1
|
Hariharan A, Bready CJ, Ajello JG, Black SH, Shields GC, Johnson CJ. Stability and Structure of Potentially Atmospherically Relevant Glycine Ammonium Bisulfate Clusters. J Phys Chem A 2024; 128:4268-4278. [PMID: 38752426 DOI: 10.1021/acs.jpca.4c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
New particle formation (NPF) is the process by which trace atmospheric acids and bases cluster and grow into particles that ultimately impact climate. Sulfuric acid concentration drives NPF, but nitrogen-containing bases promote the formation of more stable clusters via salt bridge formation. Recent computational efforts have suggested that amino acids can enhance NPF, predicting that they can stabilize new particles via multiple protonation sites, but there has yet to be experimental validation of these predictions. We used mass spectrometry and infrared spectroscopy to study the structure and stability of cationic clusters composed of glycine, sulfuric acid, and ammonia. When collisionally activated, clusters were significantly more likely to eliminate ammonia or sulfuric acid than glycine, while quantum chemical calculations predicted lower binding free energies for ammonia but similar binding free energies for glycine and sulfuric acid. These calculations predicted several low-energy structures, so we compared experimental and computed vibrational spectra to attempt to validate the computationally predicted minimum energy structure. Unambiguous identification of the experimental structure by comparison to these calculations was made difficult by the complexity of the experimental spectra and the fact that the identity of the computed lowest-energy structure depended strongly on temperature. If their vapors are present, amino acids are likely to be enriched in new particles by displacing more weakly bound ammonia, similar to the behavior of other atmospheric amines. The carboxylic acid groups were found to preferentially interact with other carboxylic acids, suggesting incipient organic/inorganic phase separation even at these small sizes.
Collapse
Affiliation(s)
- Annapoorani Hariharan
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, United States
| | - Conor J Bready
- Department of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, South Carolina 29613, United States
| | - Jack G Ajello
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, United States
| | - Samantha H Black
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, United States
| | - George C Shields
- Department of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, South Carolina 29613, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, United States
| |
Collapse
|
2
|
Zhang Y, Wang Z, Wang H, Cheng Y, Zhang T, Ou T, Wang R. Atmospheric Chemistry of NH 2SO 3H in Polluted Areas: An Unexpected Isomerization of NH 2SO 3H in Acid-Polluted Regions. J Phys Chem A 2023; 127:8935-8942. [PMID: 37844321 DOI: 10.1021/acs.jpca.3c04982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
NH2SO3H is an effective nucleation agent for the formation of atmospheric aerosols and cloud particles. So, the ammonolysis of SO3 to form NH2SO3H without and with neutral (H2O) and basic (NH3) trace gases has been extensively investigated. However, the acidic trace gas X (X = H2SO4 and CH3SO3H)-assisted ammonolysis of SO3 is still up for debate. In this work, a comprehensive theoretical investigation of X-assisted ammonolysis of SO3 and its reverse reaction (the isomerization of NH2SO3H to form SO3-···NH3+) was carried out in the gas phase and at the air-water interface. The gas-phase results show that X-assisted isomerization of NH2SO3H to form SO3-···NH3+ is more energetically and kinetically favorable than its reverse reaction and the isomerization of NH2SO3H in the presence of H2O and NH3. Such unexpected findings revealed that gas-phase NH2SO3H is highly reactive in the presence of acidic trace gas in contrast to the high stability of NH2SO3H in neutral and basic conditions. At the air-water interface, the X-assisted isomerization reaction of NH2SO3H involves multiple water molecules. The loop structure of the reaction center (X···NH2SO3H···3H2O) promotes the transfer of protons in the water molecules to form the SO3-···NH3+ ion pair, which can then interact with several interfacial water molecules to form ammonium bisulfate. These interfacial reaction channels follow a stepwise mechanism and proceed at the picosecond time-scale. The findings of this study will contribute to a better understanding of the atmospheric behavior of NH2SO3H in polluted acidic trace gases.
Collapse
Affiliation(s)
- Yongqi Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Zehui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Hui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Yang Cheng
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Tianlei Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Ting Ou
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| | - Rui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China
| |
Collapse
|
3
|
Zhang X, Tan S, Chen X, Yin S. Computational chemistry of cluster: Understanding the mechanism of atmospheric new particle formation at the molecular level. CHEMOSPHERE 2022; 308:136109. [PMID: 36007737 DOI: 10.1016/j.chemosphere.2022.136109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
New particle formation (NPF), which exerts significant influence over human health and global climate, has been a hot topic and rapidly expands field of research in the environmental and atmospheric chemistry recent years. Generally, NPF contains two processes: formation of critical nucleus and further growth of the nucleus. However, due to the complexity of the atmospheric nucleation, which is a multicomponent process, formation of critical clusters as well as their growth is still connected to large uncertainties. Detection limits of instruments in measuring specific gaseous aerosol precursors and chemical compositions at the molecular level call for computational studies. Computational chemistry could effectively compensate the deficiency of laboratory experiments as well as observations and predict the nucleation mechanisms. We review the present theoretical literatures that discuss nucleation mechanism of atmospheric clusters. Focus of this review is on different nucleation systems involving sulfur-containing species, nitrogen-containing species and iodine-containing species. We hope this review will provide a deep insight for the molecular interaction of nucleation precursors and reveal nucleation mechanism at the molecular level.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Shendong Tan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
4
|
Bready CJ, Fowler VR, Juechter LA, Kurfman LA, Mazaleski GE, Shields GC. The driving effects of common atmospheric molecules for formation of prenucleation clusters: the case of sulfuric acid, formic acid, nitric acid, ammonia, and dimethyl amine. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:1469-1486. [PMID: 36561556 PMCID: PMC9648633 DOI: 10.1039/d2ea00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
How secondary aerosols form is critical as aerosols' impact on Earth's climate is one of the main sources of uncertainty for understanding global warming. The beginning stages for formation of prenucleation complexes, that lead to larger aerosols, are difficult to decipher experimentally. We present a computational chemistry study of the interactions between three different acid molecules and two different bases. By combining a comprehensive search routine covering many thousands of configurations at the semiempirical level with high level quantum chemical calculations of approximately 1000 clusters for every possible combination of clusters containing a sulfuric acid molecule, a formic acid molecule, a nitric acid molecule, an ammonia molecule, a dimethylamine molecule, and 0-5 water molecules, we have completed an exhaustive search of the DLPNO-CCSD(T)/CBS//ωB97X-D/6-31++G** Gibbs free energy surface for this system. We find that the detailed geometries of each minimum free energy cluster are often more important than traditional acid or base strength. Addition of a water molecule to a dry cluster can enhance stabilization, and we find that the (SA)(NA)(A)(DMA)(W) cluster has special stability. Equilibrium calculations of SA, FA, NA, A, DMA, and water using our quantum chemical ΔG° values for cluster formation and realistic estimates of the concentrations of these monomers in the atmosphere reveals that nitric acid can drive early stages of particle formation just as efficiently as sulfuric acid. Our results lead us to believe that particle formation in the atmosphere results from the combination of many different molecules that are able to form highly stable complexes with acid molecules such as SA, NA, and FA.
