1
|
Cui Z, Li Y, Jing X, Luan X, Liu N, Liu J, Meng Y, Xu J, Valentine DL. Cycloalkane degradation by an uncultivated novel genus of Gammaproteobacteria derived from China's marginal seas. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133904. [PMID: 38422739 DOI: 10.1016/j.jhazmat.2024.133904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/30/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
The consumption of cycloalkanes is prevalent in low-temperature marine environments, likely influenced by psychrophilic microorganisms. Despite their significance, the primary active species responsible for marine cycloalkane degradation remain largely unidentified due to cultivation challenges. In this study, we provide compelling evidence indicating that the uncultured genus C1-B045 of Gammaproteobacteria is a pivotal participant in cycloalkane decomposition within China's marginal seas. Notably, the relative abundance of C1-B045 surged from 15.9% in the methylcyclohexane (MCH)-consuming starter culture to as high as 97.5% in MCH-utilizing extinction cultures following successive dilution-to-extinction and incubation cycles. We used stable isotope probing, Raman-activated gravity-driven encapsulation, and 16 S rRNA gene sequencing to link cycloalkane-metabolizing phenotype to genotype at the single-cell level. By annotating key enzymes (e.g., alkane monooxygenase, cyclohexanone monooxygenase, and 6-hexanolactone hydrolase) involved in MCH metabolism within C1-B045's representative metagenome-assembled genome, we developed a putative MCH degradation pathway.
Collapse
Affiliation(s)
- Zhisong Cui
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China.
| | - Yingchao Li
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| | - Xiao Luan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, People's Republic of China
| | - Na Liu
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Jinyan Liu
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| | - David L Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
2
|
Cui J, Chen R, Sun H, Xue Y, Diao Z, Song J, Wang X, Zhang J, Wang C, Ma B, Xu J, Luan G, Lu X. Culture-free identification of fast-growing cyanobacteria cells by Raman-activated gravity-driven encapsulation and sequencing. Synth Syst Biotechnol 2023; 8:708-715. [PMID: 38053584 PMCID: PMC10693988 DOI: 10.1016/j.synbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023] Open
Abstract
By directly converting solar energy and carbon dioxide into biobased products, cyanobacteria are promising chassis for photosynthetic biosynthesis. To make cyanobacterial photosynthetic biosynthesis technology economically feasible on industrial scales, exploring and engineering cyanobacterial chassis and cell factories with fast growth rates and carbon fixation activities facing environmental stresses are of great significance. To simplify and accelerate the screening for fast-growing cyanobacteria strains, a method called Individual Cyanobacteria Vitality Tests and Screening (iCyanVS) was established. We show that the 13C incorporation ratio of carotenoids can be used to measure differences in cell growth and carbon fixation rates in individual cyanobacterial cells of distinct genotypes that differ in growth rates in bulk cultivations, thus greatly accelerating the process screening for fastest-growing cells. The feasibility of this approach is further demonstrated by phenotypically and then genotypically identifying individual cyanobacterial cells with higher salt tolerance from an artificial mutant library via Raman-activated gravity-driven encapsulation and sequencing. Therefore, this method should find broad applications in growth rate or carbon intake rate based screening of cyanobacteria and other photosynthetic cell factories.
Collapse
Affiliation(s)
- Jinyu Cui
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Rongze Chen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huili Sun
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yingyi Xue
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhidian Diao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jingyun Song
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xiaohang Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jia Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chen Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Bo Ma
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jian Xu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guodong Luan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Wang X, Ren L, Diao Z, He Y, Zhang J, Liu M, Li Y, Sun L, Chen R, Ji Y, Xu J, Ma B. Robust Spontaneous Raman Flow Cytometry for Single-Cell Metabolic Phenome Profiling via pDEP-DLD-RFC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207497. [PMID: 36871147 PMCID: PMC10238217 DOI: 10.1002/advs.202207497] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/08/2023] [Indexed: 06/04/2023]
Abstract
A full-spectrum spontaneous single-cell Raman spectrum (fs-SCRS) captures the metabolic phenome for a given cellular state of the cell in a label-free, landscape-like manner. Herein a positive dielectrophoresis induced deterministic lateral displacement-based Raman flow cytometry (pDEP-DLD-RFC) is established. This robust flow cytometry platform utilizes a periodical positive dielectrophoresis induced deterministic lateral displacement (pDEP-DLD) force that is exerted to focus and trap fast-moving single cells in a wide channel, which enables efficient fs-SCRS acquisition and extended stable running time. It automatically produces deeply sampled, heterogeneity-resolved, and highly reproducible ramanomes for isogenic cell populations of yeast, microalgae, bacteria, and human cancers, which support biosynthetic process dissection, antimicrobial susceptibility profiling, and cell-type classification. Moreover, when coupled with intra-ramanome correlation analysis, it reveals state- and cell-type-specific metabolic heterogeneity and metabolite-conversion networks. The throughput of ≈30-2700 events min-1 for profiling both nonresonance and resonance marker bands in a fs-SCRS, plus the >5 h stable running time, represent the highest performance among reported spontaneous Raman flow cytometry (RFC) systems. Therefore, pDEP-DLD-RFC is a valuable new tool for label-free, noninvasive, and high-throughput profiling of single-cell metabolic phenomes.
