1
|
Berardi AJ, Raymond JE, Chang A, Mauser AK, Lahann J. Self-Reporting Therapeutic Protein Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43350-43363. [PMID: 39106360 DOI: 10.1021/acsami.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
We present a modular strategy to synthesize nanoparticle sensors equipped with dithiomaleimide-based, fluorescent molecular reporters capable of discerning minute changes in interparticle chemical environments based on fluorescence lifetime analysis. Three types of nanoparticles were synthesized with the aid of tailor-made molecular reporters, and it was found that protein nanoparticles exhibited greater sensitivity to changes in the core environment than polymer nanogels and block copolymer micelles. Encapsulation of the hydrophobic small-molecule drug paclitaxel (PTX) in self-reporting protein nanoparticles induced characteristic changes in fluorescence lifetime profiles, detected via time-resolved fluorescence spectroscopy. Depending on the mode of drug encapsulation, self-reporting protein nanoparticles revealed pronounced differences in their fluorescence lifetime signatures, which correlated with burst- vs diffusion-controlled release profiles observed in previous reports. Self-reporting nanoparticles, such as the ones developed here, will be critical for unraveling nanoparticle stability and nanoparticle-drug interactions, informing the future development of rationally engineered nanoparticle-based drug carriers.
Collapse
Affiliation(s)
- Anthony J Berardi
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48105, United States
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
| | - Jeffery E Raymond
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
- Center for Complex Particle Systems, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Albert Chang
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Ava K Mauser
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Joerg Lahann
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48105, United States
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| |
Collapse
|
2
|
Takekiyo T, Yamada S, Hirata T, Ishizaki T, Kuroda K, Yoshimura Y. Relationship Between Cryoprotectant Potential and Protein Hydration in Aqueous Zwitterionic Solutions. Biopolymers 2024:e23622. [PMID: 39152773 DOI: 10.1002/bip.23622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
The cryoprotectant potential of 3-(1-(2-(2-methoxyethoxy)ethyl)imidazol-3-io)butane-1-carboxylate (OE2imC3C) for proteins necessitates assessment to elucidate its relationship with protein hydration. To reveal this relationship, we assessed the protein stability (pre-freezing and post-thawing) and melting behavior in dilute aqueous protein-OE2imC3C solutions containing varying mole fractions (x) of OE2imC3C (x = 0, 7.7 × 10-3, and 1.7 × 10-2) using Fourier-transform infrared (FTIR) and near-UV circular dichroism (near-UV CD) spectroscopy and differential scanning calorimetry (DSC) techniques. Following freezing/thawing using a deep freezer, protein stability in aqueous OE2imC3C solutions (x = 1.7 × 10-2) preserved the folded state owing to the protein-OE2imC3C interaction, whereas stability at x = 7.7 × 10-3 was reduced. These results indicate that the protein cryoprotectant potential in aqueous OE2imC3C solutions at x = 1.7 × 10-2 is higher than that at x = 7.7 × 10-3, owing to the preferential binding of OE2imC3C with proteins.
Collapse
Affiliation(s)
- Takahiro Takekiyo
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Shuto Yamada
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Tetsuya Hirata
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Takeru Ishizaki
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Kosuke Kuroda
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Japan
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yukihiro Yoshimura
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| |
Collapse
|
3
|
Feoli A, Sarno G, Castellano S, Sbardella G. DMSO-Related Effects on Ligand-Binding Properties of Lysine Methyltransferases G9a and SETD8. Chembiochem 2024; 25:e202300809. [PMID: 38205880 DOI: 10.1002/cbic.202300809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Being the standard solvent for preparing stock solutions of compounds for drug discovery, DMSO is always present in assay buffers in concentrations ranging from 0.1 % to 5 % (v/v). Even at the lowest concentrations, DMSO-containing solutions can have significant effects on individual proteins and possible pitfalls cannot be eliminated. Herein, we used two protein systems, the lysine methyltransferases G9a/KMT1 C and SETD8/KMT5 A, to study the effects of DMSO on protein stability and on the binding of the corresponding inhibitors, using different biophysical methods such as nano Differential Scanning Fluorimetry (nanoDSF), Differential Scanning Fluorimetry (DSF), microscale thermophoresis (MST), and surface plasmon resonance (SPR), all widely used in drug discovery screening campaigns. We demonstrated that the effects of DMSO are protein- and technique-dependent and cannot be predicted or extrapolated on the basis of previous studies using different proteins and/or different assays. Moreover, we showed that the application of orthogonal biophysical methods can lead to different binding affinity data, thus confirming the importance of using at least two different orthogonal assays in screening campaigns. This variability should be taken into account in the selection and characterization of hit compounds, in order to avoid data misinterpretation.
