1
|
Jain A, De S, Haloi P, Barman P. The solvent-regulated excited state reaction mechanism of 2-(2'-hydroxyphenyl)benzothiazole aggregates. Photochem Photobiol Sci 2024; 23:65-78. [PMID: 38006523 DOI: 10.1007/s43630-023-00499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/20/2023] [Indexed: 11/27/2023]
Abstract
The excited state relaxation dynamics of 2-(2'-hydroxyphenyl)benzothiazole (HBT) in the gas phase and the solvents have been explored experimentally and theoretically. However, the fundamental mechanism of its emission in aggregates is still unexplored. In this article, we have presented a detail investigation of solvent-regulated excited state (ES) reactions for HBT aggregates with the aid of several experimental and theoretical research. The careful investigation of solvatochromic and electrochemical behavior elucidates that the emission around 460 nm of HBT in DMSO and DMSO-water fraction correspond to the excited state internal charge transfer (ESICT). The quantum chemical analysis further supports this observation. The concentration-dependent 1H NMR and emission studies of HBT in DMSO revealed the formation of aggregates at higher concentrations that facilitate the charge transfer. The emission pattern of HBT in the AcN-water fraction demonstrates that the sequential internal charge transfer-proton transfer (ESICT-ESIPT) occurs in HBT aggregates. The pH studies show that HBT aggregates are potential ratiometric sensors for near-physiological pH ranges. Moreover, a ground-state zwitterionic conformation of HBT is observed in the basic medium formed by ground-state internal proton transfer (GSIPT). Overall, this study provides a better understanding of solvent-regulated ES reaction mechanism in the case of HBT aggregates and other substituted HBT compound aggregates published previously.
Collapse
Affiliation(s)
- Abhinav Jain
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Soumik De
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Pankaj Haloi
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Pranjit Barman
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India.
| |
Collapse
|
2
|
Xie J, Wang Z, Zhu R, Jiang J, Weng TC, Ren Y, Han S, Huang Y, Liu W. Investigation of Excited-State Intramolecular Proton Transfer and Structural Dynamics in Bis-Benzimidazole Derivative (BBM). Int J Mol Sci 2023; 24:ijms24119438. [PMID: 37298391 DOI: 10.3390/ijms24119438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The bis-benzimidazole derivative (BBM) molecule, consisting of two 2-(2'-hydroxyphenyl) benzimidazole (HBI) halves, has been synthesized and successfully utilized as a ratiometric fluorescence sensor for the sensitive detection of Cu2+ based on enol-keto excited-state intramolecular proton transfer (ESIPT). In this study, we strategically implement femtosecond stimulated Raman spectroscopy and several time-resolved electronic spectroscopies, aided by quantum chemical calculations to investigate the detailed primary photodynamics of the BBM molecule. The results demonstrate that the ESIPT from BBM-enol* to BBM-keto* was observed in only one of the HBI halves with a time constant of 300 fs; after that, the rotation of the dihedral angle between the two HBI halves generated a planarized BBM-keto* isomer in 3 ps, leading to a dynamic redshift of BBM-keto* emission.
Collapse
Affiliation(s)
- Junhan Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruixue Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiaming Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuhua Han
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Yifan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU and SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| |
Collapse
|
3
|
Lee H, Lee S, Han MS. Turn-On Fluorescent pH Probes for Monitoring Alkaline pHs Using Bis[2-(2'-hydroxyphenyl)benzazole] Derivatives. SENSORS (BASEL, SWITZERLAND) 2023; 23:2044. [PMID: 36850652 PMCID: PMC9965889 DOI: 10.3390/s23042044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
For surveilling human health, industries, and the environment, pH monitoring is important. Numerous studies on fluorescent probes have been conducted to monitor various pH ranges. However, fluorescent probes that are capable of sensing alkaline regions are rare. In this study, we propose turn-on-type fluorescent probes for detecting alkaline pHs using bis[2-(2'-hydroxyphenyl)benzazole] (bis(HBX)) derivatives. These probes have high pKa values (from 9.7 to 10.8) and exhibit strong fluorescence intensity and color changes at alkaline pHs. Probes derived from bis(HBX) exhibit good photostability, reversibility, and anti-interference toward pH variations, which can be identified as a certain fluorescence change toward a basic pH. Therefore, compounds would be advantageous to use fluorescent probes for monitoring alkaline pH changes.
Collapse
|
4
|
Li Y, Dahal D, Pang Y. Fluorescence Lifetimes of NIR-Emitting Molecules with Excited-State Intramolecular Proton Transfer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010125. [PMID: 36615319 PMCID: PMC9822172 DOI: 10.3390/molecules28010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Molecular probes based on the excited-state intramolecular proton-transfer (ESIPT) mechanism have emerged to be attractive candidates for various applications. Although the steady-state fluorescence mechanisms of these ESIPT-based probes have been reported extensively, less information is available about the fluorescence lifetime characteristics of newly developed NIR-emitting dyes. In this study, four NIR-emitting ESIPT dyes with different cyanine terminal groups were investigated to evaluate their fluorescence lifetime characteristics in a polar aprotic solvent such as CH2Cl2. By using the time-correlated single-photon counting (TCSPC) method, these ESIPT-based dyes revealed a two-component exponential decay (τ1 and τ2) in about 2-4 nanoseconds (ns). These two components could be related to the excited keto tautomers. With the aid of model compounds (5 and 6) and low-temperature fluorescence spectroscopy (at -189 ℃), this study identified the intramolecular charge transfer (ICT) as one of the major factors that influenced the τ values. The results of this study also revealed that both fluorescence lifetimes and fractional contributions of each component were significantly affected by the probe structures.
