1
|
Zhao L, Yao W, Zhu Y, Huang J, Wang H, Jin L. Mechanism and kinetics of thermal decomposition of decabromobiphenyl: Reaction with reactive radicals and formation chemistry of polybrominated dibenzofurans. ENVIRONMENTAL RESEARCH 2024; 263:120061. [PMID: 39326652 DOI: 10.1016/j.envres.2024.120061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Although the production and usage of polybrominated biphenyls (PBBs) as brominated flame retardants have already been prohibited, they still pose a threat to the environment and human health. However, the evolutionary behaviors and decomposition mechanisms of PBBs during thermal treatment of waste remain unclear. In the present work, the mechanism and kinetics of thermal decomposition of decabromobiphenyl (deca-BB), one of the most frequently-used PBB congeners, are studied in detail using quantum chemical calculations. Results indicate that the high bond dissociation energies and large energy gap of deca-BB make its self-decomposition reaction difficult to occur, while its reactions with several reactive radicals (including hydrogen, bromine, and hydroxyl radicals) in the combustion environment are universally carried out at low energy barriers. Hydrogen, bromine, and hydroxyl radicals all exhibit a high selectivity for the para-C/Br atoms of deca-BB, resulting in the generation of several debromination products or intermediates. This study also investigates the formation mechanism of polybrominated dibenzofurans (PBDFs) from deca-BB and the effect of polymeric materials on this process. We found that the oxidation of ortho-phenyl-type radical, followed by evolution into PBDFs, is a very exothermic and relatively low-barrier process. Thus, the emergence of ortho-phenyl-type radicals from the loss of ortho-Br atoms is a critical step in the formation of PBDFs. Influence of polymeric materials on the formation of PBDFs is reflected in that various alkyl radicals and diradicals produced by their decomposition can readily abstract ortho-Br atoms to generate ortho-phenyl-type radicals, thus facilitating the formation of PBDFs. The mechanistic pathways and kinetic parameters presented in this study can offer theoretical guidance for controlling contaminant emissions in the thermal treatment of deca-BB-containing waste.
Collapse
Affiliation(s)
- Lufang Zhao
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Wang Yao
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yan Zhu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Jinbao Huang
- Engineering Training Center, Guizhou Minzu University, Guiyang 550025, China.
| | - Hong Wang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China.
| | - Li Jin
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
2
|
Zhang KH, Bao LJ, Wang Y, Yang HM, Gao Y, Tang C, Wu CC, Zeng EY. Effects of polymer matrix and temperature on pyrolysis of tetrabromobisphenol A: Product profiles and transformation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134806. [PMID: 38850946 DOI: 10.1016/j.jhazmat.2024.134806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Plastics are crucial constituents in electronic waste (e-waste) and part of the issue in e-waste recycling and environmental protection. However, previous studies have mostly focused on plastic recovery or thermal behavior of flame retardants, but not both simultaneously. The present study simulated the process of e-waste thermal treatment to explore tetrabromobisphenol A (TBBPA) pyrolysis at various temperatures using polystyrene (PS), polyvinyl chloride (PVC), and e-waste plastics as polymer matrices. Pyrolysis of TBBPA produced bromophenol, bromoacetophenone, bromobenzaldehyde, and bromobisphenol A. Co-pyrolysis with the polymer matrices increased emission factors by 1 - 2 orders of magnitude. The pyrolytic products of TBBPA, TBBPA+PS, and TBBPA+PVC were mainly low-brominated bisphenol A, while that of TBBPA in e-waste plastics was consistently bromophenol. Increasing temperature drove up the proportions of gaseous and particulate products, but lowered the relative abundances of inner wall adsorbed and residual products in pyrolysis of pure TBBPA. In co-pyrolysis of TBBPA with polymer matrix, the proportions of products in different phases were no longer governed solely by temperature, but also by polymer matrix. Co-pyrolysis of TBBPA with PS generated various bromophenols, while that with PVC produced chlorophenols and chlorobrominated bisphenol A. Transformation pathways, deduced by ab initio calculations, include hydrogenation-debromination, isopropylphenyl bond cleavage, oxidation, and chlorination.
Collapse
Affiliation(s)
- Kai-Hui Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China; Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yu Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Han-Ming Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Caiming Tang
- Laboratory of Advanced Analytical Chemistry and Detection Technology, Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China; Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Eddy Y Zeng
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Ma C, Kumagai S, Saito Y, Yoshioka T, Huang X, Shao Y, Ran J, Sun L. Recent Advancements in Pyrolysis of Halogen-Containing Plastics for Resource Recovery and Halogen Upcycling: A State-of-the-Art Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1423-1440. [PMID: 38197317 DOI: 10.1021/acs.est.3c09451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Plastic waste has emerged as a serious issue due to its impact on environmental degradation and resource scarcity. Plastic recycling, especially of halogen-containing plastics, presents challenges due to potential secondary pollution and lower-value implementations. Chemical recycling via pyrolysis is the most versatile and robust approach for combating plastic waste. In this Review, we present recent advancements in halogen-plastic pyrolysis for resource utilization and the potential pathways from "reducing to recycling to upcycling" halogens. We emphasize the advanced management of halogen-plastics through copyrolysis with solid wastes (waste polymers, biomass, coal, etc.), which is an efficient method for dealing with mixed wastes to obtain high-value products while reducing undesirable substances. Innovations in catalyst design and reaction configurations for catalytic pyrolysis are comprehensively evaluated. In particular, a tandem catalysis system is a promising route for halogen removal and selective conversion of targeted products. Furthermore, we propose novel insights regarding the utilization and upcycling of halogens from halogen-plastics. This includes the preparation of halogen-based sorbents for elemental mercury removal, the halogenation-vaporization process for metal recovery, and the development of halogen-doped functional materials for new materials and energy applications. The reutilization of halogens facilitates the upcycling of halogen-plastics, but many efforts are needed for mutually beneficial outcomes. Overall, future investigations in the development of copyrolysis and catalyst-driven technologies for upcycling halogen-plastics are highlighted.
Collapse
Affiliation(s)
- Chuan Ma
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Shogo Kumagai
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuko Saito
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Toshiaki Yoshioka
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Xin Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yunlin Shao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jingyu Ran
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Lushi Sun
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Zhang Y, Zhou C, Liu Y, Qu J, Ali Siyal A, Yao B, Dai J, Liu C, Chao L, Chen L, Wang L. The fate of bromine during microwave-assisted pyrolysis of waste printed circuit boards. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 173:160-171. [PMID: 37992535 DOI: 10.1016/j.wasman.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Bromine control is imperative for efficient treatment and products utilization during pyrolysis of waste printed circuit boards (WPCBs). This study investigated Br-species in products from microwave-assisted auger pyrolysis of WPCBs, and discussed synergetic evolution mechanisms, release kinetics and thermodynamics of Br-containing pollutants with different kinds of mineral species (alkaline earth, alkali, and transition metals). Results indicated that heavy Br-containing volatiles release (e.g., brominated phenols) was dominated at 320-520 °C. Brominated phenols released Br* to react with small-molecule groups to form light Br-containing products (e.g., HBr, CH3Br, and CH3CH2Br) at >520 °C. K2CO3 efficiently suppressed Br-containing pollutants emissions (∼50% reduction) and promoted bromine fixation in char (∼33.49% increase). With K2CO3 addition, bromine evolution mechanism is largely dehydrobromination and neutralization reactions when bromine bonds with aliphatic carbon with an adjacent aliphatic hydrogen. Negatively charged oxygen of K2CO3 attacks bromine and causes C-Br scission when bromine bonds with CH3* or aromatic carbon. The chemical reaction models (CRM3-CRM5) are best fitted with bromine evolution and the activation energy of WPCBs-KC reached the lowest (149.83-192.19 kJ/mol). Furthermore, bromine control strategy in WPCBs pyrolysis products toward environmental and economic sustainability were suggested, which created less environmental impact and maximum resource recovery.
Collapse
Affiliation(s)
- Yingwen Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunbao Zhou
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yang Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junshen Qu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Asif Ali Siyal
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bang Yao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianjun Dai
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chenglong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Chao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Chen
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Wang
- Systematic Engineering Center, JIHUA Group Co., Ltd., Beijing 100070, China
| |
Collapse
|
5
|
Ge X, Hashmi MZ, Lin S, Qi Z, Yu Y, An T. Emission characteristics of (halogenated) polycyclic aromatic hydrocarbons during printed circuit board combustion and estimated emission intensity of a typical e-waste dismantling site in South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122162. [PMID: 37429487 DOI: 10.1016/j.envpol.2023.122162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
The pollution of polycyclic aromatic hydrocarbons (PAHs) and halogenated PAHs (Cl/Br-PAHs) caused by electronic waste dismantling activities have attracted considerable attention. The present study investigated the emissions and formation of PAHs and Cl/Br-PAHs based on the combustion of printed circuit boards simulating electronic waste dismantling process. The emission factor of ΣPAHs was 648 ± 56 ng/g, which was much lower than that of ΣCl/Br-PAHs (8.80 × 104 ± 9.14 × 103 ng/g). From 25 to 600 °C, the emission rate of ΣPAHs reached a sub-peak of 7.39 ± 1.85 ng/(g•min) at 350 °C, then increased gradually with the fastest rate of 19.9 ± 21.8 ng/(g•min) at 600 °C, whereas that of ΣCl/Br-PAHs was the fastest at 350 °C with a rate of 597 ± 106 ng/(g•min), then decreased gradually. The present study suggested that the formation pathways of PAHs and Cl/Br-PAHs are by de novo synthesis. Low molecular weight PAHs were readily partitioned into gas and particle phases, whereas high molecular weight fused PAHs were only detected in oil phase. However, the proportion of Cl/Br-PAHs in particle and oil phases were different from that of gas phase, whereas similar to that of the total emission. In addition, PAH and Cl/Br-PAH emission factors were used to estimate the emission intensity of pyrometallurgy project in Guiyu Circular Economy Industrial Park, and it was shown that approximately 1.30 kg PAHs and 176 kg Cl/Br-PAHs would be emitted annually. This study revealed that Cl/Br-PAHs would be formed by de novo synthesis, and for the first time provided the emission factors of Cl/Br-PAHs during the heat treatment process of printed circuit board, as well as estimated the contribution of pyrometallurgy, a new electronic waste recovery technology, to environmental Cl/Br-PAH pollution, which provides potential scientific information for governmental decision-making on the control of Cl/Br-PAHs.
