1
|
Kaur B, Kumar N, Kumari L, Gupta AP, Sharma R, Chopra K, Saxena S. In-vitro antioxidant and anti-inflammatory potential along with p.o. pharmacokinetic profile of key bioactive phytocompounds of Snow Mountain Garlic: a comparative analysis vis-à-vis normal garlic. Inflammopharmacology 2024; 32:1871-1886. [PMID: 38564091 DOI: 10.1007/s10787-024-01435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/03/2023] [Indexed: 04/04/2024]
Abstract
Snow mountain garlic (SMG) is a trans-Himalayan medicinal plant used in the traditional medicine system for several ailments, including inflammatory arthritis. Research studies are insufficient to validate its folk medicinal applications. In the present study, the comparative abundance of its key bioactive phytocompounds, viz., S-allyl-L-cysteine (SAC), alliin, and S-methyl-L-cysteine (SMC) against normal garlic were assessed using the LC-MS/MS-MRM method. In addition, the study also explored the antioxidant and anti-inflammatory potency of crude extract of SMG and purified signature phytocompounds (i.e., SMC, SAC, and alliin) in comparison with normal garlic and dexamethasone in LPS-stimulated RAW264.7 macrophage cells. The LC-MS/MS-MRM study revealed significant differences among SMG and normal garlic, viz., alliin 22.8-fold higher in SMG, and SMC could be detected only in SMG. In the bioassays, SMG extract and purified signature phytocompounds significantly downregulated oxidative damage in activated macrophages, boosting endogenous antioxidants' activity. SMG extract-treated macrophages significantly suppressed NF-κB expression and related inflammatory indicators such as cytokines, COX-2, iNOS, and NO. Notably, the observed anti-inflammatory and antioxidant bioactivities of SMG extract were comparable to signature phytocompounds and dexamethasone. In addition, SAC being uniformly found in SMG and normal garlic, its comparative pharmacokinetics was studied to validate the pharmacodynamic superiority of SMG over normal garlic. Significantly higher plasma concentrations (Cmax), half-life (t1/2), and area under curve (AUC) of SAC following SMG extract administration than normal garlic validated the proposed hypothesis. Thus, the abundance of bioactive phytocompounds and their better pharmacokinetics in SMG extract might be underlying its medicinal merits over normal garlic.
Collapse
Affiliation(s)
- Bhupinder Kaur
- Medicinal and Aromatic Plant Division, Defence Institute of High Altitude Research (DIHAR), Defence R & D Organization (DRDO), Ministry of Defence, C/O 56 APO, Leh, Ladakh, 901205, India
- Faculty of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Nitish Kumar
- Medicinal and Aromatic Plant Division, Defence Institute of High Altitude Research (DIHAR), Defence R & D Organization (DRDO), Ministry of Defence, C/O 56 APO, Leh, Ladakh, 901205, India
| | - Laxmi Kumari
- Faculty of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Ajai P Gupta
- Director, Quality Assurance, Food Safety and Standards Authority of India, Ministry of Health and Family Welfare, New Delhi, 110002, India
| | - Rajni Sharma
- Medicinal and Aromatic Plant Division, Defence Institute of High Altitude Research (DIHAR), Defence R & D Organization (DRDO), Ministry of Defence, C/O 56 APO, Leh, Ladakh, 901205, India
| | - Kanwaljit Chopra
- Faculty of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Shweta Saxena
- Medicinal and Aromatic Plant Division, Defence Institute of High Altitude Research (DIHAR), Defence R & D Organization (DRDO), Ministry of Defence, C/O 56 APO, Leh, Ladakh, 901205, India.
| |
Collapse
|
2
|
Iobbi V, Parisi V, Lanteri AP, Maggi N, Giacomini M, Drava G, Minuto G, Minuto A, Tommasi ND, Bisio A. NMR Metabolite Profiling for the Characterization of Vessalico Garlic Ecotype and Bioactivity against Xanthomonas campestris pv. campestris. PLANTS (BASEL, SWITZERLAND) 2024; 13:1170. [PMID: 38732385 PMCID: PMC11085173 DOI: 10.3390/plants13091170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
The Italian garlic ecotype "Vessalico" possesses distinct characteristics compared to its French parent cultivars Messidor and Messidrôme, used for sowing, as well as other ecotypes in neighboring regions. However, due to the lack of a standardized seed supply method and cultivation protocol among farmers in the Vessalico area, a need to identify garlic products that align with the Vessalico ecotype arises. In this study, an NMR-based approach followed by multivariate analysis to analyze the chemical composition of Vessalico garlic sourced from 17 different farms, along with its two French parent cultivars, was employed. Self-organizing maps allowed to identify a homogeneous subset of representative samples of the Vessalico ecotype. Through the OPLS-DA model, the most discriminant metabolites based on values of VIP (Variable Influence on Projections) were selected. Among them, S-allylcysteine emerged as a potential marker for distinguishing the Vessalico garlic from the French parent cultivars by NMR screening. Additionally, to promote sustainable agricultural practices, the potential of Vessalico garlic extracts and its main components as agrochemicals against Xanthomonas campestris pv. campestris, responsible for black rot disease, was explored. The crude extract exhibited a MIC of 125 μg/mL, and allicin demonstrated the highest activity among the tested compounds (MIC value of 31.25 μg/mL).
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (G.D.)
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Salerno, Italy;
| | - Anna Paola Lanteri
- CERSAA Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (G.M.); (A.M.)
| | - Norbert Maggi
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, via Opera Pia 13, 16145 Genova, Italy; (N.M.); (M.G.)
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, via Opera Pia 13, 16145 Genova, Italy; (N.M.); (M.G.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (G.D.)
| | - Giovanni Minuto
- CERSAA Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (G.M.); (A.M.)
| | - Andrea Minuto
- CERSAA Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (G.M.); (A.M.)