Collapse
|
5
|
Liang X, Zhang Z, Fang H. Uncovering the effect of atom substitution on ESIPT direction and luminescent property of the asymmetric two proton acceptor compound: A TD-DFT study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Soley M, Videla PE, Nibbering ETJ, Batista VS. Ultrafast Charge Relocation Dynamics in Enol-Keto Tautomerization Monitored with a Local Soft-X-ray Probe. J Phys Chem Lett 2022; 13:8254-8263. [PMID: 36018775 PMCID: PMC9465716 DOI: 10.1021/acs.jpclett.2c02037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Proton-coupled electron transfer (PCET) is the underlying mechanism governing important reactions ranging from water splitting in photosynthesis to oxygen reduction in hydrogen fuel cells. The interplay of proton and electronic charge distribution motions can vary from sequential to concerted schemes, with elementary steps occurring on ultrafast time scales. We demonstrate with a simulation study that femtosecond soft-X-ray spectroscopy provides key insights into the PCET mechanism of a photoinduced intramolecular enol* → keto* tautomerization reaction. A full quantum treatment of the electronic and nuclear dynamics of 2-(2'-hydroxyphenyl)benzothiazole upon electronic excitation reveals how spectral signatures of local excitations from core to frontier orbitals display the distinctly different stages of charge relocation for the H atom, donating, and accepting sites. Our findings indicate that ultraviolet/X-ray pump-probe spectroscopy provides a unique way to probe ultrafast electronic structure rearrangements in photoinduced chemical reactions essential to understanding the mechanism of PCET.
Collapse
Affiliation(s)
- Micheline
B. Soley
- Department
of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
- Yale
Quantum Institute, Yale University, P.O. Box 208334, New Haven, Connecticut 06520-8263, United States
| | - Pablo E. Videla
- Department
of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
- Energy
Sciences Institute, Yale University, P.O. Box 27394, West Haven, Connecticut 06516-7394, United States
| | - Erik T. J. Nibbering
- Max
Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Victor S. Batista
- Department
of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
- Yale
Quantum Institute, Yale University, P.O. Box 208334, New Haven, Connecticut 06520-8263, United States
- Energy
Sciences Institute, Yale University, P.O. Box 27394, West Haven, Connecticut 06516-7394, United States
| |
Collapse
|
7
|
Chen CG, Nardi AN, Giustini M, D'Abramo M. Absorption behavior of doxorubicin hydrochloride in visible region in different environments: a combined experimental and computational study. Phys Chem Chem Phys 2022; 24:12027-12035. [PMID: 35536553 DOI: 10.1039/d1cp05182b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The experimental absorption measurements in the interval 350-600 nm (Vis), molecular dynamics simulations, quantum-mechanics calculations and an advanced molecular treatment of simulation data are here combined to provide a complete picture of the absorption behavior in the visible portion of the electromagnetic spectrum of the doxorubicin hydrochloride (DX) molecule in different environments. By such an approach, we have shown that it is possible to characterize the effect of the environment on the DX absorption behavior - including the vibronic contributions - as well as to interpret such differences in terms of molecular electronic excited states, which are found to be strongly influenced by the environment.
Collapse
Affiliation(s)
| | | | - Mauro Giustini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Chaihan K, Bui TT, Goubard F, Kungwan N. Tunable keto emission of 2-(2′-hydroxyphenyl)benzothiazole derivatives with π-expansion, substitution and additional proton transfer site for excited-state proton transfer-based fluorescent probes: Theoretical insights. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
The effect of ring aromaticity on ESIPT behavior and photophysical properties of 2-(2′-hydroxyphenyl)- 4-chloromethylthiazole derivatives: A TD-DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Yang Y, Luo X, Ma F, Li Y. Substituent effect on ESIPT mechanisms and photophysical properties of HBT derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119375. [PMID: 33421666 DOI: 10.1016/j.saa.2020.119375] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/05/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Substituent effects on excited-state intramolecular proton transfer (ESIPT) and photophysical properties of 2-(2-Hydroxyphenyl) benzothiazole (HBT) derivatives have been theoretically unveiled via the density functional theory (DFT) and time-dependent DFT (TDDFT). The optimized geometrical configurations and normal mode analyses confirm that the proton transfer processes are more reactive in excited state. Through calculating the activation energies and rate constants of ESIPT processes, finding that the processes are increasingly inactive when substituent group changes from -CN, -CO2Me, -Cl, -Me, -NMe2 to -NO2. In addition, the photophysical properties analyses indicate the vertical transition energies are in good agreement with those observed in experiment. Note that all the absorption and emission maxima of enol and keto forms have the significant red-shift. In order to clarify the substituent effect on ESIPT and photophysical properties, we draw the frontier molecular orbitals (FMOs) isosurfaces and calculate the distances of electrons and holes and atomic charges. It follows that the intramolecular charge transfer (ICT) degrees are increasingly enlarged as substituting from -CN, -CO2Me, -Cl, -Me, -NMe2 to -NO2 groups, which not only causes the red-shift of absorption and emission of enol and keto forms, but also affects the charge distribution of proton donor and acceptor, inhibiting the occurrence of ESIPT processes.