Collapse
|
4
|
Weng J, Müller K, Morgaienko O, Elsner M, Ivleva NP. Multi-element stable isotope Raman microspectroscopy of bacterial carotenoids unravels rare signal shift patterns and single-cell phenotypic heterogeneity. Analyst 2023; 148:128-136. [DOI: 10.1039/d2an01603f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Investigation of bacteria with D-carotenoids reveals unique Raman signatures, inclusive unexpected blue-shift. Simultaneous monitoring of 13C & D of carotenoids provides complementary information on cell growth and metabolic activity, respectively.
Collapse
Affiliation(s)
- Julian Weng
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Kara Müller
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Oleksii Morgaienko
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Martin Elsner
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Natalia P. Ivleva
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
5
|
Jing X, Gong Y, Xu T, Davison PA, MacGregor-Chatwin C, Hunter CN, Xu L, Meng Y, Ji Y, Ma B, Xu J, Huang WE. Revealing CO 2-Fixing SAR11 Bacteria in the Ocean by Raman-Based Single-Cell Metabolic Profiling and Genomics. BIODESIGN RESEARCH 2022; 2022:9782712. [PMID: 37850122 PMCID: PMC10521720 DOI: 10.34133/2022/9782712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
The majority of marine microbes remain uncultured, which hinders the identification and mining of CO2-fixing genes, pathways, and chassis from the oceans. Here, we investigated CO2-fixing microbes in seawater from the euphotic zone of the Yellow Sea of China by detecting and tracking their 13C-bicarbonate (13C-HCO3-) intake via single-cell Raman spectra (SCRS) analysis. The target cells were then isolated by Raman-activated Gravity-driven Encapsulation (RAGE), and their genomes were amplified and sequenced at one-cell resolution. The single-cell metabolism, phenotype and genome are consistent. We identified a not-yet-cultured Pelagibacter spp., which actively assimilates 13C-HCO3-, and also possesses most of the genes encoding enzymes of the Calvin-Benson cycle for CO2 fixation, a complete gene set for a rhodopsin-based light-harvesting system, and the full genes necessary for carotenoid synthesis. The four proteorhodopsin (PR) genes identified in the Pelagibacter spp. were confirmed by heterologous expression in E. coli. These results suggest that hitherto uncultured Pelagibacter spp. uses light-powered metabolism to contribute to global carbon cycling.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paul A. Davison
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Craig MacGregor-Chatwin
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - C. Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - La Xu
- Disease and Fishery Drugs Research Center, Marine Biology Institute of Shandong Province, Qingdao, ShandongChina
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Single-Cell Biotechnology, Ltd, Qingdao, ShandongChina
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, UK
| |
Collapse
|
6
|
One-Cell Metabolic Phenotyping and Sequencing of Soil Microbiome by Raman-Activated Gravity-Driven Encapsulation (RAGE). mSystems 2021; 6:e0018121. [PMID: 34042466 PMCID: PMC8269212 DOI: 10.1128/msystems.00181-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Soil harbors arguably the most metabolically and genetically heterogeneous microbiomes on Earth, yet establishing the link between metabolic functions and genome at the precisely one-cell level has been difficult. Here, for mock microbial communities and then for soil microbiota, we established a Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq) platform, which identifies, sorts, and sequences precisely one bacterial cell via its anabolic (incorporating D from heavy water) and physiological (carotenoid-containing) functions. We showed that (i) metabolically active cells from numerically rare soil taxa, such as Corynebacterium spp., Clostridium spp., Moraxella spp., Pantoea spp., and Pseudomonas spp., can be readily identified and sorted based on D2O uptake, and their one-cell genome coverage can reach ∼93% to allow high-quality genome-wide metabolic reconstruction; (ii) similarly, carotenoid-containing cells such as Pantoea spp., Legionella spp., Massilia spp., Pseudomonas spp., and Pedobacter spp. were identified and one-cell genomes were generated for tracing the carotenoid-synthetic