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Salerno, Italy;
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (G.D.)
| |
Collapse
|
3
|
Bautista-Perez SM, Silva-Islas CA, Sandoval-Marquez OU, Toledo-Toledo J, Bello-Martínez JM, Barrera-Oviedo D, Maldonado PD. Antioxidant and Anti-Inflammatory Effects of Garlic in Ischemic Stroke: Proposal of a New Mechanism of Protection through Regulation of Neuroplasticity. Antioxidants (Basel) 2023; 12:2126. [PMID: 38136245 PMCID: PMC10740829 DOI: 10.3390/antiox12122126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Stroke represents one of the main causes of death and disability in the world; despite this, pharmacological therapies against stroke remain insufficient. Ischemic stroke is the leading etiology of stroke. Different molecular mechanisms, such as excitotoxicity, oxidative stress, and inflammation, participate in cell death and tissue damage. At a preclinical level, different garlic compounds have been evaluated against these mechanisms. Additionally, there is evidence supporting the participation of garlic compounds in other mechanisms that contribute to brain tissue recovery, such as neuroplasticity. After ischemia, neuroplasticity is activated to recover cognitive and motor function. Some garlic-derived compounds and preparations have shown the ability to promote neuroplasticity under physiological conditions and, more importantly, in cerebral damage models. This work describes damage/repair mechanisms and the importance of garlic as a source of antioxidant and anti-inflammatory agents against damage. Moreover, we examine the less-explored neurotrophic properties of garlic, culminating in proposals and observations based on our review of the available information. The aim of the present study is to propose that garlic compounds and preparations could contribute to the treatment of ischemic stroke through their neurotrophic effects.
Collapse
Affiliation(s)
- Sandra Monserrat Bautista-Perez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| | - Carlos Alfredo Silva-Islas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| | - Oscar Uriel Sandoval-Marquez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| | - Jesús Toledo-Toledo
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
- Servicio de Cirugía General, Hospital General de Zona #30, Instituto Mexicano del Seguro Social, Mexico City 08300, Mexico
| | - José Manuel Bello-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
- Departamento Cirugía General, Hospital Central Militar, Mexico City 11600, Mexico
| | - Diana Barrera-Oviedo
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
| | - Perla D. Maldonado
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (S.M.B.-P.); (J.M.B.-M.); (D.B.-O.)
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.A.S.-I.); (O.U.S.-M.); (J.T.-T.)
| |
Collapse
|
4
|
Vijayan S, Loganathan C, Sakayanathan P, Thayumanavan P. In silico and in vitro investigation of anticancer effect of newly synthesized nonivamide-s-allyl cysteine ester. J Biomol Struct Dyn 2022; 40:11511-11525. [PMID: 34344261 DOI: 10.1080/07391102.2021.1959404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nonivamide (NOV), less pungent analogue of capsaicin present in various Capsicum species is known for various biological properties. S-allyl cysteine (SAC) abundantly present in aged garlic extract is gaining importance for anticancer property. NOV was esterified with SAC to increase the biological activity. In silico ADME analysis revealed the drug-likeness of NOV-SAC. Molecular docking and dynamics simulation analysis were done to understand the interaction of NOV-SAC with therapeutic target proteins (human estrogen receptor α, tumo protein negative regulator mouse double minute 2, B-cell lymphoma 2 and cyclin-dependent kinase 2) to treat cancer. NOV-SAC interacted with these proteins stably with favorable binding energy which was calculated through MMGBSA method. In line with in silico results, NOV-SAC showed antiproliferative activity against breast cancer cell line (MCF-7). NOV-SAC treatment increased ROS generation, decreased the antioxidant level, arrested cells at G1/S phase, disrupted mitochondrial membrane potential and initiated DNA fragmentation. The expression of p53 is increased by NOV-SAC treatment, in concordance the ratio of Bcl-2/Bax was decreased. Altogether, NOV-SAC was synthesized for the first time and it induced apoptosis in MCF-7 cells through triggering ROS generation and increasing the expression of p53. The in silico results has been mirrored in in vitro analysis of NOV-SAC against cancer cell line.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sudha Vijayan
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu, India
| | - Chitra Loganathan
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu, India
| | | | | |
Collapse
|
5
|
Yudhistira B, Punthi F, Lin JA, Sulaimana AS, Chang CK, Hsieh CW. S-Allyl cysteine in garlic (Allium sativum): Formation, biofunction, and resistance to food processing for value-added product development. Compr Rev Food Sci Food Saf 2022; 21:2665-2687. [PMID: 35355410 DOI: 10.1111/1541-4337.12937] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 02/18/2022] [Indexed: 01/20/2023]
Abstract
S-allyl cysteine (SAC), which is the most abundant bioactive compound in black garlic (BG; Allium sativum), has been shown to have antioxidant, anti-apoptotic, anti-inflammatory, anti-obesity, cardioprotective, neuroprotective, and hepatoprotective activities. Sulfur compounds are the most distinctive bioactive elements in garlic. Previous studies have provided evidence that the concentration of SAC in fresh garlic is in the range of 19.0-1736.3 μg/g. Meanwhile, for processed garlic, such as frozen and thawed garlic, pickled garlic, fermented garlic extract, and BG, the SAC content increased to up to 8021.2 μg/g. BG is an SAC-containing product, with heat treatment being used in nearly all methods of BG production. Therefore, strategies to increase the SAC level in garlic are of great interest; however, further knowledge is required about the effect of processing factors and mechanistic changes. This review explains the formation of SAC in garlic, introduces its biological effects, and summarizes the recent advances in processing methods that can affect SAC levels in garlic, including heat treatment, enzymatic treatment, freezing, fermentation, ultrasonic treatment, and high hydrostatic pressure. Thus, the aim of this review was to summarize the outcomes of treatment aimed at maintaining or increasing SAC levels in BG. Therefore, publications from scientific databases in this field of study were examined. The effects of processing methods on SAC compounds were evaluated on the basis of the SAC content. This review provides information on the processing approaches that can assist food manufacturers in the development of value-added garlic products.
Collapse
Affiliation(s)
- Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China.,Department of Food Science and Technology, Sebelas Maret Univeristy, Surakarta City, Central Java, Indonesia
| | - Fuangfah Punthi
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | | | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan, Republic of China
| |
Collapse
|
6
|
Hu G, Cai K, Li Y, Hui T, Wang Z, Chen C, Xu B, Zhang D. Significant inhibition of garlic essential oilon benzo[a]pyrene formation in charcoal-grilled pork sausagesrelates to sulfide compounds. Food Res Int 2021; 141:110127. [PMID: 33641994 DOI: 10.1016/j.foodres.2021.110127] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
To addgarlic more conveniently, the substitute-garlic essential oil(GEO)is wildly applied in meat product for flavor improvement. However, the effects of GEOon chemical hazard formation, such as benzo[a]pyrene (BaP), in meat processing have not been studied. This study focused on the inhibitory effect of garlic (0.05-0.15%, w/w), GEO (0.002-0.006%, w/w) and the active sulfide compounds (0.006%, w/w) on the formation of BaP in charcoal-grilled pork sausages. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity of the garlic, GEO and sulfide compounds was also determined. The results showed that the garlic was efficient in the decrease of DPPH free radicals (14.91-23.39%) and BaP content (37.2-62.3%). GEO was also efficient in scavenging DPPH free radicals (14.17-26.20%) and reducing BaP formation (29.1-57.1%). Gas chromatography-mass spectrometer (GC-MS) analysis identified a total of 41 compounds, of which six major sulfide compounds (allyl methyl sulfide, diallyl sulfide, allyl methyl disulfide, diallyl disulfide, allyl methyl trisulfide and diallyl trisulfide) were screened to assess their inhibition of BaP generation. The BaP inhibition of these sulfide compounds were dependent on the number of sulfur (-S-) and thioallyl group (-S-CH2-CH═CH2); and allyl methyl trisulfide (AMTS) showed the highest BaP inhibition (63.3%). A significant correlation was found between their BaP inhibition and DPPH scavenging activity (Spearman correlation = 0.91, P < 0.001), which indicates that the mechanism of sulfides influencing BaP formation in grilling sausage is related to free radical reaction. Our research gives an insight into the theoretical basis about application of GEO to inhibit BaP during food processing and supports use of GEO as a natural additive in meat products.