Collapse
Affiliation(s)
- Yunfan Yang
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, PR China; School of Physics, Liaoning University, Shenyang 110036, PR China.
| | - Xiao Luo
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Fengcai Ma
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Yongqing Li
- School of Physics, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
11
|
Bhattacharyya A, Guchhait N. Intriguing photophysical aspects of nitro substituted 2-(2′-hydroxyphenyl)benzothiazole (HBT) derivative: AIE in non-polar media? Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Wang R, Ding J, Zhang Y. Naphthalimide/benzimide-based excited-state intramolecular proton transfer active luminogens: aggregation-induced enhanced emission and potential for chemical modification. NEW J CHEM 2019. [DOI: 10.1039/c9nj01685f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two ESIPT- and AIEE-active molecules, HPIBT, which is superior to HNIBT, and HPIBT-yl can be further modified through high-efficiency click chemistry.
Collapse
Affiliation(s)
- Rong Wang
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Ju Ding
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Yanrong Zhang
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| |
Collapse
|
13
|
Gupta M, Sahana S, Sharma V, Bharadwaj PK. Benzothiazole integrated into a cryptand for ESIPT-based selective chemosensor for Zn2+ ions. Dalton Trans 2019; 48:7801-7808. [DOI: 10.1039/c9dt00548j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel 2(2′-hydroxyphenyl) benzothiazole-based cryptand (L) exhibits high fluorescence intensity in the presence of Zn2+ ions by stopping the excited state intramolecular proton transfer (ESIPT) process with a detection limit of 0.20 μM.
Collapse
Affiliation(s)
- Mayank Gupta
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sunanda Sahana
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Vivekanand Sharma
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | | |
Collapse
|
14
|
Wen K, Guo X, Zhang J. Computational prediction on photophysical properties of two excited state intramolecular proton transfer (ESIPT) fluorophores bearing the benzothiazole group. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1542169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Keke Wen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People’s Republic of China
| | - Xugeng Guo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People’s Republic of China
| | - Jinglai Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People’s Republic of China
| |
Collapse
|
15
|
Kayal S, Roy K, Lakshmanna YA, Umapathy S. Probing the effect of solvation on photoexcited 2-(2′-hydroxyphenyl)benzothiazole via ultrafast Raman loss spectroscopic studies. J Chem Phys 2018; 149:044310. [DOI: 10.1063/1.5028274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Surajit Kayal
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Khokan Roy
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Y. Adithya Lakshmanna
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Siva Umapathy
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
16
|
Wang Q, Niu Y, Wang R, Wu H, Zhang Y. Acid-Induced Shift of Intramolecular Hydrogen Bonding Responsible for Excited-State Intramolecular Proton Transfer. Chem Asian J 2018; 13:1735-1743. [PMID: 29671954 DOI: 10.1002/asia.201800457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/18/2018] [Indexed: 11/10/2022]
Abstract
The significant progress recently achieved in designing smart acid-responsive materials based on intramolecular charge transfer inspired us to utilize excited-state intramolecular proton transfer (ESIPT) for developing a turn-on acid-responsive fluorescent system with an exceedingly large Stokes shift. Two ESIPT-active fluorophores, 2-(2-hydroxyphenyl)pyridine (HPP) and 2-(2-hydroxyphenyl)benzothiazole (HBT), were fused into a novel dye (HBT-HPP) fluorescent only in the protonated state. Moreover, we also synthesized three structurally relevant control compounds to compare their steady-state fluorescence spectra and optimized geometric structures in neutral and acidic media. The results suggest that the fluorescence turn-on was caused by the acid-induced shift of the ESIPT-responsible intramolecular hydrogen bond from the HPP to HBT moiety. This work presents a systematic comparison of the emission efficiencies and basicity of HBT and HPP for the first time, thereby utilizing their differences to construct an acid-responsive smart organic fluorescent material. As a practical application, red fluorescent letters can be written using the acid as an ink on polymer film.