Collapse
Affiliation(s)
- Alessandra Feoli
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Giuliana Sarno
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, I-84084, Fisciano, SA, Italy
| | - Sabrina Castellano
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Gianluca Sbardella
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
4
|
Malajczuk CJ, Stachura SS, Hendry JO, Mancera RL. Redefining the Molecular Interplay between Dimethyl Sulfoxide, Lipid Bilayers, and Dehydration. J Phys Chem B 2022; 126:2513-2529. [PMID: 35344357 DOI: 10.1021/acs.jpcb.2c00353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The potentially damaging action of dimethyl sulfoxide (DMSO) on phospholipid bilayers remains a matter of controversy. We have conducted a series of long-scale molecular dynamics simulations of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers at various levels of hydration in the presence of variable quantities of DMSO. These simulations provide evidence for a non-destructive dehydrating mechanism of action for DMSO on DOPC bilayers across a wide concentration range and levels of hydration. Specifically, under full- and low-hydration conditions, the bilayer underwent a minor lateral contraction, coinciding with surface dehydration in the presence of dilute DMSO solutions (XDMSO < 0.3). At higher DMSO concentrations, this bilayer structure was retained despite a progressive deterioration of the hydration structure at the interface. A similar convergence of bilayer structural properties was observed under dehydration conditions for 0.3 < XDMSO < 0.7. Destabilization occurred for dehydrated bilayers in the presence of XDMSO ≥ 0.7, suggesting the existence of a DMSO concentration and/or dehydration threshold. However, such DMSO concentrations far exceed those established as toxic to other cellular components. Our findings represent a computational model for DMSO-DOPC interactions that is consistent with a range of experimental characterizations, offering new molecular insights into the cryoprotective mechanisms of action of DMSO.
Collapse
Affiliation(s)
- Chris J Malajczuk
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Sławomir S Stachura
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - James O Hendry
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
5
|
Xu M, Dai T, Wang Y, Yang G. The incipient denaturation mechanism of DNA. RSC Adv 2022; 12:23356-23365. [PMID: 36090395 PMCID: PMC9383117 DOI: 10.1039/d2ra02480b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
DNA denaturation is related to many important biological phenomena, such as its replication, transcription and the interaction with some specific proteins for single-stranded DNA. Dimethyl sulfoxide (DMSO) is a common chemical agent for DNA denaturation. In the present study, we investigate quantitatively the effects of different concentrations of DMSO on plasmid and linear DNA denaturation by atomic force microscopy (AFM) and UV spectrophotometry. We found that persistent length of DNA decreases significantly by adding a small amount of DMSO before ensemble DNA denaturation occurs; the persistence length of DNA in 3% DMSO solution decreases to 12 nm from about 50 nm without DMSO in solution. And local DNA denaturation occurs even at very low DMSO concentration (such as 0.1%), which can be directly observed in AFM imaging. Meanwhile, we observed the forming process of DNA contacts between different parts for plasmid DNA with increasing DMSO concentration. We suggest the initial mechanism of DNA denaturation as follows: DNA becomes more flexible due to the partial hydrogen bond braking in the presence of DMSO before local separation of the two complementary nucleotide chains. The persistent length of DNA decreases significantly by adding small amount of DMSO. Local DNA denaturation occurs even at very low DMSO concentration, which can be observed by atomic force microscopy directly.![]()
Collapse
Affiliation(s)
- Min Xu
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Tinghui Dai
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Yanwei Wang
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Guangcan Yang
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
6
|
Catalini S, Perinelli DR, Sassi P, Comez L, Palmieri GF, Morresi A, Bonacucina G, Foggi P, Pucciarelli S, Paolantoni M. Amyloid Self-Assembly of Lysozyme in Self-Crowded Conditions: The Formation of a Protein Oligomer Hydrogel. Biomacromolecules 2021; 22:1147-1158. [PMID: 33600168 PMCID: PMC8023603 DOI: 10.1021/acs.biomac.0c01652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A method
is designed to quickly form protein hydrogels, based on
the self-assembly of highly concentrated lysozyme solutions in acidic
conditions. Their properties can be easily modulated by selecting
the curing temperature. Molecular insights on the gelation pathway,
derived by in situ FTIR spectroscopy, are related to calorimetric
and rheological results, providing a consistent picture on structure–property
correlations. In these self-crowded samples, the thermal unfolding
induces the rapid formation of amyloid aggregates, leading to temperature-dependent
quasi-stationary levels of antiparallel cross β-sheet links,
attributed to kinetically trapped oligomers. Upon subsequent cooling,
thermoreversible hydrogels develop by the formation of interoligomer
contacts. Through heating/cooling cycles, the starting solutions can
be largely recovered back, due to oligomer-to-monomer dissociation
and refolding. Overall, transparent protein hydrogels can be easily
formed in self-crowding conditions and their properties explained,
considering the formation of interconnected amyloid oligomers. This
type of biomaterial might be relevant in different fields, along with
analogous systems of a fibrillar nature more commonly considered.
