1
|
Dezalay J, Grégoire G, Broquier M, Soorkia S. IR and UV Spectroscopy of Gas-Phase Monohydrated Protonated Guanine. J Phys Chem A 2024; 128:8457-8465. [PMID: 39297670 DOI: 10.1021/acs.jpca.4c04976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We use UV and infrared photodissociation spectroscopy to study monohydrated protonated guanine in a dual cryogenic ion trap spectrometer. The monohydrated complexes are formed through helium-mediated collisions between bare electrosprayed protonated guanine and low-pressure water vapor in a clustering trap maintained at 180 K, before being transferred to a quadrupole ion trap at 10 K. The spectrum of the monohydrated complex exhibits sharp vibronic transitions at the band origin and becomes broader and higher in intensity further in blue, which is very similar to protonated guanine but with a notable blue shift of ∼1850 cm-1 (∼0.23 eV). The UV hole-burning experiments showed that the vibronic bands recorded in the region of the band origin belong to a single conformer under our experimental conditions. The IR photodissociation spectrum in the 3000-3600 cm-1 range, with the aid of theoretical calculations (SCS-CC2/aug-cc-pVDZ), allowed us to assign the structure to the lowest energy N7-O conformer.
Collapse
Affiliation(s)
- J Dezalay
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay F-91405, France
| | - G Grégoire
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay F-91405, France
| | - M Broquier
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay F-91405, France
| | - S Soorkia
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay F-91405, France
| |
Collapse
|
2
|
Ashworth EK, Dezalay J, Ryan CRM, Ieritano C, Hopkins WS, Chambrier I, Cammidge AN, Stockett MH, Noble JA, Bull JN. Protomers of the green and cyan fluorescent protein chromophores investigated using action spectroscopy. Phys Chem Chem Phys 2023. [PMID: 37465988 DOI: 10.1039/d3cp02661b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The photophysics of biochromophore ions often depends on the isomeric or protomeric distribution, yet this distribution, and the individual isomer contributions to an action spectrum, can be difficult to quantify. Here, we use two separate photodissociation action spectroscopy instruments to record electronic spectra for protonated forms of the green (pHBDI+) and cyan (Cyan+) fluorescent protein chromophores. One instrument allows for cryogenic (T = 40 ± 10 K) cooling of the ions, while the other offers the ability to perform protomer-selective photodissociation spectroscopy. We show that both chromophores are generated as two protomers when using electrospray ionisation, and that the protomers have partially overlapping absorption profiles associated with the S1 ← S0 transition. The action spectra for both species span the 340-460 nm range, although the spectral onset for the pHBDI+ protomer with the proton residing on the carbonyl oxygen is red-shifted by ≈40 nm relative to the lower-energy imine protomer. Similarly, the imine and carbonyl protomers are the lowest energy forms of Cyan+, with the main band for the carbonyl protomer red-shifted by ≈60 nm relative to the lower-energy imine protomer. The present strategy for investigating protomers can be applied to a wide range of other biochromophore ions.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Jordan Dezalay
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Christian Ieritano
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Isabelle Chambrier
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Andrew N Cammidge
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
3
|
Tureček F. UV-vis spectroscopy of gas-phase ions. MASS SPECTROMETRY REVIEWS 2023; 42:206-226. [PMID: 34392556 DOI: 10.1002/mas.21726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Photodissociation action spectroscopy has made a great progress in expanding investigations of gas-phase ion structures. This review deals with aspects of gas-phase ion electronic excitations that result in wavelength-dependent dissociation and light emission via fluorescence, chiefly covering the ultraviolet and visible regions of the spectrum. The principles are briefly outlined and a few examples of instrumentation are presented. The main thrust of the review is to collect and selectively present applications of UV-vis action spectroscopy to studies of stable gas-phase ion structures and combinations of spectroscopy with ion mobility, collision-induced dissociation, and ion-ion reactions leading to the generation of reactive intermediates and electronic energy transfer.
Collapse
Affiliation(s)
- František Tureček
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Marlton SJP, Trevitt A. Laser Photodissocation, Action Spectroscopy and Mass Spectrometry Unite to Detect and Separate Isomers. Chem Commun (Camb) 2022; 58:9451-9467. [DOI: 10.1039/d2cc02101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation and detection of isomers remains a challenge for many areas of mass spectrometry. This article highlights laser photodissociation and ion mobility strategies that have been deployed to tackle...