Collapse
Affiliation(s)
- Qin Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yahui Niu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Rong Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Haoran Wu
- Innovation Experimental College, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yanrong Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
17
|
Zhou Y, Cink RB, Fejedelem ZA, Cather Simpson M, Seed AJ, Sampson P, Brasch NE. Development of Photoactivatable Nitroxyl (HNO) Donors Incorporating the (3‐Hydroxy‐2‐naphthalenyl)methyl Phototrigger. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - Ruth B. Cink
- School of Science Auckland University of Technology Private Bag 92006 1142 Auckland New Zealand
| | - Zachary A. Fejedelem
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - M. Cather Simpson
- The Photon Factory School of Chemical Sciences The University of Auckland Private Bag 92019 Auckland New Zealand
| | - Alexander J. Seed
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - Paul Sampson
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - Nicola E. Brasch
- School of Science Auckland University of Technology Private Bag 92006 1142 Auckland New Zealand
| |
Collapse
|
18
|
Alarcos N, Cohen B, Ziółek M, Douhal A. Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chem Rev 2017; 117:13639-13720. [PMID: 29068670 DOI: 10.1021/acs.chemrev.7b00422] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Silica-based materials (SBMs) are widely used in catalysis, photonics, and drug delivery. Their pores and cavities act as hosts of diverse guests ranging from classical dyes to drugs and quantum dots, allowing changes in the photochemical behavior of the confined guests. The heterogeneity of the guest populations as well as the confinement provided by these hosts affect the behavior of the formed hybrid materials. As a consequence, the observed reaction dynamics becomes significantly different and complex. Studying their photobehavior requires advanced laser-based spectroscopy and microscopy techniques as well as computational methods. Thanks to the development of ultrafast (spectroscopy and imaging) tools, we are witnessing an increasing interest of the scientific community to explore the intimate photobehavior of these composites. Here, we review the recent theoretical and ultrafast experimental studies of their photodynamics and discuss the results in comparison to those in homogeneous media. The discussion of the confined dynamics includes solvation and intra- and intermolecular proton-, electron-, and energy transfer events of the guest within the SBMs. Several examples of applications in photocatalysis, (photo)sensors, photonics, photovoltaics, and drug delivery demonstrate the vast potential of the SBMs in modern science and technology.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Marcin Ziółek
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University , Umultowska 85, 61-614 Poznań, Poland
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| |
Collapse
|
19
|
Li H, Yin H, Liu X, Shi Y, Jin M, Ding D. An experimental and theoretical study of solvent hydrogen-bond-donating capacity effects on ultrafast intramolecular charge transfer of LD 490. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 184:270-276. [PMID: 28525861 DOI: 10.1016/j.saa.2017.05.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/13/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
The excited-state intramolecular charge transfer (ICT) of LD 490 were investigated in different hydrogen-bond-donating solvents (α scale) on the basis of the Kamlet-Taft solvatochromic parameters (π*, α, β). The femtosecond transient absorption spectra and the kinetics decay rate reveal that with an increase of solvent's α capacity, the long-lived picosecond process, which is attributed to the ICT, becomes much faster. Combining with time-dependent density functional theory (TDDFT) calculations, we demonstrate that the enhancement of α acidity substantially increases the electronegativity of the carbonyl oxygen in LD 490, which strengthen excited-state intermolecular hydrogen bonding interactions and consequently facilitate the ICT process.
Collapse
Affiliation(s)
- Hui Li
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Xiaochun Liu
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China.
| | - Mingxing Jin
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Dajun Ding
- Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| |
Collapse
|
20
|
Pijeau S, Foster D, Hohenstein EG. Excited-State Dynamics of a Benzotriazole Photostabilizer: 2-(2′-Hydroxy-5′-methylphenyl)benzotriazole. J Phys Chem A 2017; 121:6377-6387. [DOI: 10.1021/acs.jpca.7b04504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shiela Pijeau
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Donneille Foster
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Edward G. Hohenstein
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
21
|
Kothavale S, Erande Y, Sekar N. Triphenylamine-Based Bis- and Tris-ESIPT Compounds and Their Boron Complexes: Synthesis, Photophysical Properties and DFT Study of ICT and ESIPT Emissions. ChemistrySelect 2017. [DOI: 10.1002/slct.201700468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shantaram Kothavale
- Department of Dyestuff Technology; Institute of Chemical Technology; Matunga, Mumbai India
| | - Yogesh Erande
- Department of Dyestuff Technology; Institute of Chemical Technology; Matunga, Mumbai India
| | - Nagaiyan Sekar
- Department of Dyestuff Technology; Institute of Chemical Technology; Matunga, Mumbai India
| |
Collapse
|
22
|
Pijeau S, Foster D, Hohenstein EG. Excited-State Dynamics of 2-(2′-Hydroxyphenyl)benzothiazole: Ultrafast Proton Transfer and Internal Conversion. J Phys Chem A 2017; 121:4595-4605. [DOI: 10.1021/acs.jpca.7b01215] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shiela Pijeau
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Donneille Foster
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Edward G. Hohenstein
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
23
|
Zhang X, Ma WW. Amplified excited state intramolecular proton transfer fluorescence of butterfly-shaped bis-2,6-dibenzothiazolylphenol. Methods Appl Fluoresc 2017; 5:024013. [DOI: 10.1088/2050-6120/aa73b2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Simkovitch R, Huppert D. Intramolecular Excited-State Hydrogen Transfer in Rutin and Quercetin. Isr J Chem 2017. [DOI: 10.1002/ijch.201600112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ron Simkovitch
- Raymond and Beverly Sackler Faculty of Exact Sciences; School of Chemistry; Tel Aviv University; Tel Aviv 69978 Israel
| | - Dan Huppert
- Raymond and Beverly Sackler Faculty of Exact Sciences; School of Chemistry; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
25
|
Pijeau S, Hohenstein EG. Improved Complete Active Space Configuration Interaction Energies with a Simple Correction from Density Functional Theory. J Chem Theory Comput 2017; 13:1130-1146. [DOI: 10.1021/acs.jctc.6b00893] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shiela Pijeau
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Edward G. Hohenstein
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
- Ph.D.
Program in Chemistry, The City University of New York, New York, New York 10016, United States
| |
Collapse
|
26
|
Jagadesan P, Whittemore T, Beirl T, Turro C, McGrier PL. Excited-State Intramolecular Proton-Transfer Properties of Three Tris(N-Salicylideneaniline)-Based Chromophores with Extended Conjugation. Chemistry 2016; 23:917-925. [PMID: 27859715 DOI: 10.1002/chem.201604315] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 01/28/2023]
Abstract
The synthesis and photophysical properties of three tris(N-salicylideneaniline) (TSA) compounds containing 1,3,5-triarylbenzene, -tristyrylbenzene, and -tris(arylethynyl)benzene core units are reported. The TSA compounds underwent efficient excited-state intramolecular proton transfer (ESIPT) in solution and in solid state due to the preformed C=N⋅⋅⋅H-O hydrogen-bonded motifs of the structures. Steady-state fluorescence emission spectra of the TSA molecules revealed dual bands only in DMSO, and large Stokes shifts in other polar aprotic and protic solvents. Femtosecond transient absorption spectroscopic measurements in THF revealed lifetime values in the range of 14-16 ps for the excited-state keto-tautomer. The TSA compounds are also responsive to metal ions (Cu2+ and Zn2+ ) in DMSO, exhibit enhanced aggregate-induced emission (AIE) properties in DMSO/water mixtures, and are highly luminescent in the solid state.
