1
|
Chen X, Sun W, Ji S, Liu X, Hu Y, Zhou X, Zhou B, Ren J, Li B, Liang H. Citrus Polymethoxyflavones Regulate against Aging-Associated Diseases: Advances in Biological Mechanisms Responsible for Their Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28209-28224. [PMID: 39661568 DOI: 10.1021/acs.jafc.4c08004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
As the proportion of the aging population globally is surging year by year, age-associated diseases, including neurodegenerative, metabolic, and cardiovascular diseases, have recently attracted widespread attention of food scientists and nutritionists. Polymethoxyflavonoids (PMFs), a type of dietary flavonoids, have emerged as potential antiaging candidates owing to their diverse bioactivities, encompassing antioxidant, anti-inflammatory, neuroprotective, and metabolic regulatory effects. Herein, this comprehensive updated review has summarized and discussed the effects of PMFs on aging, and the possible mechanisms that link PMFs-mediated modulation and the prevention or treatment of various aging-related diseases have been elaborated in detail. Furthermore, the biological fate of PMFs have been discussed elaborately from their absorption, distribution, metabolism, and excretion in vivo. Special attention is given to the bioavailability-bioactivity relationship of PMFs, as PMF's biological activity is significantly hampered by poor bioavailability. Overall, all of these conclusions may help in providing a perspective for further study of PMFs on aging.
Collapse
Affiliation(s)
- Xiaojuan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Weiyi Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sicheng Ji
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Liu
- Wuhan Senlan Biotechnology Co., Ltd, Wuhan 430120, China
| | - Yueqi Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyue Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jingnan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Wuhan Senlan Biotechnology Co., Ltd, Wuhan 430120, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| |
Collapse
|
2
|
Jawad M, Uthirapathy S, Altalbawy FMA, Oghenemaro EF, Rizaev J, Lal M, Eldesoqui M, Sharma N, Pramanik A, Al-Hamairy AK. Examining the role of antioxidant supplementation in mitigating oxidative stress markers in Alzheimer's disease: a comprehensive review. Inflammopharmacology 2024:10.1007/s10787-024-01622-9. [PMID: 39699843 DOI: 10.1007/s10787-024-01622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024]
Abstract
Alzheimer's disease is a devastating neurodegenerative disorder that affects millions of people worldwide. One of the key pathological features of Alzheimer's disease is oxidative stress, which is characterized by an imbalance between the production of reactive oxygen species and the body's ability to neutralize them with antioxidants. In recent years, there has been growing interest in the potential role of antioxidant supplementation in mitigating oxidative stress markers in Alzheimer's disease. This review paper aims to provide a comprehensive overview of the current research on antioxidant supplementation in Alzheimer's disease and its effects on oxidative stress markers. The paper will examine the underlying mechanisms of oxidative stress in Alzheimer's disease, the potential benefits of antioxidant supplementation, and the challenges and limitations of using antioxidants as a therapeutic strategy.
Collapse
Affiliation(s)
- Mahmood Jawad
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Subasini Uthirapathy
- Pharmacology Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, PMB 1, Abraka, Delta State, Nigeria
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Madan Lal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ahmed Khudhair Al-Hamairy
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, Iraq
| |
Collapse
|
3
|
Rojas-Solé C, Pinilla-González V, Lillo-Moya J, González-Fernández T, Saso L, Rodrigo R. Integrated approach to reducing polypharmacy in older people: exploring the role of oxidative stress and antioxidant potential therapy. Redox Rep 2024; 29:2289740. [PMID: 38108325 PMCID: PMC10732214 DOI: 10.1080/13510002.2023.2289740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Increased life expectancy, attributed to improved access to healthcare and drug development, has led to an increase in multimorbidity, a key contributor to polypharmacy. Polypharmacy is characterised by its association with a variety of adverse events in the older persons. The mechanisms involved in the development of age-related chronic diseases are largely unknown; however, altered redox homeostasis due to ageing is one of the main theories. In this context, the present review explores the development and interaction between different age-related diseases, mainly linked by oxidative stress. In addition, drug interactions in the treatment of various diseases are described, emphasising that the holistic management of older people and their pathologies should prevail over the individual treatment of each condition.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
4
|
da Silva Alvim R, Esio Bresciani A, Alves RMB. Formic acid stability in different solvents by DFT calculations. J Mol Model 2024; 30:67. [PMID: 38345658 DOI: 10.1007/s00894-024-05849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/17/2024] [Indexed: 03/16/2024]
Abstract
CONTEXT New technologies have been developed toward the use of green energies. The production of formic acid (FA) from carbon dioxide (CO[Formula: see text]) hydrogenation with H[Formula: see text] is a sustainable process for H[Formula: see text] storage. However, the FA adduct stabilization is thermodynamically dependent on the type of solvent and thermodynamic conditions. The results suggest a wide range of dielectric permittivity values between the dimethyl sulfoxide (DMSO) and water solvents to stabilize the FA in the absence of base. The thermodynamics analysis and the infrared and charge density difference results show that the formation of the FA complex with H[Formula: see text]O is temperature dependent and has a major influence on aqueous solvents compared to the FA adduct with amine, in good agreement with the experiment. In these conditions, the stability thermodynamic of the FA molecule may be favorable at non-organic solvents and dielectric permittivity values closer to water. Therefore, a mixture of aqueous solvents with possible ionic composition could be used to increase the thermodynamic stability of H[Formula: see text] storage in CO[Formula: see text] conversion processes. METHODS Using the Quantum ESPRESSO package, density functional theory (DFT) calculations were performed with periodic boundary conditions, and the electronic wave functions were expanded in plane waves. For the exchange-correlation functional, we use the vdW-DF functional with the inclusion of van der Waals (vdW) forces. Electron-ion interactions are treated by the projector augmented wave (PAW) method with pseudopotentials available in the PSlibrary repository. The wave functions and the electronic densities were expanded employing accurate cut-off energies of 6.80[Formula: see text]10[Formula: see text] and 5.44[Formula: see text]10[Formula: see text] eV, respectively. The electronic density was computed from the wave functions calculated at the [Formula: see text]-point in the first Brillouin-zone. Each structural optimization was minimized according to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, with force and energy convergence criteria of 25 meV[Formula: see text]Å[Formula: see text] and 1.36 meV, respectively. The electrostatic solvation effects were performed by the [Formula: see text] package with the Self-Consistent Continuum Solvation (SCCS) approach.
Collapse
Affiliation(s)
- Raphael da Silva Alvim
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| | - Antonio Esio Bresciani
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Rita Maria Brito Alves
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
5
|
Morante S, Botticelli S, Chiaraluce R, Consalvi V, La Penna G, Novak L, Pasquo A, Petrosino M, Proux O, Rossi G, Salina G, Stellato F. Metal Ion Binding in Wild-Type and Mutated Frataxin: A Stability Study. Front Mol Biosci 2022; 9:878017. [PMID: 35712353 PMCID: PMC9195147 DOI: 10.3389/fmolb.2022.878017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
This work studies the stability of wild-type frataxin and some of its variants found in cancer tissues upon Co2+ binding. Although the physiologically involved metal ion in the frataxin enzymatic activity is Fe2+, as it is customarily done, Co2+ is most often used in experiments because Fe2+ is extremely unstable owing to the fast oxidation reaction Fe2+ → Fe3+. Protein stability is monitored following the conformational changes induced by Co2+ binding as measured by circular dichroism, fluorescence spectroscopy, and melting temperature measurements. The stability ranking among the wild-type frataxin and its variants obtained in this way is confirmed by a detailed comparative analysis of the XAS spectra of the metal-protein complex at the Co K-edge. In particular, a fit to the EXAFS region of the spectrum allows positively identifying the frataxin acidic ridge as the most likely location of the metal-binding sites. Furthermore, we can explain the surprising feature emerging from a detailed analysis of the XANES region of the spectrum, showing that the longer 81-210 frataxin fragment has a smaller propensity for Co2+ binding than the shorter 90-210 one. This fact is explained by the peculiar role of the N-terminal disordered tail in modulating the protein ability to interact with the metal.