Collapse
Affiliation(s)
- Xiang Ge
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | | | - Shuo Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
6
|
Wang Y, Huang J, Li S, Xu W, Wang H, Xu W, Li X. A mechanistic and kinetic investigation on the oxidative thermal decomposition of decabromodiphenyl ether. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121991. [PMID: 37328125 DOI: 10.1016/j.envpol.2023.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The thermal processes of materials containing decabromodiphenyl ether (BDE-209) normally result in the exposure of BDE-209 to high-temperature environments, generating a series of hazardous compounds. However, the evolution mechanisms of BDE-209 during oxidative thermal processes remain unclear. Thus, this paper presents a detailed investigation on the oxidative thermal decomposition mechanism of BDE-209 by utilizing density functional theory methods at the M06/cc-pVDZ theoretical level. The results show that the barrierless fission of the ether linkage dominates the initial degradation of BDE-209 at all temperatures, with branching ratio over 80%. The decomposition of BDE-209 in oxidative thermal processes is mainly along BDE-209 → pentabromophenyl and pentabromophenoxy radicals → pentabromocyclopentadienyl radicals → brominated aliphatic products. Additionally, the study results on the formation mechanisms of several hazardous pollutants indicate that the ortho-phenyl-type radicals created by ortho-C-Br bond fission (branching ratio reached 15.1% at 1600 K) can easily be converted into octabrominated dibenzo-p-dioxin and furan, which require overcoming the energy barriers of 99.0 and 48.2 kJ/mol, respectively. The O/ortho-C coupling of two pentabromophenoxy radicals also acts as a non-negligible pathway for the formation of octabrominated dibenzo-p-dioxin. The synthesis of octabromonaphthalene involves the self-condensation of pentabromocyclopentadienyl radicals, followed by an intricately intramolecular evolution. Results presented in this study can enhance our understanding of the transformation mechanism of BDE-209 in thermal processes, and offer an insight into controlling the emissions of hazardous pollutants.
Collapse
Affiliation(s)
- Yao Wang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Jinbao Huang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Sijia Li
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Weifeng Xu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Hong Wang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Weiwei Xu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Xinsheng Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
7
|
Kuttiyathil MS, Ali L, Ahmed OH, Altarawneh M. Combating toxic emissions from thermal recycling of polymeric fractions laden with novel brominated flame retardants (NBFRs) in e-waste: an in-situ approach using Ca(OH) 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98300-98313. [PMID: 37606772 DOI: 10.1007/s11356-023-29428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Legacy brominated flame retardants (BFRs) in printed circuit boards are gradually being replaced by novel BFRs (NBFRs). Safe disposal and recycling of polymeric constituents in the polymeric fractions of e-waste necessitate the removal of their toxic and corrosive bromine content. This is currently acquired through thermal recycling operations involving the pyrolysis of BFRs-containing materials with metal oxides. Nonetheless, the debromination capacity toward NBFRs is yet to be established. Thus, this study aims to address these two crucial gaps in the current knowledge pertaining to the plausible formation of brominated toxicants from the thermal decomposition of NBFRs and their thermal recycling potential. Herein, we investigate the pyrolysis of a mixture of 2,4,6-tribromophenol (TBP), allyl 2,4,6-tribromophenyl ether (ATE) and Tetrabromobisphenol A-bis (2,3-dibromo propyl ether) (TBBPA-DBPE) in the presence of acrylonitrile butadiene styrene (ABS) polymers at various loads. To demonstrate a viable debromination route, pyrolysis of NBFRs-ABS mixture with Ca(OH)2 was also investigated. The latter is a potent debromination agent for legacy BFRs. Upon pyrolysis with Ca(OH)2, the bromine content in the collected oil was reduced up to 80.49% between 25-500 °C. Products of the co-pyrolysis process generally feature non-brominated aromatic and aliphatic compounds; a finding that indicates an effective thermal recycling approach. As evident by IC measurements, no HBr emission could be detected when Ca(OH)2 is added to the mixture. As XRD patterns show, Ca(OH)2 is partially converted into CaBr2. DFT calculations provide pathways for the observed surface debromination characterized by surface-assisted fission of aromatic C-Br bonds and the formation of CaBr sites. Outcomes reported herein are instrumental to designing and operating a thermal recycling facility of polymeric materials contaminated with high loads of bromine, i.e., most notably during scenarios encountered in the thermal recycling of e-waste.
Collapse
Affiliation(s)
- Mohamed Shafi Kuttiyathil
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, 15551, Al-Ain, United Arab Emirates
| | - Labeeb Ali
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, 15551, Al-Ain, United Arab Emirates
| | - Oday H Ahmed
- Department of Physics, College of Education, Al- Iraqia University, Baghdad, Iraq
| | - Mohammednoor Altarawneh
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
8
|
Chen Y, Ke Y, Liang S, Hu J, Hou H, Yang J. Enhanced bromine fixation and tar lightweighting in co-pyrolysis of non-metallic fractions of waste printed circuit boards with Bayer red mud. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 162:72-82. [PMID: 36948115 DOI: 10.1016/j.wasman.2023.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/12/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
A co-pyrolysis process for non-metallic fractions (NMFs) from WPCBs with Bayer red mud (RM) is proposed to upgrade pyrolysis products in this study. High bromine fixation efficiency was realized, and higher content of lightweight pyrolysis tar was obtained. The mechanism of catalytic pyrolysis and simultaneous bromine fixation of NMFs by RM was investigated by experiments and theoretical calculations. The three inorganic components of Fe2O3, CaCO3 and Al2O3 in RM played key roles in the catalytic pyrolysis of NMFs, and their order of catalytic debromination effect was CaCO3 > Fe2O3 > Al2O3. By adding 15 wt% RM, the pyrolysis solid residue could fix 89.55 wt% bromine, compared with 35.42 wt% of NMFs without adding RM, due to the formation of FeBr2 and CaBr2 from Fe2O3 and CaCO3 in RM, respectively. Tar lightweighting was realized by reducing the energy barrier of the direct decomposition of tetrabromobisphenol A (TBBPA) in NMFs. The order of effect of the three key components on the tar lightweighting was Fe2O3 > Al2O3 > CaCO3. The content of lightweight tar in the tar obtained by catalytic pyrolysis of NMFs with 15 wt% RM was 44.29% higher than that in the tar obtained by direct pyrolysis of NMFs. This work provides a theoretical guidance for the low-cost and eco-friendly recycling of e-wastes by co-pyrolysis with RM.
Collapse
Affiliation(s)
- Ye Chen
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Disposal and Recycling Technology of Solid Waste, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yan Ke
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Disposal and Recycling Technology of Solid Waste, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Disposal and Recycling Technology of Solid Waste, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Disposal and Recycling Technology of Solid Waste, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Disposal and Recycling Technology of Solid Waste, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Disposal and Recycling Technology of Solid Waste, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
9
|
Mu X, Wang Y, Huang J, Lan L, Wang H, Xu W, Li X. Investigation on the formation mechanism of main products from TBBPA pyrolysis using DFT method. CHEMOSPHERE 2023; 320:138045. [PMID: 36736836 DOI: 10.1016/j.chemosphere.2023.138045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The formation mechanisms of the main pyrolysis products of tetrabromobisphenol A (TBBPA) such as hydrogen bromide (HBr), bisphenol A compounds, and phenolic compounds were studied through using density functional theory (DFT) method at the theoretical level of B3P86/6-311 + G (d,p), and the effects of H and Br radicals on the formation mechanism of each product were analyzed. For the formation of each pyrolysis product, this paper presented various possible reaction pathways and acquired their thermodynamic parameters. Calculation results show that HBr can be produce. d continuously during the pyrolysis of TBBPA, and combination and abstraction reactions are the main ways for the generation of HBr. Br radical can abstract H atom from the phenolic hydroxyl groups of TBBPA to produce HBr, and this reaction is barrierless. When H radicals are involved in the initial reaction, the significance of the keto-enol tautomerism is negligible at all debrominations. The Br atom abstraction by H radical is the optimal pattern for debromination. TBBPA can be transformed into low-brominated bisphenol A through consecutive hydrodebromination reactions with trivial activation energies of 8.7-9.5 kJ/mol. The demethylation reaction is an initiation reaction for monomolecular pyrolysis of TBBPA and low-brominated bisphenol A, which is beneficial to the formation of phenolic compounds. During the pyrolysis of TBBPA, para-position Br atom of polybrominated phenol is easier to be removed and the energy barriers of rate-determining steps of the optimal reaction paths for the formation of 2,4,6-tribromophenol, 2,6-dibromophenol, 2,4-dibromophenol, 2-bromophenol, 4-bromophenol and phenol are 108.8, 7.6, 8.7, 8.1, 9.5, and 8.7 kJ/mol, respectively.
Collapse
Affiliation(s)
- Xin Mu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Yao Wang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Jinbao Huang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Lin Lan
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Hong Wang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Weiwei Xu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Xinsheng Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
10
|
Ali L, Sivaramakrishnan K, Kuttiyathil MS, Chandrasekaran V, Ahmed OH, Al-Harahsheh M, Altarawneh M. Degradation of tetrabromobisphenol A (TBBA) with calcium hydroxide: a thermo-kinetic analysis. RSC Adv 2023; 13:6966-6982. [PMID: 36865571 PMCID: PMC9973547 DOI: 10.1039/d2ra08223c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
Thermal treatment of bromine-contaminated polymers (i.e., as in e-waste) with metal oxides is currently deployed as a mainstream strategy in recycling and resources recovery from these objects. The underlying aim is to capture the bromine content and to produce pure bromine-free hydrocarbons. Bromine originates from the added brominated flame retardants (BFRs) to the polymeric fractions in printed circuits boards, where tetrabromobisphenol A (TBBA) is the most utilized BFR. Among notable deployed metal oxides is calcium hydroxide, i.e., Ca(OH)2 that often displays high debromination capacity. Comprehending thermo-kinetic parameters that account for the BFRs:Ca(OH)2 interaction is instrumental to optimize the operation at an industrial scale. Herein, we report comprehensive kinetics and thermodynamics studies into the pyrolytic and oxidative decomposition of a TBBA:Ca(OH)2 mixture at four different heating rates, 5, 10, 15, and 20 °C min-1, carried out using a thermogravimetric analyser. Fourier Transform Infrared Spectroscopy (FTIR) and a carbon, hydrogen, nitrogen, and sulphur (CHNS) elemental analyser established the vibrations of the molecules and carbon content of the sample. From the thermogravimetric analyser (TGA) data, the kinetic and thermodynamic parameters were evaluated using iso-conversional methods (KAS, FWO, and Starink), which were further validated by the Coats-Redfern method. The computed activation energies for the pyrolytic decomposition of pure TBBA and its mixture with Ca(OH)2 reside in the narrow ranges of 111.7-112.1 kJ mol-1 and 62.8-63.4 kJ mol-1, respectively (considering the various models). Obtained negative ΔS values suggest the formation of stable products. The synergic effects of the blend exhibited positive values in the low-temperature ranges (200-300 °C) due to the emission of HBr from TBBA and the solid-liquid bromination process occurring between TBBA and Ca(OH)2. From a practical point of view, data provided herein are useful in efforts that aim to fine-tune operational conditions encountered in real recycling scenarios, i.e., in co-pyrolysis of e-waste with Ca(OH)2 in rotary kilns.