Collapse
Affiliation(s)
- Pradeepkumar Jagadesan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Tyler Whittemore
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Toni Beirl
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Claudia Turro
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| | - Psaras L McGrier
- Department of Chemistry & Biochemistry, The Ohio State University, 100 W 18th Ave., Columbus, Ohio, 43210, USA
| |
Collapse
|
27
|
Wang Q, Xu L, Niu Y, Wang Y, Yuan MS, Zhang Y. Excited State Intramolecular Proton Transfer in Ethynyl-Extended Regioisomers of 2-(2′-Hydroxyphenyl)benzothiazole: Effects of the Position and Electronic Nature of Substituent Groups. Chem Asian J 2016; 11:3454-3464. [DOI: 10.1002/asia.201601340] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Qin Wang
- College of Science; Northwest A&F University; Yangling Shaanxi 712100 P. R. China
| | - Longfei Xu
- College of Science; Northwest A&F University; Yangling Shaanxi 712100 P. R. China
| | - Yahui Niu
- College of Science; Northwest A&F University; Yangling Shaanxi 712100 P. R. China
| | - Yuxiu Wang
- College of Science; Northwest A&F University; Yangling Shaanxi 712100 P. R. China
| | - Mao-Sen Yuan
- College of Science; Northwest A&F University; Yangling Shaanxi 712100 P. R. China
| | - Yanrong Zhang
- College of Science; Northwest A&F University; Yangling Shaanxi 712100 P. R. China
| |
Collapse
|
28
|
Stasyuk AJ, Cywiński PJ, Gryko DT. Excited-state intramolecular proton transfer in 2′-(2′-hydroxyphenyl)imidazo[1,2- a ]pyridines. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2016. [DOI: 10.1016/j.jphotochemrev.2016.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Sahana S, Mishra G, Sivakumar S, Bharadwaj PK. A 2-(2'-hydroxyphenyl)benzothiazole (HBT)-quinoline conjugate: a highly specific fluorescent probe for Hg(2+) based on ESIPT and its application in bioimaging. Dalton Trans 2016; 44:20139-46. [PMID: 26531056 DOI: 10.1039/c5dt03719k] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A benzothiazole derived chemosensor L has been designed based on the excited-state intramolecular proton transfer (ESIPT) mechanism to afford a fluorescence turn-on response specifically in the presence of Hg(2+) ions over a host of biologically relevant metal ions as well as toxic heavy metal ions. The chemosensor exhibits high sensitivity with the detection limit down to 0.11 μM. The metal binding is supported by (1)H NMR titrations, ESI-MS spectral analysis and substantiated by theoretical calculations using the density functional theory. The probe shows cell membrane permeability and efficiency for the detection of Hg(2+) in HeLa cells.
Collapse
Affiliation(s)
- Sunanda Sahana
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Gargi Mishra
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Parimal K Bharadwaj
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
30
|
Skonieczny K, Yoo J, Larsen JM, Espinoza EM, Barbasiewicz M, Vullev VI, Lee CH, Gryko DT. How To Reach Intense Luminescence for Compounds Capable of Excited-State Intramolecular Proton Transfer? Chemistry 2016; 22:7485-96. [PMID: 27062363 DOI: 10.1002/chem.201504944] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 01/03/2023]
Abstract
Photoinduced intramolecular direct arylation allows structurally unique compounds containing phenanthro[9',10':4,5]imidazo[1,2-f]phenanthridine and imidazo[1,2-f]phenanthridine skeletons, which mediate excited-state intramolecular proton transfer (ESIPT), to be efficiently synthesized. The developed polycyclic aromatics demonstrate that the combination of five-membered ring structures with a rigid arrangement between a proton donor and a proton acceptor provides a means for attaining large fluorescence quantum yields, exceeding 0.5, even in protic solvents. Steady-state and time-resolved UV/Vis spectroscopy reveals that, upon photoexcitation, the prepared protic heteroaromatics undergo ESIPT, converting them efficiently into their excited-state keto tautomers, which have lifetimes ranging from about 5 to 10 ns. The rigidity of their structures, which suppresses nonradiative decay pathways, is believed to be the underlying reason for the nanosecond lifetimes of these singlet excited states and the observed high fluorescence quantum yields. Hydrogen bonding with protic solvents does not interfere with the excited-state dynamics and, as a result, there is no difference between the occurrences of ESIPT processes in MeOH versus cyclohexane. Acidic media has a more dramatic effect on suppressing ESIPT by protonating the proton acceptor. As a result, in the presence of an acid, a larger proportion of the fluorescence of ESIPT-capable compounds originates from their enol excited states.