Collapse
|
5
|
Zheng L, Cuny J, Zamith S, L'Hermite JM, Rapacioli M. Collision-induced dissociation of protonated uracil water clusters probed by molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:27404-27416. [PMID: 34859809 DOI: 10.1039/d1cp03228c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Collision-induced dissociation experiments of hydrated molecular species can provide a wealth of important information. However, they often need a theoretical support to extract chemical information. In the present article, in order to provide a detailed description of recent experimental measurements [Braud et al., J. Chem. Phys., 2019, 150, 014303], collision simulations between low-energy protonated uracil water clusters (H2O)1-7,11,12UH+ and an Ar atom were performed using a quantum mechanics/molecular mechanics formalism based on the self-consistent-charge density-functional based tight-binding method. The theoretical proportion of formed neutral vs. protonated uracil containing clusters, total fragmentation cross sections as well as the mass spectra of charged fragments are consistent with the experimental data which highlights the accuracy of the present simulations. They allow to probe which fragments are formed on the short time scale and rationalize the location of the excess proton on these fragments. We demonstrate that this latter property is highly influenced by the nature of the aggregate undergoing the collision. Analyses of the time evolution of the fragments populations and of their relative abundances demonstrate that, up to 7 water molecules, a direct dissociation mechanism occurs after collision whereas for 11 and 12 water molecules a statistical mechanism is more likely to participate. Although scarce in the literature, the present simulations appear as a useful tool to complement collision-induced dissociation experiments of hydrated molecular species.
Collapse
Affiliation(s)
- Linjie Zheng
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Sébastien Zamith
- Laboratoire Collisions Agrégats Réactivié LCAR/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Jean-Marc L'Hermite
- Laboratoire Collisions Agrégats Réactivié LCAR/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
6
|
Liu Y, Ma C, Nováková G, Marek A, Tureček F. Charge-Tagged Nucleosides in the Gas Phase: UV-Vis Action Spectroscopy and Structures of Cytidine Cations, Dications, and Cation Radicals. J Phys Chem A 2021; 125:6096-6108. [PMID: 34240862 DOI: 10.1021/acs.jpca.1c03477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytidine ribonucleosides were furnished at O5' with fixed-charge 6-trimethylammoniumhexan-1-aminecarbonyl tags and studied by UV-vis photodissociation action spectroscopy in the gas phase to probe isolated nucleobase chromophores in their neutral, protonated, and hydrogen-adduct radical forms. The action spectrum of the doubly charged cytidine conjugate showed bands at 310 and 270 nm that were assigned to the N3- and O2-protonated cytosine tautomers formed by electrospray, respectively. In contrast, cytidine conjugates coordinated to dibenzo-18-crown-6-ether (DBCE) in a noncovalent complex were found to strongly favor protonation at N3, forming a single-ion tautomer. This allowed us to form cytidine N3-H radicals by electron transfer dissociation of the complex and study their action spectra. Cytidine radicals showed only very weak absorption in the visible region of the spectrum for dipole-disallowed transitions to the low (A and B) excited states. The main bands were observed at 360, 300, and 250 nm that were assigned with the help of theoretical vibronic spectra obtained by time-dependent density functional theory calculations of multiple (>300) radical vibrational configurations. Collision-induced dissociations of cytidine radicals proceeded by major cleavage of the N1-C1' glycosidic bond leading to loss of cytosine and competitive loss of N3-hydrogen atom. These dissociations were characterized by calculations of transition-state structures and energies using combined Born-Oppenheimer molecular dynamics and DFT calculations. Overall, cytidine radicals were found to be kinetically and thermodynamically more stable than previously reported analogous adenosine and guanosine radicals.
Collapse
Affiliation(s)
- Yue Liu
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Congcong Ma
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| | - Gabriela Nováková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
7
|
Observation of Enhanced Dissociative Photochemistry in the Non-Native Nucleobase 2-Thiouracil. Molecules 2020; 25:molecules25143157. [PMID: 32664261 PMCID: PMC7397253 DOI: 10.3390/molecules25143157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
We present the first study to measure the dissociative photochemistry of 2-thiouracil (2-TU), an important nucleobase analogue with applications in molecular biology and pharmacology. Laser photodissociation spectroscopy is applied to the deprotonated and protonated forms of 2-TU, which are produced in the gas-phase using electrospray ionization mass spectrometry. Our results show that the deprotonated form of 2-thiouracil ([2-TU-H]−) decays predominantly by electron ejection and hence concomitant production of the [2-TU-H]· free-radical species, following photoexcitation across the UVA-UVC region. Thiocyanate (SCN−) and a m/z 93 fragment ion are also observed as photodecay products of [2-TU-H]− but at very low intensities. Photoexcitation of protonated 2-thiouracil ([2-TU·H]+) across the same UVA-UVC spectral region produces the m/z 96 cationic fragment as the major photofragment. This ion corresponds to ejection of an HS· radical from the precursor ion and is determined to be a product of direct excited state decay. Fragment ions associated with decay of the hot ground state (i.e., the ions we would expect to observe if 2-thiouracil was behaving like UV-dissipating uracil) are observed as much more minor products. This behaviour is consistent with enhanced intersystem crossing to triplet excited states compared to internal conversion back to the ground state. These are the first experiments to probe the effect of protonation/deprotonation on thionucleobase photochemistry, and hence explore the effect of pH at a molecular level on their photophysical properties.