Collapse
Affiliation(s)
- Conor J Bready
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Vance R Fowler
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Leah A Juechter
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Luke A Kurfman
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - Grace E Mazaleski
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| | - George C Shields
- Department of Chemistry, Furman University Greenville South Carolina 29613 USA
| |
Collapse
|
5
|
Liu J, Ni S, Pan X. Interaction of Glutamic Acid/Protonated Glutamic Acid with Amide and Water Molecules: A Theoretical Study. J Phys Chem A 2022; 126:7750-7762. [PMID: 36253764 DOI: 10.1021/acs.jpca.2c05135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amino acids are important nitrogen-containing compounds and organic carbon components that exist widely in the atmosphere. The formation of atmospheric aerosols is affected by their interactions with amides. The dimers formed by glutamic acid (Glu) or protonated glutamic acid (Glu+) with three kinds of amide molecules (formamide FA, acetamide AA, urea U) and the hydrated clusters formed by Glu or Glu+, U molecules along with one to six water molecules were systematically studied at the M06-2X/6-311++G(3df,3pd) level. U is predicted to form a more stable structure with Glu/Glu+ than FA and AA by thermodynamics. If the concentration ratio of FA to U is less than 104, U will play a critical role in NPF. The degree of hydration in Glu+-mU-nW is higher than that of Glu-mU-nW (m = 0, 1; n = 0-6) clusters. Notably, Glu contributes more to the Rayleigh scattering properties than glutaric acid and sulfuric acid, and thus may lead to the destruction of atmospheric visibility. This study is helpful to better understand the properties of organic aerosols containing amino acids or amides.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun130024, People's Republic of China
| | - Shuang Ni
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang110034, People's Republic of China
| | - Xiumei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun130024, People's Republic of China
| |
Collapse
|
6
|
Bready CJ, Vanovac S, Odbadrakh TT, Shields GC. Amino Acids Compete with Ammonia in Sulfuric Acid-Based Atmospheric Aerosol Prenucleation: The Case of Glycine and Serine. J Phys Chem A 2022; 126:5195-5206. [PMID: 35896016 DOI: 10.1021/acs.jpca.2c03539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a computational investigation of the sulfuric acid, glycine, serine, ammonia, and water system to understand if this system can form prenucleation clusters, which are precursors to larger aerosols in the atmosphere. We have performed a comprehensive configurational search of all possible clusters in this system, starting with the four different monomers and zero to five waters. Accurate Gibbs free energies of formation have been calculated with the DLPNO-CCSD(T)/complete basis set (CBS) method on ωb97xd/6-31++G** geometries. For the dry dimers of sulfuric acid, the weakest base, serine, is found to form the most stable complex, which is a consequence of the strong di-ionic complex formed between the bisulfate ion and the protonated serine cation. For the dry dimers without sulfuric acid, the glycine-serine complex is more stable than the glycine-ammonia or serine-ammonia complexes, stemming from the detailed structure and not related to base strength. For the larger complexes, sulfuric acid deprotonates and the proton is shifted to glycine, serine, or ammonia. The two amino acids and ammonia are almost interchangeable and there is no easy way to predict which molecule will be protonated without the calculated results. Assuming reasonable starting concentrations and a closed system of sulfuric acid, glycine, serine, ammonia, and five waters, we predict the concentrations of all possible complexes at two temperatures spanning the troposphere. The most negative ΔG° values are a function of the detailed molecular interactions of these clusters. These details are more important than the base strength of ammonia, glycine, and serine.
Collapse
Affiliation(s)
- Conor J Bready
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Sara Vanovac
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Tuguldur T Odbadrakh
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
7
|
Liu Y, Xie HB, Ma F, Chen J, Elm J. Amine-Enhanced Methanesulfonic Acid-Driven Nucleation: Predictive Model and Cluster Formation Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7751-7760. [PMID: 35593326 DOI: 10.1021/acs.est.2c01639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atmospheric amines are considered to be an effective enhancer for methanesulfonic acid (MSA)-driven nucleation. However, out of the 195 detected atmospheric amines, the enhancing potential (EP) has so far only been studied for five amines. This severely hinders the understanding of the contribution of amines to MSA-driven nucleation. Herein, a two-step procedure was employed to probe the EP of various amines on MSA-driven nucleation. Initially, the formation free energies (ΔG) of 50 MSA-amine dimer clusters were calculated. Based on the calculated ΔG values, a robust quantitative structure-activity relationship (QSAR) model was built and utilized to predict the ΔG values of the remaining 145 amines. The QSAR model identified two guanidino-containing compounds as the potentially strongest enhancer for MSA-driven nucleation. Second, the EP of guanidino-containing compounds was studied by employing larger clusters and selecting guanidine (Gud) as a representative. The results indicate that Gud indeed has the strongest EP. The Gud-MSA system presents a unique clustering mechanism, proceeding via the initial formation of the (Gud)1(MSA)1 cluster, and subsequently by cluster collisions with either a (Gud)1(MSA)1 or (Gud)2(MSA)2 cluster. The developed QSAR model and the identification of amines with the strongest EP provide a foundation for comprehensively evaluating the contribution of atmospheric amines to MSA-driven nucleation.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| |
Collapse
|
8
|
Radola B, Picaud S, Ortega IK. DFT Study of the Formation of Atmospheric Aerosol Precursors from the Interaction between Sulfuric Acid and Benzenedicarboxylic Acid Molecules. J Phys Chem A 2022; 126:1211-1220. [PMID: 35147031 DOI: 10.1021/acs.jpca.1c08936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dicarboxylic acids are ubiquitous products of the photooxidation of volatile organic compounds which are believed to play a significant role in the formation of secondary organic aerosols in the atmosphere. In this paper, we report high-level quantum investigations of the clustering properties of sulfuric acid and benzenedicarboxylic acid molecules. Up to four molecules have been considered in the calculations, and the behavior of the three isomers of the organic diacid species have been compared. The most stable geometries have been characterized together with the corresponding thermodynamic data. From an atmospheric point of view, the results of the DFT calculations show that the organic diacid molecules may significantly enhance the nucleation of small atmospheric clusters, at least from an energetic point of view. In this respect, the phthalic acid isomer seems more efficient than the two other isomers of the benzenedicarboxylic acid, in particular because the internal distance between the two carboxyl groups in the organic diacids appears to play an important role in the stabilization of the H-bond network inside the corresponding heterocluster formed with sulfuric acid molecules.
