1
|
Lahiri J, Yuwono SH, Magoulas I, Moemeni M, Borhan B, Blanchard GJ, Piecuch P, Dantus M. Controlling Quantum Interference between Virtual and Dipole Two-Photon Optical Excitation Pathways Using Phase-Shaped Laser Pulses. J Phys Chem A 2021; 125:7534-7544. [PMID: 34415165 DOI: 10.1021/acs.jpca.1c03069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-photon excitation (TPE) proceeds via a "virtual" pathway, which depends on the accessibility of one or more intermediate states, and, in the case of non-centrosymmetric molecules, an additional "dipole" pathway involving the off-resonance dipole-allowed one-photon transitions and the change in the permanent dipole moment between the initial and final states. Here, we control the quantum interference between these two optical excitation pathways by using phase-shaped femtosecond laser pulses. We find enhancements by a factor of up to 1.75 in the two-photon-excited fluorescence of the photobase FR0-SB in methanol after taking into account the longer pulse duration of the shaped laser pulses. Simulations taking into account the different responses of the virtual and dipole pathways to external fields and the effect of pulse shaping on two-photon transitions are found to be in good agreement with our experimental measurements. The observed quantum control of TPE in the condensed phase may lead to an enhanced signal at a lower intensity in two-photon microscopy, multiphoton-excited photoreagents, and novel spectroscopic techniques that are sensitive to the magnitude of the contributions from the virtual and dipole pathways to multiphoton excitations.
Collapse
Affiliation(s)
- J Lahiri
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - S H Yuwono
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - I Magoulas
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - M Moemeni
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - B Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - P Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| | - M Dantus
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Lahiri J, Moemeni M, Kline J, Magoulas I, Yuwono SH, Laboe M, Shen J, Borhan B, Piecuch P, Jackson JE, Blanchard GJ, Dantus M. Isoenergetic two-photon excitation enhances solvent-to-solute excited-state proton transfer. J Chem Phys 2020; 153:224301. [PMID: 33317305 PMCID: PMC7725536 DOI: 10.1063/5.0020282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/15/2020] [Indexed: 01/05/2023] Open
Abstract
Two-photon excitation (TPE) is an attractive means for controlling chemistry in both space and time. Since isoenergetic one- and two-photon excitations (OPE and TPE) in non-centrosymmetric molecules are allowed to reach the same excited state, it is usually assumed that they produce similar excited-state reactivity. We compare the solvent-to-solute excited-state proton transfer of the super photobase FR0-SB following isoenergetic OPE and TPE. We find up to 62% increased reactivity following TPE compared to OPE. From steady-state spectroscopy, we rule out the involvement of different excited states and find that OPE and TPE spectra are identical in non-polar solvents but not in polar ones. We propose that differences in the matrix elements that contribute to the two-photon absorption cross sections lead to the observed enhanced isoenergetic reactivity, consistent with the predictions of our high-level coupled-cluster-based computational protocol. We find that polar solvent configurations favor greater dipole moment change between ground and excited states, which enters the probability for TPE as the absolute value squared. This, in turn, causes a difference in the Franck-Condon region reached via TPE compared to OPE. We conclude that a new method has been found for controlling chemical reactivity via the matrix elements that affect two-photon cross sections, which may be of great utility for spatial and temporal precision chemistry.