Collapse
Affiliation(s)
- Kamil Skonieczny
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland.,Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Jaeduk Yoo
- Department of Chemistry, Kangwon National University, Chuncheon, 23417, Republic of Korea
| | - Jillian M Larsen
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Eli M Espinoza
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Michał Barbasiewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Valentine I Vullev
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA. .,Department of Chemistry, University of California, Riverside, CA, 92521, USA.
| | - Chang-Hee Lee
- Department of Chemistry, Kangwon National University, Chuncheon, 23417, Republic of Korea.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland.
| |
Collapse
|
31
|
Sulaiman SAJ, Al-Rasbi GS, Abou-Zied OK. Photophysical properties of hydroxyphenyl benzazoles and their applications as fluorescent probes to study local environment in DNA, protein and lipid. LUMINESCENCE 2016; 31:614-25. [DOI: 10.1002/bio.3106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/01/2016] [Accepted: 01/10/2016] [Indexed: 12/22/2022]
Affiliation(s)
| | - Ghalia S. Al-Rasbi
- Department of Chemistry; Sultan Qaboos University; Muscat Sultanate of Oman
| | - Osama K. Abou-Zied
- Department of Chemistry; Sultan Qaboos University; Muscat Sultanate of Oman
| |
Collapse
|
32
|
Gao M, Wang L, Chen J, Li S, Lu G, Wang L, Wang Y, Ren L, Qin A, Tang BZ. Aggregation-Induced Emission Active Probe for Light-Up Detection of Anionic Surfactants and Wash-Free Bacterial Imaging. Chemistry 2016; 22:5107-12. [DOI: 10.1002/chem.201505202] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Meng Gao
- Guangdong Innovative Research Team; State Key Laboratory of Luminescent Materials & Devices; South China University of Technology; Guangzhou 510640 P. R. China
| | - Luochao Wang
- Guangdong Innovative Research Team; State Key Laboratory of Luminescent Materials & Devices; South China University of Technology; Guangzhou 510640 P. R. China
| | - Junjian Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou 510640 P. R. China
| | - Shiwu Li
- Guangdong Innovative Research Team; State Key Laboratory of Luminescent Materials & Devices; South China University of Technology; Guangzhou 510640 P. R. China
| | - Guanhai Lu
- Guangdong Innovative Research Team; State Key Laboratory of Luminescent Materials & Devices; South China University of Technology; Guangzhou 510640 P. R. China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou 510640 P. R. China
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou 510640 P. R. China
| | - Li Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction; South China University of Technology; Guangzhou 510640 P. R. China
| | - Anjun Qin
- Guangdong Innovative Research Team; State Key Laboratory of Luminescent Materials & Devices; South China University of Technology; Guangzhou 510640 P. R. China
| | - Ben Zhong Tang
- Guangdong Innovative Research Team; State Key Laboratory of Luminescent Materials & Devices; South China University of Technology; Guangzhou 510640 P. R. China
- Department of Chemistry and; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon; Hong Kong P. R. China
| |
Collapse
|
33
|
Alarcos N, Gutiérrez M, Liras M, Sánchez F, Moreno M, Douhal A. Direct observation of breaking of the intramolecular H-bond, and slowing down of the proton motion and tuning its mechanism in an HBO derivative. Phys Chem Chem Phys 2016; 17:14569-81. [PMID: 25966780 DOI: 10.1039/c5cp01437a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report on spectroscopic and photodynamical behaviours of 5-amino-2-(2'-hydroxyphenyl)benzoxazole (5A-HBO) in different solutions. The dye undergoes an ultrafast ICT reaction (<50 fs) (comparable to that observed for its methylated derivative, 5A-MBO), in agreement with the results of TD-DFT theoretical calculations (gas phase). Depending on the used solvent, the ICT reaction can be followed by a reversible/irreversible excited-state intramolecular proton transfer (ESIPT) reaction or by breaking of the intramolecular hydrogen bond (IHB). 5A-HBO in n-heptane solution exhibits an irreversible and slow (20 ps) ESIPT reaction, while that of the parent compound, HBO, takes place in less than 150 fs. Compared to excited HBO behaviour, theoretical calculations on 5A-HBO suggest a higher energy barrier (∼4 kcal mol(-1)) between the relaxed enol and keto tautomers, in addition to a less stabilization of the latter, which is in agreement with experiments in n-heptane. On the other hand, in dichloromethane, after the ICT reaction a subsequent and reversible proton motion occurs in an extraordinary slower regime (ns-time scale). No isotopic effect (OH/OD exchange) was observed in this solvent reflecting that the reversible ESIPT reaction evolves along the IHB and solvent coordinates. Using tetrahydrofurane and acetonitrile, we observed a breaking of the IHB due to specific intermolecular interactions with solvent molecules. This leads to the formation of open-enol forms, which undergo an ICT reaction as it occurs in 5A-MBO. These results bring new findings in the coupled ICT and ESIPT reactions. The photobehaviour of this new dye remarkably changes with the solvent nature, opening up the window for further research and possible applications in sensing polarity or H-bonding of media similar to that of the biological ones.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
| | | | | | | | | | | |