Collapse
Affiliation(s)
- S. Morante
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
- *Correspondence: S. Morante ,
| | - S. Botticelli
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
| | - R. Chiaraluce
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universitá di Roma, Rome, Italy
| | - V. Consalvi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universitá di Roma, Rome, Italy
| | - G. La Penna
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
- CNR—Istituto di Chimica dei Composti Organometallici, Firenze, Italy
| | - L. Novak
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universitá di Roma, Rome, Italy
| | - A. Pasquo
- ENEA CR Frascati, Diagnostics and Metrology Laboratory FSN-TECFIS-DIM, Frascati, Italy
| | - M. Petrosino
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - O. Proux
- Observatoire des Sciences de L’Univers de Grenoble, UAR 832 CNRS, Université Grenoble Alpes, Grenoble, France
| | - G. Rossi
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Roma, Italy
| | - G. Salina
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
| | - F. Stellato
- Dipartimento di Fisica, Universitá di Roma Tor Vergata, Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Arrigoni F, Di Carlo C, Rovetta A, De Gioia L, Zampella G, Bertini L. Superoxide reduction by Cu‐Amyloid Beta peptide complexes. A Density Functional Theory study. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Federica Arrigoni
- Università degli Studi di Milano-Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Chiara Di Carlo
- Università degli Studi di Milano-Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Alberto Rovetta
- University of Milano–Bicocca University Library: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Luca De Gioia
- University of Milan–Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Giuseppe Zampella
- University of Milan–Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Luca Bertini
- Universita' degli studi di MIlano-Bicocca Biotecnologie e Bioscienze Piazza della Scienza 2 20127 Milano ITALY
| |
Collapse
|
7
|
Lakey-Beitia J, Burillo AM, Penna GL, Hegde ML, Rao K. Polyphenols as Potential Metal Chelation Compounds Against Alzheimer's Disease. J Alzheimers Dis 2021; 82:S335-S357. [PMID: 32568200 PMCID: PMC7809605 DOI: 10.3233/jad-200185] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 50 million people worldwide. The pathology of this multifactorial disease is primarily characterized by the formation of amyloid-β (Aβ) aggregates; however, other etiological factors including metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), play critical role in disease progression. Because these transition metal ions are important for cellular function, their imbalance can cause oxidative stress that leads to cellular death and eventual cognitive decay. Importantly, these transition metal ions can interact with the amyloid-β protein precursor (AβPP) and Aβ42 peptide, affecting Aβ aggregation and increasing its neurotoxicity. Considering how metal dyshomeostasis may substantially contribute to AD, this review discusses polyphenols and the underlying chemical principles that may enable them to act as natural chelators. Furthermore, polyphenols have various therapeutic effects, including antioxidant activity, metal chelation, mitochondrial function, and anti-amyloidogenic activity. These combined therapeutic effects of polyphenols make them strong candidates for a moderate chelation-based therapy for AD.
Collapse
Affiliation(s)
- Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Andrea M. Burillo
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Giovanni La Penna
- National Research Council, Institute of Chemistry of Organometallic Compounds, Sesto Fiorentino (FI), Italy
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Medical College of Cornell University, New York, NY, USA
| | - K.S. Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
- Zhongke Jianlan Medical Institute, Hangzhou, Republic of China
| |
Collapse
|
8
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
9
|
Liu Y, Chen Z, Li B, Yao H, Zarka M, Welch J, Sachdev P, Bridge W, Braidy N. Supplementation with γ-glutamylcysteine (γ-GC) lessens oxidative stress, brain inflammation and amyloid pathology and improves spatial memory in a murine model of AD. Neurochem Int 2020; 144:104931. [PMID: 33276023 DOI: 10.1016/j.neuint.2020.104931] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/02/2020] [Accepted: 11/29/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The accumulation of oxidative stress, neuroinflammation and abnormal aggregation of amyloid β-peptide (Aβ) have been shown to induce synaptic dysfunction and memory deficits in Alzheimer's disease (AD). Cellular depletion of the major endogenous antioxidant Glutathione (GSH) has been linked to cognitive decline and the development of AD pathology. Supplementation with γ-glutamylcysteine (γ-GC), the immediate precursor and the limiting substrate for GSH biosynthesis, can transiently augment cellular GSH levels by bypassing the regulation of GSH homeostasis. METHODS In the present study, we investigated the effect of dietary supplementation of γ-GC on oxidative stress and Aβ pathology in the brains of APP/PS1 mice. The APP/PS1 mice were fed γ-GC from 3 months of age with biomarkers of apoptosis and cell death, oxidative stress, neuroinflammation and Aβ load being assessed at 6 months of age. RESULTS Our data showed that supplementation with γ-GC lowered the levels of brain lipid peroxidation, protein carbonyls and apoptosis, increased both total GSH and the glutathione/glutathione disulphide (GSH/GSSG) ratio and replenished ATP and the activities of the antioxidant enzymes (superoxide dismutase (SOD), catalase, glutamine synthetase and glutathione peroxidase (GPX)), the latter being a key regulator of ferroptosis. Brain Aβ load was lower and acetylcholinesterase (AChE) activity was markedly improved compared to APP/PS1 mice fed a standard chow diet. Alteration in brain cytokine levels and matrix metalloproteinase enzymes MMP-2 and MMP-9 suggested that γ-GC may lower inflammation and enhance Aβ plaque clearance in vivo. Spatial memory was also improved by γ-GC as determined using the Morris water maze. CONCLUSION Our data collectively suggested that supplementation with γ-GC may represent a novel strategy for the treatment and/or prevention of cognitive impairment and neurodegeneration.
Collapse
Affiliation(s)
- Yue Liu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zheng Chen
- School of Medicine, Huzhou University, Huzhou Central Hospital Huzhou, China
| | - Ben Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Hua Yao
- Institute of Life Sciences and Institute of Neuroscience, Wenzhou University, Wenzhou, China
| | - Martin Zarka
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Jeffrey Welch
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Wallace Bridge
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
10
|
Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Navid Rabiee
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Sepideh Ahmadi
- Student Research Committee Department of Medical Biotechnology School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
- Cellular and Molecular Biology Research Center Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
| | - Ronak Afshari
- Department of Physics Sharif University of Technology P.O. Box 11155‐9161 Tehran Iran
| | - Samira Khalaji
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mohammad Rabiee
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Universal Scientific Education and Research Network (USERN) Tehran 15875‐4413 Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
| | - Mohammadreza Tahriri
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Lobat Tayebi
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston USA
- Department of Dermatology Harvard Medical School Boston USA
- Laser Research Centre Faculty of Health Science University of Johannesburg Doornfontein 2028 South Africa
| | - Thomas J. Webster
- Department of Chemical Engineering Northeastern University Boston MA 02115 USA
| |
Collapse
|
11
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
12
|
Micera A, Bruno L, Cacciamani A, Rongioletti M, Squitti R. Alzheimer's Disease and Retinal Degeneration: A Glimpse at Essential Trace Metals in Ocular Fluids and Tissues. Curr Alzheimer Res 2020; 16:1073-1083. [PMID: 31642780 DOI: 10.2174/1567205016666191023114015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Life expectancy is increasing all over the world, although neurodegenerative disorders might drastically affect the individual activity of aged people. Of those, Alzheimer's Disease (AD) is one of the most social-cost age-linked diseases of industrialized countries. To date, retinal diseases seem to be more common in the developing world and characterize principally aged people. Agerelated Macular Degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with AD, including stress stimuli such as oxidative stress, inflammation and amyloid formations. METHODS In both diseases, the detrimental intra/extra-cellular deposits have many similarities. Aging, hypercholesterolemia, hypertension, obesity, arteriosclerosis and smoking are risk factors to develop both diseases. Cellular aging routes have similar organelle and signaling patterns in retina and brain. The possibility to find out new research strategies represent a step forward to disclose potential treatment for both of them. Essential trace metals play critical roles in both physiological and pathological condition of retina, optic nerve and brain, by influencing metabolic processes chiefly upon complex multifactorial pathogenesis. CONCLUSION Hence, this review addresses current knowledge about some up-to-date investigated essential trace metals associated with AD and AMD. Changes in the levels of systemic and ocular fluid essential metals might reflect the early stages of AMD, possibly disclosing neurodegeneration pathways shared with AD, which might open to potential early detection.
