1
|
Zhao Z, Song F, Kimura S, Onodera T, Uchida T, Toko K. Assessment of Bitterness in Non-Charged Pharmaceuticals with a Taste Sensor: A Study on Substances with Xanthine Scaffold and Allopurinol. Molecules 2024; 29:2452. [PMID: 38893328 PMCID: PMC11173402 DOI: 10.3390/molecules29112452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Taste sensors with an allostery approach have been studied to detect non-charged bitter substances, such as xanthine derivatives, used in foods (e.g., caffeine) or pharmaceuticals (e.g., etofylline). In this study, the authors modified a taste sensor with 3-bromo-2,6-dihydroxybenzoic acid and used it in conjunction with sensory tests to assess the bitterness of non-charged pharmaceuticals with xanthine scaffolds (i.e., acefylline and doxofylline), as well as allopurinol, an analogue of hypoxanthine. The results show that the sensor was able to differentiate between different levels of sample bitterness. For instance, when assessing a 30 mM sample solution, the sensor response to acefylline was 34.24 mV, which corresponded to the highest level of bitterness (τ = 3.50), while the response to allopurinol was lowest at 2.72 mV, corresponding to relatively weaker bitterness (τ = 0.50). Additionally, this study extended the application of the sensor to detect pentoxifylline, an active pharmaceutical ingredient in pediatric medicines. These results underscore the taste sensor's value as an additional tool for early-stage assessment and prediction of bitterness in non-charged pharmaceuticals.
Collapse
Affiliation(s)
- Zeyu Zhao
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan (T.O.)
| | - Fang Song
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan (T.O.)
| | - Shunsuke Kimura
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Faculty of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
- Food and Health Innovation Center, Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
| | - Takeshi Onodera
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan (T.O.)
| | - Takahiro Uchida
- Food and Health Innovation Center, Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
- Faculty of Pharmaceutical Science, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishimiya 663-8179, Japan
| | - Kiyoshi Toko
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Food and Health Innovation Center, Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
- Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
| |
Collapse
|
2
|
Latosińska JN, Latosińska M, Seliger J, Žagar V, Apih T, Grieb P. Elucidating the Role of Noncovalent Interactions in Favipiravir, a Drug Active against Various Human RNA Viruses; a 1H- 14N NQDR/Periodic DFT/QTAIM/RDS/3D Hirshfeld Surfaces Combined Study. Molecules 2023; 28:molecules28083308. [PMID: 37110542 PMCID: PMC10147075 DOI: 10.3390/molecules28083308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Favipiravir (6-fluoro-3-hydroxypyrazine-2-carboxamide, FPV), an active pharmaceutical component of the drug discovered and registered in March 2014 in Japan under the name Avigan, with an indication for pandemic influenza, has been studied. The study of this compound was prompted by the idea that effective processes of recognition and binding of FPV to the nucleic acid are affected predominantly by the propensity to form intra- and intermolecular interactions. Three nuclear quadrupole resonance experimental techniques, namely 1H-14N cross-relaxation, multiple frequency sweeps, and two-frequency irradiation, followed by solid-state computational modelling (density functional theory supplemented by the quantum theory of atoms in molecules, 3D Hirshfeld Surfaces, and reduced density gradient) approaches were applied. The complete NQR spectrum consisting of nine lines indicating the presence of three chemically inequivalent nitrogen sites in the FPV molecule was detected, and the assignment of lines to particular sites was performed. The description of the nearest vicinity of all three nitrogen atoms was used to characterize the nature of the intermolecular interactions from the perspective of the local single atoms and to draw some conclusions on the nature of the interactions required for effective recognition and binding. The propensity to form the electrostatic N-H···O, N-H···N, and C-H···O intermolecular hydrogen bonds competitive with two intramolecular hydrogen bonds, strong O-H···O and very weak N-H···N, closing the 5-member ring and stiffening the structure, as well as π···π and F···F dispersive interactions, were analysed in detail. The hypothesis regarding the similarity of the interaction pattern in the solid and the RNA template was verified. It was discovered that the -NH2 group in the crystal participates in intermolecular hydrogen bonds N-H···N and N-H···O, in the precatalytic state only in N-H···O, while in the active state in N-H···N and N-H···O hydrogen bonds, which is of importance to link FVP to the RNA template. Our study elucidates the binding modes of FVP (in crystal, precatalytic, and active forms) in detail and should guide the design of more potent analogues targeting SARS-CoV-2. Strong direct binding of FVP-RTP to both the active site and cofactor discovered by us suggests a possible alternative, allosteric mechanism of FVP action, which may explain the scattering of the results of clinical trials or the synergistic effect observed in combined treatment against SARS-CoV-2.