Collapse
Affiliation(s)
- Bastien Radola
- Institut UTINAM─UMR 6213, CNRS/Université de Bourgogne Franche-Comté, F-25030 Besançon Cedex, France
| | - Sylvain Picaud
- Institut UTINAM─UMR 6213, CNRS/Université de Bourgogne Franche-Comté, F-25030 Besançon Cedex, France
| | - Ismael Kenneth Ortega
- Multi-Physics for Energetics Department, ONERA/Université Paris Saclay, F-91123 Palaiseau, France
| |
Collapse
|
9
|
Ball BT, Vanovac S, Odbadrakh TT, Shields GC. Monomers of Glycine and Serine Have a Limited Ability to Hydrate in the Atmosphere. J Phys Chem A 2021; 125:8454-8467. [PMID: 34529444 DOI: 10.1021/acs.jpca.1c05466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of atmospheric aerosols on climate change is one of the biggest uncertainties in most global climate models. Organic aerosols have been identified as potential cloud condensation nuclei (CCN), and amino acids are organic molecules that could serve as CCN. Amino acids make up a significant portion of the total organic material in the atmosphere, and herein we present a systematic study of hydration for two of the most common atmospheric amino acids, glycine and serine. We compute DLPNO/CCSD(T)//M08-HX/MG3S thermodynamic properties and atmospheric concentrations of Gly(H2O)n and Ser(H2O)n, where n = 1-5. We predict that serine-water clusters have higher concentrations at n = 1 and 5, while glycine-water clusters have higher concentrations at n = 2-4. However, both glycine and serine are inferred to exist primarily in their nonhydrated monomer forms in the absence of other species such as sulfuric acid.
Collapse
Affiliation(s)
- Benjamin T Ball
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Sara Vanovac
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Tuguldur T Odbadrakh
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
10
|
Ni S, Bai F, Pan X. Synergistic effect of glutaric acid and ammonia/amine/amide on their hydrates in the clustering: A theoretical study. CHEMOSPHERE 2021; 275:130063. [PMID: 33984898 DOI: 10.1016/j.chemosphere.2021.130063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
The formation of molecular clusters makes influence on the atmosphere. The clusters of glutaric acid (GA) and common ammonia (A), amine (methylamine MA, dimethylamine DMA) and representative amide (urea U) along with water molecule were systematically studied theoretically. GA-A-nW (n = 1, 2), GA-MA-nW (n = 1, 2), GA-DMA-1W and GA-U-nW (n = 1-6) are predicted to be feasible thermodynamically with the hydrogen bonds as interaction force. GA and urea promote the clustering synergistically, and ammonia, methylamine, dimethylamine promote the clustering of small GA hydrates (n = 1-2), while inhibit that of large GA hydrates (n = 3-6). The results of humidity show that un-hydrate or mono-hydrate is the main form of GA-mbase-nW (m = 0, 1; n = 1-6) under relative humidity of 20%, 50% and 80%. The global minima remain dominant over the temperature range of 220-320 K. GA contributes more to the Rayleigh scattering properties than sulfuric acid. More importantly, the local minima can undergo isomerization to form the global minima crossing a free energy barrier ranging from 6.66 to 11.78 kcal mol-1. This study indicates that GA and base molecules play a synergistic role to promote the formation of clusters. We hope it can provide more insights on interesting clustering in theory.
Collapse
Affiliation(s)
- Shuang Ni
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Fengyang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China
| | - Xiumei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
11
|
Liu J, Liu L, Rong H, Zhang X. The potential mechanism of atmospheric new particle formation involving amino acids with multiple functional groups. Phys Chem Chem Phys 2021; 23:10184-10195. [PMID: 33751015 DOI: 10.1039/d0cp06472f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amino acids are recognized as significant components of atmospheric aerosols. However, their potential role in atmospheric new particle formation (NPF) is poorly understood, especially aspartic acid (ASP), one of the most abundant amino acids in the atmosphere. It has not only two advantageous carboxylic acid groups but also one amino group, both of which are both effective groups enhancing NPF. Herein, the participation mechanism of ASP in the formation of new particle involving sulfuric acid (SA)-ammonia (A)-based system has been studied using the Density Functional Theory (DFT) combined with the Atmospheric Clusters Dynamic Code (ACDC). The results show that the addition of ASP molecules in the SA-A-based clusters provides a promotion on the interaction between SA and A molecules. Moreover, ACDC simulations indicate that ASP could present an obvious enhancement effect on SA-A-based cluster formation rates. Meanwhile, the enhancement strength R presents a positive dependence on [ASP] and a negative dependence on [SA] and [A]. Besides, the enhancement effect of ASP is compared with that of malonic acid (MOA) with two carboxylic acid groups (Chemosphere, 2018, 203, 26-33), and ASP presents a more obvious enhancement effect than MOA. The mechanism of NPF indicates that ASP could contribute to cluster formation as a "participator" which is different from the "catalytic" role of MOA at 238 K. These new insights are helpful to understand the mechanism of NPF involving organic compounds with multiple functional groups, especially the abundant amino acids, such as the ASP, in the urban/suburban areas with intensive human activities and industrial productions and therefore the abundant sources of amino acids. Furthermore, the NPF of the SA-A-based system involving amino acid should be considered when assessing the environmental risk of amino acid.
