1
|
Yuan X, Xu Z, Gu H, Zhang T, Xu Y, Lu M. Cyclo-N 9 -: a Novel 5/6 Fused Polynitrogen Anion for High Energy Density Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414394. [PMID: 39874219 DOI: 10.1002/advs.202414394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/07/2025] [Indexed: 01/30/2025]
Abstract
After cyclo-pentazolate anion, a 5/6 fused structure of N9 - is constructed, and four novel nitrogen-rich ionic compounds are assembled on its basis. The results of the quantum calculations revealed an uneven distribution of electrons on cyclo-N9 -, with significant charge density near the N5/N9 atoms and an ADCH charge of -0.425. The relative strength of chemical bonds is assessed through bond order analysis, which is further supplemented by transition state theory and ab initio molecular dynamics, ultimately leading to the identification of the decomposition pathways of cyclo-N9 -. The aromaticity of cyclo-N9 - and its individual sub-rings is cleverly validated through a combination of NICS_ZZ and ICSS methods. Among the eight systems, cyclo-N9 - forms hydrogen bonds with other cations, and IGMH analysis revealed significant LP-π and π-π stacking interactions between [N7H4 +] and cyclo-N9 -, both of which enhance system stability. The theoretical energy densities in all systems are at the forefront in the currently emerging nitrogen-rich compounds. Attributed to its extraordinarily high enthalpy of formation, the detonation performance of [N7H4 +] [N9 -] is particularly excellent. However, [NH3OH+] [N9 -] exhibits better stability and most exciting performance, making it a highly promising candidate with application potential.
Collapse
Affiliation(s)
- Xiaofeng Yuan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ze Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Haolin Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Tongwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Yuangang Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| |
Collapse
|
2
|
Scott CE, Juechter LA, Rocha J, Jones LD, Outten B, Aishman TD, Ivers AR, Shields GC. Impact of Intracellular Proteins on μ-Opioid Receptor Structure and Ligand Binding. J Phys Chem B 2025; 129:71-87. [PMID: 39699881 PMCID: PMC11726672 DOI: 10.1021/acs.jpcb.4c05214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
Chronic pain is a prevalent problem affecting approximately one out of every five adults in the U.S. The most effective way to treat chronic pain is with opioids, but they cause dangerous side effects such as tolerance, addiction, and respiratory depression, which makes them quite deadly. Opioids, such as fentanyl, target the μ-opioid receptor (MOR), which can then bind to the intracellular Gi protein or the β-arrestin protein. The Gi pathway is primarily responsible for pain relief and potential side effects, but the β-arrestin pathway is chiefly responsible for the unwanted side effects. Ideally, an effective pain medication without side effects would bind to MOR, which would bias signaling solely through the Gi pathway. We used the Bio3D library to conduct principal component analysis to compare the cryo-electron microscopy MOR structure in complex with the Gi versus an X-ray crystallography MOR structure with a nanobody acting as a Gi mimic. Our results agree with a previous study by Munro, which concluded that nanobody-bound MOR is structurally different than Gi-bound MOR. Furthermore, we investigated the structural diversity of opioids that can bind to MOR. Quantum mechanical calculations show that the low energy solution structures of fentanyl differ from the one bound to MOR in the experimental structure, and pKa calculations reveal that fentanyl is protonated in aqueous solution. Glide docking studies show that higher energy structures of fentanyl in solution form favorable docking complexes with MOR. Our calculations show the relative abundance of each fentanyl conformation in solution as well as the energetic barriers that need to be overcome to bind to MOR. Docking studies confirm that multiple fentanyl conformations can bind to the receptor. Perhaps a variety of conformations of fentanyl can stabilize multiple conformations of the MOR, which can explain why fentanyl can induce different intracellular signaling and multiple physiological effects.
Collapse
Affiliation(s)
- Caitlin E. Scott
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, California, 90032, United States
- Department
of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - Leah A. Juechter
- Department
of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Josephine Rocha
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, California, 90032, United States
| | - Lauren D. Jones
- Department
of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Brenna Outten
- Department
of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Taylor D. Aishman
- Department
of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - Alaina R. Ivers
- Department
of Chemistry, Hendrix College, Conway, Arkansas 72032, United States
| | - George C. Shields
- Department
of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
3
|
Shi W, Cai PJ, Tian ZY, Dong Z, Yu ZX. Au-Catalyzed 5C Reaction of Type II Diene-Ynenes toward Dihydrosemibullvalenes: Reaction Development and Mechanistic Study. J Org Chem 2024; 89:18019-18027. [PMID: 39625847 DOI: 10.1021/acs.joc.4c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
We report an unexpected gold-catalyzed 5C reaction of type II diene-ynenes to synthesize dihydrosemibullvalenes, which are potential bioisosteres for drug discovery. This 5C reaction occurs through a sequence of elementary reactions of cyclopropanation/Cope rearrangement/carbon shift/cyclopropanation/C-H insertion (shortened here as the 5C reaction), supported by quantum chemistry calculations. Mechanistic studies have also been applied to answer why type-II diene-ynenes cannot access seven-membered carbocycles-embedded bridged molecules under the gold catalysis, finding that the chair-like Cope rearrangement transition state (not the traditional boat-like transition state) is the key to the change of regiochemistry.
Collapse
Affiliation(s)
- Weiming Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Pei-Jun Cai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zi-You Tian
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhe Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Malykhin RS, Sukhorukov AY. Electrophilic Intermediates in the Nef and Meyer Reactions: A Computational Study. J Org Chem 2024; 89:18109-18121. [PMID: 39644508 DOI: 10.1021/acs.joc.4c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The generation, interconversion, and reactivity of electrophilic species generated upon activation of nitroalkanes with protic acids (the Nef and Meyer reactions) were investigated by quantum-chemical calculations. N,N-Bis(hydroxy)iminium (R2C═N+(OH)2) and N-oxoiminium (R2C═N+═O) cations were shown to be produced independently from aci-nitroalkanes, while N-hydroxynitrilium cations (RC≡N+-OH) were formed via nearly barrierless C-H bond cleavage in N-oxoiminium cations. The N-oxoiminium and N-hydroxynitrilium cations whose formation is favored under highly acidic anhydrous conditions are strong electrophiles capable of reacting even with nonactivated arenes under ambient conditions. The N-oxoiminium cations R2C═N+═O are highly unusual ambident species containing three contiguous electrophilic centers (C, N, and O atoms). Nucleophilic addition at the oxygen atom is less preferred than the C- and N-attack yet possible in an intramolecular variant. These computational results shed light on some key aspects of the mechanisms of the Nef and Meyer reactions and predict the possibility of numerous interrupted versions of these reactions.
Collapse
Affiliation(s)
- Roman S Malykhin
- Laboratory of organic and metal-organic nitrogen-oxygen systems, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation
| | - Alexey Yu Sukhorukov
- Laboratory of organic and metal-organic nitrogen-oxygen systems, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow 119991, Russian Federation
| |
Collapse
|
5
|
Chamkin AA, Chamkina ES. Assessment of the applicability of DFT methods to [Cp*Rh]-catalyzed hydrogen evolution processes. J Comput Chem 2024; 45:2624-2639. [PMID: 39052232 DOI: 10.1002/jcc.27468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
The present computational study provides a benchmark of density functional theory (DFT) methods in describing hydrogen evolution processes catalyzed by [Cp*Rh]-containing organometallic complexes. A test set was composed of 26 elementary reactions featuring chemical transformations and bonding situations essential for the field, including the emerging concept of non-innocent Cp* behavior. Reference values were obtained from a highly accurate 3/4 complete basis set and 6/7 complete PNO space extrapolated DLPNO-CCSD(T) energies. The performance of lower-level extrapolation procedures was also assessed. We considered 84 density functionals (DF) (including 13 generalized gradient approximations (GGA), nine meta-GGAs, 33 hybrids, and 29 double-hybrids) and three composite methods (HF-3c, PBEh-3c, and r2SCAN-3c), combined with different types of dispersion corrections (D3(0), D3BJ, D4, and VV10). The most accurate approach is the PBE0-DH-D3BJ (MAD of 1.36 kcal mol-1) followed by TPSS0-D3BJ (MAD of 1.60 kcal mol-1). Low-cost r2SCAN-3c composite provides a less accurate but much faster alternative (MAD of 2.39 kcal mol-1). The widely used Minnesota-family M06-L, M06, and M06-2X DFs should be avoided (MADs of 3.70, 3.94, and 4.01 kcal mol-1, respectively).