Collapse
Affiliation(s)
- Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Luca Bruno
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Andrea Cacciamani
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Rosanna Squitti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, BS, Italy
| |
Collapse
|
13
|
Birla H, Minocha T, Kumar G, Misra A, Singh SK. Role of Oxidative Stress and Metal Toxicity in the Progression of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:552-562. [PMID: 31969104 PMCID: PMC7457422 DOI: 10.2174/1570159x18666200122122512] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is one of the life-threatening neurodegenerative disorders in the elderly (>60 years) and incurable across the globe to date. AD is caused by the involvement of various genetic, environmental and lifestyle factors that affect neuronal cells to degenerate over the period of time. The oxidative stress is engaged in the pathogenesis of various disorders and its key role is also linked to the etiology of AD. AD is attributed by neuronal loss, abnormal accumulation of Amyloid-β (Aβ) and neurofibrillary tangles (NFTs) with severe memory impairments and other cognitive dysfunctions which lead to the loss of synapses and neuronal death and eventual demise of the individual. Increased production of reactive oxygen species (ROS), loss of mitochondrial function, altered metal homeostasis, aberrant accumulation of senile plaque and mitigated antioxidant defense mechanism all are indulged in the progression of AD. In spite of recent advances in biomedical research, the underlying mechanism of disruption of redox balance and the actual source of oxidative stress is still obscure. This review highlights the generation of ROS through different mechanisms, the role of some important metals in the progression of AD and free radical scavenging by endogenous molecule and supplementation of nutrients in AD.
Collapse
Affiliation(s)
| | | | | | | | - Sandeep Kumar Singh
- Address correspondence to this author at the Indian Scientific Education and Technology Foundation, Lucknow-226002, India;E-mails: ;
| |
Collapse
|
14
|
Arrigoni F, Prosdocimi T, Mollica L, De Gioia L, Zampella G, Bertini L. Copper reduction and dioxygen activation in Cu-amyloid beta peptide complexes: insight from molecular modelling. Metallomics 2019; 10:1618-1630. [PMID: 30345437 DOI: 10.1039/c8mt00216a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) involves a number of factors including an anomalous interaction of copper with the amyloid peptide (Aβ), inducing oxidative stress with radical oxygen species (ROS) production through a three-step cycle in which O2 is gradually reduced to superoxide, oxygen peroxide and finally OH radicals. The purpose of this work has been to investigate the reactivity of 14 different Cu(ii)-Aβ coordination models with the aim of identifying on an energy basis (Density Functional Theory (DFT) and classical Molecular Dynamics (MD)) the redox competent form(s). Accordingly, we have specifically focused on the first three steps of the cycle, i.e. ascorbate binding to Cu(ii), Cu(ii) → Cu(i) reduction and O2 reduction to O2-. Compared to the recent literature, our results broaden the set of possible redox competent metallopeptide forms responsible for ROS production. Indeed, in addition to the three-coordinated species containing one His ligand, a N-terminal amine group and the carboxylate side chain of the Asp1 residue of Aβ already proposed, we found two other Cu-Aβ coordination modes involving two histidines.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Coskuner O, Uversky VN. Intrinsically disordered proteins in various hypotheses on the pathogenesis of Alzheimer's and Parkinson's diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:145-223. [PMID: 31521231 DOI: 10.1016/bs.pmbts.2019.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloid-β (Aβ) and α-synuclein (αS) are two intrinsically disordered proteins (IDPs) at the centers of the pathogenesis of Alzheimer's and Parkinson's diseases, respectively. Different hypotheses have been proposed for explanation of the molecular mechanisms of the pathogenesis of these two diseases, with these two IDPs being involved in many of these hypotheses. Currently, we do not know, which of these hypothesis is more accurate. Experiments face challenges due to the rapid conformational changes, fast aggregation processes, solvent and paramagnetic effects in studying these two IDPs in detail. Furthermore, pathological modifications impact their structures and energetics. Theoretical studies using computational chemistry and computational biology have been utilized to understand the structures and energetics of Aβ and αS. In this chapter, we introduce Aβ and αS in light of various hypotheses, and discuss different experimental and theoretical techniques that are used to study these two proteins along with their weaknesses and strengths. We suggest that a promising solution for studying Aβ and αS at the center of varying hypotheses could be provided by developing new techniques that link quantum mechanics, statistical mechanics, thermodynamics, bioinformatics to machine learning. Such new developments could also lead to development in experimental techniques.
Collapse
Affiliation(s)
- Orkid Coskuner
- Turkish-German University, Molecular Biotechnology, Istanbul, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
16
|
Strodel B, Coskuner-Weber O. Transition Metal Ion Interactions with Disordered Amyloid-β Peptides in the Pathogenesis of Alzheimer's Disease: Insights from Computational Chemistry Studies. J Chem Inf Model 2019; 59:1782-1805. [PMID: 30933519 DOI: 10.1021/acs.jcim.8b00983] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monomers and oligomers of the amyloid-β peptide aggregate to form the fibrils found in the brains of Alzheimer's disease patients. These monomers and oligomers are largely disordered and can interact with transition metal ions, affecting the mechanism and kinetics of amyloid-β aggregation. Due to the disordered nature of amyloid-β, its rapid aggregation, as well as solvent and paramagnetic effects, experimental studies face challenges in the characterization of transition metal ions bound to amyloid-β monomers and oligomers. The details of the coordination chemistry between transition metals and amyloid-β obtained from experiments remain debated. Furthermore, the impact of transition metal ion binding on the monomeric or oligomeric amyloid-β structures and dynamics are still poorly understood. Computational chemistry studies can serve as an important complement to experimental studies and can provide additional knowledge on the binding between amyloid-β and transition metal ions. Many research groups conducted first-principles calculations, ab initio molecular dynamics simulations, quantum mechanics/classical mechanics simulations, and classical molecular dynamics simulations for studying the interplay between transition metal ions and amyloid-β monomers and oligomers. This review summarizes the current understanding of transition metal interactions with amyloid-β obtained from computational chemistry studies. We also emphasize the current view of the coordination chemistry between transition metal ions and amyloid-β. This information represents an important foundation for future metal ion chelator and drug design studies aiming to combat Alzheimer's disease.
Collapse
Affiliation(s)
- Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich GmbH , Jülich 52425 , Germany.,Institute of Theoretical and Computational Chemistry , Heinrich Heine University Düsseldorf , Universitätstrasse 1 , Düsseldorf 40225 , Germany
| | - Orkid Coskuner-Weber
- Molecular Biotechnology , Turkish-German University , Sahinkaya Caddesi, No. 86, Beykoz , Istanbul 34820 , Turkey
| |
Collapse
|
17
|
The Cu(II) affinity of the N-terminus of human copper transporter CTR1: Comparison of human and mouse sequences. J Inorg Biochem 2019; 182:230-237. [PMID: 29402466 DOI: 10.1016/j.jinorgbio.2018.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/08/2018] [Accepted: 01/19/2018] [Indexed: 11/20/2022]
Abstract
Copper Transporter 1 (CTR1) is a homotrimeric membrane protein providing the main route of copper transport into eukaryotic cells from the extracellular milieu. Its N-terminal extracellular domain, rich in His and Met residues, is considered responsible for directing copper into the transmembrane channel. Most of vertebrate CTR1 proteins contain the His residue in position three from N-terminus, creating a well-known Amino Terminal Cu(II)- and Ni(II)-Binding (ATCUN) site. CTR1 from humans, primates and many other species contains the Met-Asp-His (MDH) sequence, while some rodents including mouse have the Met-Asn-His (MNH) N-terminal sequence. CTR1 is thought to collect Cu(II) ions from blood copper transport proteins, including albumin, but previous reports indicated that the affinity of N-terminal peptide/domain of CTR1 is significantly lower than that of albumin, casting serious doubt on this aspect of CTR1 function. Using potentiometry and spectroscopic techniques we demonstrated that MDH-amide, a tripeptide model of human CTR1 N-terminus, binds Cu(II) with K of 1.3 × 1013 M-1 at pH 7.4, ~13 times stronger than Human Serum Albumin (HSA), and MNH-amide is even stronger, K of 3.2 × 1014 M-1 at pH 7.4. These results indicate that the N-terminus of CTR1 may serve as intermediate binding site during Cu(II) transfer from blood copper carriers to the transporter. MDH-amide, but not MNH-amide also forms a low abundance complex with non-ATCUN coordination involving the Met amine, His imidazole and Asp carboxylate. This species might assist Cu(II) relay down the peptide chain or its reduction to Cu(I), both steps necessary for the CTR1 function.