Collapse
Affiliation(s)
- Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Hui Rong
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
12
|
de Souza Gonçalves D, Chaudhuri P. Atmospherically Relevant Hydrogen-Bonded Interactions between Methanesulfonic Acid and H 2SO 4 Clusters: A Computational Study. J Phys Chem A 2020; 124:11072-11085. [PMID: 33337158 DOI: 10.1021/acs.jpca.0c09087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A detailed and systematic quantum-chemical calculation has been performed with high-level density functional theory (DFT) to analyze the electrostatic interaction of methanesulfonic acid (CH3SO3H), also known as MSA, with pre-formed clusters of sulfuric acid (H2SO4) molecules in ambient conditions. Both MSA and H2SO4 are considered as atmospheric molecules that might play active roles in aerosol formation. The interactions between MSA and H2SO4 clusters lead to the formation of MSA···(H2SO4)n (n = 2, 3) complexes stabilized by the formation of different types of intermolecular hydrogen bond networks. Analyses of cluster binding energies and free energy changes associated with their formation indicate that MSA could bring additional stability into the atmospheric molecular clusters responsible for aerosol formation. Variations of Gibbs free energy with temperature and pressure have been analyzed. The lower temperatures and pressures at the higher altitudes of the troposphere are found to play in favor of higher stability of the MSA···(H2SO4)n clusters. Effects of hydrogen bond formation on dipole moment, mean polarizability, and anisotropy of polarizability of the clusters have been analyzed. Rayleigh scattering intensities are found to increase many-fold when light interacts with the MSA···(H2SO4)n clusters.
Collapse
|
13
|
Li D, Chen D, Liu F, Wang W. Role of glycine on sulfuric acid-ammonia clusters formation: Transporter or participator. J Environ Sci (China) 2020; 89:125-135. [PMID: 31892385 DOI: 10.1016/j.jes.2019.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Glycine (Gly) is ubiquitous in the atmosphere and plays a vital role in new particle formation (NPF). However, the potential mechanism of its on sulfuric acid (SA) - ammonia (A) clusters formation under various atmospheric conditions is still ambiguous. Herein, a (Gly)x·(SA)y·(A)z (z ≤ x + y ≤ 3) multicomponent system was investigated by using density functional theory (DFT) combined with Atmospheric Cluster Dynamics Code (ACDC) at different temperatures and precursor concentrations. The results show that Gly, with one carboxyl (-COOH) and one amine (-NH2) group, can interact strongly with SA and A in two directions through hydrogen bonds or proton transfer. Within the relevant range of atmospheric concentrations, Gly can enhance the formation rate of SA-A-based clusters, especially at low temperature, low [SA], and median [A]. The enhancement (R) of Gly on NPF can be up to 340 at T = 218.15 K, [SA] = 104, [A] = 109, and [Gly] = 107 molecules/cm3. In addition, the main growth paths of clusters show that Gly molecules participate into cluster formation in the initial stage and eventually leave the cluster by evaporation in subsequent cluster growth at low [Gly], it acts as an important "transporter" to connect the smaller and larger cluster. With the increase of [Gly], it acts as a "participator" directly participating in NPF.
Collapse
Affiliation(s)
- Danfeng Li
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Dongping Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Fengyi Liu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
14
|
Enhancing Potential of Trimethylamine Oxide on Atmospheric Particle Formation. ATMOSPHERE 2019. [DOI: 10.3390/atmos11010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of an oxidation product of trimethylamine, trimethylamine oxide, in atmospheric particle formation is studied using quantum chemical methods and cluster formation simulations. Molecular-level cluster formation mechanisms are resolved, and theoretical results on particle formation are confirmed with mass spectrometer measurements. Trimethylamine oxide is capable of forming only one hydrogen bond with sulfuric acid, but unlike amines, trimethylamine oxide can form stable clusters via ion–dipole interactions. That is because of its zwitterionic structure, which causes a high dipole moment. Cluster growth occurs close to the acid:base ratio of 1:1, which is the same as for other monoprotic bases. Enhancement potential of trimethylamine oxide in particle formation is much higher than that of dimethylamine, but lower compared to guanidine. Therefore, at relatively low concentrations and high temperatures, guanidine and trimethylamine oxide may dominate particle formation events over amines.
Collapse
|
15
|
Shen J, Xie HB, Elm J, Ma F, Chen J, Vehkamäki H. Methanesulfonic Acid-driven New Particle Formation Enhanced by Monoethanolamine: A Computational Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14387-14397. [PMID: 31710478 DOI: 10.1021/acs.est.9b05306] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Amines are recognized as significant enhancing species on methanesulfonic acid (MSA)-driven new particle formation (NPF). Monoethanolamine (MEA) has been detected in the atmosphere, and its concentration could be significantly increased once MEA-based postcombustion CO2 capture technology is widely implemented. Here, we evaluated the enhancing potential of MEA on MSA-driven NPF by examining the formation of MEA-MSA clusters using a combination of quantum chemical calculations and kinetics modeling. The results indicate that the -OH group of MEA can form at least one hydrogen bond with MSA or MEA in all MEA-containing clusters. The enhancing potential of MEA is higher than that of the strongest enhancing agent known so far, methylamine (MA), for MSA-driven NPF. Such high enhancing potential can be ascribed to not only the higher gas-phase basicity but also the role of the additional -OH group of MEA in increasing the binding free energy by forming additional hydrogen bonds. This clarifies the importance of hydrogen-bonding capacity from the nonamino group of amines in enhancing MSA-driven NPF. The main growth pathway for MEA-MSA clusters proceeds via the initial formation of the (MEA)1(MSA)1 cluster, followed by alternately adding one MSA and one MEA molecule, differing from the case of MA-MSA clusters.