Collapse
Affiliation(s)
| | - Magdalena Latosińska
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Janez Seliger
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Veselko Žagar
- "Jožef Stefan" Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Tomaž Apih
- "Jožef Stefan" Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Science, Adolfa Pawińskiego 5, 02-106 Warszawa, Poland
| |
Collapse
|
3
|
Latosińska JN, Latosińska M, Orzeszko A, Maurin JK. Synthesis and Crystal Structure of Adamantylated 4,5,6,7-Tetrahalogeno-1 H-benzimidazoles Novel Multi-Target Ligands (Potential CK2, M2 and SARS-CoV-2 Inhibitors); X-ray/DFT/QTAIM/Hirshfeld Surfaces/Molecular Docking Study. Molecules 2022; 28:147. [PMID: 36615341 PMCID: PMC9822452 DOI: 10.3390/molecules28010147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
A series of new congeners, 1-[2-(1-adamantyl)ethyl]-1H-benzimidazole (AB) and 1-[2-(1-adamantyl)ethyl]-4,5,6,7-tetrahalogeno-1H-benzimidazole (Hal=Cl, Br, I; tClAB, tBrAB, tIAB), have been synthesized and studied. These novel multi-target ligands combine a benzimidazole ring known to show antitumor activity and an adamantyl moiety showing anti-influenza activity. Their crystal structures were determined by X-ray, while intermolecular interactions were studied using topological Bader's Quantum Theory of Atoms in Molecules, Hirshfeld Surfaces, CLP and PIXEL approaches. The newly synthesized compounds crystallize within two different space groups, P-1 (AB and tIAB) and P21/c (tClAB and tBrAB). A number of intramolecular hydrogen bonds, C-H⋯Hal (Hal=Cl, Br, I), were found in all halogen-containing congeners studied, but the intermolecular C-H⋯N hydrogen bond was detected only in AB and tIAB, while C-Hal⋯π only in tClAB and tBrAB. The interplay between C-H⋯N and C-H⋯Hal hydrogen bonds and a shift from the strong (C-H⋯Cl) to the very weak (C-H⋯I) attractive interactions upon Hal exchange, supplemented with Hal⋯Hal overlapping, determines the differences in the symmetry of crystalline packing and is crucial from the biological point of view. The hypothesis about the potential dual inhibitor role of the newly synthesized congeners was verified using molecular docking and the congeners were found to be pharmaceutically attractive as Human Casein Kinase 2, CK2, inhibitors, Membrane Matrix 2 Protein, M2, blockers and Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2, inhibitors. The addition of adamantyl moiety seems to broaden and modify the therapeutic indices of the 4,5,6,7-tetrahalogeno-1H-benzimidazoles.
Collapse
Affiliation(s)
| | - Magdalena Latosińska
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Andrzej Orzeszko
- Institute of Chemistry, Warsaw University of Life Sciences, 159C Nowoursynowska St., 02-787 Warsaw, Poland
| | - Jan Krzysztof Maurin
- National Medicines Institute, Chełmska 30/34, 00-750 Warsaw, Poland
- National Centre for Nuclear Research, Andrzeja Sołtana 7, 05-400 Otwock-Świerk, Poland
| |
Collapse
|
4
|
Tiwari N, Chatterjee S, Kaswan K, Chung JH, Fan KP, Lin ZH. Recent advancements in sampling, power management strategies and development in applications for non-invasive wearable electrochemical sensors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Rozenberg M, Fausto R, Reva I. Variable temperature FTIR spectra of polycrystalline purine nucleobases and estimating strengths of individual hydrogen bonds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119323. [PMID: 33508682 DOI: 10.1016/j.saa.2020.119323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
In the first part of this work, we report the FTIR spectra of pure NH and isotopically substituted ND (10-15% D and 80-90% D) polycrystalline hypoxanthine, xanthine, adenine and guanine recorded in the 400-4000 cm-1 range, as a function of temperature (10-300 K). We provide assignments of the stretching and out-of-plane bending amine (NH2) and imine (NH) bands to the distinct H-bonds present in the crystal, based on the temperature sensitivity and isotopic exchange behavior. Empirical correlations between spectral and thermodynamic or structural parameters enabled us to estimate the energies and lengths of H-bonds in the studied nucleobase crystals and to correlate them with literature data. The empirical H-bonding energies are compared with H-bonding and stacking energies computed for hypoxanthine. In the second part, strategies for using the empirical correlations together with information extracted from quantum mechanical data (in particular from the Bader's quantum theory of atoms in molecules, QTAIM) for the evaluation of hydrogen bonding properties are discussed, and their advantages and drawbacks pointed out. The justification for a cooperative use of quantum-mechanical calculations with empirical spectra-energy correlations is discussed.