Collapse
Affiliation(s)
- Gaofeng Hu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Kezhou Cai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Yuzhu Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Teng Hui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China.
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China.
| | - Conggui Chen
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| |
Collapse
|
7
|
Farhat Z, Hershberger PA, Freudenheim JL, Mammen MJ, Hageman Blair R, Aga DS, Mu L. Types of garlic and their anticancer and antioxidant activity: a review of the epidemiologic and experimental evidence. Eur J Nutr 2021; 60:3585-3609. [PMID: 33543365 DOI: 10.1007/s00394-021-02482-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Garlic, an Allium vegetable, contains rich flavonoids organosulfur compounds (OSCs) that have potent anticancer properties. The aim of the review is to provide an overview of the different types of garlic, their active compounds, and the potential anticancer benefits with a focus on antioxidant activity. Animal and cell line studies have provided convincing evidence that garlic and its organosulfur compounds inhibit carcinogenesis through a number of events including induction of apoptosis, inhibiting cellular proliferation, scavenging radical oxygen species (ROS), increasing the activities of enzymes such as glutathione S-transferase, and reducing tumor size. Epidemiological studies showed compelling evidence that garlic consumption is associated with decreased risk of colorectal cancer, but inconsistent evidence for stomach, breast, and prostate cancers. Studies also suggest that the presence and potency of garlic OSCs varies with respect to the preparation and form of garlic. Further epidemiological studies with information on garlic form consumed or preparation methods and molecular studies regarding its antioxidant mechanisms, such as increasing enzymatic and nonenzymatic antioxidants levels, are warranted.
Collapse
Affiliation(s)
- Zeinab Farhat
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Manoj J Mammen
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Rachael Hageman Blair
- Department of Biostatistics, University at Buffalo, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Diana S Aga
- Department of Chemistry, College of Arts and Sciences, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
8
|
Kurihara K, Moteki H, Natsume H, Ogihara M, Kimura M. The Enhancing Effects of S-Allylcysteine on Liver Regeneration Are Associated with Increased Expression of mRNAs Encoding IGF-1 and Its Receptor in Two-Thirds Partially Hepatectomized Rats. Biol Pharm Bull 2020; 43:1776-1784. [PMID: 33132323 DOI: 10.1248/bpb.b20-00495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two-thirds partial hepatectomy (PHx) was performed in rats, and the differences in effects between S-allylcysteine (SAC) and other sulfur-containing compounds on regeneration of the remaining liver and restoration of the injury were examined. Three days after two-thirds PHx, rats treated with 300 mg/kg/d, per os (p.o.) SAC showed a 1.2-fold increase in liver weight per 100 g body weight compared with saline-treated controls. In contrast, S-methylcysteine (SMC) (300 mg/kg/d, p.o.) or cysteine (Cys) (300 mg/kg/d, p.o.) did not have a regeneration-promoting effect. In the comparison with control rats, the regenerating liver of SAC-treated rats showed a significantly higher 5-bromo-2'-deoxyuridine labeling index on day 1. In contrast, serum alanine aminotransferase activity, which increases following PHx, was significantly inhibited by SAC and SMC (but not Cys) on day 1 after two-thirds PHx. In addition, SAC induced increases in insulin-like growth factor (IGF)-1 and its receptor mRNA expressions at 1 h after two-thirds PHx, and it increased phosphorylation of extracellular signal-regulated kinase (ERK)2 and Akt at 3 h after two-thirds PHx without affecting serum growth hormone levels. These results demonstrate that SAC is a mitogenic effector of normal remnant liver and promotes recuperation of liver function after two-thirds PHx. Moreover, SAC-induced proliferative effects are mediated via increased mRNA expressions of IGF-1 and its receptor and subsequent phosphorylation of ERK2 and Akt.
Collapse
Affiliation(s)
- Kazuki Kurihara
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| | - Hajime Moteki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| | - Hideshi Natsume
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Josai University
| | - Masahiko Ogihara
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| | - Mitsutoshi Kimura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
9
|
Ruiz-Sánchez E, Pedraza-Chaverri J, Medina-Campos ON, Maldonado PD, Rojas P. S-allyl Cysteine, a Garlic Compound, Produces an Antidepressant-Like Effect and Exhibits Antioxidant Properties in Mice. Brain Sci 2020; 10:brainsci10090592. [PMID: 32859119 PMCID: PMC7564461 DOI: 10.3390/brainsci10090592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Depression is a psychiatric disorder, and oxidative stress is a significant mechanism of damage in this mood disorder. It is characterized by an enhancement of oxidative stress markers and low concentrations of endogenous antioxidants, or antioxidants enzymes. This suggests that antioxidants could have an antidepressant effect. S-allyl cysteine (SAC) is a compound with antioxidant action or free radical scavenger capacity. The purpose of the current research was to evaluate the antidepressant-like effect as well as the antioxidant role of SAC on a preclinical test, using the Porsolt forced swim test (FST). SAC (30, 70, 120, or 250 mg/kg, ip) was administered to male BALB/c mice daily for 17 days, followed by the FST at day 18. Oxidative stress markers (reactive oxygen species, superoxide production, lipid peroxidation, and antioxidant enzymes activities) were analyzed in the midbrain, prefrontal cortex, and hippocampus. SAC (120 mg/kg) attenuated the immobility scores (44%) in the FST, and protection was unrelated to changes in locomotor activity. This antidepressant-like effect was related to decreased oxidative stress, as indicated by lipid peroxidation and manganese-superoxide dismutase (Mn-SOD) activity in the hippocampus. SAC exerts an antidepressant-like effect that correlated, in part, with preventing oxidative damage in hippocampus.