Collapse
Affiliation(s)
- Aleksandr A Chamkin
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| | - Elena S Chamkina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Nagy PR. State-of-the-art local correlation methods enable affordable gold standard quantum chemistry for up to hundreds of atoms. Chem Sci 2024:d4sc04755a. [PMID: 39246365 PMCID: PMC11376132 DOI: 10.1039/d4sc04755a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
In this feature, we review the current capabilities of local electron correlation methods up to the coupled cluster model with single, double, and perturbative triple excitations [CCSD(T)], which is a gold standard in quantum chemistry. The main computational aspects of the local method types are assessed from the perspective of applications, but the focus is kept on how to achieve chemical accuracy (i.e., <1 kcal mol-1 uncertainty), as well as on the broad scope of chemical problems made accessible. The performance of state-of-the-art methods is also compared, including the most employed DLPNO and, in particular, our local natural orbital (LNO) CCSD(T) approach. The high accuracy and efficiency of the LNO method makes chemically accurate CCSD(T) computations accessible for molecules of hundreds of atoms with resources affordable to a broad computational community (days on a single CPU and 10-100 GB of memory). Recent developments in LNO-CCSD(T) enable systematic convergence and robust error estimates even for systems of complicated electronic structure or larger size (up to 1000 atoms). The predictive power of current local CCSD(T) methods, usually at about 1-2 order of magnitude higher cost than hybrid density functional theory (DFT), has become outstanding on the palette of computational chemistry applicable for molecules of practical interest. We also review more than 50 LNO-based and other advanced local-CCSD(T) applications for realistic, large systems across molecular interactions as well as main group, transition metal, bio-, and surface chemistry. The examples show that properly executed local-CCSD(T) can contribute to binding, reaction equilibrium, rate constants, etc. which are able to match measurements within the error estimates. These applications demonstrate that modern, open-access, and broadly affordable local methods, such as LNO-CCSD(T), already enable predictive computations and atomistic insight for complicated, real-life molecular processes in realistic environments.
Collapse
Affiliation(s)
- Péter R Nagy
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics Műegyetem rkp. 3. H-1111 Budapest Hungary
- HUN-REN-BME Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
- MTA-BME Lendület Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
| |
Collapse
|
7
|
Hou T, Yuan X, Jiang S, Xu Z, Zhang X, Lu M, Xu Y. Experimental detection of the diamino-pentazolium cation and theoretical exploration of derived high energy materials. Sci Rep 2024; 14:10120. [PMID: 38698073 PMCID: PMC11065884 DOI: 10.1038/s41598-024-60741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
In this work, we realized the detection of diamino-pentazolium cation (DAPZ+) in the reaction solution experimentally and proved it to be meta-diamino-pentazole based on the transition state theory. Quantum chemical methods were used to predict its spectral properties, charge distribution, stability and aromaticity. Considering that DAPZ+ has excellent detonation properties, it was further explored by assembling it with N5-, N3- and C(NO2)3- anions, respectively. The results show a strong interaction between DAPZ+ and the three anions, which will have a positive effect on its stability. Thanks to the high enthalpy of formation and density, the calculated detonation properties of the three systems are exciting, especially [DAPZ+][N5-] (D: 10,016 m·s-1; P: 37.94 GPa), whose actual detonation velocity may very likely exceed CL-20 (D: 9773 m·s-1). There is no doubt that this work will become the precursor for the theoretical exploration of new polynitrogen ionic compounds.
Collapse
Affiliation(s)
- Tianyang Hou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaofeng Yuan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shuaijie Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ze Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaopeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yuangang Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
8
|
Drabik G, Radoń M. Approaching the Complete Basis Set Limit for Spin-State Energetics of Mononuclear First-Row Transition Metal Complexes. J Chem Theory Comput 2024; 20:3199-3217. [PMID: 38574194 PMCID: PMC11044276 DOI: 10.1021/acs.jctc.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Convergence to the complete basis set (CBS) limit is analyzed for the problem of spin-state energetics in mononuclear first-row transition metal (TM) complexes by taking under scrutiny a benchmark set of 18 energy differences between spin states for 13 chemically diverse TM complexes. The performance of conventional CCSD(T) and explicitly correlated CCSD(T)-F12a/b calculations in approaching the CCSD(T)/CBS limits is systematically studied. An economic computational protocol is developed based on the CCSD-F12a approximation and (here proposed) modified scaling of the perturbative triples term (T#). This computational protocol recovers the relative spin-state energetics of the benchmark set in excellent agreement with the reference CCSD(T)/CBS limits (mean absolute deviation of 0.4, mean signed deviation of 0.2, and maximum deviation of 0.8 kcal/mol) and enables performing canonical CCSD(T) calculations for mononuclear TM complexes sized up to ca. 50 atoms, which is illustrated by application to heme-related metalloporphyrins. Furthermore, a good transferability of the basis set incompleteness error (BSIE) is demonstrated for spin-state energetics computed using CCSD(T) and other wave function methods (MP2, CASPT2, CASPT2/CC, NEVPT2, and MRCI + Q), which justifies efficient focal-point approximations and simplifies the construction of multimethod benchmark studies.
Collapse
Affiliation(s)
- Gabriela Drabik
- Jagiellonian
University, Doctoral School
of Exact and Natural Sciences, Łojasiewicza 11, 30-348 Kraków, Poland
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków Poland
| | - Mariusz Radoń
- Jagiellonian
University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków Poland
| |
Collapse
|
9
|
Peyton BG, Wang Z, Crawford TD. Reduced Scaling Real-Time Coupled Cluster Theory. J Phys Chem A 2023; 127:8486-8499. [PMID: 37782945 DOI: 10.1021/acs.jpca.3c05151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Real-time coupled cluster (CC) methods have several advantages over their frequency-domain counterparts, namely, response and equation of motion CC theories. Broadband spectra, strong fields, and pulse manipulation allow for the simulation of complex spectroscopies that are unreachable using frequency-domain approaches. Due to the high-order polynomial scaling, the required numerical time propagation of the CC residual expressions is a computationally demanding process. This scaling may be reduced by local correlation schemes, which aim to reduce the size of the (virtual) orbital space by truncation according to user-defined parameters. We present the first application of local correlation to real-time CC. As in previous studies of locally correlated frequency-domain CC, traditional local correlation schemes are of limited utility for field-dependent properties; however, a perturbation-aware scheme proves promising. A detailed analysis of the amplitude dynamics suggests that the main challenge is a strong time dependence of the wave function sparsity.
Collapse
Affiliation(s)
- Benjamin G Peyton
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zhe Wang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - T Daniel Crawford
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
10
|
Demel O, Lecours MJ, Nooijen M. Further investigations into a Laplace MP2 method using range separated Coulomb potential and orbital selective virtuals: Multipole correction, OSV extrapolation, and critical assessment. J Chem Phys 2023; 158:114120. [PMID: 36948803 DOI: 10.1063/5.0135113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
We report further investigations to aid the development of a Laplace MP2 (second-order Møller Plesset) method with a range separated Coulomb potential partitioned into short- and long-range parts. The implementation of the method extensively uses sparse matrix algebra, density fitting techniques for the short-range part, and a Fourier transformation in spherical coordinates for the long-range part of the potential. Localized molecular orbitals are employed for the occupied space, whereas virtual space is described by orbital specific virtual orbitals (OSVs) associated with localized molecular orbitals. The Fourier transform is deficient for very large distances between localized occupied orbitals, and a multipole expansion for widely separated pairs is introduced for the direct MP2 contribution, which is applicable also to non-Coulombic potentials that do not satisfy the Laplace equation. For the exchange contribution, an efficient screening of contributing localized occupied pairs is employed, which is discussed more completely here. To mitigate errors due to the truncation of OSVs, a simple and efficient extrapolation procedure is used to obtain results close to MP2 for the full basis set of atomic orbitals Using a suitable set of default parameters, the accuracy of the approach is demonstrated. The current implementation of the approach is not very efficient, and the aim of this paper is to introduce and critically discuss ideas that can have more general applicability beyond MP2 calculations for large molecules.