pathways; and (iii) carotenoid-producing cells can be either metabolically active or inert, suggesting culture-based approaches can miss many such cells. As a Raman-activated cell sorter (RACS) family member that can establish a metabolism-genome link at exactly one-cell resolution from soil, RAGE-Seq can help to precisely pinpoint “who is doing what” in complex ecosystems. IMPORTANCE Soil is home to an enormous and complex microbiome that features arguably the highest genomic diversity and metabolic heterogeneity of cells on Earth. Their in situ metabolic activities drive many natural processes of pivotal ecological significance or underlie industrial production of numerous valuable bioactivities. However, pinpointing “who is doing what” in a soil microbiome, which consists of mainly yet-to-be-cultured species, has remained a major challenge. Here, for soil microbiota, we established a Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq) method, which identifies, sorts, and sequences at the resolution of precisely one microbial cell via its catabolic and anabolic functions. As a Raman-activated cell sorter (RACS) family member that can establish a metabolism-genome link at one-cell resolution from soil, RAGE-Seq can help to precisely pinpoint “who is doing what” in complex ecosystems.
Collapse
|
7
|
Development overview of Raman-activated cell sorting devoted to bacterial detection at single-cell level. Appl Microbiol Biotechnol 2021; 105:1315-1331. [PMID: 33481066 DOI: 10.1007/s00253-020-11081-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022]
Abstract
Understanding the metabolic interactions between bacteria in natural habitat at the single-cell level and the contribution of individual cell to their functions is essential for exploring the dark matter of uncultured bacteria. The combination of Raman-activated cell sorting (RACS) and single-cell Raman spectra (SCRS) with unique fingerprint characteristics makes it possible for research in the field of microbiology to enter the single cell era. This review presents an overview of current knowledge about the research progress of recognition and assessment of single bacterium cell based on RACS and further research perspectives. We first systematically summarize the label-free and non-destructive RACS strategies based on microfluidics, microdroplets, optical tweezers, and specially made substrates. The importance of RACS platforms in linking target cell genotype and phenotype is highlighted and the approaches mentioned in this paper for distinguishing single-cell phenotype include surface-enhanced Raman scattering (SERS), biomarkers, stable isotope probing (SIP), and machine learning. Finally, the prospects and challenges of RACS in exploring the world of unknown microorganisms are discussed. KEY POINTS: • Analysis of single bacteria is essential for further understanding of the microbiological world. • Raman-activated cell sorting (RACS) systems are significant protocol for characterizing phenotypes and genotypes of individual bacteria.
Collapse
|
8
|
Sharma K, Palatinszky M, Nikolov G, Berry D, Shank EA. Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms. eLife 2020; 9:e56275. [PMID: 33140722 PMCID: PMC7609051 DOI: 10.7554/elife.56275] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 10/16/2020] [Indexed: 01/02/2023] Open
Abstract
Microscale processes are critically important to soil ecology and biogeochemistry yet are difficult to study due to soil's opacity and complexity. To advance the study of soil processes, we constructed transparent soil microcosms that enable the visualization of microbes via fluorescence microscopy and the non-destructive measurement of microbial activity and carbon uptake in situ via Raman microspectroscopy. We assessed the polymer Nafion and the crystal cryolite as optically transparent soil substrates. We demonstrated that both substrates enable the growth, maintenance, and visualization of microbial cells in three dimensions over time, and are compatible with stable isotope probing using Raman. We applied this system to ascertain that after a dry-down/rewetting cycle, bacteria on and near dead fungal hyphae were more metabolically active than those far from hyphae. These data underscore the impact fungi have facilitating bacterial survival in fluctuating conditions and how these microcosms can yield insights into microscale microbial activities.