Collapse
Affiliation(s)
- Elizabeth Ruiz-Sánchez
- Laboratory of Neurotoxicology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Mexico City 14269, Mexico;
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (J.P.-C.); (O.N.M.-C.)
| | - Omar N. Medina-Campos
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; (J.P.-C.); (O.N.M.-C.)
| | - Perla D. Maldonado
- Laboratory of Cerebral Vascular Pathology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Mexico City 14269, Mexico;
| | - Patricia Rojas
- Laboratory of Neurotoxicology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes Sur No. 3877, Mexico City 14269, Mexico;
- Correspondence: ; Tel.: +52-55-5424-0808
| |
Collapse
|
10
|
Ujowundu CO, Anaba POI, Ulinasombu NB, Ujowundu FN, Igwe KO, Ogbuagu HD. Attenuation of Paraquat-Induced Nephrotoxicity and Dysfunction in Male Wistar Albino Rats. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2020. [DOI: 10.20535/ibb.2020.4.1.191259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
11
|
Kanamori Y, Via LD, Macone A, Canettieri G, Greco A, Toninello A, Agostinelli E. Aged garlic extract and its constituent, S-allyl-L-cysteine, induce the apoptosis of neuroblastoma cancer cells due to mitochondrial membrane depolarization. Exp Ther Med 2019; 19:1511-1521. [PMID: 32010332 PMCID: PMC6966145 DOI: 10.3892/etm.2019.8383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Aged garlic extract (AGE) has been demonstrated to have therapeutic properties in tumors; however its mechanisms of action have not yet been fully elucidated. A previous study revealed that AGE exerts an anti-proliferative effect on a panel of both sensitive [wild-type (WT)] and multidrug-resistant (MDR) human cancer cells. Following treatment of the cells with AGE, cytofluorimetric analysis revealed the occurrence of dose-dependent mitochondrial membrane depolarization (MMD). In this study, in order to further clarify the mechanisms of action of AGE, the effects of AGE on mitochondria isolated from rat liver mitochondria (RLM) were also examined. AGE induced an effect on the components of the electrochemical gradient (ΔµH+), mitochondrial membrane potential (ΔΨm) and mitochondrial electrochemical gradient (ΔpHm). The mitochondrial membrane dysfunctions of RLM induced by AGE, namely the decrease in both membrane potential and chemical gradient were associated with a higher oxidation of both the endogenous glutathione and pyridine nucleotide content. To confirm the anti-proliferative effects of AGE, experiments were performed on the human neuroblastoma (NB) cancer cells, SJ-N-KP and the MYCN-amplified IMR5 cells, using its derivative S-allyl-L-cysteine (SAC), with the aim of providing evidence of the anticancer activity of this compound and its possible molecular mechanism as regards the induction of cytotoxicity. Following treatment of the cells with SAC at 20 mM, cell viability was determined by MTT assay and apoptosis was detected by flow cytometry, using Annexin V-FITC labeling. The percentages of cells undergoing apoptosis was found to be 48.0% in the SJ-N-KP and 50.1% in the IMR5 cells. By cytofluorimetric analysis, it was suggested that the target of SAC are the mitochondria. Mitochondrial activity was examined by labeling the cells with the probe, 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylimidacarbocyanine iodide (JC-1). Following treatment with SAC at 50 mM, both NB cell lines exhibited a marked increase in MMD. On the whole, the findings of this study indicate that both natural products, AGE and SAC, cause cytotoxicity to tumor cells via the induction of mitochondrial permeability transition (MPT).
Collapse
Affiliation(s)
- Yuta Kanamori
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, I-35131 Padua, Italy
| | - Alberto Macone
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Gianluca Canettieri
- Pasteur Laboratory, Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy.,International Polyamines Foundation-ONLUS, I-00159 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, I-00161 Rome, Italy
| | - Antonio Toninello
- International Polyamines Foundation-ONLUS, I-00159 Rome, Italy.,Department of Biomedical Sciences, University of Padua, I-35131 Padua, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy.,International Polyamines Foundation-ONLUS, I-00159 Rome, Italy
| |
Collapse
|
12
|
Wongmaneepratip W, Jom KN, Vangnai K. Inhibitory effects of dietary antioxidants on the formation of carcinogenic polycyclic aromatic hydrocarbons in grilled pork. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1205-1210. [PMID: 30744337 PMCID: PMC6599948 DOI: 10.5713/ajas.18.0805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/19/2018] [Accepted: 01/08/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The inhibitory effects of dietary antioxidants, diallyl disulfide (DADS) and quercetin, in marinade were investigated on the formation of carcinogenic polycyclic aromatic hydrocarbons (EPA priority 16 PAHs) in grilled pork. METHODS The formation of PAHs in grilled sirloin pork with different marinades after charcoal-grilling for 2 min/side were evaluated using high performance liquid chromatography with a photodiode array detector (HPLC-DAD). RESULTS Compared with the control marinade treatment (without antioxidant), the addition of DADS (500 mg/kg meat sample) in marinade significantly decreased benzo[a]pyrene (BaP) (100%) and heavy PAHs (84%) in charcoal-grilled pork, while the addition of quercetin at the same concentration could reduce 23% and 55% of BaP and heavy PAHs, respectively. CONCLUSION The results of this study suggested that the addition of DADS in the marinade could be important in decreasing the levels of PAHs in grilled meat.