Collapse
|
34
|
Stasyuk AJ, Bultinck P, Gryko DT, Cyrański MK. The effect of hydrogen bond strength on emission properties in 2-(2′-hydroxyphenyl)imidazo[1,2-a]pyridines. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Alarcos N, Gutiérrez M, Liras M, Sánchez F, Douhal A. From intra- to inter-molecular hydrogen bonds with the surroundings: steady-state and time-resolved behaviours. Photochem Photobiol Sci 2015; 14:1306-18. [PMID: 26066612 DOI: 10.1039/c5pp00079c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the photodynamics of 2-(2'-hydroxyphenyl)benzoxazole (HBO), compared to its amino derivatives, 6-amino-2-(2'-hydroxypheny)benzoxazole (6A-HBO) and 5-amino-2-(2'-hydroxypheny)benzoxazole (5A-HBO) in N,N-dimethylformamide (DMF) solutions. HBO at S0 shows a reversible deprotonation reaction leading to the production of anionic forms. However, for 6A-HBO and 5A-HBO, DMF containing KOH is necessary to produce the anions. Excited HBO in DMF exhibits intra- as well as inter-molecular proton transfer (ESIPT and ESPT) reactions. With excitation at 330 nm, we observed the open-enol, anti-enol and keto forms with different emission and lifetimes (620 ps, 1.5 ns, and 74 ps, respectively), while with the excitation at 433 nm, only the anionic species emission was detected (3.7 ns). Contrary to HBO, 6A-HBO and 5A-HBO do not exhibit any proton transfer process, and only the emissions of the open-enol charge-transferred forms (open-ECT) were observed, which are comparable to those of their methylated derivatives (6A-MBO and 5A-MBO). Femtosecond studies of 6A-MBO and 6A-HBO in DMF indicate that an intramolecular charge-transfer (ICT) reaction (∼80 fs) and solvent relaxation process (2 ps) take place at S1. Remarkably, the photoinduced breaking of the intramolecular hydrogen bond of 6A-HBO and the formation of an intermolecular hydrogen bond with DMF molecules occurs in 80 ps, while for 5A-HBO, this process occurs in less than 10 ps. In this study, we have demonstrated that the presence and position of the amino group in the HBO framework change both the S0 and S1 behaviours of the intramolecular H-bonds; a result which might be useful for the design and better understanding of supramolecular systems based on intra- and intermolecular H-bonds.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.
| | | | | | | | | |
Collapse
|
36
|
Glowacki DR, Orr-Ewing AJ, Harvey JN. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD3CN treated with a parallel multi-state EVB model. J Chem Phys 2015; 143:044120. [DOI: 10.1063/1.4926996] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David R. Glowacki
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, United Kingdom
- PULSE Institute and Department of Chemistry, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Jeremy N. Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| |
Collapse
|
37
|
Dunkelberger AD, Kieda RD, Marsh BM, Crim FF. Picosecond Dynamics of Avobenzone in Solution. J Phys Chem A 2015; 119:6155-61. [DOI: 10.1021/acs.jpca.5b01641] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam D. Dunkelberger
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Ryan D. Kieda
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Brett M. Marsh
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - F. Fleming Crim
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
38
|
Driscoll E, Sorenson S, Dawlaty JM. Ultrafast Intramolecular Electron and Proton Transfer in Bis(imino)isoindole Derivatives. J Phys Chem A 2015; 119:5618-25. [DOI: 10.1021/acs.jpca.5b02889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric Driscoll
- Department
of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, United States
| | - Shayne Sorenson
- Department
of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, United States
| | - Jahan M. Dawlaty
- Department
of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, United States
| |
Collapse
|
39
|
Chipem FAS, Malakar A, Krishnamoorthy G. Intramolecular Proton Transfer in 2-(2′-hydroxyphenyl)oxazolo[4,5-b]pyridine: Evidence for Tautomer in the Ground State. Photochem Photobiol 2015; 91:298-305. [DOI: 10.1111/php.12411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/14/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Francis A. S. Chipem
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati India
| | - Ashim Malakar
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati India
| | | |
Collapse
|
40
|
Gutierrez M, Alarcos N, Liras M, Sánchez F, Douhal A. Switching to a Reversible Proton Motion in a Charge-Transferred Dye. J Phys Chem B 2015; 119:552-62. [DOI: 10.1021/jp511345z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mario Gutierrez
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Noemí Alarcos
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Marta Liras
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la
Cierva, 3, 28006 Madrid, Spain
| | - Félix Sánchez
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la
Cierva, 3, 28006 Madrid, Spain
| | - Abderrazzak Douhal
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain
| |
Collapse
|
41
|
Baker LA, Horbury MD, Greenough SE, Ashfold MNR, Stavros VG. Broadband ultrafast photoprotection by oxybenzone across the UVB and UVC spectral regions. Photochem Photobiol Sci 2015; 14:1814-20. [DOI: 10.1039/c5pp00217f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent studies have shed light on the energy dissipation mechanism of oxybenzone, a common ingredient in commercial sunscreens.