Collapse
Affiliation(s)
- Kriti Sharma
- Department of Biology, University of North CarolinaChapel HillUnited States
| | - Márton Palatinszky
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of ViennaViennaAustria
| | - Georgi Nikolov
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of ViennaViennaAustria
| | - David Berry
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of ViennaViennaAustria
| | - Elizabeth A Shank
- Department of Biology, University of North CarolinaChapel HillUnited States
- Department of Microbiology and Immunology, University of North CarolinaChapel HillUnited States
- Program in Systems Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| |
Collapse
|
9
|
Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution. Biotechnol Adv 2019; 37:107388. [DOI: 10.1016/j.biotechadv.2019.04.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
|
10
|
Hiramatsu K, Ideguchi T, Yonamine Y, Lee S, Luo Y, Hashimoto K, Ito T, Hase M, Park JW, Kasai Y, Sakuma S, Hayakawa T, Arai F, Hoshino Y, Goda K. High-throughput label-free molecular fingerprinting flow cytometry. SCIENCE ADVANCES 2019; 5:eaau0241. [PMID: 30746443 PMCID: PMC6357763 DOI: 10.1126/sciadv.aau0241] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 12/06/2018] [Indexed: 05/03/2023]
Abstract
Flow cytometry is an indispensable tool in biology for counting and analyzing single cells in large heterogeneous populations. However, it predominantly relies on fluorescent labeling to differentiate cells and, hence, comes with several fundamental drawbacks. Here, we present a high-throughput Raman flow cytometer on a microfluidic chip that chemically probes single live cells in a label-free manner. It is based on a rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectrometer as an optical interrogator, enabling us to obtain the broadband molecular vibrational spectrum of every single cell in the fingerprint region (400 to 1600 cm-1) with a record-high throughput of ~2000 events/s. As a practical application of the method not feasible with conventional flow cytometry, we demonstrate high-throughput label-free single-cell analysis of the astaxanthin productivity and photosynthetic dynamics of Haematococcus lacustris.
Collapse
Affiliation(s)
- Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Research Centre for Spectrochemistry, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Takuro Ideguchi
- Research Centre for Spectrochemistry, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Yonamine
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - SangWook Lee
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yizhi Luo
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuki Hashimoto
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuro Ito
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Misa Hase
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Jee-Woong Park
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Kasai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Aichi 464-8603, Japan
| | - Shinya Sakuma
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Aichi 464-8603, Japan
| | - Takeshi Hayakawa
- Institute of Innovation for Future Society, Nagoya University, Aichi 464-8603, Japan
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Fumihito Arai
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Aichi 464-8603, Japan
- Institute of Innovation for Future Society, Nagoya University, Aichi 464-8603, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
11
|
Jing X, Gou H, Gong Y, Su X, Xu L, Ji Y, Song Y, Thompson IP, Xu J, Huang WE. Raman-activated cell sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean. Environ Microbiol 2018; 20:2241-2255. [PMID: 29727057 PMCID: PMC6849569 DOI: 10.1111/1462-2920.14268] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 11/30/2022]
Abstract
It is of great significance to understand CO2 fixation in the oceans. Using single cell Raman spectra (SCRS) as biochemical profiles, Raman activated cell ejection (RACE) was able to link phenotypes and genotypes of cells. Here, we show that mini‐metagenomic sequences from RACE can be used as a reference to reconstruct nearly complete genomes of key functional bacteria by binning shotgun metagenomic sequencing data. By applying this approach to 13C bicarbonate spiked seawater from euphotic zone of the Yellow Sea of China, the dominant bacteria Synechococcus spp. and Pelagibacter spp. were revealed and both of them contain carotenoid and were able to incorporate 13C into the cells at the same time. Genetic analysis of the reconstructed genomes suggests that both Synechococcus spp. and Pelagibacter spp. contained all genes necessary for carotenoid synthesis, light energy harvesting and CO2 fixation. Interestingly, the reconstructed genome indicates that Pelagibacter spp. harbored intact sets of genes for β‐carotene (precursor of retional), proteorhodopsin synthesis and anaplerotic CO2 fixation. This novel approach shines light on the role of marine ‘microbial dark matter’ in global carbon cycling, by linking yet‐to‐be‐cultured Synechococcus spp. and Pelagibacter spp. to carbon fixation and flow activities in situ.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.,Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Honglei Gou
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaolu Su
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - La Xu
- Disease and Fishery Drugs Research Center, Marine Biology Institute of Shandong Province, Qingdao, Shandong, People's Republic of China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yizhi Song
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Ian P Thompson
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
12
|
Murphy TW, Zhang Q, Naler LB, Ma S, Lu C. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 2017; 143:60-80. [PMID: 29170786 PMCID: PMC5839671 DOI: 10.1039/c7an01346a] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inherent heterogeneity in cell populations has become of great interest and importance as analytical techniques have improved over the past decades. With the advent of personalized medicine, understanding the impact of this heterogeneity has become an important challenge for the research community. Many different microfluidic approaches with varying levels of throughput and resolution exist to study single cell activity. In this review, we take a broad view of the recent microfluidic developments in single cell analysis based on microwell, microchamber, and droplet platforms. We cover physical, chemical, and molecular biology approaches for cellular and molecular analysis including newly emerging genome-wide analysis.