Collapse
Affiliation(s)
- Ondřej Demel
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Michael J Lecours
- University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Marcel Nooijen
- University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
11
|
Paulikat M, Vitone D, Schackert FK, Schuth N, Barbanente A, Piccini G, Ippoliti E, Rossetti G, Clark AH, Nachtegaal M, Haumann M, Dau H, Carloni P, Geremia S, De Zorzi R, Quintanar L, Arnesano F. Molecular Dynamics and Structural Studies of Zinc Chloroquine Complexes. J Chem Inf Model 2023; 63:161-172. [PMID: 36468829 DOI: 10.1021/acs.jcim.2c01164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Chloroquine (CQ) is a first-choice drug against malaria and autoimmune diseases. It has been co-administered with zinc against SARS-CoV-2 and soon dismissed because of safety issues. The structural features of Zn-CQ complexes and the effect of CQ on zinc distribution in cells are poorly known. In this study, state-of-the-art computations combined with experiments were leveraged to solve the structural determinants of zinc-CQ interactions in solution and the solid state. NMR, ESI-MS, and X-ray absorption and diffraction methods were combined with ab initio molecular dynamics calculations to address the kinetic lability of this complex. Within the physiological pH range, CQ binds Zn2+ through the quinoline ring nitrogen, forming [Zn(CQH)Clx(H2O)3-x](3+)-x (x = 0, 1, 2, and 3) tetrahedral complexes. The Zn(CQH)Cl3 species is stable at neutral pH and at high chloride concentrations typical of the extracellular medium, but metal coordination is lost at a moderately low pH as in the lysosomal lumen. The pentacoordinate complex [Zn(CQH)(H2O)4]3+ may exist in the absence of chloride. This in vitro/in silico approach can be extended to other metal-targeting drugs and bioinorganic systems.
Collapse
Affiliation(s)
- Mirko Paulikat
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich GmbH, 52428Jülich, Germany
| | - Daniele Vitone
- Department of Chemistry, University of Bari "Aldo Moro", 70125Bari, Italy
| | - Florian K Schackert
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich GmbH, 52428Jülich, Germany.,Department of Physics, RWTH Aachen University, 52062Aachen, Germany
| | - Nils Schuth
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), 07360Mexico City, Mexico
| | | | | | - Emiliano Ippoliti
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich GmbH, 52428Jülich, Germany
| | - Giulia Rossetti
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich GmbH, 52428Jülich, Germany.,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52428Jülich, Germany.,Department of Neurology, RWTH Aachen University, 52062Aachen, Germany
| | - Adam H Clark
- Paul Scherrer Institute, 5232Villigen, Switzerland
| | | | - Michael Haumann
- Department of Physics, Freie Universität Berlin, 14195Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, 14195Berlin, Germany
| | - Paolo Carloni
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich GmbH, 52428Jülich, Germany.,Department of Physics, RWTH Aachen University, 52062Aachen, Germany
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127Trieste, Italy
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127Trieste, Italy
| | - Liliana Quintanar
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), 07360Mexico City, Mexico
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "Aldo Moro", 70125Bari, Italy
| |
Collapse
|
12
|
Bready CJ, Fowler VR, Juechter LA, Kurfman LA, Mazaleski GE, Shields GC. The driving effects of common atmospheric molecules for formation of prenucleation clusters: the case of sulfuric acid, formic acid, nitric acid, ammonia, and dimethyl amine. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:1469-1486. [PMID: 36561556 PMCID: PMC9648633 DOI: 10.1039/d2ea00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
How secondary aerosols form is critical as aerosols' impact on Earth's climate is one of the main sources of uncertainty for understanding global warming. The beginning stages for formation of prenucleation complexes, that lead to larger aerosols, are difficult to decipher experimentally. We present a computational chemistry study of the interactions between three different acid molecules and two different bases. By combining a comprehensive search routine covering many thousands of configurations at the semiempirical level with high level quantum chemical calculations of approximately 1000 clusters for every possible combination of clusters containing a sulfuric acid molecule, a formic acid molecule, a nitric acid molecule, an ammonia molecule, a dimethylamine molecule, and 0-5 water molecules, we have completed an exhaustive search of the DLPNO-CCSD(T)/CBS//ωB97X-D/6-31++G** Gibbs free energy surface for this system. We find that the detailed geometries of each minimum free energy cluster are often more important than traditional acid or base strength. Addition of a water molecule to a dry cluster can enhance stabilization, and we find that the (SA)(NA)(A)(DMA)(W) cluster has special stability. Equilibrium calculations of SA, FA, NA, A, DMA, and water using our quantum chemical ΔG° values for cluster formation and realistic estimates of the concentrations of these monomers in the atmosphere reveals that nitric acid can drive early stages of particle formation just as efficiently as sulfuric acid. Our results lead us to believe that particle formation in the atmosphere results from the combination of many different molecules that are able to form highly stable complexes with acid molecules such as SA, NA, and FA.
Collapse
Affiliation(s)
- Conor J Bready
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Vance R Fowler
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Leah A Juechter
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Luke A Kurfman
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Grace E Mazaleski
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - George C Shields
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| |
Collapse
|
13
|
Neese F. Software update: The
ORCA
program system—Version 5.0. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1606] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Frank Neese
- Max Planck Institut für Kohlenforschung Mülheim an der Ruhr Germany
| |
Collapse
|
14
|
Bhattacharjee S, Isegawa M, Garcia-Ratés M, Neese F, Pantazis DA. Ionization Energies and Redox Potentials of Hydrated Transition Metal Ions: Evaluation of Domain-Based Local Pair Natural Orbital Coupled Cluster Approaches. J Chem Theory Comput 2022; 18:1619-1632. [PMID: 35191695 PMCID: PMC8908766 DOI: 10.1021/acs.jctc.1c01267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Hydrated transition
metal ions are prototypical systems that can
be used to model properties of transition metals in complex chemical
environments. These seemingly simple systems present challenges for
computational chemistry and are thus crucial in evaluations of quantum
chemical methods for spin-state and redox energetics. In this work,
we explore the applicability of the domain-based pair natural orbital
implementation of coupled cluster (DLPNO-CC) theory to the calculation
of ionization energies and redox potentials for hydrated ions of all
first transition row (3d) metals in the 2+/3+ oxidation states, in
connection with various solvation approaches. In terms of model definition,
we investigate the construction of a minimally explicitly hydrated
quantum cluster with a first and second hydration layer. We report
on the convergence with respect to the coupled cluster expansion and
the PNO space, as well as on the role of perturbative triple excitations.
A recent implementation of the conductor-like polarizable continuum
model (CPCM) for the DLPNO-CC approach is employed to determine self-consistent
redox potentials at the coupled cluster level. Our results establish
conditions for the convergence of DLPNO-CCSD(T) energetics and stress
the absolute necessity to explicitly consider the second solvation
sphere even when CPCM is used. The achievable accuracy for redox potentials
of a practical DLPNO-based approach is, on average, 0.13 V. Furthermore,
multilayer approaches that combine a higher-level DLPNO-CCSD(T) description
of the first solvation sphere with a lower-level description of the
second solvation layer are investigated. The present work establishes
optimal and transferable methodological choices for employing DLPNO-based
coupled cluster theory, the associated CPCM implementation, and cost-efficient
multilayer derivatives of the approach for open-shell transition metal
systems in complex environments.
Collapse
Affiliation(s)
- Sinjini Bhattacharjee
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Miquel Garcia-Ratés
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Zhu S, Yang W, Gan Q, Feng C. Comparative Quantum Chemistry Study on the Unimolecular Decomposition Channels of Pyrazole and Imidazole Energetic Materials. J Phys Chem A 2021; 125:10340-10350. [PMID: 34843232 DOI: 10.1021/acs.jpca.1c08274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The difference in the initial decomposition step of pyrazoles and imidazoles was explored using the M062X method for optimization and G4-MP2 and approximated CCSD(T) methods for energies. Laplacian bond order analysis was used to study the effect of the nitro group on the bond strength and predict the bond dissociation energy (BDE) of the ring. Thermochemistry results show that the most possible decay channel of 1H-pyrazole and 3-nitropyrazole is the N2 elimination, while the preferred initial step of 1H-imidazole is the CHN elimination. However, the nitro-nitrite isomerization dominates the decomposition of other nitro derivatives of 1H-pyrazole and 1H-imidazole. As for the formation of HO and HONO, the high energy barrier makes it difficult to take place. Based on the analysis of the lowest energy barrier and the BDE of NO2 loss, it can be concluded that imidazoles are more stable than pyrazoles. This work contributes to revealing the difference in the initial step of energetic isomers and the understanding of the decomposition mechanism of energetic azoles.