Collapse
|
8
|
Chatterjee K, Dopfer O. Microhydration of protonated biomolecular building blocks: protonated pyrimidine. Phys Chem Chem Phys 2020; 22:13092-13107. [PMID: 32490447 DOI: 10.1039/d0cp02110e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protonation and hydration of biomolecules govern their structure, conformation, and function. Herein, we explore the microhydration structure in mass-selected protonated pyrimidine-water clusters (H+Pym-Wn, n = 1-4) by a combination of infrared photodissociation spectroscopy (IRPD) between 2450 and 3900 cm-1 and density functional theory (DFT) calculations at the dispersion-corrected B3LYP-D3/aug-cc-pVTZ level. We further present the IR spectrum of H+Pym-N2 to evaluate the effect of solvent polarity on the intrinsic molecular parameters of H+Pym. Our combined spectroscopic and computational approach unequivocally shows that protonation of Pym occurs at one of the two equivalent basic ring N atoms and that the ligands in H+Pym-L (L = N2 or W) preferentially form linear H-bonds to the resulting acidic NH group. Successive addition of water ligands results in the formation of a H-bonded solvent network which increasingly weakens the NH group. Despite substantial activation of the N-H bond upon microhydration, no intracluster proton transfer occurs up to n = 4 because of the balance of relative proton affinities of Pym and Wn and the involved solvation energies. Comparison to neutral Pym-Wn clusters reveals the drastic effects of protonation on microhydration with respect to both structure and interaction strength.
Collapse
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | | |
Collapse
|
9
|
Choi CM, Kulesza A, Daly S, MacAleese L, Antoine R, Dugourd P, Chirot F. Ion mobility resolved photo-fragmentation to discriminate protomers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:28-34. [PMID: 29885203 DOI: 10.1002/rcm.8202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Among the sources of structural diversity in biomolecular ions, the co-existence of protomers is particularly difficult to take into account, which in turn complicates structural interpretation of gas-phase data. METHODS We investigated the sensitivity of gas-phase photo-fragmentation measurements and ion mobility spectrometry (IMS) to the protonation state of a model peptide derivatized with chromophores. Accessible interconversion pathways between the different identified conformers were probed by tandem ion mobility measurement. Furthermore, the excitation coupling between the chromophores has been probed through photo-fragmentation measurements on mobility-selected ions. All results were interpreted based on molecular dynamics simulations. RESULTS We show that protonation can significantly affect the photo-fragmentation yields. Especially, conformers with very close collision cross sections (CCSs) may display dramatically different photo-fragmentation yields in relation with different protonation patterns. CONCLUSIONS We show that, even if precise structure assignment based on molecular modeling is in principle difficult for large biomolecular assemblies, the combination of photo-fragmentation and IMS can help to identify the signature of protomer co-existence for a population of biomolecular ions in the gas phase. Such spectroscopic data are particularly suitable to follow conformational changes.
Collapse
Affiliation(s)
- Chang Min Choi
- Mass Spectrometry and Advanced Instrumentation Research Group, Div. of Scientific Instrumentation, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Alexander Kulesza
- CNRS, UMR5306 Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
| | - Steven Daly
- CNRS, UMR5306 Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
| | - Luke MacAleese
- CNRS, UMR5306 Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
| | - Rodolphe Antoine
- CNRS, UMR5306 Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
| | - Philippe Dugourd
- CNRS, UMR5306 Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France
| | - Fabien Chirot
- CNRS, Ens de Lyon, UMR5280 Institut Sciences Analytiques, Univ Lyon, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France
| |
Collapse
|
10
|
Pitzer M, Ozga C, Küstner-Wetekam C, Reiß P, Knie A, Ehresmann A, Jahnke T, Giuliani A, Nahon L. State-Dependent Fragmentation of Protonated Uracil and Uridine. J Phys Chem A 2019; 123:3551-3557. [PMID: 30943036 DOI: 10.1021/acs.jpca.9b01822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Action spectroscopy using photon excitation in the VUV range (photon energy 4.5-9 eV) was performed on protonated uracil (UraH+) and uridine (UrdH+). The precursor ions with m/ z 113 and m/ z 245, respectively, were produced by an electrospray ionization source and accumulated inside a quadrupole ion trap mass spectrometer. After irradiation with tunable synchrotron radiation, product ion mass spectra were obtained. Fragment yields as a function of excitation energy show several maxima that can be attributed to the photoexcitation into different electronic states. For uracil, vertically excited states were calculated using the equation-of-motion coupled cluster approach and compared to the observed maxima. This allows to establish correlations between electronic states and the resulting fragment masses and can thus help to disentangle the complex de-excitation and fragmentation pathways of nucleic acid building blocks. Photofragmentation of the nucleoside uridine shows a significantly lower variety of fragments, indicating stabilization of the nucleobase by the attached sugar.