Collapse
Affiliation(s)
- Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum EngineeringSheikh Khalifa bin Zayed StreetAl-Ain 15551United Arab Emirates
| | - Kaushik Sivaramakrishnan
- United Arab Emirates University, Department of Chemical and Petroleum EngineeringSheikh Khalifa bin Zayed StreetAl-Ain 15551United Arab Emirates
| | - Mohamed Shafi Kuttiyathil
- United Arab Emirates University, Department of Chemical and Petroleum EngineeringSheikh Khalifa bin Zayed StreetAl-Ain 15551United Arab Emirates
| | | | - Oday H. Ahmed
- Department of Physics, College of Education, Al-Iraqia UniversityBaghdadIraq
| | - Mohammad Al-Harahsheh
- Chemical Engineering Department, Jordan University of Science and TechnologyIrbid 22110Jordan
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum EngineeringSheikh Khalifa bin Zayed StreetAl-Ain 15551United Arab Emirates
| |
Collapse
|
11
|
Wang M, Liu G, Yang L, Zheng M. Framework of the Integrated Approach to Formation Mechanisms of Typical Combustion Byproducts─Polyhalogenated Dibenzo- p-dioxins/Dibenzofurans (PXDD/Fs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2217-2234. [PMID: 36722466 DOI: 10.1021/acs.est.2c08064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the mechanisms through which persistent organic pollutants (POPs) form during combustion processes is critical for controlling emissions of POPs, but the mechanisms through which most POPs form are poorly understood. Polyhalogenated dibenzo-p-dioxins and dibenzofurans (PXDD/Fs) are typical toxic POPs, and the formation mechanisms of PXDD/Fs are better understood than the mechanisms through which other POPs form. In this study, a framework for identifying detailed PXDD/Fs formation mechanisms was developed and reviewed. The latest laboratory studies in which organic free radical intermediates of PXDD/Fs have been detected in situ and isotope labeling methods have been used to trace transformation pathways were reviewed. These studies provided direct evidence for PXDD/Fs formation pathways. Quantum chemical calculations were performed to determine the rationality of proposed PXDD/Fs formation pathways involving different elementary reactions. Many field studies have been performed, and the PXDD/Fs congener patterns found were compared with PXDD/Fs congener patterns obtained in laboratory simulation studies and theoretical studies to mutually verify the dominant PXDD/Fs formation mechanisms. The integrated method involving laboratory simulation studies, theoretical calculations, and field studies described and reviewed here can be used to clarify the mechanisms involved in PXDD/Fs formation. This review brings together information about PXDD/Fs formation mechanisms and provides a methodological framework for investigating PXDD/Fs and other POPs formation mechanisms during combustion processes, which will help in the development of strategies for controlling POPs emissions.
Collapse
Affiliation(s)
- Mingxuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, People's Republic of China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, People's Republic of China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, People's Republic of China
| |
Collapse
|
12
|
Wang Y, Huang J, Wang H, Lan L, Mu X, Xu W, Lv S, Li X. Theoretical study on pyrolysis mechanism of decabromodiphenyl ether (BDE-209) using DFT method. CHEMOSPHERE 2023; 310:136904. [PMID: 36265714 DOI: 10.1016/j.chemosphere.2022.136904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Decabromodiphenyl ether (BDE-209), as a brominated flame retardant (BFR), is widely applied to various consumer products due to its superior performance and affordable pricing to improve the flame resistance of materials. To better comprehend the pyrolysis behavior of BDE-209 and the evolution process of main pyrolysis products, the thermal degradation mechanism of BDE-209 was studied using density functional theory (DFT) method at the theoretical level of M06/cc-pVDZ, and thermodynamic parameters were calculated in this paper. Unimolecular degradation was dominated by cleavage of the ether linkage, which results in a high yield of hexabromobenzene, and fission of the ortho-position C-Br bond is the main competitive reaction channel. In the system of BDE-209 + H, the pyrolysis reaction is majorly characterized by debromination, leading to the formation of considerable HBr and low-brominated diphenyl ethers. Additionally, the hydrogen-derived splitting of the ether bond acts as a mainly competitive channel, which is the source of polybromophenols and polybromobenzenes. The formation of polybrominated dibenzofuran (PBDF) derives from the cyclization reaction of ortho-phenyl-type radicals, which are readily generated through the ortho-position Br atom abstraction by H radical. The formation of polybrominated dibenzo-p-dioxin (PBDD) involves the ortho-C-O coupling reaction of polybromophenoxy radicals, debromination reaction, and cyclization reaction. And the total yield of PBDD/Fs was significantly increased when H was involved. Results presented in this work will provide the helpful information for the treatment and reuse of BDE-209-containing waste plastics through using pyrolysis technology.
Collapse
Affiliation(s)
- Yao Wang
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Jinbao Huang
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Hong Wang
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Lin Lan
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Xin Mu
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Weiwei Xu
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Shanjin Lv
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Xinsheng Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
13
|
Ali L, Shafi Kuttiyathil M, Altarawneh M. Oxidative and pyrolytic decomposition of an evaporated stream of 2,4,6-tribromophenol over hematite: A prevailing scenario during thermal recycling of e-waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:283-292. [PMID: 36308795 DOI: 10.1016/j.wasman.2022.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Brominated flame retardants (BFRs) constitute a major load in the polymeric fraction of e-waste. Degradation of BFRs-laden plastics over transition metal oxides is currently deployed as a mainstream strategy in the disposal and treatment of the non-metallic segment of e-waste. However, interaction of pyrolysis's products of BFRs with transition metal oxides is well-known to facilitate the formation of notorious pollutants. Despite recent progress to comprehend the germane chemistry of this interaction, several important pertinent aspects remain to be addressed. To fill in this gap, an integrated experimental and simulation account of the pyrolytic and oxidative decomposition of a gaseous stream of 2,4,6-tribromophenol (TBP) over hematite (Fe2O3) has been reported herein. TBP is utilized as a model compounds of BFRs as their most common formulations include brominated phenolic rings. Overall, hematite entails a rather low cracking capacity under pyrolytic conditions. Analysis of condensate products indicates that oxidative degradation of a gaseous stream of TBP results mainly in the formation of brominated alkanes such as bromoethane and bromo-pentane. Likewise, Ion chromatography (IC) measurements disclosed a noticeable reduction in the concentrations of escaped HBr. Transformation of iron oxides into iron bromides (possibly in the form of FeBr2) during pyrolysis and combustion operations is evident through XRD measurements. Density functional theory (DFT) calculations map out important reactions pathways that operate in the initial degradation of the TBP molecule. From a broader perspective, outlined results shall be instrumental to precisely assess the effectiveness of using iron oxides in thermal catalytic recycling of e-waste and the likely emission of brominated toxicants.
Collapse
Affiliation(s)
- Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Mohamed Shafi Kuttiyathil
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
14
|
Rani M, Sillanpää M, Shanker U. An updated review on environmental occurrence, scientific assessment and removal of brominated flame retardants by engineered nanomaterials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115998. [PMID: 36001915 DOI: 10.1016/j.jenvman.2022.115998] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Due to the extensive manufacturing and use of brominated flame retardants (BFRs), they are known to be hazardous, bioaccumulative, and recalcitrant pollutants in various environmental matrices. BFRs make flame-resistant items for industrial purposes (textiles, electronics, and plastics equipment) that are disposed of in massive amounts and leak off in various environmental matrices. The consumption of plastic items has expanded tremendously during the COVID-19 pandemic which has resulted into the increasing load of solid waste on land and water. Some BFRs, such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDs), are no longer utilized or manufactured owing to their negative impacts, which promotes the utilization of new BFRs as alternatives. BFRs have been discovered worldwide in soil, sludge, water, and other contamination sources. Various approaches such as photocatalysis-based oxidation/reduction, adsorption, and heat treatment have been found to eradicate BFRs from the environment. Nanomaterials with unique properties are one of the most successful methodologies for removing BFRs via photocatalysis. These methods have been praised for being low-cost, quick, and highly efficient. Engineered nanoparticles degraded BFRs when exposed to light and either convert them into safer metabolites or completely mineralize. Scientific assessment of research taking place in this area during the past five years has been discussed. This review offers comprehensive details on environmental occurrence, toxicity, and removal of BFRs from various sources. Degradation pathways and different removal strategies related to data have also been presented. An attempt has also been made to highlight the research gaps prevailing in the current research area.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, 2028, South Africa
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India.
| |
Collapse
|
15
|
Gandon-Ros G, Aracil I, Gomez-Rico MF, Conesa JA. Debromination and Reusable Glass Fiber Recovery from Large Waste Circuit Board Pieces in Subcritical Water Treatment. ACS OMEGA 2022; 7:25422-25432. [PMID: 35910185 PMCID: PMC9330217 DOI: 10.1021/acsomega.2c02368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The great economic, social, and environmental interest that favors an effective management of the recycling of waste printed circuit boards (WCBs) encourages research on the improvement of processes capable of mitigating their harmful effects. In this work, the debromination of large WCBs was first performed through a hydrothermal process employing potassium carbonate as an additive. A total of 32 runs were carried out at 225 °C, various CO3 2-/Br- anionic ratios of 1:1, 2:1, 4:1, and 6:1, treatment times from 30 to 360 min, proportion of submerged WCBs in the liquid of 100, 50, and 25% that corresponded with the use of three WCB sizes of 20 mm × 16.5 mm, 20 mm × 33 mm, and 80 mm × 33 mm, respectively, and solid/liquid ratios of 1:2 and 1:1 g/mL without other metallic catalysts. A debromination efficiency of 50 wt % was reached at only 225 °C (limited by mechanical reasons) and 360 min, using a CO3 2-/Br- anionic ratio of 4:1 and a solid/liquid ratio of 1:2 for a large WCB with only 25% of its volume submerged in the liquid. This means conservation of water and energy compared to previous studies. A muffle furnace was used later to thermally treat a total of 101 debrominated samples, at constant temperature or following a temperature scaling program. An estimated decrease in resistance to rupture of glass fibers of only around 50% was accomplished by following a temperature scaling program up to 475 °C, obtaining clean glass fibers of large size. The simple techniques proposed to obtain reusable glass fibers from WCBs as large as the size of the reactor allows (as it might be in their original size) could significantly improve interest in the industry.