Collapse
Affiliation(s)
- Jurick Lahiri
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Mehdi Moemeni
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jessica Kline
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ilias Magoulas
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Stephen H. Yuwono
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Maryann Laboe
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Piotr Piecuch
- Authors to whom correspondence should be addressed: , Tel.: +1-517-353-0501; , Tel.: +1-517-353-1151; , Tel.: +1-517-353-0504; , Tel.: +1-517-353-1105; and , Tel.: +1-517-353-1191
| | - James E. Jackson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - G. J. Blanchard
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marcos Dantus
- Authors to whom correspondence should be addressed: , Tel.: +1-517-353-0501; , Tel.: +1-517-353-1151; , Tel.: +1-517-353-0504; , Tel.: +1-517-353-1105; and , Tel.: +1-517-353-1191
| |
Collapse
|
3
|
Muniz-Miranda F, Pedone A, Muniz-Miranda M. Spectroscopic and DFT investigation on the photo-chemical properties of a push-pull chromophore: 4-Dimethylamino-4'-nitrostilbene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:33-39. [PMID: 28892719 DOI: 10.1016/j.saa.2017.08.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/15/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
4-Dimethylamino-4'-nitrostilbene (DANS), a π-conjugated push-pull molecule, has been investigated by means of a combined spectroscopic and computational approach. When the Raman excitation is close to the visible electronic transition of DANS, vibrational bands not belonging to DANS appear in the spectra, increasing with the laser power. These bands are observed at room temperature in the solid phase, but not at low temperature or in solution, and we interpret them as due to a thermally-activated photoreaction occurring under laser irradiation in the visible spectral region. Density-functional calculations correctly reproducing the electronic and vibrational spectra of DANS, describe the charge-transfer process, indicate that an azo-derivative is the product of the photoreaction of DANS and provide a reasonable interpretation of this process.
Collapse
Affiliation(s)
- Francesco Muniz-Miranda
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia (UniMORE), Via Campi 103, 41125 Modena, Italy.
| | - Alfonso Pedone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia (UniMORE), Via Campi 103, 41125 Modena, Italy
| | - Maurizio Muniz-Miranda
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze (UniFI), Via Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Alam MM, Daniel C. One- and two-photon activity of diketopyrrolopyrrole-Zn-porphyrin conjugates: linear and quadratic density functional response theory applied to model systems. Theor Chem Acc 2016. [DOI: 10.1007/s00214-015-1780-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Alam MM, Kundi V, Thankachan PP. Solvent effects on static polarizability, static first hyperpolarizability and one- and two-photon absorption properties of functionalized triply twisted Möbius annulenes: a DFT study. Phys Chem Chem Phys 2016; 18:21833-42. [DOI: 10.1039/c6cp02732f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvent effects on the polarizability (α), static first hyperpolarizability (β) and one- and two-photon absorption (OPA and TPA) properties of triply twisted Möbius annulenes.
Collapse
Affiliation(s)
- Md Mehboob Alam
- Laboratoire de Chimie Quantique
- Institute de Chimie
- CNRS/Université de Strasbourg
- 67000 Strasbourg
- France
| | - Varun Kundi
- Theoretical Chemistry Lab
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | | |
Collapse
|
6
|
Excited-state vibrational relaxation and deactivation dynamics of trans-4-(N,N-dimethylamino)-4′-nitrostilbene in nonpolar solvents studied by ultrafast time-resolved broadband fluorescence spectroscopy. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Mehboob Alam M. Donor's position-specific channel interference in substituted biphenyl molecules. Phys Chem Chem Phys 2015; 17:17571-6. [DOI: 10.1039/c5cp02492g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changing the relative positions of the donor group can reverse the nature of channel interference in donor–acceptor substituted biphenyls.
Collapse
Affiliation(s)
- Md. Mehboob Alam
- Laboratoire de Chimie Quantique
- Institut de Chimie
- CNRS/Université de Strasbourg
- Strasbourg 67000
- France
| |
Collapse
|
8
|
Kundi V, Thankachan PP. New trans-stilbene derivatives with large two-photon absorption cross-section and non-linear optical susceptibility values – a theoretical investigation. Phys Chem Chem Phys 2015; 17:12299-309. [DOI: 10.1039/c5cp01080b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, newly designed TSB derivatives decorated with suitable donor–acceptor groups have large TPA cross-sections and can be used as potential two-photon active materials.
Collapse
Affiliation(s)
- Varun Kundi
- Theoretical Chemistry Lab
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | | |
Collapse
|
9
|
Kundi V, Alam MM, Thankachan PP. Triply twisted Möbius annulene: a new class of two-photon active material – a computational study. Phys Chem Chem Phys 2015; 17:6827-33. [DOI: 10.1039/c5cp00026b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study clearly reveals that the triply twisted Möbius annulene molecules decorated with suitable donor–acceptor groups can be used as a potential two-photon active material.