Collapse
|
18
|
Turner M, Mutter ST, Platts JA. Molecular dynamics simulation on the effect of transition metal binding to the N-terminal fragment of amyloid-β. J Biomol Struct Dyn 2019; 37:4590-4600. [PMID: 30526382 DOI: 10.1080/07391102.2018.1555490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report molecular dynamics simulations of three possible adducts of Fe(II) to the N-terminal 1-16 fragments of the amyloid-β peptide, along with analogous simulations of Cu(II) and Zn(II) adducts. We find that multiple simulations from different starting points reach pseudo-equilibration within 100-300 ns, leading to over 900 ns of equilibrated trajectory data for each system. The specifics of the coordination modes for Fe(II) have only a weak effect on peptide secondary and tertiary structures, and we therefore compare one of these with analogous models of Cu(II) and Zn(II) complexes. All share broadly similar structural features, with mixture of coil, turn and bend in the N-terminal region and helical structure for residues 11-16. Within this overall pattern, subtle effects due to changes in metal are evident: Fe(II) complexes are more compact and are more likely to occupy bridge and ribbon regions of Ramachandran maps, while Cu(II) coordination leads to greater occupancy of the poly-proline region. Analysis of representative clusters in terms of molecular mechanics energy and atoms-in-molecules properties indicates similarity of four-coordinate Cu and Zn complexes, compared to five-coordinate Fe complex that exhibits lower stability and weaker metal-ligand bonding. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Matthew Turner
- School of Chemistry, Cardiff University , Park Place , Cardiff , UK
| | - Shaun T Mutter
- School of Chemistry, Cardiff University , Park Place , Cardiff , UK
| | - James A Platts
- School of Chemistry, Cardiff University , Park Place , Cardiff , UK
| |
Collapse
|
19
|
Stellato F, Chiaraluce R, Consalvi V, De Santis E, La Penna G, Proux O, Rossi G, Morante S. Dealing with Cu reduction in X-ray absorption spectroscopy experiments. Metallomics 2019; 11:1401-1410. [DOI: 10.1039/c9mt00110g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We prove in the exemplary case of the Cu(ii) amyloid-β peptide complex that, at cryogenic temperatures, the time needed for collecting a good quality spectrum is significantly shorter than the time after which structural damage becomes appreciable.
Collapse
Affiliation(s)
| | - Roberta Chiaraluce
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” Sapienza Universitá di Roma
- 00185 Roma
- Italy
| | - Valerio Consalvi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli” Sapienza Universitá di Roma
- 00185 Roma
- Italy
| | | | - Giovanni La Penna
- INFN
- Sezione di Roma Tor Vergata
- 00133 Roma
- Italy
- CNR – Institute for Chemistry of Organometallic Compounds
| | - Olivier Proux
- Observatoire des Sciences de l'Univers de Grenoble
- 38400 Saint Martin d'Hères (Grenoble)
- France
| | - Giancarlo Rossi
- Dipartimento di Fisica
- Universitá di Roma Tor Vergata
- 00133 Roma
- Italy
- INFN
| | - Silvia Morante
- Dipartimento di Fisica
- Universitá di Roma Tor Vergata
- 00133 Roma
- Italy
- INFN
| |
Collapse
|
20
|
Grasso G. Mass spectrometry is a multifaceted weapon to be used in the battle against Alzheimer's disease: Amyloid beta peptides and beyond. MASS SPECTROMETRY REVIEWS 2019; 38:34-48. [PMID: 29905953 DOI: 10.1002/mas.21566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Amyloid-β peptide (Aβ) accumulation and aggregation have been considered for many years the main cause of Alzheimer's disease (AD), and therefore have been the principal target of investigation as well as of the proposed therapeutic approaches (Grasso [2011] Mass Spectrom Rev. 30: 347-365). However, the amyloid cascade hypothesis, which considers Aβ accumulation the only causative agent of the disease, has proven to be incomplete if not wrong. In recent years, actors such as metal ions, oxidative stress, and other cofactors have been proposed as possible co-agents or, in some cases, main causative factors of AD. In this scenario, MS investigation has proven to be fundamental to design possible diagnostic strategies of this elusive disease, as well as to understand the biomolecular mechanisms involved, in the attempt to find a possible therapeutic solution. We review the current applications of MS in the search for possible Aβ biomarkers of AD to help the diagnosis of the disease. Recent examples of the important contributions that MS has given to prove or build theories on the molecular pathways involved with such terrible disease are also reviewed.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
21
|
La Penna G, Li MS. Computational models explain how copper binding to amyloid-β peptide oligomers enhances oxidative pathways. Phys Chem Chem Phys 2019; 21:8774-8784. [DOI: 10.1039/c9cp00293f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyloid-β (Aβ) peptides are intrinsically disordered peptides and their aggregation is the major hallmark of Alzheimer's disease (AD) development.
Collapse
Affiliation(s)
- Giovanni La Penna
- National Research Council of Italy (CNR)
- Institute for Chemistry of Organometallic Compounds (ICCOM)
- via Madonna del Piano 10
- 50019 Sesto Fiorentino
- Firenze
| | - Mai Suan Li
- Institute of Physics
- Polish Academy of Sciences
- Al. Lotnikow 32/46
- 02-668 Warsaw
- Poland
| |
Collapse
|
22
|
Mutter ST, Turner M, Deeth RJ, Platts JA. Metal Binding to Amyloid-β 1-42: A Ligand Field Molecular Dynamics Study. ACS Chem Neurosci 2018; 9:2795-2806. [PMID: 29898363 DOI: 10.1021/acschemneuro.8b00210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ligand field molecular mechanics simulation has been used to model the interactions of copper(II) and platinum(II) with the amyloid-β1-42 peptide monomer. Molecular dynamics over several microseconds for both metalated systems are compared to analogous results for the free peptide. Significant differences in structural parameters are observed, both between Cu and Pt bound systems as well as between free and metal-bound peptide. Both metals stabilize the formation of helices in the peptide as well as reducing the content of β secondary structural elements compared to the unbound monomer. This is in agreement with experimental reports of metals reducing β-sheet structures, leading to formation of amorphous aggregates over amyloid fibrils. The shape and size of the peptide structures also undergo noteworthy change, with the free peptide exhibiting globular-like structure, platinum(II) system adopting extended structures, and copper(II) system resulting in a mixture of conformations similar to both of these. Salt bridge networks exhibit major differences: the Asp23-Lys28 salt bridge, known to be important in fibril formation, has a differing distance profile within all three systems studied. Salt bridges in the metal binding region of the peptide are strongly altered; in particular, the Arg5-Asp7 salt bridge, which has an occurrence of 71% in the free peptide, is reduced to zero in the presence of both metals.