Collapse
Affiliation(s)
- Gerard Gandon-Ros
- Institute of Chemical Process Engineering, University of Alicante, P.O. Box 99, Alicante E-03080, Spain
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, Alicante E-03080, Spain
| | - Ignacio Aracil
- Institute of Chemical Process Engineering, University of Alicante, P.O. Box 99, Alicante E-03080, Spain
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, Alicante E-03080, Spain
| | - María Francisca Gomez-Rico
- Institute of Chemical Process Engineering, University of Alicante, P.O. Box 99, Alicante E-03080, Spain
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, Alicante E-03080, Spain
| | - Juan A Conesa
- Institute of Chemical Process Engineering, University of Alicante, P.O. Box 99, Alicante E-03080, Spain
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, Alicante E-03080, Spain
| |
Collapse
|
16
|
Exploring the Potential of Hematite as a Debromination Agent for 2,4,6-Tribromophenol. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Altarawneh M, Almatarneh MH, Dlugogorski BZ. Thermal decomposition of perfluorinated carboxylic acids: Kinetic model and theoretical requirements for PFAS incineration. CHEMOSPHERE 2022; 286:131685. [PMID: 34388878 DOI: 10.1016/j.chemosphere.2021.131685] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 05/27/2023]
Abstract
Thermal decomposition of high-fluorine content PFAS streams for the disposal of old generations of concentrates of firefighting foams, exhausted ion-exchanged resins and granular activated carbon, constitutes the preferred method for destruction of these materials. This contribution studies the thermal transformation of perfluoropentanoic acid (C4F9C(O)OH, PFPA), as a model PFAS species, in gas-phase reactions over broad ranges of temperature and residence time, which characterise incinerators and cement kilns. Our focus is only on gas-phase reactions, to formulate a gas-phase submodel that, in future, could be used in comprehensive simulation of thermal destruction of PFAS; such comprehensive models will need to comprise fluorine mineralisation on flyash and in clinker material. Our submodel consists of 56 reactions and 45 species, and includes new pathways that cover the initial decomposition channels of PFPA, including those that lead to the formation of the n-C4F9 radical, the abstraction of hydroxyl H by O/H radicals, the fragmentation of the n-C4F9 radical, reactions between HF and perfluoropentanoic acid, as well as between HF and heptafluorobutanoyl fluoride (C3F7COF), and the cyclisation reactions. The model illustrates the formation of a wide spectrum of small CnFm and CnHFm compounds in the temperature window of 800-1500 K, 2 and 25 s residence time in a plug flow reactor, providing theoretical estimates for the operating conditions of PFAS thermal destruction systems. The initiation reactions involve the loss of HF and formation of the transition α-lactone species that converts to C3F7COF, with C4F9C(O)OH completely decomposed at 1020 K for 2 s residence time. At 1500 K, we predict the emission of ꞉CF2 (biradical difluorocarbene), HF, CO2, CO, CF4, C2F6, and C2F4, but at < 1400 K, we note the formation of 1H-nonafluorobutane (C4HF9), phosgene (COF2), and heptafluorobutanoyl fluoride (C3F7COF), with 1-C4F8, 2-C4F8 and C3HF7 persisting to 1500 K. We demonstrate that, the gas-phase pyrolysis processes by themselves convert PFAS to HF and short-chain fluorocarbons, with similar product distribution for short (2 s) and long (25 s) residence times, as long as the treatment temperature exceeds 1500 K. These residence times reflect those encountered in incinerators and cement kilns, respectively. Thermokinetic and mechanistic insights revealed herein shall assist to innovate PFAS thermal disposal technologies, and, from a fundamental perspective, to accelerate research progress in modelling of gas/solid reactions that mineralise PFAS-derived fluorine.
Collapse
Affiliation(s)
- Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain, 15551, United Arab Emirates.
| | | | - Bogdan Z Dlugogorski
- Charles Darwin University, Energy and Resources Institute, Darwin, NT, 0909, Australia.
| |
Collapse
|
18
|
Ali L, A Mousa H, Al-Harahsheh M, Al-Zuhair S, Abu-Jdayil B, Al-Marzouqi M, Altarawneh M. Removal of Bromine from the non-metallic fraction in printed circuit board via its Co-pyrolysis with alumina. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 137:283-293. [PMID: 34823135 DOI: 10.1016/j.wasman.2021.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/07/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
The effectiveness of a recycling approach of the printed circuit board (PCBs), and, thus, the quality of polymeric constituents, primarily rests on the capacity to eliminate the bromine content (mainly as HBr). HBr is emitted in appreciable quantities during thermal decomposition of PCB-contained brominated flame retardants (BFRs). The highly corrosive, yet relatively reactive HBr, renders recovery of bromine-free hydrocarbons streams from brominated polymers in PCBs very challenging. Via combined experimental and theoretical frameworks, this study explores the potential of deploying alumina (Al2O3) as a debromination agent of Br-containing hydrocarbon fractions in PCBs. A consensus from a wide array of characterization techniques utilized herein (ICP-OES, IC, XRD, FTIR, SEM-EDX, and TGA) clearly demonstrates the transformation of alumina upon its co-pyrolysis with the non-metallic fractions of PCBs, into aluminum bromides and oxy-bromides. ICP-OES measurements disclose the presence of high concentration of Cu in the non-metallic fraction of PCB, along with minor levels of selected valuable metals. Likewise, elemental ionic analysis by IC demonstrates an elevated concentration of bromine in washed alumina-PCBs pyrolysates, especially at 500 °C. The Coats-Redfern model facilitates the derivation of thermo-kinetic parameters underpinning the thermal degradation of alumina-PCB mixtures. Density functional theory calculations (DFT) establish an accessible reaction pathway for the HBr uptake by the alumina surface, thus elucidating chemical reactions governing the observed alumina debromination activity. Findings from this study illustrate the capacity of alumina as a HBr fixation agent during the thermal treatment of e-waste.
Collapse
Affiliation(s)
- Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain 15551, United Arab Emirates
| | - Hussein A Mousa
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain 15551, United Arab Emirates
| | - Mohammad Al-Harahsheh
- Department of Chemical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Sulaiman Al-Zuhair
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain 15551, United Arab Emirates
| | - Basim Abu-Jdayil
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain 15551, United Arab Emirates
| | - Mohamed Al-Marzouqi
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain 15551, United Arab Emirates
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
19
|
Huang J, Mu X, Luo X, Meng H, Wang H, Jin L, Li X, Lai B. DFT studies on pyrolysis mechanisms of tetrabromobisphenol A (TBBPA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68817-68833. [PMID: 34282544 DOI: 10.1007/s11356-021-15426-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant. In order to better understand the decomposition process of TBBPA and clarify the evolution process of the main pyrolysis products, the density functional theory (DFT) method PBE0/6-311G(d) has been used to investigate the pyrolysis mechanisms of TBBPA in this study. Seven possible pyrolysis reaction paths were proposed, and the kinetic parameters in all pyrolysis paths were calculated. The calculation results indicate that in initial degradation of TBBPA without the involvement of hydrogen radical, the demethylation reaction is the main pyrolysis reaction channel, and the keto-enol tautomerization reaction is the main competitive pyrolysis reaction channel. The brominated cyclohexadienone formed through the keto-enol tautomerization is prone to further debromination to generate Br radical. The involvement of hydrogen radical significantly lowers the energy barrier of TBBPA decomposition. When a hydrogen radical is involved in the pyrolysis process, the debromination reaction becomes the major pyrolysis reaction channel, and the homolytic cleavage of Caromatic-C bond becomes the major competitive pyrolysis reaction channel.
Collapse
Affiliation(s)
- Jinbao Huang
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Xin Mu
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Xiaosong Luo
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Hanxian Meng
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Hong Wang
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Li Jin
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Xinsheng Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| | - Baosheng Lai
- Ningbo Shuanglin Mould Auto Parts Co. Ltd., Ningbo, 315613, China.
| |
Collapse
|
20
|
Pigłowska M, Kurc B, Galiński M, Fuć P, Kamińska M, Szymlet N, Daszkiewicz P. Challenges for Safe Electrolytes Applied in Lithium-Ion Cells-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6783. [PMID: 34832183 PMCID: PMC8619865 DOI: 10.3390/ma14226783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 01/29/2023]
Abstract
The aspect of safety in electronic devices has turned out to be a huge challenge for the world of science. Thus far, satisfactory power and energy densities, efficiency, and cell capacities have been achieved. Unfortunately, the explosiveness and thermal runaway of the cells prevents them from being used in demanding applications such as electric cars at higher temperatures. The main aim of this review is to highlight different electrolytes used in lithium-ion cells as well as the flammability aspect. In the paper, the authors present liquid inorganic electrolytes, composite polymer-ceramic electrolytes, ionic liquids (IL), polymeric ionic liquids, polymer electrolytes (solvent-free polymer electrolytes (SPEs), gel polymer electrolytes (GPEs), and composite polymer electrolytes (CPEs)), and different flame retardants used to prevent the thermal runaway and combustion of lithium-ion batteries (LIBs). Additionally, various flame tests used for electrolytes in LIBs have been adopted. Aside from a detailed description of the electrolytes consumed in LIBs. Last section in this work discusses hydrogen as a source of fuel cell operation and its practical application as a global trend that supports green chemistry.