Collapse
Affiliation(s)
- Varun Kundi
- Theoretical Chemistry Lab
- Department of Chemistry
- Indian Institute of Technology
- Roorkee-247667
- India
| | - Md Mehboob Alam
- Laboratoire de Chimie Quantique
- Institute de Chimie
- CNRS/Université de Strasbourg
- 67000 Strasbourg
- France
| | | |
Collapse
|
10
|
Alam MM. Donors contribute more than acceptors to increase the two-photon activity – a case study with cyclopenta[b]naphthalene based molecules. Phys Chem Chem Phys 2014; 16:26342-7. [DOI: 10.1039/c4cp04082a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Ab initio study of solvent-dependent one-, two- and three-photon absorption properties of PRODAN-based chemo-sensors. J CHEM SCI 2014. [DOI: 10.1007/s12039-014-0647-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Alam MM, Chattopadhyaya M, Chakrabarti S, Ruud K. Chemical control of channel interference in two-photon absorption processes. Acc Chem Res 2014; 47:1604-12. [PMID: 24758397 DOI: 10.1021/ar500083f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The two-photon absorption (TPA) process is the simplest and hence the most studied nonlinear optical phenomenon, and various aspects of this process have been explored in the past few decades, experimentally as well as theoretically. Previous investigations have shown that the two-photon (TP) activity of a molecular system can be tuned, and at present, performance-tailored TP active materials are easy to develop by monitoring factors such as length of conjugation, dimensionality of charge-transfer network, strength of donor-acceptor groups, polarity of solvents, self-aggregation, H-bonding, and micellar encapsulation to mention but a few. One of the most intriguing phenomena affecting the TP activity of a molecule is channel interference. The phrase "channel interference" implies that if the TP transition from one electronic state to another involves more than one optical pathway or channel, characterized by the corresponding transition dipole moment (TDM) vectors, the channels may interfere with each other depending upon the angles between the TDM vectors and hence can either increase (constructive interference) or decrease (destructive interference) the overall TP activity of a system to a significant extent. This phenomenon was first pointed out by Cronstrand, Luo, and Ågren [Chem. Phys. Lett. 2002, 352, 262-269] in two-dimensional systems (i.e., only involving two components of the transition moment vectors). For three-dimensional molecules, an extended version of this idea was required. In order to fill this gap, we developed a generalized model for describing and exploring channel interference, valid for systems of any dimensionality. We have in particular applied it to through-bond (TB) and through-space (TS) charge-transfer systems both in gas phase and in solvents with different polarities. In this Account, we will, in addition to briefly describing the concept of channel interference, discuss two key findings of our recent work: (1) how to control the channel interference by chemical means, and (2) the role of channel interference in the anomalous solvent dependence of certain TP chromophores. For example, we will show that simple structurally induced changes in certain dihedral angles of the well-known betaine dye (TB type) will help fine-tune the constructive channel interference and hence increase the overall TP activity of molecules with this general TP channel structure. Another intriguing result we will discuss is observed for a tweezer-trinitrofluorinone complex (TS type) where, on moving from polar to essentially nonpolar solvents, the nature of the channel interference switches from destructive to constructive, leading to a net abnormal solvent dependence of the TP activity of the system. The present Account highlights the usefulness of the channel interference effect and establishes it as a new and unique way of controlling the TP transition probability in different types of three-dimensional molecules.