Collapse
Affiliation(s)
- Wanwisa Wongmaneepratip
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900,
Thailand
| | - Kriskamol Na Jom
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900,
Thailand
| | - Kanithaporn Vangnai
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900,
Thailand
| |
Collapse
|
13
|
Design, synthesis and evaluation of novel (S)-tryptamine derivatives containing an allyl group and an aryl sulfonamide unit as anticancer agents. Bioorg Med Chem Lett 2019; 29:1133-1137. [DOI: 10.1016/j.bmcl.2019.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 11/20/2022]
|
14
|
S-Allyl Cysteine Alleviates Hydrogen Peroxide Induced Oxidative Injury and Apoptosis through Upregulation of Akt/Nrf-2/HO-1 Signaling Pathway in HepG2 Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3169431. [PMID: 30515391 PMCID: PMC6236807 DOI: 10.1155/2018/3169431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022]
Abstract
Hydrogen peroxide (H2O2) mediated oxidative stress leading to hepatocyte apoptosis plays a pivotal role in the pathophysiology of several chronic liver diseases. This study demonstrates that S-allyl cysteine (SAC) renders cytoprotective effects on H2O2 induced oxidative damage and apoptosis in HepG2 cells. Cell viability assay showed that SAC protected HepG2 cells from H2O2 induced cytotoxicity. Further, SAC treatment dose dependently inhibited H2O2 induced apoptosis via decreasing the Bax/Bcl-2 ratio, restoring mitochondrial membrane potential (∆Ψm), inhibiting mitochondrial cytochrome c release, and inhibiting proteolytic cleavage of caspase-3. SAC protected cells from H2O2 induced oxidative damage by inhibiting reactive oxygen species accumulation and lipid peroxidation. The mechanism underlying the antiapoptotic and antioxidative role of SAC is the induction of the heme oxygenase-1 (HO-1) gene in an NF-E2-related factor-2 (Nrf-2) and Akt dependent manner. Specifically SAC was found to induce the phosphorylation of Akt and enhance the nuclear localization of Nrf-2 in cells. Our results were further confirmed by specific HO-1 gene knockdown studies which clearly demonstrated that HO-1 induction indeed played a key role in SAC mediated inhibition of apoptosis and ROS production in HepG2 cells, thus suggesting a hepatoprotective role of SAC in combating oxidative stress mediated liver diseases.
Collapse
|
15
|
Sakayanathan P, Loganathan C, Iruthayaraj A, Periyasamy P, Poomani K, Periasamy V, Thayumanavan P. Biological interaction of newly synthesized astaxanthin-s-allyl cysteine biconjugate with Saccharomyces cerevisiae and mammalian α-glucosidase: In vitro kinetics and in silico docking analysis. Int J Biol Macromol 2018; 118:252-262. [DOI: 10.1016/j.ijbiomac.2018.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/12/2023]
|
16
|
Chronic Administration of S-Allylcysteine Activates Nrf2 Factor and Enhances the Activity of Antioxidant Enzymes in the Striatum, Frontal Cortex and Hippocampus. Neurochem Res 2017. [PMID: 28646259 DOI: 10.1007/s11064-017-2337-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Oxidative stress plays an important role in neurodegenerative diseases and aging. The cellular defense mechanisms to deal with oxidative damage involve the activation of transcription factor related to NF-E2 (Nrf2), which enhances the transcription of antioxidant and phase II enzyme genes. S-allylcysteine (SAC) is an antioxidant with neuroprotective properties, and the main organosulfur compound in aged garlic extract. The ability of SAC to activate the Nrf2 factor has been previously reported in hepatic cells; however this effect has not been studied in normal brain. In order to determine if the chronic administration of SAC is able to activate Nrf2 factor and enhance antioxidant defense in the brain, male Wistar rats were administered with SAC (25, 50, 100 and 200 mg/kg-body weight each 24 h, i.g.) for 90 days. The activation of Nrf2, the levels of p65 and 8-hydroxy-2-deoxyguanosine (8-OHdG) as well as the activities of the enzymes glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) were evaluated in the hippocampus, striatum and frontal cortex. Results showed that SAC activated Nrf2 factor in the hippocampus (25-200 mg/kg) and striatum (100 mg/kg) and significantly decreased p65 levels in the frontal cortex (25-200 mg/kg). On the other hand, SAC increased GPx, GR, CAT and SOD activities mainly in the hippocampus and striatum, but it did not change GST activity. Finally, no changes were observed in 8-OHdG levels mediated by SAC in any brain region, but the hippocampus showed a major level of 8-OHdG compared with the striatum and frontal cortex. All these results suggest that in the hippocampus, the observed increase in the activity of antioxidant enzymes could be associated with the ability of SAC to activate Nrf2 factor; however, a different mechanism could be involved in the striatum and frontal cortex, since no changes were found in Nrf2 activation and p65 levels.
Collapse
|
17
|
Kattaia AAA, Abd El-Baset SA, Mohamed EM, Abdul-Maksou RS, Elfakharany YM. Molecular mechanisms underlying histological and biochemical changes induced by nitrate in rat liver and the efficacy of S-Allylcysteine. Ultrastruct Pathol 2016; 41:10-22. [DOI: 10.1080/01913123.2016.1252821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Asmaa A. A. Kattaia
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia A. Abd El-Baset
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M. Mohamed
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Yara M. Elfakharany
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Jung HY, Lee KY, Yoo DY, Kim JW, Yoo M, Lee S, Yoo KY, Yoon YS, Choi JH, Hwang IK. Essential oils from two Allium species exert effects on cell proliferation and neuroblast differentiation in the mouse dentate gyrus by modulating brain-derived neurotrophic factor and acetylcholinesterase. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:431. [PMID: 27809818 PMCID: PMC5094052 DOI: 10.1186/s12906-016-1384-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022]
Abstract
Background In the present study, we investigated the effects of oil products from two Allium species: Allium sativum (garlic) and Allium hookeri (Chinese chives) on cell proliferation and neuroblast differentiation in the mouse dentate gyrus. Methods Using corn oil as a vehicle, the essential oil from garlic (10 ml/kg), or Chinese chives (10 ml/kg) was administered orally to 9-week-old mice once a day for 3 weeks. One hour following the last treatment, a novel object recognition test was conducted and the animals were killed 2 h after the test. Results In comparison to the vehicle-treated group, garlic essential oil (GO) treatment resulted in significantly increased exploration time and discrimination index during the novel object recognition test, while Chinese chives essential oil (CO) reduced the exploration time and discrimination index in the same test. In addition, the number of Ki67-immunoreactive proliferating cells and doublecortin-immunoreactive neuroblasts significantly increased in the dentate gyrus of GO-treated animals. However, administration of CO significantly decreased cell proliferation and neuroblast differentiation. Administration of GO significantly increased brain-derived neurotrophic factor (BDNF) levels and decreased acetylcholinesterase (AChE) activity in the hippocampal homogenates. In contrast, administration of CO decreased BDNF protein levels and had no significant effect on AChE activity, compared to that in the vehicle-treated group. Conclusions These results suggest that GO significantly improves novel object recognition as well as increases cell proliferation and neuroblast differentiation, by modulating hippocampal BDNF protein levels and AChE activity, while CO impairs novel object recognition and decreases cell proliferation and neuroblast differentiation, by reducing BDNF protein levels in the hippocampus.