Collapse
Affiliation(s)
- Marita Pigłowska
- Faculty of Chemical Technology, Institute of Chemistry and Electrochemistry, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (M.P.); (M.G.)
| | - Beata Kurc
- Faculty of Chemical Technology, Institute of Chemistry and Electrochemistry, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (M.P.); (M.G.)
| | - Maciej Galiński
- Faculty of Chemical Technology, Institute of Chemistry and Electrochemistry, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (M.P.); (M.G.)
| | - Paweł Fuć
- Faculty of Civil Engineering and Transport, Institute of Combustion Engines and Powertrains, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (P.F.); (M.K.); (N.S.); (P.D.)
| | - Michalina Kamińska
- Faculty of Civil Engineering and Transport, Institute of Combustion Engines and Powertrains, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (P.F.); (M.K.); (N.S.); (P.D.)
| | - Natalia Szymlet
- Faculty of Civil Engineering and Transport, Institute of Combustion Engines and Powertrains, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (P.F.); (M.K.); (N.S.); (P.D.)
| | - Paweł Daszkiewicz
- Faculty of Civil Engineering and Transport, Institute of Combustion Engines and Powertrains, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (P.F.); (M.K.); (N.S.); (P.D.)
| |
Collapse
|
21
|
Altarawneh M, Dlugogorski BZ. Low-temperature oxidation of monobromobenzene: Bromine transformation and yields of phenolic species. CHEMOSPHERE 2021; 280:130621. [PMID: 33964746 DOI: 10.1016/j.chemosphere.2021.130621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Brominated benzenes and phenols constitute direct precursors in the formation of bromine-bearing pollutants; most notably PBDD/Fs and other dioxin-type compounds. Elucidating accurate mechanisms and constructing robust kinetic models for the oxidative transformation of bromobenzenes and bromophenols into notorious Br-toxicants entail a comprehensive understanding of their initial oxidation steps. However, pertinent mechanistic studies, based on quantum chemical calculations, have only focused on secondary condensation reactions into PBDD/Fs and PBDEs. Literature provide kinetic parameters for these significant reactions, nonetheless, without attempting to compile the acquired Arrhenius coefficients into kinetic models. To fill in this gap, this study sets out to illustrate primary chemical phenomena underpinning the low-temperature combustion of a monobromobenzene molecule (MBZ) based on a detail chemical kinetic model. The main aim is to map out temperature-dependent profiles for major intermediates and products. The constructed kinetic model encompasses several sub-mechanisms (i.e, HBr and benzene oxidation, bromination of phenoxy radicals, and initial reaction of oxygen molecules with MBZ). In light of germane experimental observations, the formulated kinetic model herein offers an insight into bromine speciation, conversion profile of MBZ, and formation of higher brominated congeners of benzene and phenol. For instance, the model satisfactorily accounts for the yields of dibromophenols from oxidation of a 2-bromophenol (2-MBP) molecule, in reference to analogous experimental measurements. From an environmental perspective, the model reflects the accumulation of appreciable loads of 2-bromophenoxy radicals at intermediate temperatures (i.e., a bromine-containing environmental persistent free radical, EPFR) from combustion of MBZ and 2-MBP molecules. Acquired mechanistic/kinetic parameters shall be useful in comprehending the complex bromine transformation chemistry in real scenarios, most notably those prevailing in thermal recycling of brominated flame retardants (BFRs).
Collapse
Affiliation(s)
- Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates.
| | - Bogdan Z Dlugogorski
- Charles Darwin University, Office of Deputy Vice-Chancellor and Vice-President, Research & Innovation, Darwin, NT, 0909, Australia
| |
Collapse
|
22
|
Altarawneh M. A chemical kinetic model for the decomposition of perfluorinated sulfonic acids. CHEMOSPHERE 2021; 263:128256. [PMID: 33297201 DOI: 10.1016/j.chemosphere.2020.128256] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Perfluorinated sulfonic acids (such as perfluorooctanesulfonic, PFOS, and short-chain analogues) are notorious halogenated pollutants that exhibit severe toxicity, even at minute levels. Limited number of experimental studies addressed their thermal decomposition at elevated temperatures. Such scenarios are particularly relevant to open fires and incineration of materials laden with perfluoroalkyl compounds (PFCs). Herein, we construct a detail kinetic model that illustrates major chemical reactions underpinning initial degradation of 1-butanesulfonic acid (CF3(CF2)3SO2OH), as a model compound of PFOS, and perfluorinated sulfonic acids in general. Reaction rate parameters were estimated based on an accurate density functional theory (DFT) formalism. The kinetic model incorporates four sets of reactions, namely, unimolecular decomposition channels, hydrofluorination, hydrolysis, and fragmentation of the alkyl chain. Results are discussed considering recent experimental measurements. Temperature-dependent profiles for a large array of perfluoroalkyl acyl fluorides, short perfluorinated cuts, and perfluorinated cyclic compounds, are presented. SO2 emerges as the main sulfur carrier, with a minor contribution from SO3. HF addition to double carbon bonds in alkenes, and to carbonyl bonds in aldehydic structures signifies a major sink pathway for hydrogen fluoride. Addition of moisture was shown to expedite the destruction of relatively large perfluoroalkyl acyl fluorides into C1 species. Construction of this model could aid in a better understanding of the fate and chemical transformation of PFCs under a pyrolytic environment pertinent to waste incineration and fluorine mineralization.
Collapse
Affiliation(s)
- Mohammednoor Altarawneh
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
23
|
Altarawneh M, Saeed A, Siddique K, Jansson S, Dlugogorski BZ. Formation of polybrominated dibenzofurans (PBDFs) and polybrominated diphenyl ethers (PBDEs) from oxidation of brominated flame retardants (BFRs). JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123166. [PMID: 32574882 DOI: 10.1016/j.jhazmat.2020.123166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/22/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Brominated aromatic rings constitute main structural entities in virtually all commercially deployed brominated flame retardants (BFRs). Oxidative decomposition of BFRs liberates appreciable quantities of bromobenzenes (BBzs). This contribution reports experimental measurements for the generation of notorious polybrominated dibenzofurans (PBDFs) and polybrominated diphenyl ethers (PBDEs) from oxidation of monobromobenzene (MBBz). In the light of developed product profiles, we map out reaction pathways and report kinetic parameters for PBDFs and PBDEs formation from coupling reactions of MBBz molecule and its derived ortho-bromophenoxy (o-BPhxy) radical using quantum chemical calculations. The identification and quantitation of product species involve the use of gas chromatograph - triple quadrupole mass spectrometer (GC-QQQMS) operating in the multiple reaction monitoring (MRM) mode. Bimolecular reactions of MBBz and o-BPhxy result in the generation of twelve pre-PBDF intermediates, of which four can also serve as building blocks for the synthesis of PBDEs. These four intermediates are denoted as pre-PBDE/pre-PBDF, with the remaining eight symbolised as pre-PBDF. The resonance-stabilised structure of the o-BPhxy radical accumulates more spin density character on its phenoxy O atom (30.9 %) in reference to ortho-C and para-C sites. Thus, the formation of the pre-PBDE/pre-PBDF structures via O/o-C couplings advances faster as it requires lower activation enthalpies (79.2 - 84.9 kJ mol-1) than the pre-PBDF moieties, which arise via pairing reactions involving o-C(H or Br)/o-C(H or Br) sites (97.2 - 180.2 kJ mol-1). Kinetic analysis indicates that, the O/o-C pre-PBDE/pre-PBDF adducts self-eject the out-of-plane H atoms to produce PBDEs, rather than undergo a three-step mechanism forming PBDFs. However, experimental measurements demonstrate PBDEs appearing in lower yields as compared to those of PBDFs; presumably due to H- and Br-induced conversion of the PBDEs into PBDFs following a simple ring-closure reaction. High reaction temperatures facilitate loss of ortho Br atom from PBDEs, followed by cyclisation step to generate PBDFs. PBDFs are observed in a narrow temperature range of 700-850 °C, whereas PBDEs form between 550-850 °C. Since formation mechanisms of PBDFs and polybrominated dibenzo-p-dioxins (PBDDs) are typically only sensitive to the bromination at ortho positions, the results reported herein apply also to higher brominated isomers of BBzs.
Collapse
Affiliation(s)
- Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain, 15551, United Arab Emirates; Murdoch University, College of Science, Health, Engineering and Education (SHEE), WA, 6150, Australia.
| | - Anam Saeed
- Murdoch University, College of Science, Health, Engineering and Education (SHEE), WA, 6150, Australia; University of Engineering and Technology Lahore, Chemical Engineering Department, 54890, Pakistan
| | - Kamal Siddique
- Murdoch University, College of Science, Health, Engineering and Education (SHEE), WA, 6150, Australia
| | - Stina Jansson
- Umeå University Department of Chemistry, SE-901 87, Umeå, Sweden
| | - Bogdan Z Dlugogorski
- Charles Darwin University, Energy and Resources Institute, Darwin, NT, 0909, Australia.
| |
Collapse
|
24
|
Altarawneh M, Ahmed OH, Al-Harahsheh M, Jiang ZT, Huang NM, Lim HN, Dlugogorski BZ. Co-pyrolysis of polyethylene with products from thermal decomposition of brominated flame retardants. CHEMOSPHERE 2020; 254:126766. [PMID: 32957264 DOI: 10.1016/j.chemosphere.2020.126766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/28/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Co-pyrolysis of brominated flame retardants (BFRs) with polymeric materials prevails in scenarios pertinent to thermal recycling of bromine-laden objects; most notably the non-metallic fraction in e-waste. Hydro-dehalogenation of aromatic compounds in a hydrogen-donating medium constitutes a key step in refining pyrolysis oil of BFRs. Chemical reactions underpinning this process are poorly understood. Herein, we utilize accurate density functional theory (DFT) calculations to report thermo-kinetic parameters for the reaction of solid polyethylene, PE, (as a surrogate model for aliphatic polymers) with prime products sourced from thermal decomposition of BFRs, namely, HBr, bromophenols; benzene, and phenyl radical. Facile abstraction of an ethylenic H by Br atoms is expected to contribute to the formation of abundant HBr concentrations in practical systems. Likewise, a relatively low energy barrier for aromatic Br atom abstraction from a 2-bromophenol molecule by an alkyl radical site, concurs with the reported noticeable hydro-debromination capacity of PE. Pathways entailing a PE-induced bromination of a phenoxy radical should be hindered in view of high energy barrier for a Br transfer into the para position of the phenoxy radical. Adsorption of a phenoxy radical onto a Cu(Br) site substituted at the PE chain affords the commonly discussed PBDD/Fs precursor of a surface-bounded bromophenolate adduct. Such scenario arises due to the heterogeneous integration of metals into the bromine-rich carbon matrix in primitive recycling of e-waste and their open burning.