Collapse
Affiliation(s)
- Shuangfei Zhu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Yang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Gan
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Changgen Feng
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
16
|
Witwicki M, Lewińska A, Ozarowski A. o-Semiquinone radical anion isolated as an amorphous porous solid. Phys Chem Chem Phys 2021; 23:17408-17419. [PMID: 34351330 DOI: 10.1039/d1cp01596f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of metal cations is a commonly applied strategy to create S > 1/2 stable molecular systems containing semiquinone radicals. Persistent mono-semiquinonato complexes of diamagnetic metal ions (S = 1/2) have been hitherto less common and mostly limited to the complexes of heavy metal ions. In this work, a mono-semiquinonato complex of aluminum, derived from 1,2-dihydroxybenzene, is obtained using a surprisingly short and uncomplicated procedure. The isolated product is an amorphous and porous solid that exhibits very good stability under ambient conditions. To characterise its molecular and electronic structure, 9.7, 34 and 406 GHz EPR spectroscopy was used in concert with computational techniques (DFT and DLPNO-CCSD). It was revealed that the radical complex is composed of two chemically equivalent aluminum cations and two catechol-like ligands with the unpaired electron uniformly distributed between the two organic molecules. The good stability and porous structure make this complex applicable in heterogeneous aerobic reactions.
Collapse
Affiliation(s)
- Maciej Witwicki
- Faculty of Chemistry, Wroclaw University, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | | | | |
Collapse
|
17
|
Zheng K, Li D, Jiang L, Li X, Xie C, Feng L, Qin J, Qian S, Pang Q. Revisiting stacking interactions in tetrathiafulvalene and selected derivatives using tight-binding quantum chemical calculations and local coupled-cluster method. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2021; 77:311-320. [PMID: 34096512 DOI: 10.1107/s2052520621003085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The engineering of supramolecular architectures needs accurate descriptions of the intermolecular interactions in crystal structures. Tetrathiafulvalene (TTF) is an effective building block used in the construction of promising functional materials. The parallel packing of the neutral TTF-TTF system was studied previously using the high-level quantum chemical method, advancing it as a valuable model system. The recently developed tight-binding quantum chemical method GFN2-xTB and local coupled-cluster method DLPNO-CCSD(T) were used to investigate the stacking interactions of TTF and selected derivatives deposited in the Cambridge Structural Database. Using the interaction energy of the TTF-TTF dimer calculated at the CCSD(T)/CBS level as the reference, the accuracies of the two methods are investigated. The energy decomposition analysis within the DLPNO-CCSD(T) framework reveals the importance of dispersion interaction in the TTF-related stacking systems. The dispersion interaction density plot vividly shows the magnitude and distribution of the dispersion interaction, providing a revealing insight into the stacking interactions in crystal structures. The results show that the GFN2-xTB and DLPNO-CCSD(T) methods could achieve accuracy at an affordable computational cost, which would be valuable in understanding the nature of parallel stacking in supramolecular systems.
Collapse
Affiliation(s)
- Kang Zheng
- School of Life Sciences, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255049, People's Republic of China
| | - Danping Li
- School of Life Sciences, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255049, People's Republic of China
| | - Liu Jiang
- School of Life Sciences, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255049, People's Republic of China
| | - Xiaowei Li
- School of Materials Science and Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255049, People's Republic of China
| | - Changjian Xie
- School of Life Sciences, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255049, People's Republic of China
| | - Ling Feng
- School of Life Sciences, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255049, People's Republic of China
| | - Jie Qin
- School of Life Sciences, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255049, People's Republic of China
| | - Shaosong Qian
- School of Life Sciences, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255049, People's Republic of China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255049, People's Republic of China
| |
Collapse
|
18
|
Zhang Z, Yang Z, Pu L, Chen X, Li Y, Wang J, Zhao L, King RB. Mechanism for the Reaction of White Phosphorus with Cp 2Cr 2(CO) 6 Leading Ultimately to the Triple-Decker Sandwich Cp 2Cr 2(μ-η 5,η 5-P 5): A Theoretical Study. Inorg Chem 2021; 60:5955-5968. [PMID: 33834774 DOI: 10.1021/acs.inorgchem.1c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The experimentally known reaction of Cp2Cr2(CO)6 with white phosphorus (P4) to give CpCr(CO)2(η3-P3), Cp2Cr2(CO)4(μ-η,2η2-P2), and the triple-decker sandwich Cp2Cr2(μ-η,5η5-P5) is of interest since the P4 reactant having a tetrahedral cluster of four phosphorus atoms is converted to products having P2, P3, and P5 ligands. The mechanism of this obviously complicated reaction can be dissected into three stages using a coupled cluster theoretical method that has been benchmarked with the P2, Mn(CO)5, and CpCr(CO)3 dimerization processes. The first stage of the Cp2Cr2(CO)6/P4 reaction mechanism generates the unsaturated singlet intermediate Cp2Cr2(CO)5 that combines with the P4 reactant. Decarbonylation of the resulting Cp2Cr2(CO)5(P4) complex provides a singlet tetracarbonyl readily fragmenting into the stable triphosphacyclopropenyl complex CpCr(CO)2(η3-P3) and the chromium phosphide CpCr(CO)2(P). The isomeric triplet tetracarbonyl Cp2Cr2(CO)4(P4), readily fragments into CpCr(CO)2(η2-P2), which can generate the stable diphosphaacetylene complex Cp2Cr2(CO)4(η,2η2-P2) as well as the pentamer [CpCr(CO)2]5(P10). Combination of the coordinately unsaturated CpCr(CO)(η3-P3) with CpCr(CO)2(η2-P2) can lead to a ring expansion. This generates the P5 pentagonal ligand in a Cp2Cr2(CO)3(P5) precursor to the experimentally observed carbonyl-free triple-decker sandwich Cp2Cr2(μ-η,5η5-P5) after three successive decarbonylations.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Zhipeng Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Liang Pu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xian Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yun Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jianping Wang
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, Xi'an, Shaanxi 710123, P. R. China
| | - Lingzhi Zhao
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, P. R. China
| | - R Bruce King
- Department of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
19
|
Gehrke S, Hollóczki O. N-Heterocyclic Carbene Organocatalysis: With or Without Carbenes? Chemistry 2020; 26:10140-10151. [PMID: 32608090 PMCID: PMC7496998 DOI: 10.1002/chem.202002656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Indexed: 11/18/2022]
Abstract
In this work the mechanism of the aldehyde umpolung reactions, catalyzed by azolium cations in the presence of bases, was studied through computational methods. Next to the mechanism established by Breslow in the 1950s that takes effect through the formation of a free carbene, we have suggested that these processes can follow a concerted asynchronous path, in which the azolium cation directly reacts with the substrate, avoiding the formation of the carbene intermediate. We hereby show that substituting the azolium cation, and varying the base or the substrate do not affect the preference for the concerted reaction mechanism. The concerted path was found to exhibit low barriers also for the reactions of thiamine with model substrates, showing that this path might have biological relevance. The dominance of the concerted mechanism can be explained through the specific structure of the key transition state, avoiding the liberation of the highly reactive, and thus unstable carbene lone pair, whereas activating the substrate through hydrogen-bonding interactions. Polar and hydrogen-bonding solvents, as well as the presence of the counterions of the azolium salts facilitate the reaction through carbenes, bringing the barriers of the two reaction mechanisms closer, in many cases making the concerted path less favorable. Thus, our data show that by choosing the exact components in a reaction, the mechanism can be switched to occur with or without carbenes.
Collapse
Affiliation(s)
- Sascha Gehrke
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstr. 4+653115BonnGermany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstr. 4+653115BonnGermany
| |
Collapse
|
20
|
Joshi SP, Seal P, Pekkanen TT, Timonen RS, Eskola AJ. Direct Kinetic Measurements and Master Equation Modelling of the Unimolecular Decomposition of Resonantly-Stabilized CH 2CHCHC(O)OCH 3 Radical and an Upper Limit Determination for CH 2CHCHC(O)OCH 3 + O 2 Reaction. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Methyl-Crotonate (MC, (E)-methylbut-2-enoate, CH3CHCHC(O)OCH3) is a potential component of surrogate fuels that aim to emulate the combustion of fatty acid methyl ester (FAME) biodiesels with significant unsaturated FAME content. MC has three allylic hydrogens that can be readily abstracted under autoignition and combustion conditions to form a resonantly-stabilized CH2CHCHC(O)OCH3 radical. In this study we have utilized photoionization mass spectrometry to investigate the O2 addition kinetics and thermal unimolecular decomposition of CH2CHCHC(O)OCH3 radical. First we determined an upper limit for the bimolecular rate coefficient of CH2CHCHC(O)OCH3 + O2 reaction at 600 K (k ≤ 7.5 × 10−17 cm3 molecule−1 s−1). Such a small rate coefficient suggest this reaction is unlikely to be important under combustion conditions and subsequent efforts were directed towards measuring thermal unimolecular decomposition kinetics of CH2CHCHC(O)OCH3 radical. These measurements were performed between 750 and 869 K temperatures at low pressures (<9 Torr) using both helium and nitrogen bath gases. The potential energy surface of the unimolecular decomposition reaction was probed at density functional (MN15/cc-pVTZ) level of theory and the electronic energies of the stationary points obtained were then refined using the DLPNO-CCSD(T) method with the cc-pVTZ and cc-pVQZ basis sets. Master equation simulations were subsequently carried out using MESMER code along the kinetically important reaction pathway. The master equation model was first optimized by fitting the zero-point energy corrected reaction barriers and the collisional energy transfer parameters
Δ
E
down
,
ref
$\Delta{E_{{\text{down}},\;{\text{ref}}}}$
and n to the measured rate coefficients data and then utilize the constrained model to extrapolate the decomposition kinetics to higher pressures and temperatures. Both the experimental results and the MESMER simulations show that the current experiments for the thermal unimolecular decomposition of CH2CHCHC(O)OCH3 radical are in the fall-off region. The experiments did not provide definite evidence about the primary decomposition products.