Collapse
Affiliation(s)
- Sara Catalini
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, 50019 Sesto Fiorentino, Italy
| | | | - Paola Sassi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Lucia Comez
- IOM-CNR c/o Department of Physics and Geology, University of Perugia, 060123 Perugia, Italy
| | | | - Assunta Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | - Paolo Foggi
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, 50019 Sesto Fiorentino, Italy.,Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.,National Metrological Research Institute (INRIM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Marco Paolantoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
7
|
Heat-induced self-assembling of BSA at the isoelectric point. Int J Biol Macromol 2021; 177:40-47. [PMID: 33607130 DOI: 10.1016/j.ijbiomac.2021.02.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 11/21/2022]
Abstract
Materials based on ordered protein aggregates have recently received a lot of attention for their application as drug carriers, due to their biocompatibility and their ability to sequester many biological fluids. Bovine serum albumin (BSA) is a good candidate for this use due to its high availability and tendency to aggregate and gel under acidic conditions. In the present work, we employ spectroscopic techniques to investigate the heat-induced BSA aggregation at the molecular scale, in the 12-84 °C temperature range, at pH = 5 where two different isoforms of the protein are stable. Samples at low and high protein concentration are examined. With the advantage of the combined use of FTIR and CD, we recognize the aggregation-prone species and the different distribution of secondary structures, conformational rearrangements and types of aggregates, of millimolar compared to micromolar BSA solutions. Further, as a new tool, we use the Maximum Entropy Method to fit the kinetic curves to investigate the distribution of kinetic constants of the complex hierarchical aggregation process. Finally, we characterize the activation energy of the initial self-assembling step to observe that the formation of both small and large aggregates is driven by the same interactions.
Collapse
|
8
|
Venkatraman RK, Baiz CR. Ultrafast Dynamics at the Lipid-Water Interface: DMSO Modulates H-Bond Lifetimes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6502-6511. [PMID: 32423219 DOI: 10.1021/acs.langmuir.0c00870] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dimethyl sulfoxide (DMSO) is a common cosolvent and cryopreservation agent used to freeze cells and tissues. DMSO alters the H-bond structure of water, but its interactions with biomolecules and, specifically, with biological interfaces remain poorly understood. Here we investigate the effects of DMSO on the H-bond dynamics at the lipid-water interface using a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics simulations. Ester carbonyl absorption spectra show that DMSO dehydrates the interface, and simulations show that the area per lipid is decreased. Ultrafast 2D IR spectra measure the time scales of frequency fluctuations at the ester carbonyl positions located precisely between the hydrophobic and hydrophilic regions of the membrane. 2D IR measurements show that low DMSO concentrations (<10 mol %) induce ∼40% faster H-bond dynamics compared with pure water, whereas increased concentrations (>10-20 mol %) once again slow down the dynamics. This slow-fast-slow trend is described in terms of two different solvation regimes. Below 10 mol %, DMSO weakens the interfacial H bond, leading to faster "bulk-like" dynamics, whereas above 10 mol %, water molecules become "relatively immobilized" as the H-bond networks becoming disrupted by the H-bond donor/acceptor imbalance at the interface. These studies are an important step toward characterizing the environments around lipid membranes, which are essential to numerous biological processes.