Collapse
Affiliation(s)
- Shaun T. Mutter
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Matthew Turner
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Robert J. Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - James A. Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
23
|
Siotto M, Squitti R. Copper imbalance in Alzheimer’s disease: Overview of the exchangeable copper component in plasma and the intriguing role albumin plays. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol 2018; 14:450-464. [PMID: 29080524 PMCID: PMC5680523 DOI: 10.1016/j.redox.2017.10.014] [Citation(s) in RCA: 1395] [Impact Index Per Article: 199.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress is known to play an important role in the pathogenesis of a number of diseases. In particular, it is linked to the etiology of Alzheimer's disease (AD), an age-related neurodegenerative disease and the most common cause of dementia in the elderly. Histopathological hallmarks of AD are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the amyloid-beta peptide (Aβ) in aggregated form along with metal-ions such as copper, iron or zinc. Redox active metal ions, as for example copper, can catalyze the production of Reactive Oxygen Species (ROS) when bound to the amyloid-β (Aβ). The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative damage on both the Aβ peptide itself and on surrounding molecule (proteins, lipids, …). This review highlights the existing link between oxidative stress and AD, and the consequences towards the Aβ peptide and surrounding molecules in terms of oxidative damage. In addition, the implication of metal ions in AD, their interaction with the Aβ peptide and redox properties leading to ROS production are discussed, along with both in vitro and in vivo oxidation of the Aβ peptide, at the molecular level.
Collapse
Affiliation(s)
- C Cheignon
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - M Tomas
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - D Bonnefont-Rousselot
- Department of Metabolic Biochemistry, La Pitié Salpêtrière-Charles Foix University Hospital (AP-HP), Paris, France; Department of Biochemistry, Faculty of Pharmacy, Paris Descartes University, Paris, France; CNRS UMR8258 - INSERM U1022, Faculty of Pharmacy, Paris Descartes University, Paris, France
| | - P Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR 7177), University of Strasbourg, 4 rue B. Pascal, 67081 Strasbourg Cedex, France
| | - C Hureau
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - F Collin
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France.
| |
Collapse
|
25
|
La Penna G, Li MS. Towards High-Throughput Modelling of Copper Reactivity Induced by Structural Disorder in Amyloid Peptides. Chemistry 2018; 24:5259-5270. [DOI: 10.1002/chem.201704654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Giovanni La Penna
- National Research Council (CNR); Institute for Chemistry of Organometallic Compounds (ICCOM); via Madonna del Piano 10 50019 Sesto Fiorentino, Firenze Italy
| | - Mai Suan Li
- Polish Academy of Sciences; Institute of Physics; al. Lotników 32/46 02-668 Warsaw Poland
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12; Ho Chi Minh City Vietnam
| |
Collapse
|
26
|
Korovila I, Hugo M, Castro JP, Weber D, Höhn A, Grune T, Jung T. Proteostasis, oxidative stress and aging. Redox Biol 2017; 13:550-567. [PMID: 28763764 PMCID: PMC5536880 DOI: 10.1016/j.redox.2017.07.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 12/21/2022] Open
Abstract
The production of reactive species is an inevitable by-product of metabolism and thus, life itself. Since reactive species are able to damage cellular structures, especially proteins, as the most abundant macromolecule of mammalian cells, systems are necessary which regulate and preserve a functional cellular protein pool, in a process termed “proteostasis”. Not only the mammalian protein pool is subject of a constant turnover, organelles are also degraded and rebuild. The most important systems for these removal processes are the “ubiquitin-proteasomal system” (UPS), the central proteolytic machinery of mammalian cells, mainly responsible for proteostasis, as well as the “autophagy-lysosomal system”, which mediates the turnover of organelles and large aggregates. Many age-related pathologies and the aging process itself are accompanied by a dysregulation of UPS, autophagy and the cross-talk between both systems. This review will describe the sources and effects of oxidative stress, preservation of cellular protein- and organelle-homeostasis and the effects of aging on proteostasis in mammalian cells.
Collapse
Affiliation(s)
- Ioanna Korovila
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Martín Hugo
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; Faculty of Medicine, Department of Biomedicine, University of Porto, 4200-319, Portugal; Institute for Innovation and Health Research (I3S), Aging and Stress Group, R. Alfredo Allen, 4200-135 Porto, Portugal
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| |
Collapse
|
27
|
Cheignon C, Jones M, Atrián-Blasco E, Kieffer I, Faller P, Collin F, Hureau C. Identification of key structural features of the elusive Cu-Aβ complex that generates ROS in Alzheimer's disease. Chem Sci 2017; 8:5107-5118. [PMID: 28970897 PMCID: PMC5613283 DOI: 10.1039/c7sc00809k] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/29/2017] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is linked to the etiology of Alzheimer's disease (AD), the most common cause of dementia in the elderly. Redox active metal ions such as copper catalyze the production of Reactive Oxygen Species (ROS) when bound to the amyloid-β (Aβ) peptide encountered in AD. We propose that this reaction proceeds through a low-populated Cu-Aβ state, denoted the "catalytic in-between state" (CIBS), which is in equilibrium with the resting state (RS) of both Cu(i)-Aβ and Cu(ii)-Aβ. The nature of this CIBS is investigated in the present work. We report the use of complementary spectroscopic methods (X-ray absorption spectroscopy, EPR and NMR) to characterize the binding of Cu to a wide series of modified peptides in the RS. ROS production by the resulting Cu-peptide complexes was evaluated using fluorescence and UV-vis based methods and led to the identification of the amino acid residues involved in the Cu-Aβ CIBS species. In addition, a possible mechanism by which the ROS are produced is also proposed. These two main results are expected to affect the current vision of the ROS production mechanism by Cu-Aβ but also in other diseases involving amyloidogenic peptides with weakly structured copper binding sites.
Collapse
Affiliation(s)
- Clémence Cheignon
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
- UMR 152 Pharma Dev , Université de Toulouse , IRD , UPS , France
| | - Megan Jones
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
| | - Elena Atrián-Blasco
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
| | - Isabelle Kieffer
- Observatoire des Sciences de l'Univers de Grenoble (OSUG) , CNRS UMS 832 , 414 Rue de la Piscine , 38400 Saint Martin d'Hères , France
- BM30B/FAME , ESRF , The European Synchrotron , 71 Avenue des Martyrs , 38000 Grenoble , France
| | - Peter Faller
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
| | - Fabrice Collin
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
- UMR 152 Pharma Dev , Université de Toulouse , IRD , UPS , France
| | - Christelle Hureau
- LCC (Laboratoire de Chimie de Coordination) , CNRS UPR 8241 , 205 route de Narbonne , 31062 Toulouse Cedex 09 , France . ;
- Université de Toulouse , UPS , INPT , 31077 Toulouse , France
| |
Collapse
|
28
|
Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol Sci 2017; 38:592-607. [PMID: 28551354 DOI: 10.1016/j.tips.2017.04.005] [Citation(s) in RCA: 683] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
Cancer and Alzheimer's disease (AD) are characterized by (i) opposing biological mechanisms, (ii) an inverse correlation between their incidences, and (iii) oxidative stress being a common denominator of both diseases. Increased formation of reactive oxygen species (ROS) in cancer cells from oncogenic signaling and/or metabolic disturbances leads to upregulation of cellular antioxidant capacity to maintain ROS levels below a toxic threshold. Combining drugs that induce high levels of ROS with compounds that suppress cellular antioxidant capacity by depleting antioxidant systems [glutathione (GSH), superoxide dismutase (SOD), and thioredoxin (TRX)] and/or targeting glucose metabolism represents a potential anticancer strategy. In AD, free metals and/or Aβ:metal complexes may cause damage to biomolecules in the brain (via Fenton reaction), including DNA. Metal chelation, based on the application of selective metal chelators or metal delivery, may induce neuroprotective signaling and represents a promising therapeutic strategy. This review examines therapeutic strategies based on the modulation of oxidative stress in cancer and AD.