Collapse
|
19
|
Orozco-Ibarra M, Muñoz-Sánchez J, Zavala-Medina ME, Pineda B, Magaña-Maldonado R, Vázquez-Contreras E, Maldonado PD, Pedraza-Chaverri J, Chánez-Cárdenas ME. Aged garlic extract and S-allylcysteine prevent apoptotic cell death in a chemical hypoxia model. Biol Res 2016; 49:7. [PMID: 26830333 PMCID: PMC4736283 DOI: 10.1186/s40659-016-0067-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/14/2016] [Indexed: 12/03/2022] Open
Abstract
Background Aged garlic extract (AGE) and its main constituent S-allylcysteine (SAC) are natural antioxidants with protective effects against cerebral ischemia or cancer, events that involve hypoxia stress. Cobalt chloride (CoCl2) has been used to mimic hypoxic conditions through the stabilization of the α subunit of hypoxia inducible factor (HIF-1α) and up-regulation of HIF-1α-dependent genes as well as activation of hypoxic conditions such as reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and apoptosis. The present study was designed to assess the effect of AGE and SAC on the CoCl2-chemical hypoxia model in PC12 cells. Results We found that CoCl2 induced the stabilization of HIF-1α and its nuclear localization. CoCl2 produced ROS and apoptotic cell death that depended on hypoxia extent. The treatment with AGE and SAC decreased ROS and protected against CoCl2-induced apoptotic cell death which depended on the CoCl2 concentration and incubation time. SAC or AGE decreased the number of cells in the early and late stages of apoptosis. Interestingly, this protective effect was associated with attenuation in HIF-1α stabilization, activity not previously reported for AGE and SAC. Conclusions Obtained results show that AGE and SAC decreased apoptotic CoCl2-induced cell death. This protection occurs by affecting the activity of HIF-1α and supports the use of these natural compounds as a therapeutic alternative for hypoxic conditions. Electronic supplementary material The online version of this article (doi:10.1186/s40659-016-0067-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Delegación Tlalpan, 14269, Mexico, D.F., Mexico.
| | - Jorge Muñoz-Sánchez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, Colonia La Fama, Delegación Tlalpan, 14269, Mexico D.F., Mexico.
| | - Martín E Zavala-Medina
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, Colonia La Fama, Delegación Tlalpan, 14269, Mexico D.F., Mexico.
| | - Benjamín Pineda
- Laboratorio de Neuroinmunología y Neuro-oncología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Delegación Tlalpan, 14269, Mexico D.F., Mexico.
| | - Roxana Magaña-Maldonado
- Laboratorio de Neuroinmunología y Neuro-oncología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Delegación Tlalpan, 14269, Mexico D.F., Mexico.
| | - Edgar Vázquez-Contreras
- Departamento de Ciencias Naturales, CNI, Universidad Autónoma Metropolitana Cuajimalpa, Av. Vasco de Quiroga 4871: Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, Mexico D.F., Mexico.
| | - Perla D Maldonado
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, Colonia La Fama, Delegación Tlalpan, 14269, Mexico D.F., Mexico.
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico D.F., Mexico.
| | - María Elena Chánez-Cárdenas
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, Colonia La Fama, Delegación Tlalpan, 14269, Mexico D.F., Mexico.
| |
Collapse
|
20
|
Eslami M, Hashemianzadeh SM, Moghaddam KG, Khorsandi-Lagol A, Seyed Sajadi SA. Computational evidence to design an appropriate candidate for the treatment of Alzheimer's disease through replacement of the heptamethylene linker of bis(7)tacrine with S-allylcysteine. RSC Adv 2015. [DOI: 10.1039/c5ra11346f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the multiple pathogens of Alzheimer's disease, multitarget-directed ligand (MTDL) design has been highly regarded in recent years.
Collapse
Affiliation(s)
- Mahboobeh Eslami
- Molecular Simulation Research Laboratory
- Department of Chemistry
- Iran University of Science & Technology
- Tehran
- Iran
| | - Seyed Majid Hashemianzadeh
- Molecular Simulation Research Laboratory
- Department of Chemistry
- Iran University of Science & Technology
- Tehran
- Iran
| | - Kiana Gholamjani Moghaddam
- Molecular Simulation Research Laboratory
- Department of Chemistry
- Iran University of Science & Technology
- Tehran
- Iran
| | - Amin Khorsandi-Lagol
- Molecular Simulation Research Laboratory
- Department of Chemistry
- Iran University of Science & Technology
- Tehran
- Iran
| | - Seyed Abolfazl Seyed Sajadi
- Molecular Simulation Research Laboratory
- Department of Chemistry
- Iran University of Science & Technology
- Tehran
- Iran
| |
Collapse
|
21
|
Park JM, Han YM, Kangwan N, Lee SY, Jung MK, Kim EH, Hahm KB. S-allyl cysteine alleviates nonsteroidal anti-inflammatory drug-induced gastric mucosal damages by increasing cyclooxygenase-2 inhibition, heme oxygenase-1 induction, and histone deacetylation inhibition. J Gastroenterol Hepatol 2014; 29 Suppl 4:80-92. [PMID: 25521739 DOI: 10.1111/jgh.12730] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Nonsteroidal anti-inflammatory drugs (NSAIDs), the most highly prescribed drugs in the world for the treatment of pain, inflammation, and fever, are associated with gastric mucosal damages including ulcer directly or indirectly. This study was aimed to document the preventive effects of an organosulfur constituent of garlic, S-allyl cysteine (SAC), against NSAIDs-induced gastric damages, as well the elucidation of its pharmacological actions, such as anti-inflammatory, anti-oxidative, and cytoprotective actions. METHODS Different doses of SAC were administrated intragastrically before the indomethacin administration. After killing, in addition to gross and pathological evaluations of ulcer, the expressions of inflammatory mediators, including cyclooxygenase-2, prostaglandin E2 , IL-1β, tumor necrosis factor-α, IL-6, and anti-oxidant capacity, were analyzed by Western blot analysis or ELISA, respectively. Transferase deoxytidyl uridine end labeling assay, periodic acid and Schiff staining, F4/80 staining, and CD31 staining were compared among doses of SAC. Detailed documentation of in vitro biological actions of SAC, including NF-κB, histone deacetylator inhibition, phase 2 enzyme, and MAPKs, was performed. RESULTS SAC was very effective in preventing indomethacin-induced gastric damages in a low dose through significant decreases in macrophage infiltration as well as restorative action. Indomethacin-induced expressions of inflammatory mediators were all significantly attenuated with SAC in accordance with histone deacetylator inhibition. In addition, SAC significantly increased the total anti-oxidant concentration and mucus secretion, and allows for a significant induction of HO-1. However, these preventive effects of SAC were dependent on dosage of SAC; higher dose above 10 μM paradoxically aggravated NSAID-induced inflammation. CONCLUSION Synthetic SAC can be promising therapeutics agent to provide potent anti-inflammatory, anti-oxidative, and mucosa protective effects against NSAID-induced damages.