Collapse
Affiliation(s)
- Martin Pitzer
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 7610001 , Israel.,Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Christian Ozga
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Catmarna Küstner-Wetekam
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Philipp Reiß
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - André Knie
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Arno Ehresmann
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Till Jahnke
- Institute for Nuclear Physics , Goethe-University , 60438 Frankfurt , Germany
| | | | | |
Collapse
|
11
|
Braud I, Zamith S, Cuny J, Zheng L, L’Hermite JM. Size-dependent proton localization in hydrated uracil clusters: A joint experimental and theoretical study. J Chem Phys 2019; 150:014303. [DOI: 10.1063/1.5044481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Isabelle Braud
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC) UMR5589, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Sébastien Zamith
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC) UMR5589, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques (LCPQ/IRSAMC) UMR5626, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Linjie Zheng
- Laboratoire de Chimie et Physique Quantiques (LCPQ/IRSAMC) UMR5626, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Jean-Marc L’Hermite
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC) UMR5589, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
12
|
Pandeti S, Feketeová L, Reddy TJ, Abdoul-Carime H, Farizon B, Farizon M, Märk TD. Binding preference of nitroimidazolic radiosensitizers to nucleobases and nucleosides probed by electrospray ionization mass spectrometry and density functional theory. J Chem Phys 2019; 150:014302. [PMID: 30621427 DOI: 10.1063/1.5062604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nitroimidazolic radiosensitizers are used in radiation therapy to selectively sensitize cancer cells deprived of oxygen, and the actual mechanism of radiosensitization is still not understood. Selecting five radiosensitizers (1-methyl-5-nitroimidazole, ronidazole, ornidazole, metronidazole, and nimorazole) with a common 5-nitroimidazolic ring with different substitutions at N1 and C2 positions of the imidazole moiety, we investigate here their binding to nucleobases (A, T, G, and C) and nucleosides (As, Td, Gs, and Cd) via the positive electrospray ionization mass spectrometry experiments. In addition, quantum chemical calculations at the M062x/6-311+G(d,p) level of theory and basis set were used to determine binding energies of the proton bound dimers of a radiosensitizer and a nucleobase. The positive electrospray ionization leads to the formation of proton bound dimers of all radiosensitizers except 1-methyl-5-nitroimidazole in high abundance with C and smaller abundance with G. Ronidazole and metronidazole formed less abundant dimers also with A, while no dimers were observed to be formed at all with T. In contrast to the case of the nucleoside Td, the dimer intensity is as high as that with Cd, while the abundance of the dimer with Gs is smaller than that of the former. The experimental results are consistent with the calculations of binding energies suggesting proton bound dimers with C and G to be the strongest bound ones. Finally, a barrier-free proton transfer is observed when protonated G or C approaches the nitroimidazole ring.