Collapse
Affiliation(s)
- Jiewen Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jonas Elm
- Department of Chemistry and iClimate , Aarhus University , Langelandsgade 140 , DK-8000 Aarhus C , Denmark
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics , University of Helsinki , P.O. Box 64, Gustaf Hällströmin katu 2a , FI-00014 Helsinki , Finland
| |
Collapse
|
16
|
Ge P, Luo G, Luo Y, Huang W, Xie H, Chen J, Qu J. Molecular understanding of the interaction of amino acids with sulfuric acid in the presence of water and the atmospheric implication. CHEMOSPHERE 2018; 210:215-223. [PMID: 30005342 DOI: 10.1016/j.chemosphere.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Amino acids are important components of atmospheric aerosols. Despite the diversity of amino acids structures, however, the role of amino acids with additional non-characteristic functional groups in new particle formation (NPF) has almost remained unexplored. Herein, the interaction of serine (Ser) and threonine (Thr), which feature a hydroxyl group and differ by a methyl-substitution, with sulfuric acid (SA) and up to three water (W) molecules has been investigated at the M06-2X/6-311++G (3df, 3pd) level of theory. The effects of structural differences of amino acids on the structure and properties of clusters were also pointed out. Results show that serine may play more important role in stabilizing sulfuric acid to promote NPF in initial steps compared with threonine, glycine and alanine. Meanwhile, threonine may participate in ion-induced nucleation due to the high dipole moment of (Thr) (SA) isomers. Moreover, the effects of structure differences of amino acids can be seen in several aspects. Firstly, methyl substitution and hydroxyl group of amino acids have great influence on the structure of clusters. Secondly, hydrated (Ser) (SA) and (Tur) (SA) clusters could retain water even at low relative humidity, which may due to the hydroxyl group in serine and threonine. In addition, the Rayleigh light scattering intensities of amino acid-containing clusters are higher than trimethylamine, monoethanolamine and oxalic acid-involved counterparts. The effect of carboxyl group and methyl substitution on optical properties of clusters is also discussed. This study may bring new insight into the role of amino acids with additional non-characteristic functional groups in initial steps of NPF.
Collapse
Affiliation(s)
- Pu Ge
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Gen Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Wei Huang
- School of Environmental Science & Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongbin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
17
|
Li H, Zhong J, Vehkamäki H, Kurtén T, Wang W, Ge M, Zhang S, Li Z, Zhang X, Francisco JS, Zeng XC. Self-Catalytic Reaction of SO3 and NH3 To Produce Sulfamic Acid and Its Implication to Atmospheric Particle Formation. J Am Chem Soc 2018; 140:11020-11028. [DOI: 10.1021/jacs.8b04928] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jie Zhong
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | | | | | - Weigang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Maofa Ge
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zesheng Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Joseph S. Francisco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
18
|
Kildgaard JV, Mikkelsen KV, Bilde M, Elm J. Hydration of Atmospheric Molecular Clusters: A New Method for Systematic Configurational Sampling. J Phys Chem A 2018; 122:5026-5036. [PMID: 29741906 DOI: 10.1021/acs.jpca.8b02758] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a new systematic configurational sampling algorithm for investigating the potential energy surface of hydrated atmospheric molecular clusters. The algorithm is based on creating a Fibonacci sphere around each atom in the cluster and adding water molecules to each point in nine different orientations. For the sampling of water molecules to existing hydrogen bonds, the cluster is displaced along the hydrogen bond, and a water molecule is placed in between in three different orientations. Generated redundant structures are eliminated based on minimizing the root-mean-square distance of different conformers. Initially, the clusters are sampled using the semiempirical PM6 method and subsequently using density functional theory (M06-2X and ωB97X-D) with the 6-31++G(d,p) basis set. Applying the developed algorithm, we study the hydration of sulfuric acid with up to 15 water molecules. We find that the addition of the first four water molecules "saturate" the sulfuric acid molecule and that they are more thermodynamically favorable than the addition of water molecules 5-15. Using the large generated set of conformers, we assess the performance of approximate methods (ωB97X-D, M06-2X, PW91, and PW6B95-D3) in calculating the binding energies and assigning the global minimum conformation compared to high level CCSD(T)-F12a/VDZ-F12 reference calculations. The tested DFT functionals systematically overestimate the binding energies compared to coupled cluster calculations, and we find that this deficiency can be corrected by a simple scaling factor.
Collapse
Affiliation(s)
| | - Kurt V Mikkelsen
- Department of Chemistry , University of Copenhagen , Copenhagen , Denmark
| | - Merete Bilde
- Department of Chemistry and iClimate , Aarhus University , Aarhus , Denmark
| | - Jonas Elm
- Department of Chemistry and iClimate , Aarhus University , Aarhus , Denmark
| |
Collapse
|
19
|
Wang CY, Jiang S, Liu YR, Wen H, Wang ZQ, Han YJ, Huang T, Huang W. Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth’s Atmosphere. A Theoretical Study. J Phys Chem A 2018; 122:3470-3479. [DOI: 10.1021/acs.jpca.8b00681] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chun-Yu Wang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuai Jiang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Rong Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui Wen
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Zhong-Quan Wang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ya-Juan Han
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Wei Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Regional Atmospheric Environment, Xiamen, Fujian 361021, China
| |
Collapse
|
20
|
Hong Y, Liu YR, Wen H, Miao SK, Huang T, Peng XQ, Jiang S, Feng YJ, Huang W. Interaction of oxalic acid with methylamine and its atmospheric implications. RSC Adv 2018; 8:7225-7234. [PMID: 35540338 PMCID: PMC9078381 DOI: 10.1039/c7ra13670f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/01/2018] [Indexed: 11/21/2022] Open
Abstract
Oxalic acid, which is one of the most common dicarboxylic acids, is expected to be an important component of atmospheric aerosols. However, the contribution of oxalic acid to the generation of new particles is still poorly understood. In this study, the structural characteristics and thermodynamics of (C2H2O4)(CH3NH2) n (n = 1-4) were investigated at the PW91PW91/6-311++G(3df,3pd) level of theory. We found that clusters formed by oxalic acid and methylamine are relatively stable, and the more the atoms participating in the formation of a ring-like structure, the more stable is the cluster. In addition, via the analysis of atmospheric relevance, it can be revealed that clusters of (C2H2O4)(CH3NH2) n (n = 1-4) have a noteworthy concentration in the atmosphere, which indicates that these clusters could be participating in new particle formation. Moreover, by comparison with (H2C2O4)(NH3) n (n = 1-6) species, it can be seen that oxalic acid is more readily bound to methylamine than to ammonia, which promotes nucleation or new particle formation. Finally, the Rayleigh scattering properties of clusters of (C2H2O4)(CH3NH2) n (n = 1-4) were investigated for the first time to determine their atmospheric implications.