Collapse
Affiliation(s)
- Satya Prakash Joshi
- Department of Chemistry , University of Helsinki , P.O. Box 55 (A.I. Virtasen aukio 1), FI-00014 , Helsinki , Finland
| | - Prasenjit Seal
- Department of Chemistry , University of Helsinki , P.O. Box 55 (A.I. Virtasen aukio 1), FI-00014 , Helsinki , Finland
| | - Timo Theodor Pekkanen
- Department of Chemistry , University of Helsinki , P.O. Box 55 (A.I. Virtasen aukio 1), FI-00014 , Helsinki , Finland
| | - Raimo Sakari Timonen
- Department of Chemistry , University of Helsinki , P.O. Box 55 (A.I. Virtasen aukio 1), FI-00014 , Helsinki , Finland
| | - Arrke J. Eskola
- Department of Chemistry , University of Helsinki , P.O. Box 55 (A.I. Virtasen aukio 1), FI-00014 , Helsinki , Finland
| |
Collapse
|
21
|
Erdmann P, Leitner J, Schwarz J, Greb L. An Extensive Set of Accurate Fluoride Ion Affinities for p-Block Element Lewis Acids and Basic Design Principles for Strong Fluoride Ion Acceptors. Chemphyschem 2020; 21:987-994. [PMID: 32212357 PMCID: PMC7317340 DOI: 10.1002/cphc.202000244] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 11/10/2022]
Abstract
The computed fluoride ion affinity (FIA) is a valuable descriptor to assess the Lewis acidity of a compound. Despite its widespread use, the varying accuracy of applied computational models hampers the broad comparability of literature data. Herein, we evaluate the performance of selected methods (like DLPNO‐CCSD(T)) in FIA computations against CCSD(T)/CBS data and guide for the choice of suitable density functionals that allow the treatment of larger Lewis acids. Based on the benchmarked methods, we computed an extensive set of gas‐phase and solvation corrected FIA, that is covering group 13–16 elements featuring moderate to strong electron‐withdrawing substituents (190 entries). It permits an unbiased comparison of FIA over a significant fraction of the periodic table, serves as a source of reference for future synthetic or theoretical studies, and allows to derive some simple design principles for strong fluoride ion acceptors. Finally, the manuscript includes a tutorial section for the computation of FIA with and without the consideration of solvation.
Collapse
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69126, Heidelberg, Germany
| | - Jonas Leitner
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69126, Heidelberg, Germany
| | - Julia Schwarz
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69126, Heidelberg, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69126, Heidelberg, Germany
| |
Collapse
|
22
|
Patel P, Wang J, Wilson AK. Prediction of pK a s of Late Transition-Metal Hydrides via a QM/QM Approach. J Comput Chem 2020; 41:171-183. [PMID: 31495951 DOI: 10.1002/jcc.26057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/04/2019] [Indexed: 11/09/2022]
Abstract
Three implicit solvation models, the conductor-like polarizable continuum model (C-PCM), the conductor-like screening model (COSMO), and universal implicit solvent model (SMD), combined with a hybrid two layer QM/QM approach (ONIOM), were utilized to calculate the pKa values, using a direct thermodynamic scheme, of a set of Group 10 transition metal (TM) hydrides in acetonitrile. To obtain the optimal combination of quantum methods for ONIOM calculations with implicit solvation models, the influence of factors, such as the choice of density functional and basis set, the atomic radii used to build a cavity in the solvent, and the size of the model system in an ONIOM scheme, was examined. Additionally, the impact of Grimme's empirical dispersion correction and exact exchange was also investigated. The results were calibrated by experimental data. This investigation provides insight about effective models for the prediction of thermodynamic properties of TM-containing complexes with bulky ligands. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Prajay Patel
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas, 76203-5017.,Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824-1322
| | - Jiaqi Wang
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas, 76203-5017.,Department of Chemistry, Beijing Forestry University, Beijing, China, 100083
| | - Angela K Wilson
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas, 76203-5017.,Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824-1322
| |
Collapse
|
23
|
Fatima M, Maué D, Pérez C, Tikhonov DS, Bernhard D, Stamm A, Medcraft C, Gerhards M, Schnell M. Structures and internal dynamics of diphenylether and its aggregates with water. Phys Chem Chem Phys 2020; 22:27966-27978. [DOI: 10.1039/d0cp04104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report on a detailed multi-spectroscopic analysis of the structures and internal dynamics of diphenylether and its aggregates with up to three water molecules by employing molecular beam experiments.
Collapse
Affiliation(s)
- M. Fatima
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - D. Maué
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - C. Pérez
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - D. S. Tikhonov
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - D. Bernhard
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - A. Stamm
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - C. Medcraft
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| | - M. Gerhards
- TU Kaiserslautern
- Fachbereich Chemie & Research Center Optimas
- D-67663 Kaiserslautern
- Germany
| | - M. Schnell
- Deutsches Elektronen-Synchrotron (DESY)
- D-22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| |
Collapse
|
24
|
Guo Y, Wang X, Ma N, Cao Y, Hussain S, Zhang J, Wei D, Chen X. Mechanisms of the Reactions of B‐Substituted Amine Boranes with THF·BH
3. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Guo
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Xinghua Wang
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Nana Ma
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Yilin Cao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Sajjad Hussain
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
25
|
Gertig C, Kröger L, Fleitmann L, Scheffczyk J, Bardow A, Leonhard K. Rx-COSMO-CAMD: Computer-Aided Molecular Design of Reaction Solvents Based on Predictive Kinetics from Quantum Chemistry. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03232] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christoph Gertig
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany
| | - Leif Kröger
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany
| | - Lorenz Fleitmann
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany
| | - Jan Scheffczyk
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany
| | - André Bardow
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany
- Institute of Energy and Climate Research—Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Kai Leonhard
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany
| |
Collapse
|
26
|
Dittmer A, Izsák R, Neese F, Maganas D. Accurate Band Gap Predictions of Semiconductors in the Framework of the Similarity Transformed Equation of Motion Coupled Cluster Theory. Inorg Chem 2019; 58:9303-9315. [PMID: 31240911 PMCID: PMC6750750 DOI: 10.1021/acs.inorgchem.9b00994] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In
this work, we present a detailed comparison between wave-function-based
and particle/hole techniques for the prediction of band gap energies
of semiconductors. We focus on the comparison of the back-transformed
Pair Natural Orbital Similarity Transformed Equation of Motion Coupled-Cluster
(bt-PNO-STEOM-CCSD) method with Time Dependent Density Functional
Theory (TD-DFT) and Delta Self Consistent Field/DFT (Δ-SCF/DFT)
that are employed to calculate the band gap energies in a test set
of organic and inorganic semiconductors. Throughout, we have used
cluster models for the calculations that were calibrated by comparing
the results of the cluster calculations to periodic DFT calculations
with the same functional. These calibrations were run with cluster
models of increasing size until the results agreed closely with the
periodic calculation. It is demonstrated that bt-PNO-STEOM-CC yields
accurate results that are in better than 0.2 eV agreement with the
experiment. This holds for both organic and inorganic semiconductors.
The efficiency of the employed computational protocols is thoroughly
discussed. Overall, we believe that this study is an important contribution
that can aid future developments and applications of excited state
coupled cluster methods in the field of solid-state chemistry and
heterogeneous catalysis. In this work, it is shown
that a combination of the embedded cluster approach with wave-function-based
ab initio methods in the framework of the Similarity Transformed Equation
of Motion Coupled Cluster (bt-PNO STEOM-CC) provides an accurate protocol
for band gap energy predictions in classes of organic and inorganic
semiconductors.