Collapse
Affiliation(s)
- Ravi Kumar Venkatraman
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Kayser JJ, Arnold P, Steffen-Heins A, Schwarz K, Keppler JK. Functional ethanol-induced fibrils: Influence of solvents and temperature on amyloid-like aggregation of beta-lactoglobulin. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
The Effect of Dimethyl Sulfoxide on the Lysozyme Unfolding Kinetics, Thermodynamics, and Mechanism. Biomolecules 2019; 9:biom9100547. [PMID: 31569484 PMCID: PMC6843525 DOI: 10.3390/biom9100547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
The thermal stability of proteins in the presence of organic solvents and the search for ways to increase this stability are important topics in industrial biocatalysis and protein engineering. The denaturation of hen egg-white lysozyme in mixtures of water with dimethyl sulfoxide (DMSO) with a broad range of compositions was studied using a combination of differential scanning calorimetry (DSC), circular dichroism (CD), and spectrofluorimetry techniques. In this study, for the first time, the kinetics of unfolding of lysozyme in DMSO–water mixtures was characterized. In the presence of DMSO, a sharp decrease in near-UV CD and an increase in the fluorescence signal were observed at lower temperatures than the DSC denaturation peak. It was found that differences in the temperatures of the CD and DSC signal changes increase as the content of DMSO increases. Changes in CD and fluorescence are triggered by a break of the tertiary contacts, leading to an intermediate state, while the DSC peak corresponds to a subsequent complete loss of the native structure. In this way, the commonly used two-state model was proven to be unsuitable to describe the unfolding of lysozyme in the presence of DMSO. In kinetic studies, it was found that even high concentrations of DMSO do not drastically change the activation energy of the initial stage of unfolding associated with a disruption of the tertiary structure, while the enthalpy of denaturation shows a significant dependence on DMSO content. This observation suggests that the structure of the transition state upon unfolding remains similar to the structure of the native state.
Collapse
|
11
|
Zhao B, Zhuang X, Bian X, Pi Z, Liu S, Liu Z, Song F. Effects of aprotic solvents on the stability of metal-free superoxide dismutase probed by native electrospray ionization-ion mobility-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:351-358. [PMID: 30734979 DOI: 10.1002/jms.4341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Considering that aprotic solvents are often used as cosolvents in investigating the interactions between small molecules and proteins, we assessed the effects of five aprotic solvents represented by dimethylformamide (DMF) on the structure stabilities of metal-free SOD1 (apo-SOD1) by native electrospray ionization-ion mobility-mass spectrometry (ESI-IM-MS). These aprotic solvents include DMF, 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl sulfoxide (DMSO), acetonitrile (ACN), and tetrahydrofuran (THF). Results indicated that DMI, DMSO, and DMF at low percentage concentration could reduce the average charge and the dimer dissociation of apo-SOD1. By contrast, ACN and THF at low concentration have no similar effect. DMF was selected as a representative solvent to further investigate the detailed effects on the structure stability of apo-SOD1 by using collision-induced dissociation and unfolding. The results reveal that the addition of minimal DMF to an aqueous protein solution can protect against the unfolding and dissociation of dimer, even under destabilizing conditions (such as low pH or high cone voltage). When the different percentage concentrations of DMF were added, the average collision cross section of apo-SOD1 showed that apo-SOD1 became compacted when the DMF concentration increased from 0% to 1% and eventually started extending when increased from 1% to 20%. The results indicated that DMF has similar effects to DMSO in native mass spectrometry (MS) and it can also be used as a cosolvent besides DMSO in investigating the stabilities of proteins and the interactions between small molecules and proteins.
Collapse
Affiliation(s)
- Bing Zhao
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Xiaoyu Zhuang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xinyu Bian
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Probing Globular Protein Self-Assembling Dynamics by Heterodyne Transient Grating Experiments. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, we studied the propagation of ultrasonic waves of lysozyme solutions characterized by different degrees of aggregation and networking. The experimental investigation was performed by means of the transient grating (TG) spectroscopy as a function of temperature, which enabled measurement of the ultrasonic acoustic proprieties over a wide time window, ranging from nanoseconds to milliseconds. The fitting of the measured TG signal allowed the extraction of several dynamic properties, here we focused on the speed and the damping rate of sound. The temperature variation induced a series of processes in the lysozyme solutions: Protein folding-unfolding, aggregation and sol–gel transition. Our TG investigation showed how these self-assembling phenomena modulate the sound propagation, affecting both the velocity and the damping rate of the ultrasonic waves. In particular, the damping of ultrasonic acoustic waves proved to be a dynamic property very sensitive to the protein conformational rearrangements and aggregation processes.