Collapse
Affiliation(s)
- Patrik Poprac
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University, Trieda Andreja Hlinku 1, 949 74 Nitra, Slovakia
| | - Miriama Simunkova
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Vojtech Kollar
- School of Economics and Management in Public Administration in Bratislava, Furdekova 16, 851 04 Bratislava, Slovakia
| | | | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia.
| |
Collapse
|
29
|
Mutter ST, Deeth RJ, Turner M, Platts JA. Benchmarking of copper(II) LFMM parameters for studying amyloid-β peptides. J Biomol Struct Dyn 2017; 36:1145-1153. [DOI: 10.1080/07391102.2017.1313780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shaun T. Mutter
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Robert J. Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Matthew Turner
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - James A. Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
30
|
Huy PDQ, Vuong QV, La Penna G, Faller P, Li MS. Impact of Cu(II) Binding on Structures and Dynamics of Aβ 42 Monomer and Dimer: Molecular Dynamics Study. ACS Chem Neurosci 2016; 7:1348-1363. [PMID: 27454036 DOI: 10.1021/acschemneuro.6b00109] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The classical force field, which is compatible with the Amber force field 99SB, has been obtained for the interaction of Cu(II) with monomer and dimers of amyloid-β peptides using the coordination where Cu(II) is bound to His6, His13 (or His14), and Asp1 with distorted planar geometry. The newly developed force field and molecular dynamics simulation were employed to study the impact of Cu(II) binding on structures and dynamics of Aβ42 monomer and dimers. It was shown that in the presence of Cu(II) the β content of monomer is reduced substantially compared with the wild-type Aβ42 suggesting that, in accord with experiments, metal ions facilitate formation of amorphous aggregates rather than amyloid fibrils with cross-β structures. In addition, one possible mechanism for amorphous assembly is that the Asp23-Lys28 salt bridge, which plays a crucial role in β sheet formation, becomes more flexible upon copper ion binding to the Aβ N-terminus. The simulation of dimers was conducted with the Cu(II)/Aβ stoichiometric ratios of 1:1 and 1:2. For the 1:1 ratio Cu(II) delays the Aβ dimerization process as observed in a number of experiments. The mechanism underlying this phenomenon is associated with slow formation of interchain salt bridges in dimer as well as with decreased hydrophobicity of monomer upon Cu-binding.
Collapse
Affiliation(s)
- Pham Dinh Quoc Huy
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute
for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi
Minh City, Vietnam
| | - Quan Van Vuong
- Institute
for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi
Minh City, Vietnam
- Department
of Chemistry, Nagoya University, Nagoya 464-8602, Japan
| | - Giovanni La Penna
- National Research Council of Italy CNR, Institute
for Chemistry of Organometallic Compounds ICCOM, 50019 Florence, Italy
- Italian Institute for Nuclear Physics INFN, Section
of Roma-Tor Vergata, 50019 Florence, Italy
| | - Peter Faller
- Biometals
and Biological Chemistry, Institute of Chemistry, University of Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
31
|
Tiiman A, Luo J, Wallin C, Olsson L, Lindgren J, Jarvet J, Per R, Sholts SB, Rahimipour S, Abrahams JP, Karlström AE, Gräslund A, Wärmländer SK. Specific Binding of Cu(II) Ions to Amyloid-Beta Peptides Bound to Aggregation-Inhibiting Molecules or SDS Micelles Creates Complexes that Generate Radical Oxygen Species. J Alzheimers Dis 2016; 54:971-982. [DOI: 10.3233/jad-160427] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ann Tiiman
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Sweden
| | - Jinghui Luo
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Sweden
- Chemical Research Laboratory, University of Oxford, UK
| | - Cecilia Wallin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Sweden
| | - Lisa Olsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Sweden
| | | | - Jϋri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Roos Per
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Physiology, Capio St.Göran Hospital, Stockholm, Sweden
| | - Sabrina B. Sholts
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Sweden
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Shai Rahimipour
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Jan Pieter Abrahams
- Biozentrum, University of Basel, Switzerland & Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Sweden
| | | |
Collapse
|
32
|
Mirats A, Alí-Torres J, Rodríguez-Santiago L, Sodupe M, La Penna G. Dioxygen activation in the Cu-amyloid β complex. Phys Chem Chem Phys 2016; 17:27270-4. [PMID: 26427541 DOI: 10.1039/c5cp04025f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We investigate, by means of density-functional theory, the binding of dioxygen to Cu(I)-amyloid β (Aβ), one of the first steps in the oxidation of ascorbate by dioxygen. Cu, Aβ, ascorbate and dioxygen are all present in the synapse during neurodegeneration, when the above species can trigger an irreversible oxidative stress inducing the eventual death of neurons. The binding of dioxygen to Cu(I) is possible and its role in dioxygen activation of Cu ligands and of residues in the first coordination sphere is described in atomic detail. Dioxygen is activated when a micro-environment suitable for a square-planar Cu(2+) coordination is present and a negatively charged group like Asp 1 carboxylate takes part in the Cu coordination anti to O2.
Collapse
Affiliation(s)
- Andrea Mirats
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
33
|
Li H, Huang Y, Yu Y, Li G, Karamanos Y. Self-Catalyzed Assembly of Peptide Scaffolded Nanozyme as a Dynamic Biosensing System. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2833-2839. [PMID: 26752458 DOI: 10.1021/acsami.5b11567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, a new strategy of biosensor design is developed based on the assembly of amyloid beta and its multiple interactions with other bioactive species. These interactions can enable amyloid beta peptide as a multifunctional sensing element, so the immobilization of sensing probe and the step-by-step modification of the sensing interface have all been dispensed with. Instead, the kinetics of the assembly of a peptide-based catalytic network serves to convert the quantity of analyte into amplified signal readout. The designed dynamic assembling and biosensing system has also been successfully applied in detecting the activity of polyglutamylation, an essential post translation modification controlling cell skeleton and cell cycle, in biological complex samples. Further studies reveal that the serum abundance of a polyglutamylase, tubulin tyrosine ligase-like protein 12, may show parallel with the degree of development of prostate cancer and the discrimination between early cancerous development and benign conditions. And the obtained result is more distinct than that based on PSA detection, the current gold standard. This study may also point to the prospective of extending this design strategy to broader range of biosensing applications in the future.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, China
| | - Yue Huang
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, China
| | - Yue Yu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing 210008, China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University , Nanjing 210093, China
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University , Shanghai 200444, China
| | - Yannis Karamanos
- Laboratoire de la Barrière Hémato-encéphalique, Faculté des Sciences, Université d'Artois , rue Souvraz SP18, 62307 Lens Cedex, France
| |
Collapse
|
34
|
Alvim RS, Lima FCDA, Sánchez VM, Headen TF, Boek ES, Miranda CR. Adsorption of asphaltenes on the calcite (10.4) surface by first-principles calculations. RSC Adv 2016. [DOI: 10.1039/c6ra19307b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
While the asphaltene-resin dimer leads to π–π stacking outward from surface, sulphide group favors this nanoaggregate adsorption on calcite that is energetically similar to the asphaltene monomer adsorbed through less steric and dielectric effects.
Collapse
Affiliation(s)
- Raphael S. Alvim
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC
- Santo André
- Brazil
- Departamento de Física dos Materiais e Mecânica
| | - Filipe C. D. A. Lima
- Departamento de Física dos Materiais e Mecânica
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Verónica M. Sánchez
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC
- Santo André
- Brazil
- CSC
| | - Thomas F. Headen
- ISIS Neutron and Muon Source
- Rutherford Appleton Laboratory
- Didcot
- UK
| | - Edo S. Boek
- Department of Chemistry
- University of Cambridge
- UK
| | - Caetano R. Miranda
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC
- Santo André
- Brazil
- Departamento de Física dos Materiais e Mecânica
| |
Collapse
|
35
|
Di Natale G, Sinopoli A, Grenács Á, Sanna D, Sóvágó I, Pappalardo G. Copper(ii) coordination properties of the Aβ(1–16)2 peptidomimetic: experimental evidence of intermolecular macrochelate complex species in the Aβ dimer. NEW J CHEM 2016. [DOI: 10.1039/c6nj02354a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coordination features of the copper(ii) complexes with a Aβ(1–16)2 dimeric model are reported for the first time.