Collapse
Affiliation(s)
- Yu Hong
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences Hefei Anhui 230031 China
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yi-Rong Liu
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Hui Wen
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences Hefei Anhui 230031 China
| | - Shou-Kui Miao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences Hefei Anhui 230031 China
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences Hefei Anhui 230031 China
| | - Xiu-Qiu Peng
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences Hefei Anhui 230031 China
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Shuai Jiang
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Ya-Juan Feng
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
| | - Wei Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences Hefei Anhui 230031 China
- School of Information Science and Technology, University of Science and Technology of China Hefei Anhui 230026 China
- CAS Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences Xiamen Fujian 361021 China
| |
Collapse
|
21
|
Elm J, Passananti M, Kurtén T, Vehkamäki H. Diamines Can Initiate New Particle Formation in the Atmosphere. J Phys Chem A 2017; 121:6155-6164. [DOI: 10.1021/acs.jpca.7b05658] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonas Elm
- Department
of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | | | | | | |
Collapse
|
22
|
Xie HB, Elm J, Halonen R, Myllys N, Kurtén T, Kulmala M, Vehkamäki H. Atmospheric Fate of Monoethanolamine: Enhancing New Particle Formation of Sulfuric Acid as an Important Removal Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8422-8431. [PMID: 28651044 DOI: 10.1021/acs.est.7b02294] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Monoethanolamine (MEA), a potential atmospheric pollutant from the capture unit of a leading CO2 capture technology, could be removed by participating H2SO4-based new particle formation (NPF) as simple amines. Here we evaluated the enhancing potential of MEA on H2SO4-based NPF by examining the formation of molecular clusters of MEA and H2SO4 using combined quantum chemistry calculations and kinetics modeling. The results indicate that MEA at the parts per trillion (ppt) level can enhance H2SO4-based NPF. The enhancing potential of MEA is less than that of dimethylamine (DMA), one of the strongest enhancing agents, and much greater than methylamine (MA), in contrast to the order suggested solely by their basicity (MEA < MA < DMA). The unexpectedly high enhancing potential is attributed to the role of -OH of MEA in increasing cluster binding free energies by acting as both a hydrogen bond donor and acceptor. After the initial formation of one H2SO4 and one MEA cluster, the cluster growth mainly proceeds by first adding one H2SO4, and then one MEA, which differs from growth pathways in H2SO4-DMA and H2SO4-MA systems. Importantly, the effective removal rate of MEA due to participation in NPF is comparable to that of oxidation by hydroxyl radicals at 278.15 K, indicating NPF as an important sink for MEA.
Collapse
Affiliation(s)
- Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
- Department of Physics, University of Helsinki , P.O. Box 64, FIN-00014 Helsinki, Finland
| | - Jonas Elm
- Department of Physics, University of Helsinki , P.O. Box 64, FIN-00014 Helsinki, Finland
| | - Roope Halonen
- Department of Physics, University of Helsinki , P.O. Box 64, FIN-00014 Helsinki, Finland
| | - Nanna Myllys
- Department of Physics, University of Helsinki , P.O. Box 64, FIN-00014 Helsinki, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki , P.O. Box 55, FIN-00014 Helsinki, Finland
| | - Markku Kulmala
- Department of Physics, University of Helsinki , P.O. Box 64, FIN-00014 Helsinki, Finland
| | - Hanna Vehkamäki
- Department of Physics, University of Helsinki , P.O. Box 64, FIN-00014 Helsinki, Finland
| |
Collapse
|
23
|
Myllys N, Olenius T, Kurtén T, Vehkamäki H, Riipinen I, Elm J. Effect of Bisulfate, Ammonia, and Ammonium on the Clustering of Organic Acids and Sulfuric Acid. J Phys Chem A 2017; 121:4812-4824. [DOI: 10.1021/acs.jpca.7b03981] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nanna Myllys
- Department
of Physics, University of Helsinki, Helsinki FI-00014, Finland
| | - Tinja Olenius
- Department of Environmental Science and Analytical Chemistry & Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Hanna Vehkamäki
- Department
of Physics, University of Helsinki, Helsinki FI-00014, Finland
| | - Ilona Riipinen
- Department of Environmental Science and Analytical Chemistry & Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Jonas Elm
- Department
of Physics, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
24
|
Elm J, Myllys N, Olenius T, Halonen R, Kurtén T, Vehkamäki H. Formation of atmospheric molecular clusters consisting of sulfuric acid and C8H12O6 tricarboxylic acid. Phys Chem Chem Phys 2017; 19:4877-4886. [DOI: 10.1039/c6cp08127d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the structures and thermochemical properties of (MBTCA)1−3(H2SO4)1−4 atmospheric molecular clusters.
Collapse
Affiliation(s)
- Jonas Elm
- Division of Atmospheric Sciences
- Department of Physics
- University of Helsinki
- FI-00014 Helsinki
- Finland
| | - Nanna Myllys
- Division of Atmospheric Sciences
- Department of Physics
- University of Helsinki
- FI-00014 Helsinki
- Finland
| | - Tinja Olenius
- Department of Environmental Science and Analytical Chemistry (ACES) and Bolin Centre for Climate Research
- Stockholm University
- 10691 Stockholm
- Sweden
| | - Roope Halonen
- Division of Atmospheric Sciences
- Department of Physics
- University of Helsinki
- FI-00014 Helsinki
- Finland
| | - Theo Kurtén
- Department of Chemistry
- University of Helsinki
- FI-00014 Helsinki
- Finland
| | - Hanna Vehkamäki
- Division of Atmospheric Sciences
- Department of Physics
- University of Helsinki
- FI-00014 Helsinki
- Finland
| |
Collapse
|
25
|
Partanen L, Hänninen V, Halonen L. Effects of Global and Local Anharmonicities on the Thermodynamic Properties of Sulfuric Acid Monohydrate. J Chem Theory Comput 2016; 12:5511-5524. [PMID: 27662456 DOI: 10.1021/acs.jctc.6b00683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We use state-of-the-art electronic structure calculation methods and large basis sets to obtain reliable values for the thermodynamic properties of sulfuric acid monohydrate and study the effects of vibrational anharmonicity on these properties. We distinguish between two forms of vibrational anharmonicity: local anharmonicity, which refers to the anharmonicity of the vibrational modes of a given cluster conformer, and global anharmonicity, which originates from accounting for the presence of different conformers in the first place. In our most accurate approach, we solve the nuclear Schrödinger equation variationally for the intermolecular large-amplitude motions, thus quantum-mechanically accounting for the presence of higher-energy conformers for both reactants and products, while using the standard vibrational perturbational approach for the other vibrational modes. This results in a value of -11.0 kJ/mol for the reaction Gibbs free energy at 298.15 K. When standard vibrational perturbational approaches are employed, the effects of local anharmonicity depend heavily on the choice of the electronic structure calculation basis set. In fact, better results can often be achieved by combining a simple harmonic treatment for the vibrational partition function with a statistical mechanical accounting of global anharmonicity. Thus, we recommend that future studies that intend to include anharmonicity start by accounting for the presence of higher-energy conformers and only then consider whether local anharmonicity calculations are feasible and necessary.