Collapse
|
13
|
Yoshimura Y, Ishikawa Y, Takekiyo T. Cryopreservation of proteins in aqueous DMSO solutions at cryogenic temperature: A case study of lysozyme. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Sarkar S, Biswas B, Singh PC. Spectroscopic and Molecular Dynamics Simulation Study of Lysozyme in the Aqueous Mixture of Ethanol: Insights into the Nonmonotonic Change of the Structure of Lysozyme. J Phys Chem B 2018; 122:7811-7820. [DOI: 10.1021/acs.jpcb.8b03106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sunipa Sarkar
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Biswajit Biswas
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prashant Chandra Singh
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
15
|
Srivastava KR, Goyal B, Kumar A, Durani S. Scrutiny of electrostatic-driven conformational ordering of polypeptide chains in DMSO: a study with a model oligopeptide. RSC Adv 2017. [DOI: 10.1039/c7ra02137b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The molecular mechanism of DMSO-induced stabilisation of β-sheets is attributed to the combination of polar electrostatic interactions among side chains, and backbone desolvation through bulky side chains which promotes backbone hydrogen bonding.
Collapse
Affiliation(s)
| | - Bhupesh Goyal
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Anil Kumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Susheel Durani
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
16
|
Ricci M, Oliva R, Del Vecchio P, Paolantoni M, Morresi A, Sassi P. DMSO-induced perturbation of thermotropic properties of cholesterol-containing DPPC liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3024-3031. [DOI: 10.1016/j.bbamem.2016.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/31/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
|
17
|
Yoshimura Y, Takekiyo T, Mori T. Structural study of lysozyme in two ionic liquids at cryogenic temperature. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Preferential solvation of lysozyme in dimethyl sulfoxide/water binary mixture probed by terahertz spectroscopy. Biophys Chem 2016; 216:31-36. [DOI: 10.1016/j.bpc.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 11/21/2022]
|
19
|
Precupas A, Sandu R, Popa VT. Quercetin Influence on Thermal Denaturation of Bovine Serum Albumin. J Phys Chem B 2016; 120:9362-75. [DOI: 10.1021/acs.jpcb.6b06214] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aurica Precupas
- “Ilie Murgulescu”
Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei
202, Bucharest, 060021, Romania
| | - Romica Sandu
- “Ilie Murgulescu”
Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei
202, Bucharest, 060021, Romania
| | - Vlad T. Popa
- “Ilie Murgulescu”
Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei
202, Bucharest, 060021, Romania
| |
Collapse
|
20
|
Giugliarelli A, Urbanelli L, Ricci M, Paolantoni M, Emiliani C, Saccardi R, Mazzanti B, Lombardini L, Morresi A, Sassi P. Evidence of DMSO-Induced Protein Aggregation in Cells. J Phys Chem A 2016; 120:5065-70. [DOI: 10.1021/acs.jpca.6b00178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Giugliarelli
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
| | - L. Urbanelli
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
| | - M. Ricci
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
- Istituto di Biofisica CNR (IBF-CNR), Unità di Trento, & FBK, Via Sommarive 18, 38123 Trento, Italy
| | - M. Paolantoni
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
| | - C. Emiliani
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
| | - R. Saccardi
- Banca
del Sangue Cordonale, Azienda Ospedaliera Universitaria Careggi, 50134 Firenze, Italy
| | - B. Mazzanti
- Banca
del Sangue Cordonale, Azienda Ospedaliera Universitaria Careggi, 50134 Firenze, Italy
| | - L. Lombardini
- Banca
del Sangue Cordonale, Azienda Ospedaliera Universitaria Careggi, 50134 Firenze, Italy
| | - A. Morresi
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
| | - P. Sassi
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce
di sotto 8, 06123 Perugia, Italy
| |
Collapse
|
21
|
Giugliarelli A, Tarpani L, Latterini L, Morresi A, Paolantoni M, Sassi P. Spectroscopic and Microscopic Studies of Aggregation and Fibrillation of Lysozyme in Water/Ethanol Solutions. J Phys Chem B 2015; 119:13009-17. [DOI: 10.1021/acs.jpcb.5b07487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alessandra Giugliarelli
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Luigi Tarpani
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Loredana Latterini
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Assunta Morresi
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Marco Paolantoni
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Paola Sassi
- Dipartimento di Chimica, Biologia e Biotecnologie and ‡Dipartimento di
Chimica, Biologia
e Biotecnologie and Centro di Eccellenza Materiali Innovativi Nanostrutturati
CEMIN, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
22
|
Batista ANL, Batista JM, Ashton L, Bolzani VS, Furlan M, Blanch EW. Investigation of DMSO-induced conformational transitions in human serum albumin using two-dimensional raman optical activity spectroscopy. Chirality 2014; 26:497-501. [PMID: 25042763 DOI: 10.1002/chir.22351] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022]
Abstract
Recent Raman and Raman optical activity (ROA) results have demonstrated that dimethyl sulfoxide (DMSO) induces the selective conversion of α-helix motifs into the poly(L-proline) II (PPII) helix conformation in an array of proteins, while β-sheets remain mostly unaffected. Human serum albumin (HSA), a highly α-helical protein, underwent the most dramatic changes and, therefore, was selected as a model for further investigations into the mechanism of this conformational change. Herein we report the use of two-dimensional ROA correlation analysis applying synchronous, autocorrelation, and moving windows approaches in order to understand the conformational transitions in HSA as a function of DMSO concentration. Our results indicate that the destabilization of native α-helix starts at DMSO concentrations as little as 20% in water (v/v), with the transition to PPII helix being complete at ~80% DMSO. These results clearly indicate that any protein preparation containing relatively low concentrations of DMSO should consider possible disruptions in α-helical domains.