Collapse
Affiliation(s)
- S Pandeti
- Université de Lyon, Université Claude Bernard Lyon1, Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne Cedex, France
| | - L Feketeová
- Université de Lyon, Université Claude Bernard Lyon1, Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne Cedex, France
| | - T J Reddy
- Analytical Chemistry and Mass Spectrometry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - H Abdoul-Carime
- Université de Lyon, Université Claude Bernard Lyon1, Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne Cedex, France
| | - B Farizon
- Université de Lyon, Université Claude Bernard Lyon1, Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne Cedex, France
| | - M Farizon
- Université de Lyon, Université Claude Bernard Lyon1, Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne Cedex, France
| | - T D Märk
- Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
13
|
Ding Y, Wang X, Xie L, Yao X, Xu W. Two-dimensional self-assembled nanostructures of nucleobases and their related derivatives on Au(111). Chem Commun (Camb) 2018; 54:9259-9269. [PMID: 30027963 DOI: 10.1039/c8cc03585g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The construction of two-dimensional (2D) self-assembled nanostructures has been one of the considerably interesting areas of on-surface chemistry in the past few decades, and has benefited from the rapid development and improvement of scanning probe microscopy techniques. In this research field, many attempts have been made in the controllable fabrication of well-ordered and multifunctional surface nanostructures, which attracted interest because of the prospect for artificial design of functional molecular nanodevices. DNA and RNA are considered to be programmable self-assembly systems and it is possible to use their base sequences to encode instructions for assembly in a predetermined fashion at the nanometer scale. As important constituents of nucleic acids, nucleobases, with intrinsic functional groups for hydrogen bonding, coordination bonding, and electrostatic interactions, can be employed as a potential system for the versatile construction of various biomolecular nanostructures, which may be used to structure the self-assembly of DNA-based artificial molecular constructions and play an important role in novel biosensors based on surface functionalization. In this article, we will review the recent progress of on-surface self-assembly of nucleobases and their derivatives together with different reactants (e.g., metals, halogens, salts and water), and as a result, various 2D surface nanostructures are summarized.
Collapse
Affiliation(s)
- Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | | | | | | | | |
Collapse
|
14
|
Bull JN, Carrascosa E, Giacomozzi L, Bieske EJ, Stockett MH. Ion mobility action spectroscopy of flavin dianions reveals deprotomer-dependent photochemistry. Phys Chem Chem Phys 2018; 20:19672-19681. [PMID: 30014081 PMCID: PMC6063075 DOI: 10.1039/c8cp03244k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Photo-induced proton transfer, deprotomer-dependent photochemistry, and intramolecular charge transfer in flavin anions are investigated using action spectroscopy.
The intrinsic optical properties and photochemistry of flavin adenine dinucleotide (FAD) dianions are investigated using a combination of tandem ion mobility spectrometry and action spectroscopy. Two principal isomers are observed, the more stable form being deprotonated on the isoalloxazine group and a phosphate (N-3,PO4 deprotomer), and the other on the two phosphates (PO4,PO4 deprotomer). Ion mobility data and electronic action spectra suggest that photo-induced proton transfer occurs from the isoalloxazine group to a phosphate group, converting the PO4,PO4 deprotomer to the N-3,PO4 deprotomer. Comparisons of the isomer selective action spectra of FAD dianions and flavin monoanions with solution spectra and gas-phase photodissociation action spectra suggests that solvation shifts the electronic absorption of the deprotonated isoalloxazine group to higher energy. This is interpreted as evidence for significant charge transfer in the lowest optical transition of deprotonated isoalloxazine. Overall, this work demonstrates that the site of deprotonation of flavin anions strongly affects their electronic absorptions and photochemistry.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Eduardo Carrascosa
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Evan J Bieske
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mark H Stockett
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia and Department of Physics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
15
|
Kjær C, Lisy JM, Nielsen SB. Gas-Phase Ion Spectroscopy of Congo Red Dianions and Their Complexes with Betaine. J Phys Chem A 2018. [DOI: 10.1021/acs.jpca.8b00904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | - James M. Lisy
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | | |
Collapse
|
16
|
Bezzina JP, Prendergast MB, Blanksby SJ, Trevitt AJ. Gas-Phase Oxidation of the Protonated Uracil-5-yl Radical Cation. J Phys Chem A 2018; 122:890-896. [PMID: 29295616 DOI: 10.1021/acs.jpca.7b09411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study targets the kinetics and product detection of the gas-phase oxidation reaction of the protonated 5-dehydrouracil (uracil-5-yl) distonic radical cation using ion-trap mass spectrometry. Protonated 5-dehydrouracil radical ions (5-dehydrouracilH+ radical ion, m/z 112) are produced within an ion trap by laser photolysis of protonated 5-iodouracil. Storage of the 5-dehydrouracilH+ radical ion in the presence of controlled concentration of O2 reveals two main products. The major reaction product pathway is assigned as the formation of protonated 2-hydroxypyrimidine-4,5-dione (m/z 127) + •OH. A second product ion (m/z 99), putatively assigned as a five-member-ring ketone structure, is tentatively explained as arising from the decarbonylation (-CO) of protonated 2-hydroxypyrimidine-4,5-dione. Because protonation of the 5-dehydrouracil radical likely forms a dienol structure, the O2 reaction at the 5 position is ortho to an -OH group. Following this addition of O2, the peroxyl-radical intermediate isomerizes by H atom transfer from the -OH group. The ensuing hydroperoxide then decomposes to eliminate •OH radical. It is shown that this elimination of •OH radical (-17 Da) is evidence for the presence of an -OH group ortho to the initial phenyl radical site, in good accord with calculations. The subsequent CO loss mechanism, to form the aforementioned five-member-ring structure, is unclear, but some pathways are discussed. By following the kinetics of the reaction, the room temperature second-order rate coefficient of the 5-dehydrouracilH+ distonic radical cation with molecular oxygen is measured at 7.2 × 10-11 cm3 molecule-1 s-1, Φ = 12% (with ±50% total accuracy). For aryl radical reactions with O2, the presence of the •OH elimination product pathway, following the peroxyl-radical formation, is an indicator of an -OH group ortho to the radical site.
