | - Paulo Fernando A Costa
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo 5.790, 87020-900 Maringá, PR, Brazil
| | - Elza Kimura
- Department of Pharmacy, Universidade Estadual de Maringá, Av. Colombo 5.790, 87020-900 Maringá, PR, Brazil
| | - Wilker Caetano
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo 5.790, 87020-900 Maringá, PR, Brazil
| | - Noboru Hioka
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo 5.790, 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
37
|
Krause GH, Winter K, Krause B, Virgo A. Protection by light against heat stress in leaves of tropical crassulacean acid metabolism plants containing high acid levels. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1061-1069. [PMID: 32480526 DOI: 10.1071/fp16093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/13/2016] [Indexed: 06/11/2023]
Abstract
Heat tolerance of plants exhibiting crassulacean acid metabolism (CAM) was determined by exposing leaf sections to a range of temperatures both in the dark and the light, followed by measuring chlorophyll a fluorescence (Fv/Fm and F0) and assessing visible tissue damage. Three CAM species, Clusia rosea Jacq., Clusia pratensis Seem. and Agave angustifolia Haw., were studied. In acidified tissues sampled at the end of the night and exposed to elevated temperatures in the dark, the temperature that caused a 50% decline of Fv/Fm (T50), was remarkably low (40-43°C in leaves of C. rosea). Conversion of chlorophyll to pheophytin indicated irreversible tissue damage caused by malic acid released from the vacuoles. By contrast, when acidified leaves were illuminated during heat treatments, T50 was up to 50-51°C. In de-acidified samples taken at the end of the light period, T50 reached ∼54°C, irrespective of whether temperature treatments were done in the dark or light. Acclimation of A. angustifolia to elevated daytime temperatures resulted in a rise of T50 from ∼54° to ∼57°C. In the field, high tissue temperatures always occur during sun exposure. Measurements of the heat tolerance of CAM plants that use heat treatments of acidified tissue in the dark do not provide relevant information on heat tolerance in an ecological context. However, in the physiological context, such studies may provide important clues on vacuolar properties during the CAM cycle (i.e. on the temperature relationships of malic acid storage and malic acid release).
Collapse
Affiliation(s)
- G Heinrich Krause
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama
| | - Barbara Krause
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
38
|
Seifert B, Zude-Sasse M. High hydrostatic pressure effects on spectral-optical variables of the chlorophyll pool in climacteric fruit. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Pellosi DS, Tessaro AL, Moret F, Gaio E, Reddi E, Caetano W, Quaglia F, Hioka N. Pluronic® mixed micelles as efficient nanocarriers for benzoporphyrin derivatives applied to photodynamic therapy in cancer cells. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.08.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Cavonius LR, Albers E, Undeland I. pH-shift processing of Nannochloropsis oculata microalgal biomass to obtain a protein-enriched food or feed ingredient. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Bacellar IOL, Tsubone TM, Pavani C, Baptista MS. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death. Int J Mol Sci 2015; 16:20523-59. [PMID: 26334268 PMCID: PMC4613217 DOI: 10.3390/ijms160920523] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.
Collapse
Affiliation(s)
- Isabel O L Bacellar
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| | - Tayana M Tsubone
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| | - Christiane Pavani
- Programa de Pós Graduação em Biofotônica Aplicada às Ciências da Saúde, Universidade Nove de Julho, São Paulo 01504-001, Brazil.
| | - Mauricio S Baptista
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
42
|
Vilsinski BH, Gerola AP, Enumo JA, Campanholi KDSS, Pereira PCDS, Braga G, Hioka N, Kimura E, Tessaro AL, Caetano W. Formulation of Aluminum Chloride Phthalocyanine in Pluronic™P-123 and F-127 Block Copolymer Micelles: Photophysical properties and Photodynamic Inactivation of Microorganisms. Photochem Photobiol 2015; 91:518-25. [DOI: 10.1111/php.12421] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 01/10/2015] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | | | | | - Gustavo Braga
- Chemistry Department; State University of Maringá; Maringá Paraná Brazil
| | - Noboru Hioka
- Chemistry Department; State University of Maringá; Maringá Paraná Brazil
| | - Elza Kimura
- Department of Pharmacy and Pharmacology; State University of Maringá; Maringá Paraná Brazil
| | - André Luiz Tessaro
- Chemistry Departament; The Federal University of Technology; Maringá Paraná Brazil
| | - Wilker Caetano
- Chemistry Department; State University of Maringá; Maringá Paraná Brazil
| |
Collapse
|
43
|
Sadaoka K, Oba T, Tamiaki H, Kashimura S, Saga Y. Demetalation kinetics of the zinc chlorophyll derivative possessing two formyl groups: effects of formyl groups conjugated to the chlorin macrocycle on physicochemical properties of photosynthetic pigments. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Demetalation kinetics of zinc chlorophyll derivative 1 possessing two formyl groups directly linked to the A- and B-rings of the chlorin macrocycle, which was synthesized from chlorophyll b, was examined under acidic conditions and compared with those of Zn chlorins 2 and 3 possessing a single formyl group in the A- and B-ring, respectively, as well as Zn chlorin 4 lacking any formyl group to unravel the substitution effects on demetalation properties of chlorophyllous pigments. Demetalation kinetics of diformylated Zn chlorin 1 was slower than those of monoformylated Zn chlorins 2 and 3, indicating that the effect of the electron-withdrawing formyl group on demetalation kinetics was amplified by introduction of two formyl groups to the chlorin macrocycle. High correlations were observed between demetalation rate constants of Zn chlorins 1–4 and the sum of Hammett σ parameters of the 3- and 7-substituents on the chlorin macrocycle, indicating that the combination of electron-withdrawing abilities of the substituents linked directly to the cyclic tetrapyrrole was responsible for demetalation properties of zinc chlorophyll derivatives.
Collapse
Affiliation(s)
- Kana Sadaoka
- Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Toru Oba
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8585, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shigenori Kashimura
- Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
44
|
Saga Y, Kobashiri Y, Sadaoka K. Systematic Analysis of the Demetalation Kinetics of Zinc Chlorophyll Derivatives Possessing Different Substituents at the 3-Position: Effects of the Electron-Withdrawing and Electron-Donating Strength of Peripheral Substituents. Inorg Chem 2012; 52:204-10. [DOI: 10.1021/ic3016782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty
of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuta Kobashiri
- Department of Chemistry, Faculty
of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kana Sadaoka
- Department of Chemistry, Faculty
of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
45
|
|
46
|
Rabello BR, Gerola AP, Pellosi DS, Tessaro AL, Aparício JL, Caetano W, Hioka N. Singlet oxygen dosimetry using uric acid as a chemical probe: Systematic evaluation. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.04.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Halls JE, Wright KJ, Pickersgill JE, Smith JP, Altalhi AA, Bourne RW, Alaei P, Ramakrishnappa T, Kelly SM, Wadhawan JD. Voltammetry within structured liquid nanosystems: Towards the design of a flexible, three-dimensional framework for artificial photosystems. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|