Collapse
Affiliation(s)
- Lauri Partanen
- Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki , P.O. Box 55, A.I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| | - Vesa Hänninen
- Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki , P.O. Box 55, A.I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| | - Lauri Halonen
- Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki , P.O. Box 55, A.I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| |
Collapse
|
26
|
Partanen L, Vehkamäki H, Hansen K, Elm J, Henschel H, Kurtén T, Halonen R, Zapadinsky E. Effect of Conformers on Free Energies of Atmospheric Complexes. J Phys Chem A 2016; 120:8613-8624. [DOI: 10.1021/acs.jpca.6b04452] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lauri Partanen
- Laboratory
of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 University of Helsinki, Finland
| | - Hanna Vehkamäki
- Department
of Physics, University of Helsinki, P.O. Box 64 (Gustaff Hällströmin
katu 2a), FIN-00014 University of Helsinki, Finland
| | - Klavs Hansen
- Tianjin
International Center of Nanoparticles and Nanosystems, Tianjin University, 92 Weijin Road, Nankai district, Tianjin 300072, P. R. China
- Department
of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Jonas Elm
- Department
of Physics, University of Helsinki, P.O. Box 64 (Gustaff Hällströmin
katu 2a), FIN-00014 University of Helsinki, Finland
| | - Henning Henschel
- Department
of Physics, University of Helsinki, P.O. Box 64 (Gustaff Hällströmin
katu 2a), FIN-00014 University of Helsinki, Finland
| | - Theo Kurtén
- Laboratory
of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 University of Helsinki, Finland
| | - Roope Halonen
- Department
of Physics, University of Helsinki, P.O. Box 64 (Gustaff Hällströmin
katu 2a), FIN-00014 University of Helsinki, Finland
| | - Evgeni Zapadinsky
- Department
of Physics, University of Helsinki, P.O. Box 64 (Gustaff Hällströmin
katu 2a), FIN-00014 University of Helsinki, Finland
| |
Collapse
|
27
|
Long B, Tan XF, Wang YB, Li J, Ren DS, Zhang WJ. Theoretical Studies on Reactions of OH with H2SO4…NH3Complex and NH2with H2SO4in the Presence of Water. ChemistrySelect 2016. [DOI: 10.1002/slct.201600194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bo Long
- College of Information Engineering; Guizhou Minzu University; Guiyang 550025 China
| | - Xing-Feng Tan
- College of Information Engineering; Guizhou Minzu University; Guiyang 550025 China
| | - Yi-Bo Wang
- Key Laboratory of Guizhou High Performance Computational Chemistry; Department of Chemistry; Guizhou University; Guiyang 550025 China
| | - Jun Li
- Department of Chemistry & Laboratory of Organic; Optoelectronics and Molecular Engineering of the Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Da-Sen Ren
- College of Information Engineering; Guizhou Minzu University; Guiyang 550025 China
| | - Wei-Jun Zhang
- Laboratory of Atmospheric Physico-Chemistry; Anhui Institute of Optics and Fine Mechanics; Chinese Academy of Sciences; Hefei 230031 China
- Key Laboratory of Atmospheric Composition and Optical Radiation; Anhui Institute of Optics and Fine Mechanics; Chinese Academy of Sciences; Hefei 230031 China
| |
Collapse
|
28
|
Elm J, Jen CN, Kurtén T, Vehkamäki H. Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid. J Phys Chem A 2016; 120:3693-700. [PMID: 27128188 DOI: 10.1021/acs.jpca.6b03192] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules.
Collapse
Affiliation(s)
| | - Coty N Jen
- Department of Environmental Science, Policy and Management, UC Berkeley , Berkeley, California 94720, United States
| | | | | |
Collapse
|
29
|
Wang CY, Ma Y, Chen J, Jiang S, Liu YR, Wen H, Feng YJ, Hong Y, Huang T, Huang W. Bidirectional Interaction of Alanine with Sulfuric Acid in the Presence of Water and the Atmospheric Implication. J Phys Chem A 2016; 120:2357-71. [DOI: 10.1021/acs.jpca.5b11678] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chun-Yu Wang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Ma
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Jiao Chen
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuai Jiang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yi-Rong Liu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Hui Wen
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Ya-Juan Feng
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yu Hong
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Wei Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- School of Environmental Science & Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Center
for Excellence in Urban Atmospheric Environment, Institute of Urban
Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|
30
|
Elm J, Myllys N, Luy JN, Kurtén T, Vehkamäki H. The Effect of Water and Bases on the Clustering of a Cyclohexene Autoxidation Product C6H8O7 with Sulfuric Acid. J Phys Chem A 2016; 120:2240-9. [PMID: 26954007 DOI: 10.1021/acs.jpca.6b00677] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the molecular interaction between sulfuric acid and a C6H8O7 ketodiperoxy acid compound (a proxy for highly oxidized products of, e.g., monoterpene autoxidation) in the presence of water, ammonia, or dimethylamine. The molecular geometries are obtained using density functional theory (M06-2X, PW91, and ωB97X-D) with the 6-31++G(d,p) basis set, and the binding energy is corrected utilizing a high-level DLPNO-CCSD(T)/def2-QZVPP calculation. The formation free energies were calculated (ΔG at 298 K and 1 atm), and the stability of the molecular clusters was evaluated. The presence of bases is found to enhance the interaction between ketodiperoxy acid compounds and sulfuric acid. The addition of C6H8O7 compounds to (H2SO4)(NH3) or (H2SO4)((CH3)2NH) clusters is, however, not able to compete with the corresponding uptake of another sulfuric acid molecule, even at a high loading of organic compounds. We furthermore investigate the origin of the weak binding of peroxyacid compounds using atoms in molecules and natural bonding orbital analysis. The weak binding is caused by an internal hydrogen bond and the lack of a strong hydrogen bond acceptor in the peroxyacid group. These findings indicate that autoxidation products containing solely or mainly hydroperoxide and carbonyl functional groups do not participate in the initial step of new particle formation and thereby only contribute to the growth of atmospheric particles.