Collapse
Affiliation(s)
- James P Bezzina
- School of Chemistry, University of Wollongong , Wollongong, Australia 2522
| | | | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology , Brisbane, Australia 4001
| | - Adam J Trevitt
- School of Chemistry, University of Wollongong , Wollongong, Australia 2522
| |
Collapse
|
17
|
Ilyina MG, Khamitov EM, Ivanov SP, Mustafin AG, Khursan SL. Theoretical Models for Quantitative Description of the Acid-Base Equilibria of the 5,6-Substituted Uracils. J Phys Chem A 2018; 122:341-349. [PMID: 29215882 DOI: 10.1021/acs.jpca.7b09330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The acidities of 18 5,6-substituted uracils have been numerically estimated as pKa values in terms of three theoretical models. The first scheme includes the calculation of the gas-phase acidity of uracil with the G3MP2B3 method and taking into account the solvent effect using the polarizable continuum approximation PCM(SMD)-TPSS/aug-cc-pVTZ. The second model is one step and implies calculation of the free Gibbs energies of the hydrate complex of uracil (and its anion) with 5 water molecules by the TPSS/aug-cc-pVTZ method. This model accounts for the solvent effect corresponding to both specific and nonspecific solvation. The third scheme required high time and computational resources and includes the strong features of the two previous schemes. Here, the theoretical estimation of pKa is performed by the CBS-QB3 composite method. As in the second approach, both specific (as pentahydrate) and nonspecific solvent effects are determined. We have analyzed the advantages and model restrictions of the considered schemes for the pKa calculations. All models have systematic errors, which have been corrected with the linear empirical regression relations. In the presented model, the absolute mean deviations of the pKa values of uracils dissociating via the N1-H bonds diminish to 0.25, 0.28, and 0.23 pKa units (respectively, for I, II, and III models), which corresponds to ∼0.3 kcal/mol on the energy scale. The applicability of our computational schemes to uracils dissociating via N3-H, O-H (orotic acids) and C-H bonds is discussed.
Collapse
Affiliation(s)
- Margarita G Ilyina
- Department of Physical Chemistry and Chemical Ecology, Bashkir State University Chemical Faculty , 32 Zaki Validi Street, Ufa 450074, Russia.,Laboratory of Quantum Chemistry and Molecular Dynamics of the Department of Chemistry and Technology, Institute of Petroleum Refining and Petrochemistry , 12 Initsiativnaya Street, Ufa 450065, Republic of Bashkortostan, Russia
| | - Edward M Khamitov
- Department of Physical Chemistry and Chemical Ecology, Bashkir State University Chemical Faculty , 32 Zaki Validi Street, Ufa 450074, Russia.,Ufa Institute of Chemistry, Russian Academy of Sciences, Laboratory of Chemical Physics , 69 Prospekt Oktyabrya, Ufa 450054, Russia.,Laboratory of Quantum Chemistry and Molecular Dynamics of the Department of Chemistry and Technology, Institute of Petroleum Refining and Petrochemistry , 12 Initsiativnaya Street, Ufa 450065, Republic of Bashkortostan, Russia
| | - Sergey P Ivanov
- Ufa Institute of Chemistry, Russian Academy of Sciences, Laboratory of Chemical Physics , 69 Prospekt Oktyabrya, Ufa 450054, Russia
| | - Akhat G Mustafin
- Department of Physical Chemistry and Chemical Ecology, Bashkir State University Chemical Faculty , 32 Zaki Validi Street, Ufa 450074, Russia.,Ufa Institute of Chemistry, Russian Academy of Sciences, Laboratory of Chemical Physics , 69 Prospekt Oktyabrya, Ufa 450054, Russia
| | - Sergey L Khursan
- Ufa Institute of Chemistry, Russian Academy of Sciences, Laboratory of Chemical Physics , 69 Prospekt Oktyabrya, Ufa 450054, Russia
| |
Collapse
|
18
|