Collapse
Affiliation(s)
- Travis W Murphy
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
13
|
Gusachenko I, Chen M, Dholakia K. Raman imaging through a single multimode fibre. OPTICS EXPRESS 2017; 25:13782-13798. [PMID: 28788920 DOI: 10.1364/oe.25.013782] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Vibrational spectroscopy is a widespread, powerful method of recording the molecular spectra of constituent molecules within a sample in a label-free manner. As an example, Raman spectroscopy has major applications in materials science, biomedical analysis and clinical studies. The need to access deep tissues and organs in vivo has triggered major advances in fibre Raman probes that are compatible with endoscopic settings. However, imaging in confined geometries still remains out of reach for the current state of art fibre Raman systems without compromising the compactness and flexibility. Here we demonstrate Raman spectroscopic imaging via complex correction in single multimode fibre without using any additional optics and filters in the probe design. Our approach retains the information content typical to traditional fibre bundle imaging, yet within an ultra-thin footprint of diameter 125 μm which is the thinnest Raman imaging probe realised to date. We are able to acquire Raman images, including for bacteria samples, with fields of view exceeding 200 μm in diameter.
Collapse
|
14
|
Tycova A, Prikryl J, Foret F. Recent strategies toward microfluidic-based surface-enhanced Raman spectroscopy. Electrophoresis 2017; 38:1977-1987. [DOI: 10.1002/elps.201700046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 04/18/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Anna Tycova
- Institute of Analytical Chemistry of the CAS; v. v. i.; Brno Czech Republic
| | - Jan Prikryl
- Institute of Analytical Chemistry of the CAS; v. v. i.; Brno Czech Republic
| | - Frantisek Foret
- Institute of Analytical Chemistry of the CAS; v. v. i.; Brno Czech Republic
- CEITEC - Central European Institute of Technology; Brno Czech Republic
| |
Collapse
|
15
|
Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization. Anal Bioanal Chem 2017; 409:4353-4375. [DOI: 10.1007/s00216-017-0303-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/31/2017] [Accepted: 03/08/2017] [Indexed: 12/27/2022]
|
16
|
Song Y, Kaster AK, Vollmers J, Song Y, Davison PA, Frentrup M, Preston GM, Thompson IP, Murrell JC, Yin H, Hunter CN, Huang WE. Single-cell genomics based on Raman sorting reveals novel carotenoid-containing bacteria in the Red Sea. Microb Biotechnol 2016; 10:125-137. [PMID: 27748032 PMCID: PMC5270752 DOI: 10.1111/1751-7915.12420] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 07/19/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022] Open
Abstract
Cell sorting coupled with single-cell genomics is a powerful tool to circumvent cultivation of microorganisms and reveal microbial 'dark matter'. Single-cell Raman spectra (SCRSs) are label-free biochemical 'fingerprints' of individual cells, which can link the sorted cells to their phenotypic information and ecological functions. We employed a novel Raman-activated cell ejection (RACE) approach to sort single bacterial cells from a water sample in the Red Sea based on SCRS. Carotenoids are highly diverse pigments and play an important role in phototrophic bacteria, giving strong and distinctive Raman spectra. Here, we showed that individual carotenoid-containing cells from a Red Sea sample were isolated based on the characteristic SCRS. RACE-based single-cell genomics revealed putative novel functional genes related to carotenoid and isoprenoid biosynthesis, as well as previously unknown phototrophic microorganisms including an unculturable Cyanobacteria spp. The potential of Raman sorting coupled to single-cell genomics has been demonstrated.