Collapse
Affiliation(s)
| | | | - Jan-Niclas Luy
- Department of Chemistry, Philipps University , Marburg, Germany
| | | | | |
Collapse
|
31
|
Myllys N, Elm J, Halonen R, Kurtén T, Vehkamäki H. Coupled Cluster Evaluation of the Stability of Atmospheric Acid–Base Clusters with up to 10 Molecules. J Phys Chem A 2016; 120:621-30. [DOI: 10.1021/acs.jpca.5b09762] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nanna Myllys
- University of Helsinki, Department of Physics, FIN-00014 Helsinki, Finland
| | - Jonas Elm
- University of Helsinki, Department of Physics, FIN-00014 Helsinki, Finland
| | - Roope Halonen
- University of Helsinki, Department of Physics, FIN-00014 Helsinki, Finland
| | - Theo Kurtén
- University of Helsinki, Department of Chemistry, FIN-00014 Helsinki, Finland
| | - Hanna Vehkamäki
- University of Helsinki, Department of Physics, FIN-00014 Helsinki, Finland
| |
Collapse
|
32
|
Peng XQ, Liu YR, Huang T, Jiang S, Huang W. Interaction of gas phase oxalic acid with ammonia and its atmospheric implications. Phys Chem Chem Phys 2015; 17:9552-63. [DOI: 10.1039/c5cp00027k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The temperature effects could contribute to the variation of the relative populations of the isomers, thus the temperature dependence of the thermodynamic properties is an important parameter to understand the roles of the specific nucleation mechanisms at various atmospheric temperatures.
Collapse
Affiliation(s)
- Xiu-Qiu Peng
- School of Environmental Science & Optoelectronic Technology
- University of Science and Technology of China
- Hefei
- China
- Laboratory of Atmospheric Physico-Chemistry
| | - Yi-Rong Liu
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Shuai Jiang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Wei Huang
- School of Environmental Science & Optoelectronic Technology
- University of Science and Technology of China
- Hefei
- China
- Laboratory of Atmospheric Physico-Chemistry
| |
Collapse
|
33
|
Du B, Zhang W. Catalytic effect of water, water dimer, or formic acid on the tautomerization of nitroguanidine. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
DePalma JW, Bzdek BR, Ridge DP, Johnston MV. Activation Barriers in the Growth of Molecular Clusters Derived from Sulfuric Acid and Ammonia. J Phys Chem A 2014; 118:11547-54. [DOI: 10.1021/jp507769b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph W. DePalma
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Bryan R. Bzdek
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Douglas P. Ridge
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Murray V. Johnston
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
35
|
Kurtén T, Elm J, Prisle NL, Mikkelsen KV, Kampf CJ, Waxman EM, Volkamer R. Computational Study of the Effect of Glyoxal–Sulfate Clustering on the Henry’s Law Coefficient of Glyoxal. J Phys Chem A 2014; 119:4509-14. [DOI: 10.1021/jp510304c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Theo Kurtén
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Jonas Elm
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kobenhavn Ø, Denmark
| | - Nønne L. Prisle
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Kurt V. Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kobenhavn Ø, Denmark
| | - Christopher J. Kampf
- Institute for Inorganic
and Analytical Chemistry, Johannes Gutenberg University, Duesbergweg
10-14, 55128 Mainz, Germany
| | - Eleanor M. Waxman
- Cooperative Institute for Research in Environmental
Sciences (CIRES), 216 UCB, University of Colorado at Boulder, Boulder, Colorado 80309-0216, United States
- Department of Chemistry and Biochemistry, 215 UCB, University of Colorado at Boulder Boulder, Colorado 80309-0215, United States
| | - Rainer Volkamer
- Cooperative Institute for Research in Environmental
Sciences (CIRES), 216 UCB, University of Colorado at Boulder, Boulder, Colorado 80309-0216, United States
- Department of Chemistry and Biochemistry, 215 UCB, University of Colorado at Boulder Boulder, Colorado 80309-0215, United States
| |
Collapse
|
36
|
Elm J, Mikkelsen KV. Computational approaches for efficiently modelling of small atmospheric clusters. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.09.060] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Elm J, Kurtén T, Bilde M, Mikkelsen KV. Molecular Interaction of Pinic Acid with Sulfuric Acid: Exploring the Thermodynamic Landscape of Cluster Growth. J Phys Chem A 2014; 118:7892-900. [DOI: 10.1021/jp503736s] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jonas Elm
- Department
of Chemistry, H. C. Ørsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Merete Bilde
- Department
of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark
| | - Kurt V. Mikkelsen
- Department
of Chemistry, H. C. Ørsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
38
|
Elm J, Norman P, Bilde M, Mikkelsen KV. Computational study of the Rayleigh light scattering properties of atmospheric pre-nucleation clusters. Phys Chem Chem Phys 2014; 16:10883-90. [PMID: 24763512 DOI: 10.1039/c4cp01206b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Rayleigh and hyper Rayleigh scattering properties of the binary (H2SO4)(H2O)n and ternary (H2SO4)(NH3)(H2O)n clusters are investigated using a quantum mechanical response theory approach. The molecular Rayleigh scattering intensities are expressed using the dipole polarizability α and hyperpolarizability β tensors. Using density functional theory, we elucidate the effect of cluster morphology on the scattering properties using a combinatorial sampling approach. We find that the Rayleigh scattering intensity depends quadratically on the number of water molecules in the cluster and that a single ammonia molecule is able to induce a high anisotropy, which further increases the scattering intensity. The hyper Rayleigh scattering activities are found to be extremely low. This study presents the first attempt to map the scattering of atmospheric molecular clusters using a bottom-up approach.
Collapse
Affiliation(s)
- Jonas Elm
- Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|