Collapse
Affiliation(s)
- Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa Bin Zayed Street, Al-Ain, 15551, United Arab Emirates.
| | - Oday H Ahmed
- Murdoch University, Discipline of Chemistry and Physics, WA, 6150, Australia; Department of Physics, College of Education, Al- Iraqia University, Baghdad, Iraq
| | - Mohammad Al-Harahsheh
- Department of Chemical Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Zhong-Tao Jiang
- Murdoch University, Discipline of Chemistry and Physics, WA, 6150, Australia
| | - Nay Ming Huang
- School of Energy and Chemical Engineering, Xiamen University of Malaysia, Selangor Darul Ehsan, Malaysia & College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hong Ngee Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Bogdan Z Dlugogorski
- Charles Darwin University, Office of Deputy Vice-Chancellor and Vice-President, Research & Innovation, Darwin, NT, 0909, Australia
| |
Collapse
|
25
|
Saeed A, Altarawneh M, Siddique K, Conesa JA, Ortuño N, Dlugogorski BZ. Photodecomposition properties of brominated flame retardants (BFRs). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110272. [PMID: 32061989 DOI: 10.1016/j.ecoenv.2020.110272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
This study investigates the geometric and electronic properties of selected BFRs in their ground (S0) and first singlet excited (S1) states deploying methods of the density functional theory (DFT) and the time-dependent density functional theory (TDDFT). We estimate the effect of the S0→ S1 transition on the elongations of the C-Br bond, identify the frontier molecular orbitals involved in the excitation process and compute partial atomic charges for the most photoreactive bromine atoms. The bromine atom attached to an ortho position in HBB (with regard to C-C bond; 2,2',4,4',6,6'-hexabromobiphenyl), TBBA (with respect to the hydroxyl group; 2,2',6,6'-tetrabromobisphenol A), HBDE and BTBPE (in reference to C-O linkage; 2,2',4,4',6,6'-hexabromodiphenylether and 1,2-bis(2,4,6-tribromophenoxy)ethane, respectively) bears the highest positive atomic charge. This suggests that, these positions undergo reductive debromination reactions to produce lower brominated molecules. Debromination reactions ensue primarily in the aromatic compounds substituted with the highest number of bromine atoms owing to the largest stretching of the C-Br bond in the first excited state. The analysis of the frontier molecular orbitals indicates that, excitations of BFRs proceed via π→π*, or π→σ* or n→σ* electronic transitions. The orbital analysis reveals that, the HOMO-LUMO energy gap (EH-L) for all investigated bromine-substituted aromatic molecules falls lower (1.85-4.91 eV) than for their non-brominated analogues (3.39-8.07 eV), in both aqueous and gaseous media. The excitation energies correlate with the EH-L values. The excitation energies and EH-L values display a linear negative correlation with the number of bromine atoms attached to the molecule. Spectral analysis of the gaseous-phase systems reveals that, the highly brominated aromatics endure lower excitation energies and exhibit red shifts of their absorption bands in comparison to their lower brominated congeners. We attained a satisfactory agreement between the experimentally measured absorption peak (λmax) and the theoretically predicted oscillator strength (λmax) for the UV-Vis spectra. This study further confirms that, halogenated aromatics only absorb light in the UV spectral region and that effective photodegradation of these pollutants requires the presence of photocatalysts.
Collapse
Affiliation(s)
- Anam Saeed
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates.
| | - Kamal Siddique
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Juan A Conesa
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Alicante Apartado 99, 03080, Alicante, Spain
| | - Nuria Ortuño
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Alicante Apartado 99, 03080, Alicante, Spain
| | - Bogdan Z Dlugogorski
- Charles Darwin University, Office of Deputy Vice-Chancellor, Research & Innovation, Darwin, Northern Territory, 0909, Australia
| |
Collapse
|
26
|
Xie P, Zhang L, Wang J, Zou Y, Wang S, Yue S, Wang Z, Ma J. Transformation of tetrabromobisphenol a in the iron ions-catalyzed auto-oxidation of HSO32−/SO32− process. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Paul S, Gour NK, Deka RC. Oxidation pathways, kinetics and branching ratios of chloromethyl ethyl ether (CMEE) initiated by OH radicals and the fate of its product radical: an insight from a computational study. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1519-1531. [PMID: 31274139 DOI: 10.1039/c9em00104b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The OH-initiated oxidation reactions of chloromethyl ethyl ether (CH2ClOCH2CH3) have been presented by using quantum calculation methods. The Minnesota functional (M06-2X) of the density functional theory method along with a polarization and diffuse 6-311++G(d,p) basis set is chosen for optimization and frequency calculations for H-abstractions from CH2ClOCH2CH3 molecules by OH radicals. Furthermore, the CCSD(T) method along with the same basis set is used for energy refinement of all optimized structures to obtain more accurate energies of the species. Our thermo-chemical calculation results show that the C˙HClOCH2CH3 product radical is more stable, corresponding to hydrogen atom abstraction from the -CH2Cl site, than others while the energy profile results indicate that the H-atom abstracted from the -OCH2 site follows the minimum energy path compared to other channels. The rate constants are computed using canonical transition state theory (CTST) within the temperature range of 250-450 K at 1 atm. The overall rate constant (at 298 K) for the abstraction reactions is found to be consistent with the earlier reported rate constant. The percentage branching ratios of different abstraction channels and the lifetime of chloromethyl ethyl ether are also given herein. We further investigated the unimolecular decomposition pathways of the CH2ClOCH(O˙)CH3 radical and found that unimolecular C-C bond scission is the kinetically and thermodynamically more feasible pathway compared to other unimolecular decomposition reactions.
Collapse
Affiliation(s)
- Subrata Paul
- Department of Chemical Sciences, Tezpur University Tezpur, Assam - 784028, India.
| | | | | |
Collapse
|
28
|
Liu L, Chen X, Wang Z, Wang X, Lin S. The removal mechanism and performance of tetrabromobisphenol A with a novel multi-group activated carbon from recycling long-root Eichhornia crassipes plants. RSC Adv 2019; 9:24760-24769. [PMID: 35528696 PMCID: PMC9069885 DOI: 10.1039/c9ra03374b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/30/2019] [Indexed: 01/26/2023] Open
Abstract
Long-root Eichhornia crassipes has shown great potential in eutrophication treatments while the heavy disposal of its plants limits its large-scale application. In this study, the adsorption of TBBPA by a novel multi-group activated carbon (MGAC), prepared from the reaped long-root Eichhornia crassipes plants has been investigated as a potential recycling and remediation technology. The MGAC showed great adsorption performance for aqueous TBBPA in that the adsorption could arrive at equilibrium in 4 h and the saturated adsorption capacities could reach up to 110.7, 110.5 and 75.50 mg g-1 at 20, 30 and 40 °C, respectively. Based on the analysis of adsorption processes, it was confirmed that π-π interaction and hydrogen bonding were the major impetuses for the adsorption and the oxygen-containing functional groups on the MGAC surface could facilitate the adsorption by either electron sharing or electron transfer. In addition, the thermodynamic results showed that the adsorption was a spontaneous and exothermic reaction. Futhermore, the MGAC could be regenerated easily by 5% NaOH solution and retained over 50% of its initial capacities for TBBPA after 5 reprocessing cycles. These results indicate the promising application of MGAC in the wastewater treatment for TBBPA removal and a resource recycling method for the long-root Eichhornia crassipes plants.
Collapse
Affiliation(s)
- Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology Shanghai 200237 China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai China
| | - Xin Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology Shanghai 200237 China
| | - Zhiping Wang
- School of Environment Science and Technology, Shanghai Jiao Tong University Shanghai China
| | - Xixi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology Shanghai 200237 China
| | - Sen Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology Shanghai 200237 China
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology Shanghai China
- Shanghai Institute of Pollution Control and Ecological Security Shanghai China
| |
Collapse
|
29
|
Park YK, Han TU, Jeong J, Kim YM. Debrominated high quality oil production by the two-step catalytic pyrolysis of phenolic printed circuit boards (PPCB) using natural clays and HY. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:50-58. [PMID: 30594017 DOI: 10.1016/j.jhazmat.2018.12.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/01/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The two-step catalytic pyrolysis (CP) of a phenolic-printed circuit board (PPCB) over in-situ natural clays (dolomite, bentonite, and olivine) and ex-situ HY(30, SiO2/Al2O3: 30) was investigated by tandem micro reactor-gas chromatography/mass spectrometry. The non-catalytic pyrolysis (NCP) of PPCB produced oxygenated, phosphorous, and brominated compounds due to the presence of paper, tetrabromo bisphenol A (TBBA), phosphorous flame retardants, and phenol resin in the PPCB. Among the natural clays, dolomite showed the highest debromination and aromatics formation efficiency during the in-situ CP of PPCB followed by bentonite and olivine owing to the different catalyst properties. Two-step CP of PPCB over in-situ natural clays and ex-situ HY(30) achieved higher efficiency on the formation of higher quality oil (mono-phenol and aromatic hydrocarbons) with a lower Br content than the one-step CP of PPCB. Among the two-step catalysts, the combination of in-situ dolomite and ex-situ HY(30) provided the highest quality oil production due to the high acidity and sufficiently large pore size of dolomite. Two-step CP of PPCB over in-situ dolomite and ex-situ HY(30) also revealed a longer lifetime than the one-step CP of PPCB over ex-situ HY(30), not only for the formation of aromatic hydrocarbons and mono-phenols, but also for debromination.
Collapse
Affiliation(s)
- Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Tae Uk Han
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jaehun Jeong
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Young-Min Kim
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
30
|
Liu A, Zhao Z, Qu G, Shen Z, Shi J, Jiang G. Transformation/degradation of tetrabromobisphenol A and its derivatives: A review of the metabolism and metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1141-1153. [PMID: 30261454 DOI: 10.1016/j.envpol.2018.09.068] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/23/2018] [Accepted: 09/13/2018] [Indexed: 05/27/2023]
Abstract
Although the abiotic and biotic transformation/degradation (T/D) processes of tetrabromobisphenol A (TBBPA) have been widely investigated in model experiments, few reviews have focused on these processes along with their metabolites or degradation products. In this paper, we summarize the current knowledge on the T/D of TBBPA and its derivatives, including abiotic and biotic T/D strategies/conditions, mechanisms, metabolites and environmental occurrences. Various treatments, such as pyrolysis, photolysis, chemical reactions and biotransformation, have been employed to study the metabolic mechanism of TBBPA and its derivatives and to remediate associated contaminated environments. To date, more than 100 degradation products and metabolites have been identified, dominated by less brominated compounds such as bisphenol A, 2,6-dibromo-4-isopropylphenol, 2,6-dibromo-4-hydroxyl-phenol, 2,6-dibromophenol, isopropylene-2,6-dibromophenol, 4-(2-hydroxyisopropyl)-2,6-dibromophenol, etc. It can be concluded that the T/D of TBBPA mainly takes place through debromination and β-scission. In some environmental media and human and animal tissues, brominated metabolites, glucoside and sulfate derivatives are also important T/D products. Here, the T/D products of TBBPA and its derivatives have been most comprehensively presented from the literature in recent 20 years. This review will enhance the understanding of the environmental behaviors of TBBPA-associated brominated flame retardants along with their ecological and health risks.