Collapse
Affiliation(s)
- Jong-Min Park
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhou H, Qu Z, Mossine VV, Nknolise DL, Li J, Chen Z, Cheng J, Greenlief CM, Mawhinney TP, Brown PN, Fritsche KL, Hannink M, Lubahn DB, Sun GY, Gu Z. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells. PLoS One 2014; 9:e113531. [PMID: 25420111 PMCID: PMC4242640 DOI: 10.1371/journal.pone.0113531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/24/2014] [Indexed: 01/17/2023] Open
Abstract
Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Zhe Qu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Valeri V. Mossine
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Dineo L. Nknolise
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Jilong Li
- Department of Computer Science, Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Zhenzhou Chen
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Jianlin Cheng
- Department of Computer Science, Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - C. Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Thomas P. Mawhinney
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Paula N. Brown
- British Columbia Institute of Technology, Vancouver, British Columbia, Canada
| | - Kevin L. Fritsche
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Mark Hannink
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Dennis B. Lubahn
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Grace Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Harry S. Truman Veterans Hospital, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
23
|
Gómez-Sierra T, Molina-Jijón E, Tapia E, Hernández-Pando R, García-Niño WR, Maldonado PD, Reyes JL, Barrera-Oviedo D, Torres I, Pedraza-Chaverri J. S-allylcysteine prevents cisplatin-induced nephrotoxicity and oxidative stress. J Pharm Pharmacol 2014; 66:1271-81. [DOI: 10.1111/jphp.12263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/23/2014] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
Cisplatin (CP) is an antineoplastic agent that induces nephrotoxicity and oxidative stress. S-allylcysteine (SAC) is a garlic-derived antioxidant. This study aims to explore whether SAC protects against CP-induced nephrotoxicity in rats.
Methods
In the first stage, the SAC protective dose was determined by measuring renal damage and the oxidative stress markers malondialdehyde, oxidized proteins and glutathione in rats injected with CP. In the second stage, the effect of a single dose of SAC on the expression of nuclear factor-erythroid 2-related factor-2 (Nrf2), protein kinase C beta 2 (PKCβ2) and nicotinamide adenine dinucleotide phosphate oxidase subunits (p47phox and gp91phox) was studied. In addition, the effect of SAC on oxidative stress markers and on the activity of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) in isolated proximal and distal tubules were evaluated.
Key findings
SAC (25 mg/kg) prevented the CP-induced renal damage and attenuated CP-induced decrease in Nrf2 levels and increase in PKCβ2, p47phox and gp91phox expression in renal cortex and oxidative stress and decrease in the activity of CAT, GPx and GR in proximal and distal tubules.
Conclusions
These data suggest that SAC provides renoprotection by attenuating CP-induced oxidative stress and decrease in the activity of CAT, GPx and GR.
Collapse
Affiliation(s)
- Tania Gómez-Sierra
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), DF, Mexico
| | - Eduardo Molina-Jijón
- Departament of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, National Polytechnic Institute (Cinvestav-IPN), DF, Mexico
| | - Edilia Tapia
- Laboratory of Renal Pathophysiology, Department of Nephrology, National Institute of Cardiology, DF, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘Salvador Zubirán’, DF, Mexico
| | - Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), DF, Mexico
| | - Perla D Maldonado
- Laboratory of Vascular Pathology, National Institute Neurology and Neurosurgery ‘Manuel Velasco Suárez’, Mexico City, DF, Mexico
| | - José Luis Reyes
- Departament of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, National Polytechnic Institute (Cinvestav-IPN), DF, Mexico
| | - Diana Barrera-Oviedo
- Department of Pharmacology, National Autonomous University of Mexico (UNAM), DF, Mexico
| | - Ismael Torres
- Animal Care Unit, Faculty of Medicine, National Autonomous University of Mexico (UNAM), DF, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), DF, Mexico
| |
Collapse
|
24
|
Trio PZ, You S, He X, He J, Sakao K, Hou DX. Chemopreventive functions and molecular mechanisms of garlic organosulfur compounds. Food Funct 2014; 5:833-44. [DOI: 10.1039/c3fo60479a] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Diallyl disulfide impairs hippocampal neurogenesis in the young adult brain. Toxicol Lett 2013; 221:31-8. [PMID: 23732363 DOI: 10.1016/j.toxlet.2013.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/16/2013] [Accepted: 05/21/2013] [Indexed: 11/19/2022]
|
26
|
Yang J, Wang T, Yang J, Rao K, Zhan Y, Chen RB, Liu Z, Li MC, Zhuan L, Zang GH, Guo SM, Xu H, Wang SG, Liu JH, Ye ZQ. S-allyl cysteine restores erectile function through inhibition of reactive oxygen species generation in diabetic rats. Andrology 2013; 1:487-94. [PMID: 23427186 DOI: 10.1111/j.2047-2927.2012.00060.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/13/2012] [Accepted: 12/19/2012] [Indexed: 01/01/2023]
Abstract
Excessive production of reactive oxygen species (ROS) by an overactive nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system in penile tissue is an important mechanism of erectile dysfunction (ED). S-allyl cysteine (SAC), a bioactive component derived from garlic, was recently reported to exert versatile antioxidant properties. We hypothesized that SAC would be able to resolve diabetes-related ED by reducing ROS generation, and designed this study to investigate this possibility as well as to determine the related underlying mechanisms. A streptozotocin-induced diabetes rat model was established and used for comparative analysis of 4-week treatment regimens with insulin or SAC. The ratio of maximal intracavernous pressure (ICP) to mean arterial blood pressure (MAP) was measured to determine erectile function. Differential levels of ROS, NADPH oxidase subunits, nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signalling pathway, and apoptosis were evaluated in cavernous tissues. Max ICP/MAP was found to be markedly decreased in untreated diabetic rats; SAC, but not insulin, treatment restored the ratio to baseline (in non-diabetic untreated controls). The corpus cavernosum of untreated diabetic rats showed increased p47(phox) and p67(phox) expression, ROS production and penile apoptotic index, and decreased phospho-endothelial nitric oxide synthase (phospho-eNOS, Ser1177) expression, cGMP concentration, B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) ratio and smooth muscle cell number. SAC treatment normalized all the diabetes-induced effects, whereas insulin treatment partially normalized the alterations, but produced no effects on P47(phox) expression, penile ROS level, apoptotic index, Bcl-2/Bax ratio and smooth muscle cell number. Collectively, these data indicate that SAC treatment can restore erectile function in diabetic rats by preventing ROS formation through modulation of NADPH oxidase subunit expression. Furthermore, the poor efficacy of conventional insulin treatment for diabetic ED may be associated with an elevated level of ROS in penile tissue.