Collapse
Affiliation(s)
| | - Alessandro Sinopoli
- PhD Program in Translational Biomedicine
- University of Catania
- 95125 Catania
- Italy
| | - Ágnes Grenács
- Department of Inorganic and Analytical Chemistry
- University of Debrecen
- Hungary
| | - Daniele Sanna
- CNR Institute of Biomolecular Chemistry
- 07040 Sassari
- Italy
| | - Imre Sóvágó
- Department of Inorganic and Analytical Chemistry
- University of Debrecen
- Hungary
| | | |
Collapse
|
36
|
On the generation of OH(·) radical species from H2O2 by Cu(I) amyloid beta peptide model complexes: a DFT investigation. J Biol Inorg Chem 2015; 21:197-212. [PMID: 26711660 DOI: 10.1007/s00775-015-1322-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/08/2015] [Indexed: 12/27/2022]
Abstract
According to different studies, the interaction between amyloid β-peptide (Aβ) and copper ions could yield radical oxygen species production, in particular the highly toxic hydroxyl radical OH(·) that is suspected to contribute to Alzheimer's disease pathogenesis. Despite intensive experimental and computational studies, the nature of the interaction between copper and Aβ peptide, as well as the redox reactivity of the system, are still matter of debate. It was proposed that in Cu(II) → Cu(I) reduction the complex Cu(II)-Aβ could follow a multi-step conformational change with redox active intermediates that may be responsible for OH(·) radical production from H2O2 through a Fenton-like process. The purpose of this work is to evaluate, using ab initio Density Functional Theory computations, the reactivity of different Cu(I)-Aβ coordination modes proposed in the literature, in terms of OH(·) production. For each coordination model, we considered the corresponding H2O2 adduct and performed a potential energy surface scan along the reaction coordinate of O-O bond dissociation of the peroxide, resulting in the production of OH(·) radical, obtaining reaction profiles for the evaluation of the energetic of the process. This procedure allowed us to confirm the hypothesis according to which the most populated Cu(I)-Aβ two-histidine coordination is not able to perform efficiently H2O2 reduction, while a less populated three-coordinated form would be responsible for the OH(·) production. We show that coordination modes featuring a third nitrogen containing electron-donor ligand (an imidazole ring of an histidine residue is slightly favored over the N-terminal amine group) are more active towards H2O2 reduction.
Collapse
|
37
|
Leipnitz G, Vargas CR, Wajner M. Disturbance of redox homeostasis as a contributing underlying pathomechanism of brain and liver alterations in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. J Inherit Metab Dis 2015; 38:1021-8. [PMID: 26041581 DOI: 10.1007/s10545-015-9863-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/29/2022]
Abstract
3-Hydroxy-3-methylglutaryl-CoA lyase (HL) deficiency is an inherited disorder of organic acid metabolism biochemically characterized by tissue accumulation and high urinary excretion of 3-hydroxy-3-methylgutarate, 3-methylglutarate, 3-methylglutaconate and 3-hydroxyisovalerate. Affected patients predominantly present neurological symptoms that are accompanied by mild hepatopathy during episodes of catabolic crisis. The pathophysiology of this disease is poorly known, although recent animal and human in vitro and in vivo studies have suggested that oxidative stress caused by the major accumulating organic acids may represent a pathomechanism of brain and liver damage in HL deficiency. In this review we focus on the deleterious effects of these carboxylic acids on redox homeostasis in rat and human tissues that may offer new perspectives for potential novel adjuvant therapeutic strategies in this disorder.
Collapse
Affiliation(s)
- Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, CEP 90035-003, Alegre Porto, RS, Brazil
| | - Carmen Regla Vargas
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, CEP 90035-003, Alegre Porto, RS, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, CEP 90035-003, Alegre Porto, RS, Brazil.
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
38
|
Lu N, Li J, Gao Z. Key roles of Tyr 10 in Cu bound Aβ complexes and its relevance to Alzheimer's disease. Arch Biochem Biophys 2015; 584:1-9. [PMID: 26247837 DOI: 10.1016/j.abb.2015.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 11/26/2022]
Abstract
Recent studies show that the accumulation of redox-active Cu mediates the aggregation of amyloid β-peptide (Aβ) and conspicuous oxidative damage to the brain in Alzheimer's disease (AD). However, the key roles for Tyr 10 in Aβ-Cu(II) complex and its potential biological relevance to AD etiology under oxidative stress, were not stressed enough. Interestingly, our results indicated that Aβ40 (not Aβ16)-Cu(II) complex showed obviously enhanced peroxidase activity than free Cu(II). Although Tyr 10 was not the residue binding Cu(II), the mutation of Tyr 10 residue in Aβ40 decreased the peroxidase activity of Aβ40-Cu(II) complex, and the mutation of Tyr 10 could inhibit Aβ40 aggregation. Under oxidative and nitrative stress conditions, the Aβ-Cu(II) complex caused oxidation and nitration of the Aβ Tyr 10 residue through peroxidase-like reactions, where the formation of Cu(I) and hydroxyl radical (OH) was proposed as a chemical mechanism. We also showed that, when Aβ40 aggregates were bound to Cu(II), they retained peroxidase-like activity. Therefore, Tyr 10 residue is pivotal in Aβ-Cu(II) complex and shows important relevance to oxidative stress, implicating the novel significance of Tyr 10 residue as well as Aβ-Cu(II) complex in the pathology of AD.
Collapse
Affiliation(s)
- Naihao Lu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.
| | - Jiayu Li
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Zhonghong Gao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
39
|
Raja IS, Fathima NN. A gelatin based antioxidant enriched biomaterial by grafting and saturation: Towards sustained drug delivery from antioxidant matrix. Colloids Surf B Biointerfaces 2015; 128:537-543. [DOI: 10.1016/j.colsurfb.2015.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 12/11/2022]
|
40
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 493] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
41
|
Furlan S, La Penna G, Appelhans D, Cangiotti M, Ottaviani MF, Danani A. Combined EPR and molecular modeling study of PPI dendrimers interacting with copper ions: effect of generation and maltose decoration. J Phys Chem B 2014; 118:12098-111. [PMID: 25247928 DOI: 10.1021/jp505420s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the early onset of neurodegeneration is crucial to deploy specific treatments for patients before the process becomes irreversible. Copper has been proposed as a biomarker for many neurodegenerative disorders, being the ion released by pathologically unfolded proteins involved in many biochemical pathways. Dendrimers are macromolecules that bind metal ions with a large ion/ligand ratio, thus, allowing a massive collection of copper. This work provides structural information, obtained via molecular modeling and EPR, for the binding sites of copper in polypropyleneimine (PPI) dendrimers, especially in the maltose decorated form that has potential applications in diagnosis and therapies for various types of neurodegenerations. The analysis of the EPR spectra showed that, at the lowest Cu concentrations, the results are well supported by the calculations. Moreover, EPR analysis at increasing Cu(II) concentration allowed us to follow the saturation behavior of the interacting sites identified by the modeling study.
Collapse
Affiliation(s)
- Sara Furlan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste , Via Giorgieri 1, I-34127 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Miotto MC, Binolfi A, Zweckstetter M, Griesinger C, Fernández CO. Bioinorganic chemistry of synucleinopathies: deciphering the binding features of Met motifs and His-50 in AS-Cu(I) interactions. J Inorg Biochem 2014; 141:208-211. [PMID: 25218565 DOI: 10.1016/j.jinorgbio.2014.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023]
Abstract
The aggregation of alpha-synuclein (AS) is a critical step in the etiology of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. This process is selectively enhanced by copper in vitro and the interaction is proposed to play a potential role in vivo. Presently, the identity of the Cu(I) binding sites in AS and their relative affinities are under debate. In this work we have addressed unresolved details related to the structural binding specificity and affinity of Cu(I) to full-length AS. We demonstrated conclusively that: (i) the binding preferences of Cu(I) for the Met-binding sites at the N- (Kd=20 μM) and C-terminus (Kd=270 μM) of AS are widely different: (ii) the imidazole ring of His-50 acts as an effective anchoring residue (Kd=50 μM) for Cu(I) binding to AS; and (iii) no major structural rearrangements occur in the protein upon Cu(I) binding. Overall, our work shows that Cu(I) binding to the N- and C-terminal regions of AS are two independent events, with substantial differences in their affinities, and suggest that protein oxidative damage derived from a misbalance in cellular copper homeostasis would target preferentially the N-terminal region of AS. This knowledge is key to understanding the structural-aggregation basis of the copper catalyzed oxidation of AS.