Collapse
Affiliation(s)
- M Rozenberg
- The Hebrew University of Jerusalem, Department of Inorganic and Analytical Chemistry, Jerusalem, Givat Ram 91904, Israel.
| | - R Fausto
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - I Reva
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal.
| |
Collapse
|
6
|
Ponnaiah SK, Periakaruppan P, Vellaichamy B. New Electrochemical Sensor Based on a Silver-Doped Iron Oxide Nanocomposite Coupled with Polyaniline and Its Sensing Application for Picomolar-Level Detection of Uric Acid in Human Blood and Urine Samples. J Phys Chem B 2018; 122:3037-3046. [DOI: 10.1021/acs.jpcb.7b11504] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Seliger J, Žagar V, Apih T, Gregorovič A, Latosińska M, Olejniczak GA, Latosińska JN. Polymorphism and disorder in natural active ingredients. Low and high-temperature phases of anhydrous caffeine: Spectroscopic (1H–14N NMR–NQR/14N NQR) and solid-state computational modelling (DFT/QTAIM/RDS) study. Eur J Pharm Sci 2016; 85:18-30. [DOI: 10.1016/j.ejps.2016.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/06/2016] [Accepted: 01/24/2016] [Indexed: 10/22/2022]
|
8
|
Veinberg SL, Johnston KE, Jaroszewicz MJ, Kispal BM, Mireault CR, Kobayashi T, Pruski M, Schurko RW. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs. Phys Chem Chem Phys 2016; 18:17713-30. [DOI: 10.1039/c6cp02855a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
14N and 15N solid-state NMR at natural abundance are used in tandem for the investigation of pharmaceuticals and their polymorphs.
Collapse
Affiliation(s)
| | | | | | - Brianna M. Kispal
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | | | | | - Marek Pruski
- U.S. DOE Ames Laboratory
- Iowa State University
- Ames
- USA
- Department of Chemistry
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| |
Collapse
|
9
|
Latosińska JN, Latosińska M, Szafrański M, Seliger J, Žagar V, Burchardt DV. Impact of structural differences in carcinopreventive agents indole-3-carbinol and 3,3'-diindolylmethane on biological activity. An X-ray, ¹H-¹⁴N NQDR, ¹³C CP/MAS NMR, and periodic hybrid DFT study. Eur J Pharm Sci 2015; 77:141-53. [PMID: 26066413 DOI: 10.1016/j.ejps.2015.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
Abstract
Three experimental techniques (1)H-(14)N NQDR, (13)C CP/MAS NMR and X-ray and Density Functional Theory (GGA/BLYP with PBC) and Hirshfeld surfaces were applied for the structure-activity oriented studies of two phyto-antioxidants and anticarcinogens: indole-3-carbinol, I3C, and 3,3'-diindolylmethane, DIM, (its bioactive metabolite). One set of (14)N NQR frequencies for DIM (2.310, 2.200 and 0.110 MHz at 295K) and I3C (2.315, 1.985 and 0.330 MHz at 160K) was recorded. The multiplicity of NQR lines recorded at RT revealed high symmetry (chemical and physical equivalence) of both methyl indazole rings of DIM. Carbonyl (13)C CSA tensor components were calculated from the (13)C CP/MAS solid state NMR spectrum of I3C recorded under fast and slow spinning. At room temperature the crystal structure of I3C is orthorhombic: space group Pca21, Z=4, a=5.78922(16), b=15.6434(7) and c=8.4405(2)Å. The I3C molecules are aggregated into ribbons stacked along [001]. The oxygen atomsare disorderedbetween the two sites of different occupancy factors. It implies that the crystal is built of about 70% trans and 30% gauche conformers, and apart from the weak OH⋯O hydrogen bonds (O⋯O=3.106Å) the formation of alternative O'H⋯O bonds (O'⋯O=2.785Å) is possible within the 1D ribbons. The adjacent ribbons are further stabilised by O'H⋯O bonds (O'⋯O=2.951Å). The analysis of spectra and intermolecular interactions pattern by experimental techniques was supported by solid (periodic) DFT calculations. The knowledge of the topology and competition of the interactions in crystalline state shed some light on the preferred conformations of CH2OH in I3C and steric hindrance of methyl indole rings in DIM. A comparison of the local environment in gas phase and solid permitted drawing some conclusions on the nature of the interactions required for effective processes of recognition and binding of a given anticarcinogen to the protein or nucleic acid.
Collapse
Affiliation(s)
| | - Magdalena Latosińska
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Marek Szafrański
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Janez Seliger
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia; "Jozef Stefan" Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Veselko Žagar
- "Jozef Stefan" Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Dorota V Burchardt
- Department of Paediatric Dentistry, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznań, Poland
| |
Collapse
|
10
|
Latosińska JN, Latosińska M, Olejniczak GA, Seliger J, Žagar V. Topology of the Interactions Pattern in Pharmaceutically Relevant Polymorphs of Methylxanthines (Caffeine, Theobromine, and Theophiline): Combined Experimental (1H–14N Nuclear Quadrupole Double Resonance) and Computational (DFT and Hirshfeld-Based) Study. J Chem Inf Model 2014; 54:2570-84. [DOI: 10.1021/ci5004224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Janez Seliger
- “Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty
of Mathematics and Physics, University of Ljubljana, Jadranska
19, 1000 Ljubljana, Slovenia
| | - Veselko Žagar
- “Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|