Pracht P, Bauer CA, Grimme S. Automated and efficient quantum chemical determination and energetic ranking of molecular protonation sites. J Comput Chem 2017; 38:2618-2631. [DOI: 10.1002/jcc.24922] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Philipp Pracht
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4; 53115 Bonn Germany
| | - Christoph Alexander Bauer
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4; 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4; 53115 Bonn Germany
| |
Collapse
|
19
|
Bull JN, Coughlan NJA, Bieske EJ. Protomer-Specific Photochemistry Investigated Using Ion Mobility Mass Spectrometry. J Phys Chem A 2017; 121:6021-6027. [DOI: 10.1021/acs.jpca.7b05800] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- James N. Bull
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Evan J. Bieske
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
20
|
Lesslie M, Lawler JT, Dang A, Korn JA, Bím D, Steinmetz V, Maître P, Tureček F, Ryzhov V. Cytosine Radical Cations: A Gas‐Phase Study Combining IRMPD Spectroscopy, UVPD Spectroscopy, Ion–Molecule Reactions, and Theoretical Calculations. Chemphyschem 2017; 18:1293-1301. [DOI: 10.1002/cphc.201700281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Michael Lesslie
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - John T. Lawler
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Andy Dang
- Department of Chemistry University of Washington Bagley Hall, Box 351700 Seattle Washington 98195 USA
| | - Joseph A. Korn
- Department of Chemistry University of Washington Bagley Hall, Box 351700 Seattle Washington 98195 USA
| | - Daniel Bím
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic 166 10 Prague 6 Czech Republic
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique Université Paris-Sud UMR8000 CNRS 91405 Orsay France
| | - Philippe Maître
- Laboratoire de Chimie Physique Université Paris-Sud UMR8000 CNRS 91405 Orsay France
| | - Frantisek Tureček
- Department of Chemistry University of Washington Bagley Hall, Box 351700 Seattle Washington 98195 USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| |
Collapse
|
21
|
Garcia RL, Nieuwjaer N, Desfrançois C, Lecomte F, Leite SD, Manil B, Broquier M, Grégoire G. Vibronic spectra of protonated hydroxypyridines: contributions of prefulvenic and planar structures. Phys Chem Chem Phys 2017; 19:8258-8268. [DOI: 10.1039/c6cp08623c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The UV photofragmentation spectra of cold protonated hydroxypyridines display well resolved vibrational structures, interpreted with calculations at the CC2 level.
Collapse
Affiliation(s)
- R. Lozada Garcia
- Laboratoire de Physique des Lasers
- CNRS
- Université Paris 13
- Sorbonne Paris Cité
- France
| | - N. Nieuwjaer
- Laboratoire de Physique des Lasers
- CNRS
- Université Paris 13
- Sorbonne Paris Cité
- France
| | - C. Desfrançois
- Laboratoire de Physique des Lasers
- CNRS
- Université Paris 13
- Sorbonne Paris Cité
- France
| | - F. Lecomte
- Laboratoire de Physique des Lasers
- CNRS
- Université Paris 13
- Sorbonne Paris Cité
- France
| | - S. D. Leite
- Laboratoire de Physique des Lasers
- CNRS
- Université Paris 13
- Sorbonne Paris Cité
- France
| | - B. Manil
- Laboratoire de Physique des Lasers
- CNRS
- Université Paris 13
- Sorbonne Paris Cité
- France
| | - M. Broquier
- Institut des Sciences Moléculaires d'Orsay (ISMO)
- CNRS
- Univ. Paris Sud
- Université Paris-Saclay
- F-91405 Orsay
| | - G. Grégoire
- Institut des Sciences Moléculaires d'Orsay (ISMO)
- CNRS
- Univ. Paris Sud
- Université Paris-Saclay
- F-91405 Orsay
| |
Collapse
|
22
|
Koch ES, McKenna KA, Kim HJ, Young VG, Swift JA. Thymine cocrystals based on DNA-inspired binding motifs. CrystEngComm 2017. [DOI: 10.1039/c7ce01347g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cocrystal design through DNA-type base pairing between a nucleic acid and complementary heterocycles.