Collapse
Affiliation(s)
- Marco C Miotto
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR), Universidad Nacional de Rosario, 27 de Febrero 210 bis, S2002LRK Rosario, Argentina; Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET, Universidad Nacional de Rosario, 27 de Febrero 210 bis, S2002LRK Rosario, Argentina
| | - Andrés Binolfi
- Department of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Markus Zweckstetter
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medicine Göttingen, 37073 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Claudio O Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR), Universidad Nacional de Rosario, 27 de Febrero 210 bis, S2002LRK Rosario, Argentina; Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET, Universidad Nacional de Rosario, 27 de Febrero 210 bis, S2002LRK Rosario, Argentina.
| |
Collapse
|
43
|
Faller P, Hureau C, La Penna G. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles. Acc Chem Res 2014; 47:2252-9. [PMID: 24871565 DOI: 10.1021/ar400293h] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The interaction of d-block metal ions (Cu, Zn, Fe, etc.) with intrinsically disordered proteins (IDPs) has gained interest, partly due to their proposed roles in several diseases, mainly neurodegenerative. A prominent member of IDPs is the peptide amyloid-β (Aβ) that aggregates into metal-enriched amyloid plaques, a hallmark of Alzheimer's disease, in which Cu and Zn are bound to Aβ. IDPs are a class of proteins and peptides that lack a unique 3D structure when the protein is isolated. This disordered structure impacts their interaction with metal ions compared with structured metalloproteins. Metalloproteins either have a preorganized metal binding site or fold upon metal binding, resulting in defined 3D structure with a well-defined metal site. In contrast, for Aβ and likely most of the other IDPs, the affinity for Cu(I/II) and Zn(II) is weaker and the interaction is flexible with different coordination sites present. Coordination of Cu(I/II) with Aβ is very dynamic including fast Cu-exchange reactions (milliseconds or less) that are intrapeptidic between different sites as well as interpeptidic. This highly dynamic metal-IDP interaction has a strong impact on reactivity and potential biological role: (i) Due to the low affinity compared with classical metalloproteins, IDPs likely bind metals only at special places or under special conditions. For Aβ, this is likely in the neurons that expel Zn or Cu into the synapse and upon metal dysregulation occurring in Alzheimer's disease. (ii) Amino acid substitutions (mutations) on noncoordinating residues can change drastically the coordination sphere. (iii) Considering the Cu/Zn-Aβ aberrant interaction, therapeutic strategies can be based on removal of Cu/Zn or precluding their binding to the peptide. The latter is very difficult due to the multitude of metal-binding sites, but the fast koff facilitates removal. (iv) The high flexibility of the Cu-Aβ complex results in different conformations with different redox activity. Only some conformations are able to produce reactive oxygen species. (v) Other, more specific catalysis (like enzymes) is very unlikely for Cu/Zn-Aβ. (vi) The Cu/Zn exchange reactions with Aβ are faster than the aggregation process and can hence have a strong impact on this process. In conclusion, the coordination chemistry is fundamentally different for most of IDPs compared with the classical, structured metalloproteins or with (bio)-inorganic complexes. The dynamics is a key parameter to understand this interaction and its potential biological impact.
Collapse
Affiliation(s)
- Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
- Université de Toulouse, UPS, INPT, Toulouse F-31077 Cedex 4, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
- Université de Toulouse, UPS, INPT, Toulouse F-31077 Cedex 4, France
| | - Giovanni La Penna
- CNR - National Research Council of Italy, ICCOM
- Institute for chemistry of organo-metallic compounds, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
44
|
Gomez-Castro CZ, Vela A, Quintanar L, Grande-Aztatzi R, Mineva T, Goursot A. Insights into the oxygen-based ligand of the low pH component of the Cu(2+)-amyloid-β complex. J Phys Chem B 2014; 118:10052-64. [PMID: 25090035 DOI: 10.1021/jp5047529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In spite of significant experimental effort dedicated to the study of Cu(2+) binding to the amyloid beta (Aβ) peptide, involved in Alzheimer's disease, the nature of the oxygen-based ligand in the low pH component of the Cu(2+)-Aβ(1-16) complex is still under debate. This study reports density-functional-theory-based calculations that explore the potential energy surface of Cu(2+) complexes including N and O ligands at the N-terminus of the Aβ peptide, with a focus on evaluating the role of Asp1 carboxylate in copper coordination. Model conformers including 3, 6, and 17 amino acids have been used to systematically study several aspects of the Cu(2+)-coordination such as the Asp1 side chain conformation, local peptide backbone geometry, electrostatic and/or hydrogen bond interactions, and number and availability of Cu(2+) ligands. Our results show that the Asp1 peptide carbonyl binds to Cu(2+) only if the coordination number is less than four. In contrast, if four ligands are available, the most stable structures include the Asp1 carboxylate in equatorial position instead of the Asp1 carbonyl group. The two lowest energy Cu(2+)-Aβ(1-17) models involve Asp1 COO(-), the N-terminus, and His6 and His14 as equatorial ligands, with either a carbonyl or a water molecule in the axial position. These models are in good agreement with experimental data reported for component I of the Cu(2+)-Aβ(1-16) complex, including EXAFS- and X-ray-derived Cu(2+)-ligand distances, Cu(2+) EPR parameters, and (14)N and (13)C superhyperfine couplings. Our results suggest that at low pH, Cu(2+)-Aβ species with Asp1 carboxylate equatorial coordination coexist with species coordinating the Asp1 carbonyl. Understanding the bonding mechanism in these species is relevant to gain a deeper insight on the molecular processes involving copper-amyloid-β complexes, such as aggregation and redox activity.
Collapse
Affiliation(s)
- Carlos Z Gomez-Castro
- Departamento de Química, Cinvestav , Avenida Instituto Politécnico Nacional 2508, México D.F. 07360, México
| | | | | | | | | | | |
Collapse
|
45
|
La Penna G, Hureau C, Faller P. Learning chemistry with multiple first-principles simulations. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.927064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Alí-Torres J, Mirats A, Maréchal JD, Rodríguez-Santiago L, Sodupe M. 3D structures and redox potentials of Cu2+-Aβ(1-16) complexes at different pH: a computational study. J Phys Chem B 2014; 118:4840-50. [PMID: 24738872 DOI: 10.1021/jp5019718] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress induced by redox-active metal cations such as Cu(2+) is a key event in the development of Alzheimer's disease. A detailed knowledge of the structure of Cu(2+)-Aβ complex is thus important to get a better understanding of this critical process. In the present study, we use a computational approach that combines homology modeling with quantum-mechanics-based methods to determine plausible 3D structures of Cu(2+)-Aβ(1-16) complexes that enclose the different metal coordination spheres proposed experimentally at different pH values. With these models in hand, we determine their standard reduction potential (SRP) with the aim of getting new insights into the relation between the structure of these complexes and their redox behavior. Results show that in all cases copper reduction induces CObackbone decoordination, which, for distorted square planar structures in the oxidized state (Ia_δδ, IIa_εδε, IIa_εεε, and IIc_ε), leads to tricoordinated species. For the pentacoordinated structural candidate Ib_δε with Glu11 at the apical position, the reduction leads to a distorted tetrahedral structure. The present results highlight the importance of the nature of the ligands on the SRP. The computed values (with respect to the standard hydrogen electrode) for complexes enclosing negatively charged ligands in the coordination sphere (from -0.81 to -0.12 V) are significantly lower than those computed for models involving neutral ligands (from 0.19 to 0.28 V). Major geometry changes induced by reduction, on both the metal site and the peptide configuration, are discussed as well as their possible influence in the formation of reactive oxygen species.
Collapse
Affiliation(s)
- Jorge Alí-Torres
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|