Collapse
Affiliation(s)
- Anneke Dittmer
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Róbert Izsák
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
27
|
Scott CJC, Di Remigio R, Crawford TD, Thom AJW. Diagrammatic Coupled Cluster Monte Carlo. J Phys Chem Lett 2019; 10:925-935. [PMID: 30724572 DOI: 10.1021/acs.jpclett.9b00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We propose a modified coupled cluster Monte Carlo algorithm that stochastically samples connected terms within the truncated Baker-Campbell-Hausdorff expansion of the similarity-transformed Hamiltonian by construction of coupled cluster diagrams on the fly. Our new approach-diagCCMC-allows propagation to be performed using only the connected components of the similarity-transformed Hamiltonian, greatly reducing the memory cost associated with the stochastic solution of the coupled cluster equations. We show that for perfectly local, noninteracting systems diagCCMC is able to represent the coupled cluster wavefunction with a memory cost that scales linearly with system size. The favorable memory cost is observed with the only assumption of fixed stochastic granularity and is valid for arbitrary levels of coupled cluster theory. Significant reduction in memory cost is also shown to smoothly appear with dissociation of a finite chain of helium atoms. This approach is also shown not to break down in the presence of strong correlation through the example of a stretched nitrogen molecule. Our novel methodology moves the theoretical basis of coupled cluster Monte Carlo closer to deterministic approaches.
Collapse
Affiliation(s)
- Charles J C Scott
- Department of Chemistry , University of Cambridge , Cambridge CB2 1TN , United Kingdom
| | - Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , University of Tromsø - The Arctic University of Norway , N-9037 Tromsø , Norway
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - T Daniel Crawford
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Alex J W Thom
- Department of Chemistry , University of Cambridge , Cambridge CB2 1TN , United Kingdom
| |
Collapse
|
28
|
Crawford TD, Kumar A, Bazanté AP, Di Remigio R. Reduced‐scaling coupled cluster response theory: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- T. Daniel Crawford
- Department of Chemistry Virginia Tech, Blacksburg Virginia
- The Molecular Sciences Software Institute Blacksburg Virginia
| | - Ashutosh Kumar
- Department of Chemistry Virginia Tech, Blacksburg Virginia
| | | | - Roberto Di Remigio
- Department of Chemistry Virginia Tech, Blacksburg Virginia
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry University of Tromsø ‐ The Arctic University of Norway Tromsø Norway
| |
Collapse
|
29
|
Iffland L, Khedkar A, Petuker A, Lieb M, Wittkamp F, van Gastel M, Roemelt M, Apfel UP. Solvent-Controlled CO2 Reduction by a Triphos–Iron Hydride Complex. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linda Iffland
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Abhishek Khedkar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Anette Petuker
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Max Lieb
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Florian Wittkamp
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Maurice van Gastel
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Michael Roemelt
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ulf-Peter Apfel
- Anorganische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Straße 3, 46047 Oberhausen, Germany
| |
Collapse
|
30
|
Karton A. Thermochemistry of Guanine Tautomers Re-Examined by Means of High-Level CCSD(T) Composite Ab Initio Methods. Aust J Chem 2019. [DOI: 10.1071/ch19276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We obtained accurate gas-phase tautomerization energies for a set of 14 guanine tautomers by means of high-level thermochemical procedures approximating the CCSD(T) energy at the complete basis set (CBS) limit. For the five low-lying tautomers, we use the computationally demanding W1-F12 composite method for obtaining the tautomerization energies. The relative W1-F12 tautomerization enthalpies at 298K are: 0.00 (1), 2.37 (2), 2.63 (3), 4.03 (3′), and 14.31 (4) kJmol−1. Thus, as many as four tautomers are found within a small energy window of less than 1.0kcalmol−1 (1kcalmol−1=4.184kJmol−1). We use these highly accurate W1-F12 tautomerization energies to evaluate the performance of a wide range of lower-level composite ab initio procedures. The Gn composite procedures (G4, G4(MP2), G4(MP2)-6X, G3, G3B3, G3(MP2), and G3(MP2)B3) predict that the enol tautomer (3) is more stable than the keto tautomer (2) by amounts ranging from 0.36 (G4) to 1.28 (G3(MP2)) kJmol−1. We also find that an approximated CCSD(T)/CBS energy calculated as HF/jul-cc-pV{D,T}Z+CCSD/jul-cc-pVTZ+(T)/jul-cc-pVDZ results in a root-mean-square deviation (RMSD) of merely 0.11kJmol−1 relative to the W1-F12 reference values. We use this approximated CCSD(T)/CBS method to obtain the tautomerization energies of 14 guanine tautomers. The relative tautomerization enthalpies at 298K are: 0.00 (1), 2.20 (2), 2.51 (3), 4.06 (3′), 14.30 (4), 25.65 (5), 43.78 (4′), 53.50 (6′), 61.58 (6), 77.37 (7), 82.52 (8′), 86.02 (9), 100.70 (10), and 121.01 (8) kJmol−1. Using these tautomerization enthalpies, we evaluate the performance of standard and composite methods for the entire set of 14 guanine tautomers. The best-performing procedures emerge as (RMSDs are given in parentheses): G4(MP2)-6X (0.51), CCSD(T)+ΔMP2/CBS (0.52), and G4(MP2) (0.64kJmol−1). The worst performers are CCSD(T)/AVDZ (1.05), CBS-QB3 (1.24), and CBS-APNO (1.38kJmol−1).
Collapse
|
31
|
Sterling CM, Bjornsson R. Multistep Explicit Solvation Protocol for Calculation of Redox Potentials. J Chem Theory Comput 2018; 15:52-67. [PMID: 30511855 DOI: 10.1021/acs.jctc.8b00982] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The calculation of molecular redox potentials in aqueous solution presents a challenge to quantum chemistry due to the need to calculate charged, open-shell species experiencing large solvent effects. Traditionally, redox potentials are calculated via the use of density functional theory and continuum solvation methods, but such protocols have been found to often suffer from large errors, particularly in the case of aqueous solution. While explicit solvation models hold promise of higher accuracy to describe solvent effects in general, their complicated use and lack of well-defined, reliable protocols has hindered their adoption. In this study, we present an explicit-solvation-based approach for the calculation of molecular redox potentials. We combine the use of affordable semiempirical QM/MM molecular dynamics (making use of the recently proposed GFN-xTB method by Grimme et al.) for both redox states and use the linear response approximation to relate vertical ionization energies to the adiabatic redox potential. Simulation length, averaging over snapshots, and accounting for bulk and polarization effects are systematically evaluated using phenol as a working example. We find that it is crucial to reliably account for bulk solvation effects in these calculations, as well as polarization effects which we divide up into short-range and long-range contributions. The short-range polarization contribution is accounted for via QM-region expansion, while the long-range contribution is accounted for via Drude-polarizable QM/MM. Our multistep protocol has been coded to be used in a fully automatic way in a local version of Chemshell. It has been evaluated on a test set of oxidation potentials of organic molecules and found to give gas-solution redox shifts with a mean absolute error of 0.13 eV with respect to experiment, compared to mean absolute errors of 0.26 and 0.21 eV with CPCM and SMD continuum models, respectively.