Collapse
Affiliation(s)
- Yizhi Song
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Anne-Kristin Kaster
- Leibniz Institute DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - John Vollmers
- Leibniz Institute DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Yanqing Song
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Paul A Davison
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Martinique Frentrup
- Leibniz Institute DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Ian P Thompson
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
17
|
Kumar B. N. V, Guo S, Bocklitz T, Rösch P, Popp J. Demonstration of Carbon Catabolite Repression in Naphthalene Degrading Soil Bacteria via Raman Spectroscopy Based Stable Isotope Probing. Anal Chem 2016; 88:7574-82. [DOI: 10.1021/acs.analchem.6b01046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vinay Kumar B. N.
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics, Forschungscampus Jena, Philosophenweg
7, D-07743 Jena, Germany
| | - Shuxia Guo
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Thomas Bocklitz
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics, Forschungscampus Jena, Philosophenweg
7, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Petra Rösch
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics, Forschungscampus Jena, Philosophenweg
7, D-07743 Jena, Germany
| | - Jürgen Popp
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics, Forschungscampus Jena, Philosophenweg
7, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| |
Collapse
|
18
|
Wang Y, Huang WE, Cui L, Wagner M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr Opin Biotechnol 2016; 41:34-42. [PMID: 27149160 DOI: 10.1016/j.copbio.2016.04.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/17/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
Microbial communities are essential for most ecosystem processes and interact in highly complex ways with virtually all eukaryotes. Thus, a detailed understanding of the function of such communities is a fundamental prerequisite for microbial ecologists, applied microbiologists and microbiome researchers. Using single cell Raman microspectroscopy, biochemical fingerprints of individual microbial cells can be obtained in an externally label-free and non-destructive manner. If combined with stable isotope probing (SIP), Raman spectroscopy can directly reveal functions of single microorganisms in their natural habitat. This review provides an update on various SIP-approaches suitable for combination with different Raman scattering techniques and illustrates how single cell Raman SIP can be directly combined with the omics-centric analysis pipelines to investigate microbial communities.
Collapse
Affiliation(s)
- Yun Wang
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics and Single Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry Meets Microbiology', University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
19
|
McIlvenna D, Huang WE, Davison P, Glidle A, Cooper J, Yin H. Continuous cell sorting in a flow based on single cell resonance Raman spectra. LAB ON A CHIP 2016; 16:1420-9. [PMID: 26974400 DOI: 10.1039/c6lc00251j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Single cell Raman spectroscopy measures a spectral fingerprint of the biochemistry of cells, and provides a powerful method for label-free detection of living cells without the involvement of a chemical labelling strategy. However, as the intrinsic Raman signals of cells are inherently weak, there is a significant challenge in discriminating and isolating cells in a flowing stream. Here we report an integrated Raman-microfluidic system for continuous sorting of a stream of cyanobacteria, Synechocystis sp. PCC6803. These carotenoid-containing microorganisms provide an elegant model system enabling us to determine the sorting accuracy using the subtly different resonance Raman spectra of microorganism cultured in a (12)C or (13)C carbon source. Central to the implementation of continuous flow sorting is the use of "pressure dividers" that eliminate fluctuations in flow in the detection region. This has enabled us to stabilise the flow profile sufficiently to allow automated operation with synchronisation of Raman acquisition, real-time classification and sorting at flow rates of ca. <100 μm s(-1), without the need to "trap" the cells. We demonstrate the flexibility of this approach in sorting mixed cell populations with the ability to achieve 96.3% purity of the selected cells at a speed of 0.5 Hz.