Collapse
Affiliation(s)
- Md. Mehboob Alam
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata - 700 009, India
| | - Mausumi Chattopadhyaya
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata - 700 009, India
| | - Swapan Chakrabarti
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata - 700 009, India
| | - Kenneth Ruud
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø − The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
13
|
Utami KH, Hillmer AM, Aksoy I, Chew EGY, Teo ASM, Zhang Z, Lee CWH, Chen PJ, Seng CC, Ariyaratne PN, Rouam SL, Soo LS, Yousoof S, Prokudin I, Peters G, Collins F, Wilson M, Kakakios A, Haddad G, Menuet A, Perche O, Tay SKH, Sung KWK, Ruan X, Ruan Y, Liu ET, Briault S, Jamieson RV, Davila S, Cacheux V. Detection of chromosomal breakpoints in patients with developmental delay and speech disorders. PLoS One 2014; 9:e90852. [PMID: 24603971 PMCID: PMC3946304 DOI: 10.1371/journal.pone.0090852] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/04/2014] [Indexed: 01/25/2023] Open
Abstract
Delineating candidate genes at the chromosomal breakpoint regions in the apparently balanced chromosome rearrangements (ABCR) has been shown to be more effective with the emergence of next-generation sequencing (NGS) technologies. We employed a large-insert (7-11 kb) paired-end tag sequencing technology (DNA-PET) to systematically analyze genome of four patients harbouring cytogenetically defined ABCR with neurodevelopmental symptoms, including developmental delay (DD) and speech disorders. We characterized structural variants (SVs) specific to each individual, including those matching the chromosomal breakpoints. Refinement of these regions by Sanger sequencing resulted in the identification of five disrupted genes in three individuals: guanine nucleotide binding protein, q polypeptide (GNAQ), RNA-binding protein, fox-1 homolog (RBFOX3), unc-5 homolog D (C.elegans) (UNC5D), transmembrane protein 47 (TMEM47), and X-linked inhibitor of apoptosis (XIAP). Among them, XIAP is the causative gene for the immunodeficiency phenotype seen in the patient. The remaining genes displayed specific expression in the fetal brain and have known biologically relevant functions in brain development, suggesting putative candidate genes for neurodevelopmental phenotypes. This study demonstrates the application of NGS technologies in mapping individual gene disruptions in ABCR as a resource for deciphering candidate genes in human neurodevelopmental disorders (NDDs).
Collapse
Affiliation(s)
- Kagistia H. Utami
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Axel M. Hillmer
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Irene Aksoy
- Stem Cells and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Elaine G. Y. Chew
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Audrey S. M. Teo
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Zhenshui Zhang
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Charlie W. H. Lee
- Computational and Mathematical Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Pauline J. Chen
- Computational and Mathematical Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Chan Chee Seng
- Scientific & Research Computing, Genome Institute of Singapore, Singapore, Singapore
| | - Pramila N. Ariyaratne
- Computational and Mathematical Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Sigrid L. Rouam
- Computational and Mathematical Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Lim Seong Soo
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Saira Yousoof
- Eye and Developmental Genetics Research, The Children’s Hospital at Westmead, Children’s Medical Research Institute and Save Sight Institute, Sydney, New South Wales, Australia
- Disciplines of Paediatrics and Child Health and Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Ivan Prokudin
- Eye and Developmental Genetics Research, The Children’s Hospital at Westmead, Children’s Medical Research Institute and Save Sight Institute, Sydney, New South Wales, Australia
- Disciplines of Paediatrics and Child Health and Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Gregory Peters
- Department of Cytogenetics, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Felicity Collins
- Department of Clinical Genetics, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Alyson Kakakios
- Department of Immunology, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | | | - Arnaud Menuet
- Service de Genetique INEM UMR7355 CNRS-University, Centre Hospitalier Régional d’Orléans, Orléans, France
| | - Olivier Perche
- Service de Genetique INEM UMR7355 CNRS-University, Centre Hospitalier Régional d’Orléans, Orléans, France
| | - Stacey Kiat Hong Tay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ken W. K. Sung
- Computational and Mathematical Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Xiaoan Ruan
- Genome Technology and Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Yijun Ruan
- Genome Technology and Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Edison T. Liu
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Sylvain Briault
- Service de Genetique INEM UMR7355 CNRS-University, Centre Hospitalier Régional d’Orléans, Orléans, France
| | - Robyn V. Jamieson
- Eye and Developmental Genetics Research, The Children’s Hospital at Westmead, Children’s Medical Research Institute and Save Sight Institute, Sydney, New South Wales, Australia
| | - Sonia Davila
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Valere Cacheux
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|