Collapse
Affiliation(s)
- Cody M Sterling
- Science Institute , University of Iceland , Dunhagi 3 , 107 Reykjavík , Iceland
| | - Ragnar Bjornsson
- Science Institute , University of Iceland , Dunhagi 3 , 107 Reykjavík , Iceland.,Department of Inorganic Spectroscopy , Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
32
|
Dandu NK, Adeyiga O, Panthi D, Bird SA, Odoh SO. Performance of density functional theory for describing hetero-metallic active-site motifs for methane-to-methanol conversion in metal-exchanged zeolites. J Comput Chem 2018; 39:2667-2678. [PMID: 30379335 DOI: 10.1002/jcc.25714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/30/2018] [Accepted: 09/23/2018] [Indexed: 01/19/2023]
Abstract
Methane-to-methanol conversion (MMC) can be facilitated with high methanol selectivities by copper-exchanged zeolites. There are however two open questions regarding the use of these zeolites to facilitate the MMC process. The first concerns the possibility of operating the three cycles in the stepwise MMC process by these zeolites in an isothermal fashion. The second concerns the possibility of improving the methanol yields by systematic substitution of some copper centers in these active sites with other earth-abundant transition metals. Quantum-mechanical computations can be used to compare methane activation by copper oxide species and analogous mixed-metal systems. To carry out such screening, it is important that we use theoretical methods that are accurate and computationally affordable for describing the properties of the hetero-metallic catalytic species. We have examined the performance of 47 exchange-correlation density functionals for predicting the relative spin-state energies and chemical reactivities of six hetero-metallic [M-O-Cu]2+ and [M-O2 -Cu]2+ , (where MCo, Fe, and Ni), species by comparison with coupled cluster theory including iterative single, double excitations as well as perturbative treatment of triple excitations, CCSD(T). We also performed multireference calculations on some of these systems. We considered two types of reactions (hydrogen addition and oxygen addition) that are relevant to MMC. We recommend the use of τ-HCTH and OLYP to determine the spin-state energy splittings in the hetero-metallic motifs. ωB97, ωB97X, ωB97X-D3, and MN15 performed best for predicting the energies of the hydrogen and oxygen addition reactions. In contrast, local, and semilocal functionals do poorly for chemical reactivity. Using [Fe-O-Cu]2+ as a test, we see that the nonlocal functionals perform well for the methane CH activation barrier. In contrast, the semilocal functionals perform rather poorly. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Naveen K Dandu
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada, 89557-0216
| | - Olajumoke Adeyiga
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada, 89557-0216
| | - Dipak Panthi
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada, 89557-0216
| | - Shaina A Bird
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada, 89557-0216
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada, 89557-0216
| |
Collapse
|
33
|
Pisarev SA, Shulga DA, Palyulin VA, Zefirov NS. Lone pairs vs. covalent bonds: conformational effects in bicyclo[3.3.1]nonane derivatives. Struct Chem 2018. [DOI: 10.1007/s11224-018-1240-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Gehrke S, Reckien W, Palazzo I, Welton T, Hollóczki O. On the Carbene-Like Reactions of Imidazolium Acetate Ionic Liquids: Can Theory and Experiments Agree? European J Org Chem 2018. [DOI: 10.1002/ejoc.201801050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sascha Gehrke
- Mulliken Center for Theoretical Chemistry; University of Bonn; Beringstr. 4+6 Bonn Germany
- Max Planck Institute for Chemical Energy Conversion; Stiftstrasse 34-36 45470 Muelheim an der Ruhr Germany
| | - Werner Reckien
- Mulliken Center for Theoretical Chemistry; University of Bonn; Beringstr. 4+6 Bonn Germany
| | - Ivan Palazzo
- Department of Chemistry; Imperial College London; 2AZ London, SW7 UK
| | - Tom Welton
- Department of Chemistry; Imperial College London; 2AZ London, SW7 UK
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry; University of Bonn; Beringstr. 4+6 Bonn Germany
| |
Collapse
|
35
|
Schulz CE, Dutta AK, Izsák R, Pantazis DA. Systematic High-Accuracy Prediction of Electron Affinities for Biological Quinones. J Comput Chem 2018; 39:2439-2451. [PMID: 30281169 DOI: 10.1002/jcc.25570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/07/2022]
Abstract
Quinones play vital roles as electron carriers in fundamental biological processes; therefore, the ability to accurately predict their electron affinities is crucial for understanding their properties and function. The increasing availability of cost-effective implementations of correlated wave function methods for both closed-shell and open-shell systems offers an alternative to density functional theory approaches that have traditionally dominated the field despite their shortcomings. Here, we define a benchmark set of quinones with experimentally available electron affinities and evaluate a range of electronic structure methods, setting a target accuracy of 0.1 eV. Among wave function methods, we test various implementations of coupled cluster (CC) theory, including local pair natural orbital (LPNO) approaches to canonical and parameterized CCSD, the domain-based DLPNO approximation, and the equations-of-motion approach for electron affinities, EA-EOM-CCSD. In addition, several variants of canonical, spin-component-scaled, orbital-optimized, and explicitly correlated (F12) Møller-Plesset perturbation theory are benchmarked. Achieving systematically the target level of accuracy is challenging and a composite scheme that combines canonical CCSD(T) with large basis set LPNO-based extrapolation of correlation energy proves to be the most accurate approach. Methods that offer comparable performance are the parameterized LPNO-pCCSD, the DLPNO-CCSD(T0 ), and the orbital optimized OO-SCS-MP2. Among DFT methods, viable practical alternatives are only the M06 and the double hybrids, but the latter should be employed with caution because of significant basis set sensitivity. A highly accurate yet cost-effective DLPNO-based coupled cluster approach is used to investigate the methoxy conformation effect on the electron affinities of ubiquinones found in photosynthetic bacterial reaction centers. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christine E Schulz
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Achintya Kumar Dutta
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Róbert Izsák
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
36
|
Ghafarian Shirazi R, Neese F, Pantazis DA. Accurate Spin-State Energetics for Aryl Carbenes. J Chem Theory Comput 2018; 14:4733-4746. [DOI: 10.1021/acs.jctc.8b00587] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Reza Ghafarian Shirazi
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
37
|
Gehrke S, Hollóczki O. Hydrogen Bonding of N‐Heterocyclic Carbenes in Solution: Mechanisms of Solvent Reorganization. Chemistry 2018; 24:11594-11604. [DOI: 10.1002/chem.201802286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/07/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Sascha Gehrke
- Mulliken Center for Theoretical ChemistryUniversity of Bonn Beringstr. 4+6 53115 Bonn Germany
- Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 45470 Muelheim an der Ruhr Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical ChemistryUniversity of Bonn Beringstr. 4+6 53115 Bonn Germany
| |
Collapse
|
38
|
Nagy PR, Samu G, Kállay M. Optimization of the Linear-Scaling Local Natural Orbital CCSD(T) Method: Improved Algorithm and Benchmark Applications. J Chem Theory Comput 2018; 14:4193-4215. [DOI: 10.1021/acs.jctc.8b00442] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Péter R. Nagy
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Gyula Samu
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
39
|
Paiva P, Sousa SF, Ramos MJ, Fernandes PA. Understanding the Catalytic Machinery and the Reaction Pathway of the Malonyl-Acetyl Transferase Domain of Human Fatty Acid Synthase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00577] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pedro Paiva
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
40
|
Fiedler B, Himmel D, Krossing I, Friedrich J. More Stable Template Localization for an Incremental Focal-Point Approach—Implementation and Application to the Intramolecular Decomposition of Tris-perfluoro- tert-butoxyalane. J Chem Theory Comput 2018; 14:557-571. [DOI: 10.1021/acs.jctc.7b00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin Fiedler
- Institut
für Chemie, Technische Universität Chemnitz, 09111 Chemnitz, Germany
| | - Daniel Himmel
- Institut
für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Ingo Krossing
- Institut
für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Joachim Friedrich
- Institut
für Chemie, Technische Universität Chemnitz, 09111 Chemnitz, Germany
| |
Collapse
|
41
|
Fiedler B, Schmitz G, Hättig C, Friedrich J. Combining Accuracy and Efficiency: An Incremental Focal-Point Method Based on Pair Natural Orbitals. J Chem Theory Comput 2017; 13:6023-6042. [PMID: 29045786 DOI: 10.1021/acs.jctc.7b00654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, we present a new pair natural orbitals (PNO)-based incremental scheme to calculate CCSD(T) and CCSD(T0) reaction, interaction, and binding energies. We perform an extensive analysis, which shows small incremental errors similar to previous non-PNO calculations. Furthermore, slight PNO errors are obtained by using TPNO = TTNO with appropriate values of 10-7 to 10-8 for reactions and 10-8 for interaction or binding energies. The combination with the efficient MP2 focal-point approach yields chemical accuracy relative to the complete basis-set (CBS) limit. In this method, small basis sets (cc-pVDZ, def2-TZVP) for the CCSD(T) part are sufficient in case of reactions or interactions, while some larger ones (e.g., (aug)-cc-pVTZ) are necessary for molecular clusters. For these larger basis sets, we show the very high efficiency of our scheme. We obtain not only tremendous decreases of the wall times (i.e., factors >102) due to the parallelization of the increment calculations as well as of the total times due to the application of PNOs (i.e., compared to the normal incremental scheme) but also smaller total times with respect to the standard PNO method. That way, our new method features a perfect applicability by combining an excellent accuracy with a very high efficiency as well as the accessibility to larger systems due to the separation of the full computation into several small increments.