Collapse
Affiliation(s)
- David McIlvenna
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Paul Davison
- Kroto Research Institute, Department of Civil and Structural Engineering, North Campus, The University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK
| | - Andrew Glidle
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Jon Cooper
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
20
|
Song Y, Yin H, Huang WE. Raman activated cell sorting. Curr Opin Chem Biol 2016; 33:1-8. [PMID: 27100046 DOI: 10.1016/j.cbpa.2016.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/03/2016] [Indexed: 10/21/2022]
Abstract
Single cell Raman spectra (SCRS) are intrinsic biochemical profiles and 'chemical images' of single cells which can be used to characterise phenotypic changes, physiological states and functions of cells. On the base of SCRS, Raman activated cell sorting (RACS) provides a label-free cell sorting approach, which can link single cells to their chemical or phenotypic profiles. Overcoming naturally weak Raman signals, establishing Raman biomarker as sorting criteria to RACS and improving specific sorting technology are three challenges of developing RACS. Advances on Raman spectroscopy such as stimulated Raman scattering (SRS) and pre-screening helped to increase RACS sorting speed. Entire SCRS can be characterised using pattern recognition methods, and specific Raman bands can be extracted as biomarkers for RACS. Recent advances on cell sorting technologies based on microfluidic device and surface-ejection enable accurate and reliable single cell sorting from complex samples. A high throughput RACS will be achievable in near future by integrating fast Raman detection system such as SRS with microfluidic RACS and Raman activated cell ejection (RACE).
Collapse
Affiliation(s)
- Yizhi Song
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
| |
Collapse
|
21
|
Huang WE, Song Y, Xu J. Single cell biotechnology to shed a light on biological 'dark matter' in nature. Microb Biotechnol 2015; 8:15-6. [PMID: 25627841 PMCID: PMC4321360 DOI: 10.1111/1751-7915.12249] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | | | | |
Collapse
|
22
|
Kubryk P, Kölschbach JS, Marozava S, Lueders T, Meckenstock RU, Niessner R, Ivleva NP. Exploring the Potential of Stable Isotope (Resonance) Raman Microspectroscopy and Surface-Enhanced Raman Scattering for the Analysis of Microorganisms at Single Cell Level. Anal Chem 2015; 87:6622-30. [DOI: 10.1021/acs.analchem.5b00673] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Patrick Kubryk
- Technische Universität München, Institute
of Hydrochemistry, Chair for Analytical Chemistry, Marchioninistr. 17, 81377 Munich, Germany
| | - Janina S. Kölschbach
- Helmholtz Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Sviatlana Marozava
- Helmholtz Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Tillmann Lueders
- Helmholtz Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Rainer U. Meckenstock
- Helmholtz Zentrum München, Institute of Groundwater
Ecology, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Reinhard Niessner
- Technische Universität München, Institute
of Hydrochemistry, Chair for Analytical Chemistry, Marchioninistr. 17, 81377 Munich, Germany
| | - Natalia P. Ivleva
- Technische Universität München, Institute
of Hydrochemistry, Chair for Analytical Chemistry, Marchioninistr. 17, 81377 Munich, Germany
| |
Collapse
|
23
|
Zhang P, Ren L, Zhang X, Shan Y, Wang Y, Ji Y, Yin H, Huang WE, Xu J, Ma B. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal Chem 2015; 87:2282-9. [PMID: 25607599 DOI: 10.1021/ac503974e] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Raman-activated cell sorting (RACS) is a promising single-cell technology that holds several significant advantages, as RACS is label-free, information-rich, and potentially in situ. To date, the ability of the technique to identify single cells in a high-speed flow has been limited by inherent weakness of the spontaneous Raman signal. Here we present an alternative pause-and-sort RACS microfluidic system that combines positive dielectrophoresis (pDEP) for single-cell trap and release with a solenoid-valve-suction-based switch for cell separation. This has allowed the integration of trapping, Raman identification, and automatic separation of individual cells in a high-speed flow. By exerting a periodical pDEP field, single cells were trapped, ordered, and positioned individually to the detection point for Raman measurement. As a proof-of-concept demonstration, a mixture of two cell strains containing carotenoid-producing yeast (9%) and non-carotenoid-producing Saccharomyces cerevisiae (91%) was sorted, which enriched the former to 73% on average and showed a fast Raman-activated cell sorting at the subsecond level.