Collapse
Affiliation(s)
| | | | - Hyo Jung Kim
- Department of Chemistry
- Georgetown University
- Washington
- USA
| | - Victor G. Young
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | | |
Collapse
|
23
|
Pino GA, Feraud G, Broquier M, Grégoire G, Soorkia S, Dedonder C, Jouvet C. Non-radiative processes in protonated diazines, pyrimidine bases and an aromatic azine. Phys Chem Chem Phys 2016; 18:20126-34. [PMID: 27110833 DOI: 10.1039/c6cp01345g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excited state lifetimes of DNA bases are often very short due to very efficient non-radiative processes assigned to the ππ*-nπ* coupling. A set of protonated aromatic diazine molecules (pyridazine, pyrimidine and pyrazine C4H5N2(+)) and protonated pyrimidine DNA bases (cytosine, uracil and thymine), as well as the protonated pyridine (C5H6N(+)), have been investigated. For all these molecules except one tautomer of protonated uracil (enol-keto), electronic spectroscopy exhibits vibrational line broadening. Excited state geometry optimization at the CC2 level has been conducted to find out whether the excited state lifetimes measured from line broadening can be correlated to the calculated ordering of the ππ* and nπ* states and the ππ*-nπ* energy gap. The short lifetimes, observed when one nitrogen atom of the ring is not protonated, can be rationalized by relaxation of the ππ* state to the nπ* state or directly to the electronic ground state through ring puckering.
Collapse
Affiliation(s)
- Gustavo A Pino
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET - UNC. Dpto. de Fisicoquímica - Facultad de Ciencias Químicas - Centro Láser de Ciencias Moleculares - Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Géraldine Feraud
- CNRS, Aix Marseille Université, PIIM UMR 7345, 13397, Marseille, France.
| | - Michel Broquier
- Centre Laser de l'Université Paris-Sud (CLUPS/LUMAT), Univ. Paris-Sud, CNRS, IOGS, Université Paris-Saclay, F-91405 Orsay, France and Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Gilles Grégoire
- Centre Laser de l'Université Paris-Sud (CLUPS/LUMAT), Univ. Paris-Sud, CNRS, IOGS, Université Paris-Saclay, F-91405 Orsay, France and Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Satchin Soorkia
- Centre Laser de l'Université Paris-Sud (CLUPS/LUMAT), Univ. Paris-Sud, CNRS, IOGS, Université Paris-Saclay, F-91405 Orsay, France and Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Claude Dedonder
- CNRS, Aix Marseille Université, PIIM UMR 7345, 13397, Marseille, France.
| | - Christophe Jouvet
- CNRS, Aix Marseille Université, PIIM UMR 7345, 13397, Marseille, France.
| |
Collapse
|
24
|
Ilyina MG, Khamitov EM, Ivanov SP, Mustafin AG, Khursan SL. Anions of uracils: N1 or N3? That is the question. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Sen A, Matthews EM, Hou GL, Wang XB, Dessent CEH. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission. J Chem Phys 2015; 143:184307. [DOI: 10.1063/1.4935171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ananya Sen
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Edward M. Matthews
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Gao-Lei Hou
- Physical Sciences Division, Pacific Northwest National Laboratory, MS K8-88, P.O. Box 999, Richland, Washington 99352, USA
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, MS K8-88, P.O. Box 999, Richland, Washington 99352, USA
| | | |
Collapse
|
26
|
Esteves-López N, Dedonder-Lardeux C, Jouvet C. Excited state of protonated benzene and toluene. J Chem Phys 2015; 143:074303. [DOI: 10.1063/1.4928692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Natalia Esteves-López
- Aix-Marseille Université, CNRS, UMR-7345, Physique des Interactions Ioniques et Moléculaires (PIIM), Marseille, France
| | - Claude Dedonder-Lardeux
- Aix-Marseille Université, CNRS, UMR-7345, Physique des Interactions Ioniques et Moléculaires (PIIM), Marseille, France
| | - Christophe Jouvet
- Aix-Marseille Université, CNRS, UMR-7345, Physique des Interactions Ioniques et Moléculaires (PIIM), Marseille, France
| |
Collapse
|
27
|
Abstract
Nucleic acids are diverse polymeric macromolecules that are essential for all life forms. These biomolecules possess a functional three-dimensional structure under aqueous physiological conditions. Mass spectrometry-based approaches have on the other hand opened the possibility to gain structural information on nucleic acids from gas-phase measurements. To correlate gas-phase structural probing results with solution structures, it is therefore important to grasp the extent to which nucleic acid structures are preserved, or altered, when transferred from the solution to a fully anhydrous environment. We will review here experimental and theoretical approaches available to characterize the structure of nucleic acids in the gas phase (with a focus on oligonucleotides and higher-order structures), and will summarize the structural features of nucleic acids that can be preserved in the gas phase on the experiment time scale.
Collapse
|