Collapse
Affiliation(s)
- Benjamin Fiedler
- Institut für Chemie, Technische Universität Chemnitz , 09111 Chemnitz, Germany
| | - Gunnar Schmitz
- Institut for Kemi, Aarhus Universitet , 8000 Aarhus C, Denmark
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum , 44801 Bochum, Germany
| | - Joachim Friedrich
- Institut für Chemie, Technische Universität Chemnitz , 09111 Chemnitz, Germany
| |
Collapse
|
42
|
Peng B, Kowalski K. Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations. J Chem Theory Comput 2017; 13:4179-4192. [DOI: 10.1021/acs.jctc.7b00605] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bo Peng
- William R. Wiley Environmental
Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P. O. Box 999, Richland, Washington 99352, United States
| | - Karol Kowalski
- William R. Wiley Environmental
Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P. O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
43
|
Vamhindi BSDR, Karton A. Can DFT and ab initio methods adequately describe binding energies in strongly interacting C6X6⋯C2X π–π complexes? Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Al-Hamdani YS, Rossi M, Alfè D, Tsatsoulis T, Ramberger B, Brandenburg JG, Zen A, Kresse G, Grüneis A, Tkatchenko A, Michaelides A. Properties of the water to boron nitride interaction: From zero to two dimensions with benchmark accuracy. J Chem Phys 2017; 147:044710. [DOI: 10.1063/1.4985878] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yasmine S. Al-Hamdani
- Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH, United Kingdom
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Mariana Rossi
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Dario Alfè
- Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH, United Kingdom
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Theodoros Tsatsoulis
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - Benjamin Ramberger
- University of Vienna, Faculty of Physics and Center for Computational Materials Sciences, Sensengasse 8/12, 1090 Wien, Austria
| | - Jan Gerit Brandenburg
- Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH, United Kingdom
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AH, United Kingdom
| | - Andrea Zen
- Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH, United Kingdom
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Georg Kresse
- University of Vienna, Faculty of Physics and Center for Computational Materials Sciences, Sensengasse 8/12, 1090 Wien, Austria
| | - Andreas Grüneis
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - Alexandre Tkatchenko
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Angelos Michaelides
- Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH, United Kingdom
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
45
|
Firaha D, Gibalova AV, Hollóczki O. Basic Phosphonium Ionic Liquids as Wittig Reagents. ACS OMEGA 2017; 2:2901-2911. [PMID: 31457625 PMCID: PMC6641186 DOI: 10.1021/acsomega.7b00230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/08/2017] [Indexed: 06/10/2023]
Abstract
The possibility of designing a solvent/reagent for Wittig reactions from basic phosphonium salts is explored theoretically. In the suggested R4P+PhO- and Ph3PR+PhO- ionic liquids (ILs), the phenolate anion is prone to remove the α-proton from the alkyl chains, forming a phosphorous ylide. Significant hydrogen bonding between the oxygen atoms of the anions and α-hydrogen atoms of the cations were found by molecular dynamics simulations of these substances; therefore, proton transfer between the two ions is inherently supported by the structure of the liquid as well. The subsequent steps of the Wittig reaction from the phosphorous ylide were also found to be energetically possible. The mesoscopic structure of these materials exhibits a significant segregation into polar and nonpolar domains, which may also allow an easy dissolution of the substrates. The formation of a pentacoordinated phosphorous derivative through P-O bond formation was found to be also possible in the gas phase for both kind of compounds. Accordingly, having such basic anions in phosphonium-based ILs may produce such a neutral and therefore volatile species, which may hold further significant applications for these solvents in ion-exchange and separation techniques and in synthesis.
Collapse
Affiliation(s)
- Dzmitry
S. Firaha
- Mulliken Center for Theoretical
Chemistry, University of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Anna V. Gibalova
- Mulliken Center for Theoretical
Chemistry, University of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical
Chemistry, University of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
46
|
Sparta M, Retegan M, Pinski P, Riplinger C, Becker U, Neese F. Multilevel Approaches within the Local Pair Natural Orbital Framework. J Chem Theory Comput 2017; 13:3198-3207. [DOI: 10.1021/acs.jctc.7b00260] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuel Sparta
- Max Planck Institute for Chemical
Energy
Conversion, Stiftstrasse 34-36, D−45470 Mülheim
an der Ruhr, Germany
| | - Marius Retegan
- Max Planck Institute for Chemical
Energy
Conversion, Stiftstrasse 34-36, D−45470 Mülheim
an der Ruhr, Germany
| | - Peter Pinski
- Max Planck Institute for Chemical
Energy
Conversion, Stiftstrasse 34-36, D−45470 Mülheim
an der Ruhr, Germany
| | - Christoph Riplinger
- Max Planck Institute for Chemical
Energy
Conversion, Stiftstrasse 34-36, D−45470 Mülheim
an der Ruhr, Germany
| | - Ute Becker
- Max Planck Institute for Chemical
Energy
Conversion, Stiftstrasse 34-36, D−45470 Mülheim
an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical
Energy
Conversion, Stiftstrasse 34-36, D−45470 Mülheim
an der Ruhr, Germany
| |
Collapse
|
47
|
Calbo J, Sancho-García JC, Ortí E, Aragó J. DLPNO-CCSD(T) scaled methods for the accurate treatment of large supramolecular complexes. J Comput Chem 2017; 38:1869-1878. [PMID: 28558123 DOI: 10.1002/jcc.24835] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/10/2017] [Accepted: 04/25/2017] [Indexed: 01/19/2023]
Abstract
In this work, we present scaled variants of the DLPNO-CCSD(T) method, dubbed as (LS)DLPNO-CCSD(T) and (NS)DLPNO-CCSD(T), to obtain accurate interaction energies in supramolecular complexes governed by noncovalent interactions. The novel scaled schemes are based on the linear combination of the DLPNO-CCSD(T) correlation energies calculated with the standard (LoosePNO and NormalPNO) and modified (Loose2PNO and Normal2PNO) DLPNO-CCSD(T) accuracy levels. The scaled DLPNO-CCSD(T) variants provide nearly TightPNO accuracy, which is essential for the quantification of weak noncovalent interactions, with a noticeable saving in computational cost. Importantly, the accuracy of the proposed schemes is preserved irrespective of the nature and strength of the supramolecular interaction. The (LS)DLPNO-CCSD(T) and (NS)DLPNO-CCSD(T) protocols have been used to study in depth the role of the CH-π versus π-π interactions in the supramolecular complex formed by the electron-donor truxene-tetrathiafulvalene (truxTTF) and the electron-acceptor hemifullerene (C30 H12 ). (NS)DLPNO-CCSD(T)/CBS calculations clearly reveal the higher stability of staggered (dominated by CH-π interactions) versus bowl-in-bowl (dominated by π-π interactions) arrangements in the truxTTF•C30 H12 heterodimer. Hemifullerene and similar carbon-based buckybowls are therefore expected to self-assemble with donor compounds in a richer way other than the typical concave-convex π-π arrangement found in fullerene-based aggregates. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joaquín Calbo
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, E-46980, Spain
| | - Juan C Sancho-García
- Departamento de Química Física, Universidad de Alicante, Alicante, E-03080, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, E-46980, Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, E-46980, Spain
| |
Collapse
|
48
|
Gehrke S, Schmitz K, Hollóczki O. Is Carbene Formation Necessary for Dissolving Cellulose in Ionic Liquids? J Phys Chem B 2017; 121:4521-4529. [DOI: 10.1021/acs.jpcb.7b00631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sascha Gehrke
- Mulliken
Center for Theoretical Chemistry, University of Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Muelheim an der Ruhr, Germany
| | - Karola Schmitz
- Mulliken
Center for Theoretical Chemistry, University of Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
| | - Oldamur Hollóczki
- Mulliken
Center for Theoretical Chemistry, University of Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
| |
Collapse
|
49
|
Sharapa DI, Margraf JT, Hesselmann A, Clark T. Accurate Intermolecular Potential for the C60 Dimer: The Performance of Different Levels of Quantum Theory. J Chem Theory Comput 2016; 13:274-285. [DOI: 10.1021/acs.jctc.6b00869] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dmitry I. Sharapa
- Computer-Chemie-Centrum,
Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Johannes T. Margraf
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Andreas Hesselmann
- Lehrstuhl
für Physikalische und Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Timothy Clark
- Computer-Chemie-Centrum,
Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| |
Collapse
|
50
|
Marianski M, Supady A, Ingram T, Schneider M, Baldauf C. Assessing the Accuracy of Across-the-Scale Methods for Predicting Carbohydrate Conformational Energies for the Examples of Glucose and α-Maltose. J Chem Theory Comput 2016; 12:6157-6168. [DOI: 10.1021/acs.jctc.6b00876] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mateusz Marianski
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Adriana Supady
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Teresa Ingram
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Markus Schneider
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Carsten Baldauf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|