Collapse
Affiliation(s)
- Andrea N L Batista
- Departamento de Química Orgânica, Instituto de Química, Univ. Estadual Paulista - UNESP, Araraquara, Brazil; Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
23
|
Ghosh S, Chattoraj S, Chowdhury R, Bhattacharyya K. Structure and dynamics of lysozyme in DMSO–water binary mixture: fluorescence correlation spectroscopy. RSC Adv 2014. [DOI: 10.1039/c4ra00719k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Sassi P, Perticaroli S, Comez L, Giugliarelli A, Paolantoni M, Fioretto D, Morresi A. Volume properties and spectroscopy: A terahertz Raman investigation of hen egg white lysozyme. J Chem Phys 2013; 139:225101. [DOI: 10.1063/1.4838355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
25
|
Tretyakova T, Shushanyan M, Partskhaladze T, Makharadze M, van Eldik R, Khoshtariya DE. Simplicity within the complexity: bilateral impact of DMSO on the functional and unfolding patterns of α-chymotrypsin. Biophys Chem 2013; 175-176:17-27. [PMID: 23524288 DOI: 10.1016/j.bpc.2013.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 02/05/2013] [Accepted: 02/09/2013] [Indexed: 10/27/2022]
Abstract
New understanding of the fundamental links between protein stability, conformational flexibility and function, can be gained through synergic studies on their catalytic and folding/unfolding properties under the influence of stabilizing/destabilizing additives. We explored an impact of dimethyl sulfoxide (DMSO), the moderate effector of multilateral action, on the kinetic (functional) and thermodynamic (thermal unfolding) patterns of a hydrolytic enzyme, α-chymotrypsin (α-CT), over a wide range of additive concentrations, 0-70% (v/v). Both the calorimetric and kinetic data exhibited rich behavior pointing to the complex interplay of global/local stability (and flexibility) patterns. The complex action of DMSO is explained through the negative and positive preferential solvation motifs that prevail for the extreme opposite, native-like and unfolded states, respectively, implying essential stabilization of compact domains by enhancement of interfacial water networks and destabilization of a flexible active site by direct binding of DMSO to the unoccupied specific positions intended for elongated polypeptide substrates.
Collapse
Affiliation(s)
- Tatyana Tretyakova
- Institute for Biophysics and Bionanosciences at the Department of Physics, I. Javakhishvili Tbilisi State University, I. Chavchavadze Ave. 3, 0128 Tbilisi, Georgia
| | | | | | | | | | | |
Collapse
|
26
|
Giugliarelli A, Sassi P, Paolantoni M, Morresi A, Dukor R, Nafie L. Vibrational Circular Dichroism Spectra of Lysozyme Solutions: Solvent Effects on Thermal Denaturation Processes. J Phys Chem B 2013; 117:2645-52. [DOI: 10.1021/jp311268x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Paola Sassi
- Dipartimento
di Chimica, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Marco Paolantoni
- Dipartimento
di Chimica, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Assunta Morresi
- Dipartimento
di Chimica, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Rina Dukor
- BioTools, Inc., 17546
Bee Line Highway, Jupiter, Florida, 33458, United States
| | - Laurence Nafie
- Department of Chemistry, Syracuse University, Syracuse, New York, 13244, United
States
| |
Collapse
|
27
|
Batista ANL, Batista Jr JM, Bolzani VS, Furlan M, Blanch EW. Selective DMSO-induced conformational changes in proteins from Raman optical activity. Phys Chem Chem Phys 2013; 15:20147-52. [DOI: 10.1039/c3cp53525h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|