Collapse
Affiliation(s)
- Peiran Zhang
- Single Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, Shandong 266101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang Q, Zhang P, Gou H, Mou C, Huang WE, Yang M, Xu J, Ma B. Towards high-throughput microfluidic Raman-activated cell sorting. Analyst 2015. [DOI: 10.1039/c5an01074h] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Raman-activated cell sorting (RACS) is a promising single-cell analysis technology that is able to identify and isolate individual cells of targeted type, state or environment from an isogenic population or complex consortium of cells, in a label-free and non-invasive manner.
Collapse
Affiliation(s)
- Qiang Zhang
- Single-Cell Center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Peiran Zhang
- Single-Cell Center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Honglei Gou
- Single-Cell Center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Chunbo Mou
- College of Chemical Science and Engineering
- Qingdao University
- Qingdao
- China
| | - Wei E. Huang
- Single-Cell Center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Menglong Yang
- Public Laboratory and CAS Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Jian Xu
- Single-Cell Center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Bo Ma
- Single-Cell Center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| |
Collapse
|
25
|
Wang Y, Ji Y, Wharfe ES, Meadows RS, March P, Goodacre R, Xu J, Huang WE. Raman Activated Cell Ejection for Isolation of Single Cells. Anal Chem 2013; 85:10697-701. [DOI: 10.1021/ac403107p] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yun Wang
- Single-cell
Center, CAS Key Laboratory of Biofuels, and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess
Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, P. R. China
| | - Yuetong Ji
- Single-cell
Center, CAS Key Laboratory of Biofuels, and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess
Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, P. R. China
| | - Emma S. Wharfe
- Kroto
Research Institute, The University of Sheffield, Broad Lane, Sheffield, South Yorkshire, S3 7HQ, United Kingdom
| | - Roger S. Meadows
- Faculty
of Life Sciences, The University of Manchester, The Michael Smith Building, Oxford
Road, Manchester, M13 9PT, United Kingdom
| | - Peter March
- Faculty
of Life Sciences, The University of Manchester, The Michael Smith Building, Oxford
Road, Manchester, M13 9PT, United Kingdom
| | - Royston Goodacre
- School
of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Jian Xu
- Single-cell
Center, CAS Key Laboratory of Biofuels, and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess
Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, P. R. China
| | - Wei E. Huang
- Kroto
Research Institute, The University of Sheffield, Broad Lane, Sheffield, South Yorkshire, S3 7HQ, United Kingdom
| |
Collapse
|
26
|
Pahlow S, Kloß S, Blättel V, Kirsch K, Hübner U, Cialla D, Rösch P, Weber K, Popp J. Isolation and enrichment of pathogens with a surface-modified aluminium chip for Raman spectroscopic applications. Chemphyschem 2013; 14:3600-5. [PMID: 23943577 DOI: 10.1002/cphc.201300543] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/07/2013] [Indexed: 11/09/2022]
Abstract
We developed a Raman-compatible chip for isolating microorganisms from complex media. The isolation of bacteria is achieved by using antibodies as capture molecules. Due to the very specific interaction with the targets, this approach is promising for isolation of bacteria even from complex matrices such as body fluids. Our choice of capture molecules also enabled the investigation of samples containing yet unidentified bacteria, as the antibodies can capture a large variety of bacteria based on their analogue cell wall surface structures. The capability of our system is demonstrated for a broad range of different Gram-positive and Gram-negative germs. Subsequent identification is done by recording Raman spectra of the bacteria. Further, it is shown that classification with chemometric methods is possible.
Collapse
Affiliation(s)
- Susanne Pahlow
- Spectroscopy and Imaging, Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany), Fax: (+49) (0)3641 206 399; Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chan JW. Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells. JOURNAL OF BIOPHOTONICS 2013; 6:36-48. [PMID: 23175434 DOI: 10.1002/jbio.201200143] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/15/2012] [Accepted: 10/28/2012] [Indexed: 05/19/2023]
Abstract
Laser tweezers Raman spectroscopy (LTRS), a technique that integrates optical tweezers with confocal Raman spectroscopy, is a variation of micro-Raman spectroscopy that enables the manipulation and biochemical analysis of single biological particles in suspension. This article provides an overview of the LTRS method, with an emphasis on highlighting recent advances over the past several years in the development of the technology and several new biological and biomedical applications that have been demonstrated. A perspective on the future developments of this powerful cytometric technology will also be presented.
Collapse
Affiliation(s)
- James W Chan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|