Collapse
Affiliation(s)
- J Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tobón-Velasco JC, Vázquez-Victorio G, Macías-Silva M, Cuevas E, Ali SF, Maldonado PD, González-Trujano ME, Cuadrado A, Pedraza-Chaverrí J, Santamaría A. RETRACTED: S-allyl cysteine protects against 6-hydroxydopamine-induced neurotoxicity in the rat striatum: involvement of Nrf2 transcription factor activation and modulation of signaling kinase cascades. Free Radic Biol Med 2012; 53:1024-40. [PMID: 22781654 DOI: 10.1016/j.freeradbiomed.2012.06.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/22/2012] [Accepted: 06/30/2012] [Indexed: 12/19/2022]
Abstract
Pharmacological activation at the basal ganglia of the transcription factor Nrf2, guardian of redox homeostasis, holds a strong promise for the slow progression of Parkinson's disease (PD). However, a potent Nrf2 activator in the brain still must be found. In this study, we have investigated the potential use of the antioxidant compound S-allyl cysteine (SAC) in the activation of Nrf2 in 6-hydoxydopamine (6-OHDA)-intoxicated rats. In the rat striatum, SAC by itself promoted the Nrf2 dissociation of Keap-1, its nuclear translocation, the subsequent association with small MafK protein, and further binding of the Nrf2/MafK complex to ARE sequence, as well as the up-regulation of Nrf2-dependent genes encoding the antioxidant enzymes HO-1, NQO-1, GR, and SOD-1. In vivo and in vitro experiments to identify signaling pathways activated by SAC pointed to Akt as the most likely kinase participating in Nrf2 activation by SAC. In PC12 cells, SAC stimulated the activation of Akt and ERK1/2 and inhibited JNK1/2/3 activation. In the rat striatum, the SAC-induced activation of Nrf2 is likely to contribute to inhibit the toxic effects of 6-OHDA evidenced by phase 2 antioxidant enzymes up-regulation, glutathione recovery, and attenuation of reactive oxygen species (ROS), nitric oxide (NO), and lipid peroxides formation. These early protective effects correlated with the long-term preservation of the cellular redox status, the striatal dopamine (DA) and tyrosine hydroxylase (TH) levels, and the improvement of motor skills. Therefore, this study indicates that, in addition to direct scavenging actions, the activation of Nrf2 by SAC might confer neuroprotective responses through the modulation of kinase signaling pathways in rodent models of PD, and suggests that this antioxidant molecule may have a therapeutic value in this human pathology.
Collapse
Affiliation(s)
- Julio César Tobón-Velasco
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía - S.S.A., México City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:907162. [PMID: 22685624 PMCID: PMC3363007 DOI: 10.1155/2012/907162] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/02/2012] [Accepted: 03/09/2012] [Indexed: 12/17/2022]
Abstract
Aged garlic extract (AGE) is an odorless garlic preparation containing S-allylcysteine (SAC) as its most abundant compound. A large number of studies have demonstrated the antioxidant activity of AGE and SAC in both in vivo--in diverse experimental animal models associated to oxidative stress--and in vitro conditions--using several methods to scavenge reactive oxygen species or to induce oxidative damage. Derived from these experiments, the protective effects of AGE and SAC have been associated with the prevention or amelioration of oxidative stress. In this work, we reviewed different antioxidant mechanisms (scavenging of free radicals and prooxidant species, induction of antioxidant enzymes, activation of Nrf2 factor, inhibition of prooxidant enzymes, and chelating effects) involved in the protective actions of AGE and SAC, thereby emphasizing their potential use as therapeutic agents. In addition, we highlight the ability of SAC to activate Nrf2 factor--a master regulator of the cellular redox state. Here, we include original data showing the ability of SAC to activate Nrf2 factor in cerebral cortex. Therefore, we conclude that the therapeutic properties of these molecules comprise cellular and molecular mechanisms at different levels.
Collapse
|
29
|
Effects of SAC on oxidative stress and NO availability in placenta: potential benefits to preeclampsia. Placenta 2012; 33:487-94. [PMID: 22405339 DOI: 10.1016/j.placenta.2012.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/25/2012] [Accepted: 02/15/2012] [Indexed: 01/18/2023]
Abstract
Preeclampsia (PE) is a major cause of fetal growth restriction and perinatal mortality, which involves oxidative stress and vasodilator signaling disorder. S-allyl-L-cysteine (SAC) is one of the most abundant compounds in garlic extracts, and possesses several biological activities. This research was designed to investigate the protective effects of SAC against H(2)O(2)-induced oxidative insults, as well as the effects on NO/cGMP signaling pathway in placenta. We used TEV-1 cells and placental explants to detect the effects of SAC. TEV-1 cells and human placental explants were separately exposed to SAC, H(2)O(2), or a combination of H(2)O(2) and SAC. Intracellular ROS was detected by flow cytometry; the NO level was detected by an NO metabolites (NOx) assay; the cGMP level was simultaneously measured by the method of radioimmunoassay; the expression of eNOS in TEV-1 cells was measured by immunochemistry and Western blot. Our findings showed that H(2)O(2) treatment increased ROS productions in TEV-1 cells and significantly decreased cGMP and NO level either in TEV-1 cells or explants compared to the control groups (p < 0.05). The expression of eNOS in TEV-1 cells also significantly decreased in H(2)O(2) treated group compared to the control group (p < 0.05). Co-treatment of H(2)O(2) and SAC significantly decreased ROS productions, and increased NO, cGMP and eNOS level compared to the H(2)O(2) treated alone groups (p < 0.05), which were all reverted back to near control levels. Further more, SAC treatment increased NO and cGMP level of TEV-1 cells and explants in a dose-dependent manner even at non-oxidative stress status (p < 0.05). However, when the TEV-1 cells were cultured in the presence of NOS inhibitor (L-NAME) and NO donor (SNP), additional SAC treatment still significantly increased the NO level in comparison with SAC non-treated group (p < 0.05). In conclusion, these results demonstrate that ROS (H(2)O(2)-mediated) can induce insults to NO/cGMP pathway, while SAC could antagonize this insult. And SAC also possesses the ability to increase NO and cGMP level at non-oxidative stress status in TEV-1 cells and placenta explants. SAC is therefore hypothesized to be a potential drug for PE treatment.
Collapse
|