Collapse
|
42
|
Luber S. Local electric dipole moments for periodic systems via density functional theory embedding. J Chem Phys 2014; 141:234110. [DOI: 10.1063/1.4903828] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
43
|
Kim J, Heo W, Joo T. Excited State Intramolecular Proton Transfer Dynamics of 1-Hydroxy-2-acetonaphthone. J Phys Chem B 2014; 119:2620-7. [DOI: 10.1021/jp5088306] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinyong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Wooseok Heo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
44
|
Aly SM, Usman A, AlZayer M, Hamdi GA, Alarousu E, Mohammed OF. Solvent-Dependent Excited-State Hydrogen Transfer and Intersystem Crossing in 2-(2′-Hydroxyphenyl)-Benzothiazole. J Phys Chem B 2014; 119:2596-603. [DOI: 10.1021/jp508777h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shawkat M. Aly
- Solar and Photovoltaics Engineering
Research Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Anwar Usman
- Solar and Photovoltaics Engineering
Research Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Maytham AlZayer
- Solar and Photovoltaics Engineering
Research Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ghada A. Hamdi
- Solar and Photovoltaics Engineering
Research Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Erkki Alarousu
- Solar and Photovoltaics Engineering
Research Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Solar and Photovoltaics Engineering
Research Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
45
|
Roohi H, Mohtamedifar N, Hejazi F. Intramolecular photoinduced proton transfer in 2-(2′-hydroxyphenyl)benzazole family: A TD-DFT quantum chemical study. Chem Phys 2014. [DOI: 10.1016/j.chemphys.2014.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Wilbraham L, Savarese M, Rega N, Adamo C, Ciofini I. Describing excited state intramolecular proton transfer in dual emissive systems: a density functional theory based analysis. J Phys Chem B 2014; 119:2459-66. [PMID: 25208048 DOI: 10.1021/jp507425x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The excited state intramolecular proton transfer (ESIPT) reaction taking place within 2-(2-hydroxyphenyl)benzoxazole (HBT) and two recently experimentally characterized napthalimide derivatives-known as N-1 and N-4-has been investigated in order to identify and test a possible protocol for the description and complete mechanistic and electronic characterization of the reaction at the excited state. This protocol is based on density functional theory, time-dependent density functional theory, and a recently proposed electron density based index (DCT). This method is able to identify all stable species involved in the reaction, discriminate between possible reaction pathways over potential energy surfaces (PES), which are intrinsically very flat and difficult to characterize, and quantitatively measure the excited state charge transfer character throughout the reaction. The photophysical properties of the molecules (i.e., absorption and emission wavelength) are also quantitatively determined via the implicit inclusion of solvent effects in the case of toluene and, the more polar, tetrahydrofuran. The accuracy obtained with this protocol then opens up the possibility of the ab initio design of molecules exhibiting ESIPT for tailored applications such as highly selective molecular sensors.
Collapse
Affiliation(s)
- Liam Wilbraham
- Institut de Recherche de Chimie Paris IRCP, CNRS-Chimie ParisTech, PSL Research University , 11 Rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | | | |
Collapse
|
47
|
Luber S, Iannuzzi M, Hutter J. Raman spectra from ab initio molecular dynamics and its application to liquid S-methyloxirane. J Chem Phys 2014; 141:094503. [DOI: 10.1063/1.4894425] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Guérin J, Léaustic A, Delbaere S, Berthet J, Guillot R, Ruckebusch C, Métivier R, Nakatani K, Orio M, Sliwa M, Yu P. A Multifunctional Photoswitch: 6π Electrocyclization versus ESIPT and Metalation. Chemistry 2014; 20:12279-88. [DOI: 10.1002/chem.201402448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/09/2014] [Indexed: 11/09/2022]
|
49
|
Mohammed OF, Xiao D, Batista VS, Nibbering ETJ. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling. J Phys Chem A 2014; 118:3090-9. [PMID: 24684387 DOI: 10.1021/jp501612f] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state.
Collapse
Affiliation(s)
- Omar F Mohammed
- Solar and Photovoltaics Engineering Research Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology , Thuwal 23955-6900, Saudi Arabia
| | | | | | | |
Collapse
|
50
|
Yang D, Yang Y, Liu Y. Study on the modulation of spectral properties of the formylperylene-methanol clusters by excited-state hydrogen bonding strengthening. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 117:379-388. [PMID: 24001979 DOI: 10.1016/j.saa.2013.08.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/03/2013] [Accepted: 08/10/2013] [Indexed: 06/02/2023]
Abstract
In the present work, the charge transfer (CT) process within the formylperylene (FPe)-methanol (MeOH) systems facilitated by intermolecular hydrogen bonding interactions is theoretically studied in both the ground state S0 and the first singlet excited state S1. The geometric structures, electronic spectra and the infrared spectra of the FPe monomer as well as the various hydrogen-bonded FPe-MeOH complexes in both states were calculated with the density functional theory (DFT) method and time-dependent density functional theory (TD-DFT) methods, respectively. It is demonstrated that the total effect of the intermolecular hydrogen bonding between FPe and the MeOH molecules becomes strengthened in the ground state as the number of the MeOH molecules hydrogen-bonded to the FPe molecule increases from zero to three, which induces large increases in the dipole moment as well as systemic redshifts of the absorption spectra of FPe. Furthermore, upon photoexcitation of the FPe molecule, the intermolecular hydrogen bonds formed in the various hydrogen-bonded FPe-MeOH complexes are further strengthened which leads to even larger dipole moments as well as obvious redshifts of the fluorescence spectra. The calculated electronic spectra of the various hydrogen-bonded FPe-MeOH complexes are in agreement with the steady-state absorption and fluorescence spectra of FPe observed in the binary mixed solvents with different MeOH concentration. The intermolecular hydrogen bonding strengthening in both the ground and excited states are further confirmed by the infrared spectra shifts. Moreover, the vitally important role played by the intermolecular hydrogen bonding interaction and its strengthening upon electronic excitation in the CT process is discussed.
Collapse
Affiliation(s)
- Dapeng Yang
- Physics Laboratory, North China University of Water Resources and Electric Power, No. 36, Beihuan Road, Zhengzhou 450045, Henan, China.
| | | | | |
Collapse
|