Collapse
Affiliation(s)
- Aifeng Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zongshan Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhaoshuang Shen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
31
|
Fu Z, Chen J, Wang Y, Hong H, Xie H. Quantum chemical simulations revealed the toxicokinetic mechanisms of organic phosphorus flame retardants catalyzed by P450 enzymes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:272-291. [PMID: 30457030 DOI: 10.1080/10590501.2018.1537564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The metabolic fate and toxicokinetics of organic phosphorus flame retardants catalyzed by cytochrome P450 enzymes (CYPs) are here investigated by in silico simulations, leveraging an active center model to mimic the CYPs, triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate and tris(1,3-dichloro-2-propyl) phosphate as substrates. Our calculations elucidated key main pathways and predicted products, which were corroborated by current in vitro data. Results showed that alkyl OPFRs are eliminated faster than aryl and halogenated alkyl-substituted OPFRs. In addition, we discovered a proton shuttle pathway for aryl hydroxylation of TPHP and P = O bond-assisted H-transfer mechanisms (rather than nonenzymatic hydrolysis) that lead to O-dealkylation/dearylation of phosphotriesters.
Collapse
Affiliation(s)
- Zhiqiang Fu
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian , China
| | - Jingwen Chen
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian , China
| | - Yong Wang
- b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP) , Chinese Academy of Sciences , Lanzhou , China
| | - Huixiao Hong
- c National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Hongbin Xie
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian , China
| |
Collapse
|
32
|
Wang N, Zhang M, Kang P, Zhang J, Fang Q, Li W. Synergistic Effect of Graphene Oxide and Mesoporous Structure on Flame Retardancy of Nature Rubber/IFR Composites. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1005. [PMID: 29899305 PMCID: PMC6025052 DOI: 10.3390/ma11061005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/02/2018] [Accepted: 06/07/2018] [Indexed: 01/31/2023]
Abstract
Aiming to improve the flame retardancy performance of natural rubber (NR), we developed a novel flame retardant synergistic agent through grafting of MCM-41 to graphene oxide (GO), named as GO-NH-MCM-41, as an assistant to intumescent flame retardants (IFR). The flame retardancy of NR/IFR/GO-NH-MCM-41 composites was evaluated by limited oxygen index (LOI), UL-94, and cone calorimeter test. The LOI value of NR/IFR/GO-NH-MCM-41 reached 26.3%; the UL-94 ratings improved to a V-0 rating. Moreover, the addition of GO-NH-MCM-41 decreased the peak heat release rate (PHRR) and the total heat release (THR) of the natural rubber composites. Furthermore, the addition of GO-NH-MCM-41 increased the thickness of char residue. The images of SEM indicated the char residue was more compact and continuous. The degradation of GO-NH-MCM-41-based NR composites was completed with a mass loss of 35.57% at 600 °C. The tensile strength and the elongation at break of the NR/IFR/GO-NH-MCM-41 composites were 13.9 MPa and 496.7%, respectively. The results of the rubber process analyzer (RPA) reached the maximum value, probably due to a better network of fillers in the matrix.
Collapse
Affiliation(s)
- Na Wang
- Sino-Spanish Advanced Materials Institute, Shenyang University of Chemical Technology, Shenyang 110142, China.
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang 110142, China.
| | - Miao Zhang
- Sino-Spanish Advanced Materials Institute, Shenyang University of Chemical Technology, Shenyang 110142, China.
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang 110142, China.
| | - Ping Kang
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang 110142, China.
| | - Jing Zhang
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang 110142, China.
| | - Qinghong Fang
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang 110142, China.
| | - Wenda Li
- IMDEA Materials Institute, C/Eric Kandel 2, Getafe, 28906 Madrid, Spain.
| |
Collapse
|
33
|
Gour NK, Sarma PJ, Mishra BK, Deka RC. Quantum calculation on night-time degradation of 2-chloroethyl ethyl ether (CH3CH2OCH2CH2Cl) initiated by NO3 radical. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A dual-level quantum chemical calculations have been carried out on the initiation of night-time degradation of 2-chloroethyl ethyl ether (CH3CH2OCH2CH2Cl) via H-abstraction by NO3 radical. Within the scope of density functional theory, the electronic structure of all the species involved in the titled reaction has been optimized at M06-2X functional along with 6-31[Formula: see text]G(d,p) basis set. A higher level of couple cluster CCSD(T) method in conjunction with 6-311[Formula: see text]G(d,p) basis set has been used for the refined energy of the species. All minima and saddle states involved in the reaction channel have been characterized on the potential energy surface (PES). From PES, it is confirmed that H-abstraction from methylene (–CH2–) of ethyl (CH3CH2–) part of CH3CH2OCH2CH2Cl follows the minimum energy path. The rate constants (individual and overall) of the titled reaction are obtained using Canonical Transition State Theory (CTST) over the temperature range of 250–350[Formula: see text]K. The atmospheric lifetime and radiative efficiency of the titled molecule have also been estimated, amounting to 0.23 years and 0.024 years, respectively. The Global Warming Potentials of the 2-chloroethyl ethyl ether in 20 years, 100 years and 500 years time horizon were found to be 0.13, 0.04 and 0.01, respectively.
Collapse
Affiliation(s)
- Nand Kishor Gour
- Department of Chemical Sciences, Tezpur, University Tezpur, Napaam, Assam 784 028, India
| | - Plaban Jyoti Sarma
- Department of Chemical Sciences, Tezpur, University Tezpur, Napaam, Assam 784 028, India
| | - Bhupesh Kumar Mishra
- Department of Chemistry, D. N. Govt. College, Itanagar, Arunachal Pradesh 791113, India
| | - Ramesh Chandra Deka
- Department of Chemical Sciences, Tezpur, University Tezpur, Napaam, Assam 784 028, India
| |
Collapse
|
34
|
Soler A, Conesa JA, Ortuño N. Emissions of brominated compounds and polycyclic aromatic hydrocarbons during pyrolysis of E-waste debrominated in subcritical water. CHEMOSPHERE 2017; 186:167-176. [PMID: 28778014 DOI: 10.1016/j.chemosphere.2017.07.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Degradation of brominated flame retardants present in printed circuit boards (PCBs) was tested using subcritical water in a high pressure reactor. Debromination experiments were carried out in a batch stirred reactor at three different temperatures (225 °C, 250 °C and 275 °C) keeping a solid to liquid (S/L) ratio of PCB:water = 1:5 during 180 min. Results indicated that debromination efficiency was increased with temperature (18.5-63.6% of bromine present in the original PCB was removed). Thermal decomposition of the debrominated materials was studied and compared with that of the original PCB. Thermogravimetric analyses were performed at three different heating rates (5, 10 and 20 K min-1), studying both the pyrolysis (inert atmosphere) and combustion (in air). Pyrolysis runs of the debrominated materials were also performed in a quartz horizontal laboratory furnace at 850 °C, in order to study the emission of pollutants. More than 99% of the bromine was emitted in the form of HBr and Br2. Emissions of polycyclic aromatic hydrocarbons (PAHs) and bromophenols (BrPhs) decreased with the increase in the treatment temperature; naphthalene (10,800-18,300 mg kg-1 original sample) and monobrominated phenols (12.8-16.9 mg kg-1 original sample) were the most abundant compounds.
Collapse
Affiliation(s)
- Aurora Soler
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, E-03080, Alicante, Spain
| | - Juan A Conesa
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, E-03080, Alicante, Spain.
| | - Nuria Ortuño
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, E-03080, Alicante, Spain
| |
Collapse
|
35
|
Li Q, Su G, Zheng M, Wang M, Liu Y, Luo F, Gu Y, Jin R. Thermal Oxidation Degradation of 2,2',4,4'-Tetrabromodiphenyl Ether over Li αTiO x Micro/Nanostructures with Dozens of Oxidative Product Analyses and Reaction Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10059-10071. [PMID: 28780865 DOI: 10.1021/acs.est.7b01959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Flowerlike LiαTiOx micro/nanostructures were successfully synthesized to degrade 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) at 250-350 °C. The pseudo-first-order kinetics rate constant of the reaction at 300 °C was in the range of 0.034-0.055 min-1. The activation energy was as low as 39.9-48.1 kJ/mol. The excellent performance attained over LiαTiOx was attributed to Li dopant having the electron-donating effect, which enhanced the oxygen species mobility. The oxidative reaction was believed to be the dominant degradation pathway following the Mars-van Krevelen mechanism, being accompanied by the weak hydrodebromination occurrence generating the trace mono- to tri-BDEs. More than 70 types of oxidation products containing diphenyl ether backbone, single-benzene rings, and ring-opened products were detected by GC-MS with derivatization, ESI-FT-ICR-MS, and ion chromatography. An increase in the number of ring-cracked oxidative products under prolonged reaction was observed by ESI-FT-ICR-MS analysis according to the van Krevelen diagram. In the oxidative reaction, a series of oxidative products, such as OH-tri-BDEs and OH-tetra-BDEs, first formed via the nucleophilic O2- attack and subsequently transformed into dibromophenol, tribromophenol, and benzenedicarboxylic and benzoic acids, etc. They could be further attacked by electrophilic O2- and O- and completely cracked to small molecules such as formic, acetic, propionic, and butyric acids.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Civil and Environmental Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639789, Singapore
| | - Yalu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Gu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Cui Y, Xu S, Wu S, Du S, Cao Y, Chen Y, Liu L, Dong W, Gong J. Temperature and solvent dependent thermodynamic behavior of tetrabromobisphenol A. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Liu L, Liu A, Zhang Q, Shi J, He B, Yun Z, Jiang G. Determination of tetrabromobisphenol-A/S and their main derivatives in water samples by high performance liquid chromatography coupled with inductively coupled plasma tandem mass spectrometry. J Chromatogr A 2017; 1497:81-86. [PMID: 28372837 DOI: 10.1016/j.chroma.2017.03.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 11/17/2022]
Abstract
As the most widely used brominated flame retardants (BFRs), Tetrabromobisphenol-A (TBBPA) as well as its alternative Tetrabromobisphenol-S (TBBPS) and their derivatives have raised wide concerns due to their adverse effects on human health and hence the sensitive detection of those BFRs was urgently needed. Herein, a novel analytical method based on high-performance liquid chromatography (HPLC) coupled with inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) has been developed for the determination of TBBPA/S and their derivatives, including TBBPA-bis(2-hydroxyethyl ether) (TBBPA-BHEE), TBBPA-bis(allylether) (TBBPA-BAE), TBBPA-bis(glycidyl ether) (TBBPA-BGE), TBBPA-bis(2,3-dibromopropyl ether) (TBBPA-BDBPE) and TBBPS-bis(2,3-dibromopropyl ether) (TBBPS-BDBPE) in water samples. After optimization, the TBBPA/S and their derivatives, especially the TBBPA-BAE and TBBPA-BDBPE were simultaneously and sensitively quantified by determination of bromine (m/z=79) by using the ICP-MS. The instrument limits of detection (LODs) for the TBBPA, TBBPA-BHEE, TBBPA-BGE, TBBPA-BAE, TBBPA-BDBPE, TBBPS and TBBPS-BDBPE were determined to be 0.12, 0.14, 0.19, 0.14, 0.12, 0.17 and 0.13μgL-1, respectively, which was close to or much better than the reported methods. The relative standard deviations (RSDs, n=5) of peak area and retention time were better than 2.2% and 0.2% for intra-day analysis, indicating good repeatability and high precision. The proposed method had been successfully applied for the analysis of TBBPA/S and their derivatives in water samples with satisfactory recoveries (67.7%-113%).
Collapse
Affiliation(s)
- Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aifeng Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojun Yun
- Agilent Technologies (China) Co., Ltd., Beijing 100102, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Miran HA, Altarawneh M, Jiang ZT, Oskierski H, Almatarneh M, Dlugogorski BZ. Decomposition of selected chlorinated volatile organic compounds by ceria (CeO2). Catal Sci Technol 2017. [DOI: 10.1039/c7cy01096f] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB).
Collapse
Affiliation(s)
- Hussein A. Miran
- School of Engineering and Information Technology
- Murdoch University
- Murdoch
- Australia
- Department of Physics
| | | | - Zhong-Tao Jiang
- School of Engineering and Information Technology
- Murdoch University
- Murdoch
- Australia
| | - Hans Oskierski
- School of Engineering and Information Technology
- Murdoch University
- Murdoch
- Australia
| | | | | |
Collapse
|
39
|
Yu Q, Xie HB, Li T, Ma F, Fu Z, Wang Z, Li C, Fu Z, Xia D, Chen J. Atmospheric chemical reaction mechanism and kinetics of 1,2-bis(2,4,6-tribromophenoxy)ethane initiated by OH radical: a computational study. RSC Adv 2017. [DOI: 10.1039/c6ra26700a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism and kinetics of OH-initiated oxidation of BTBPE, an alternative of PBDEs, were investigated.
Collapse
|
40
|
Dong C, Wirasaputra A, Luo Q, Liu S, Yuan Y, Zhao J, Fu Y. Intrinsic Flame-Retardant and Thermally Stable Epoxy Endowed by a Highly Efficient, Multifunctional Curing Agent. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E1008. [PMID: 28774127 PMCID: PMC5456980 DOI: 10.3390/ma9121008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 01/25/2023]
Abstract
It is difficult to realize flame retardancy of epoxy without suffering much detriment in thermal stability. To solve the problem, a super-efficient phosphorus-nitrogen-containing reactive-type flame retardant, 10-(hydroxy(4-hydroxyphenyl)methyl)-5,10-dihydrophenophosphazinine-10-oxide (HB-DPPA) is synthesized and characterized. When it is used as a co-curing agent of 4,4'-methylenedianiline (DDM) for curing diglycidyl ether of bisphenol A (DGEBA), the cured epoxy achieves UL-94 V-0 rating with the limiting oxygen index of 29.3%. In this case, the phosphorus content in the system is exceptionally low (0.18 wt %). To the best of our knowledge, it currently has the highest efficiency among similar epoxy systems. Such excellent flame retardancy originates from the exclusive chemical structure of the phenophosphazine moiety, in which the phosphorus element is stabilized by the two adjacent aromatic rings. The action in the condensed phase is enhanced and followed by pressurization of the pyrolytic gases that induces the blowing-out effect during combustion. The cone calorimeter result reveals the formation of a unique intumescent char structure with five discernible layers. Owing to the super-efficient flame retardancy and the rigid molecular structure of HB-DPPA, the flame-retardant epoxy acquires high thermal stability and its initial decomposition temperature only decreases by 4.6 °C as compared with the unmodified one.
Collapse
Affiliation(s)
- Chunlei Dong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Alvianto Wirasaputra
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qinqin Luo
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China.
| | - Shumei Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yanchao Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jianqing Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yi Fu
- Silverage Engineering Plastics (Dongguan) Co., Ltd., Dongguan 523187, China.
| |
Collapse
|
41
|
Flame Retardance and Smoke Suppression of CFA/APP/LDHs/EVA Composite. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6090255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
Altarawneh M, Ahmed OH, Jiang ZT, Dlugogorski BZ. Thermal Recycling of Brominated Flame Retardants with Fe2O3. J Phys Chem A 2016; 120:6039-47. [DOI: 10.1021/acs.jpca.6b04910] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammednoor Altarawneh
- School of Engineering & Information Technology, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Oday H. Ahmed
- School of Engineering & Information Technology, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Zhong-Tao Jiang
- School of Engineering & Information Technology, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Bogdan Z. Dlugogorski
- School of Engineering & Information Technology, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
43
|
He M, Li X, Zhang S, Sun J, Cao H, Wang W. Mechanistic and kinetic investigation on OH-initiated oxidation of tetrabromobisphenol A. CHEMOSPHERE 2016; 153:262-269. [PMID: 27018518 DOI: 10.1016/j.chemosphere.2016.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/17/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Detailed mechanism of the OH-initiated transformation of tetrabromobisphenol A (TBBPA) has been investigated by quantum chemical methods in this paper. Abstraction reactions of hydrogen atoms from the OH groups and CH3 groups of TBBPA are the dominant pathways of the initial reactions. The produced phenolic-type radical and alkyl-type radical may transfer to 4,4'-(ethene-1,1-diyl)bis(2,6-dibromophenol), 4-acetyl-2,6-dibromophenol and 2,6-dibromobenzoquinone at high temperature. In water, major products are 2,6-dibromo-p-hydroquinone, 4-isopropylene-2,6-dibromophenol and 4-(2-hydroxyisopropyl)-2,6-dibromophenol resulting from the addition reactions. Total rate constants of the initial reaction are 1.02 × 10(-12) cm(3) molecule(-1) s(-1) in gas phase and 1.93 × 10(-12) cm(3) molecule(-1) s(-1) in water at 298 K.
Collapse
Affiliation(s)
- Maoxia He
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Xin Li
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Shiqing Zhang
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Jianfei Sun
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| | - Haijie Cao
- Environment Research Institute, Shandong University, Jinan, 250100, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
44
|
Fujimori T, Itai T, Goto A, Asante KA, Otsuka M, Takahashi S, Tanabe S. Interplay of metals and bromine with dioxin-related compounds concentrated in e-waste open burning soil from Agbogbloshie in Accra, Ghana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 209:155-63. [PMID: 26686056 DOI: 10.1016/j.envpol.2015.11.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 05/25/2023]
Abstract
Open burning of electronic waste (e-waste) releases various metals and organohalogen compounds in the environment. Here we investigated the interplay of metals (Cu, Pb, Zn, Fe, Co, and Sr) and bromine (Br) in the formation of dioxin-related compounds (DRCs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs), as well as non-regulated DRCs such as polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) and their monobrominated PCDD/Fs in soils sampled from open burning e-waste sites at Agbogbloshie in Accra, Ghana. The predominant DRCs were PBDFs, PCDFs, PCDDs, and DL-PCBs. Statistical analyzes, X-ray absorption spectroscopy, and the PCDF/PCDD ratio suggested possible formation paths of PCDD/Fs and DL-PCBs by catalytic behaviors of copper chlorides (CuCl, CuCl2, and Cu2(OH)3Cl) and thermal breakdown of polyvinyl chloride. Predominant formation of brominated furans may be derived from electron transfer from intermediates of PBDE to copper, Cu(II) → Cu(I). Lead chloride also contributed to generate DRCs and may become highly bioaccessible through the open burning of e-waste. The main zinc species (ZnCl2 and ZnS) suggested a possible relationship to generate DRCs and specific zinc source such as tire burning. Cu, Pb, Zn, and Br contained in various e-wastes, wires/cables, plastics, and tires strongly influenced generation of many DRCs.
Collapse
Affiliation(s)
- Takashi Fujimori
- Department of Global Ecology, Graduate School of Global Environmental Studies, Kyoto University, Katsura, Nisikyo-ku, Kyoto, 615-8540, Japan; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto, 615-8540, Japan
| | - Takaaki Itai
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan.
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Kwadwo A Asante
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan; CSIR Water Research Institute, PO Box AH 38, Achimota, Accra, Ghana
| | - Masanari Otsuka
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan; Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama 790-0003, Japan
| | - Shin Takahashi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan; Department of Environmental Conservation, Ehime University, Matsuyama 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
45
|
Tian Y, Liu AF, Qu GB, Liu CX, Chen J, Handberg E, Shi JB, Chen HW, Jiang GB. Silver ion post-column derivatization electrospray ionization mass spectrometry for determination of tetrabromobisphenol A derivatives in water samples. RSC Adv 2015. [DOI: 10.1039/c4ra16166a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Six TBBPA derivatives in water samples were sensitively electrospray ionized by Ag+ post-column derivatization and directly analyzed with HPLC-MS/MS.
Collapse
Affiliation(s)
- Yong Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Ai-feng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Guang-bo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Chun-xiao Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Jian Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- College of Chemistry
- Biology and Material Sciences
- East China Institute of Technology
- Nanchang
| | - Eric Handberg
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- College of Chemistry
- Biology and Material Sciences
- East China Institute of Technology
- Nanchang
| | - Jian-bo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Huan-wen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- College of Chemistry
- Biology and Material Sciences
- East China Institute of Technology
- Nanchang
| | - Gui-bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| |
Collapse
|
46
|
Altarawneh M, Dlugogorski BZ. Formation of dibenzofuran, dibenzo-p-dioxin and their hydroxylated derivatives from catechol. Phys Chem Chem Phys 2015; 17:1822-30. [DOI: 10.1039/c4cp04168b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study presents mechanistic and kinetic accounts of the formation of dibenzofuran (DF), dibenzo-p-dioxin (DD) and their hydroxylated derivatives (OHs-DF/OHs-DD) from the catechol (CT) molecule, as model compounds for phenolic constituents in biomass.
Collapse
|