1
|
Abstract
I review experimental developments in the growth and application of surface-grafted weak polyelectrolytes (brushes), concentrating on their surface, tribological, and adhesive and bioadhesive properties, and their role as actuators.
Collapse
Affiliation(s)
- Mark Geoghegan
- School of Engineering, Newcastle University, Merz Court, Newcastle-upon-Tyne NE1 7RU, UK.
| |
Collapse
|
2
|
Li M, Ma Z, Pan C, Zhang X, Zhang W, Yang B, Li Y. Chemical Fuel Mediated Self-Regulatory Polymer Brushes for Autonomous Fluorescence Modulator and Wettability Switcher. Macromol Rapid Commun 2022; 43:e2100878. [PMID: 35080275 DOI: 10.1002/marc.202100878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Indexed: 11/06/2022]
Abstract
Synthetic systems of non-equilibrium self-assembly have made considerable progress, however, the achievement of innovative materials with self-regulated functions analogous to living systems remains a grand challenge. Herein, we report a versatile non-equilibrium system of polymer brushes with spatiotemporally programmable properties and functions driven by chemical fuels. By combining a responsive polymer with an autonomous pH regulator, the polymer brushes self-regulate their swelling and deswelling process with tunable lifetimes. By using patterned copolymer brushes with pH-responsive fluorescence moiety, we create an autonomous fluorescence modulator that self-regulates its fluorescence in spatiotemporally programmable fashion driven by a chemical or an enzymatic reaction. Furthermore, we implement a self-regulated wettability switcher of polymer brushes both in air and in an aqueous solution. The methodology and results in this work provide a useful avenue into the exploration of non-equilibrium synthetic materials with programmable functions and would accelerate the transformative developments of non-equilibrium materials and systems in practical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Chunyu Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiaoye Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Zhang BY, Luo HN, Zhang W, Liu Y. Research progress in self-oscillating polymer brushes. RSC Adv 2022; 12:1366-1374. [PMID: 35425176 PMCID: PMC8979042 DOI: 10.1039/d1ra07374e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Polymer brushes possess unique changes in physical and chemical properties when they are exposed to external stimuli and have a wide range of applications. Self-oscillating polymers are anchored on surfaces of certain materials and are coupled with some self-oscillating reactions (with the Belousov–Zhabotinsky (BZ) reaction as an example) to form self-oscillating polymer brushes. As an independent field of stimulus response functional surface research, the development of new intelligent bionic materials has good potential. This article reviews the oscillation mechanisms of self-oscillating polymer brushes and their classifications. First, the oscillation mechanisms of self-oscillating polymer brushes are introduced. Second, the research progress in self-oscillating polymers is discussed in terms of the type of self-oscillation reactions. Finally, possible future developments of self-oscillating polymer brushes are prospected. Polymer brushes possess unique changes in physical and chemical properties when they are exposed to external stimuli and have a wide range of applications.![]()
Collapse
Affiliation(s)
- Bao-Ying Zhang
- School of Chemical Engineering, China University of Mining and Technology Xuzhou Jiangsu 221116 China .,School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Hai-Nan Luo
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Wei Zhang
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Yang Liu
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| |
Collapse
|
4
|
Walkowiak J, Gradzielski M, Zauscher S, Ballauff M. Interaction of Proteins with a Planar Poly(acrylic acid) Brush: Analysis by Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). Polymers (Basel) 2020; 13:polym13010122. [PMID: 33396873 PMCID: PMC7795234 DOI: 10.3390/polym13010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
We describe the preparation of a poly(acrylic acid) (PAA) brush, polymerized by atom transfer radical polymerization (ATRP) of tert-butyl acrylate (tBA) and subsequent acid hydrolysis, on the flat gold surfaces of quartz-crystal microbalance (QCM) crystals. The PAA brushes were characterized by Fourier transform infrared (FT-IR) spectroscopy, ellipsometry and water contact angle analysis. The interaction of the PAA brushes with human serum albumin (HSA) was studied for a range of ionic strengths and pH conditions by quartz-crystal microbalance with dissipation monitoring (QCM-D). The quantitative analysis showed a strong adsorption of protein molecules onto the PAA brush. By increasing the ionic strength, we were able to release a fraction of the initially bound HSA molecules. This finding highlights the importance of counterions in the polyelectrolyte-mediated protein adsorption/desorption. A comparison with recent calorimetric studies related to the binding of HSA to polyelectrolytes allowed us to fully analyze the QCM data based on the results of the thermodynamic analysis of the binding process.
Collapse
Affiliation(s)
- Jacek Walkowiak
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands;
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Straße des 17. Juni 124, Sekr. TC7, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Stefan Zauscher
- Mechanical Engineering and Material Sciences, Duke University, Durham, NC 27708, USA
- Correspondence: (S.Z.); (M.B.)
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
- Correspondence: (S.Z.); (M.B.)
| |
Collapse
|
5
|
Zhang J, Xu S, Jin H, Liu G. Ionic hydrogen bond effects on polyelectrolyte brushes beyond the hydronium and hydroxide ions. Chem Commun (Camb) 2020; 56:10930-10933. [PMID: 32940269 DOI: 10.1039/d0cc03763j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we have demonstrated that the properties of both strong and weak polyelectrolyte brushes including hydration, stiffness, conformation, and wettability can be tuned by the hydrogen bonding between the bound counterions and the grafted chains beyond the hydronium and hydroxide ions. This will greatly extend the application of ionic hydrogen bond effects in polymer systems.
Collapse
Affiliation(s)
- Jian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China.
| | | | | | | |
Collapse
|
6
|
Osypova A, Dübner M, Panzarasa G. Oscillating Reactions Meet Polymers at Interfaces. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2957. [PMID: 32630641 PMCID: PMC7372367 DOI: 10.3390/ma13132957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 11/23/2022]
Abstract
Chemo-mechanical phenomena, including oscillations and peristaltic motions, are widespread in nature-just think of heartbeats-thanks to the ability of living organisms to convert directly chemical energy into mechanical work. Their imitation with artificial systems is still an open challenge. Chemical clocks and oscillators (such as the popular Belousov-Zhabotinsky (BZ) reaction) are reaction networks characterized by the emergence of peculiar spatiotemporal dynamics. Their application to polymers at interfaces (grafted chains, layer-by-layer assemblies, and polymer brushes) offers great opportunities for developing novel smart biomimetic materials. Despite the wide field of potential applications, limited research has been carried out so far. Here, we aim to showcase the state-of-the-art of this fascinating field of investigation, highlighting the potential for future developments and providing a personal outlook.
Collapse
Affiliation(s)
- Alina Osypova
- Innovative Sensor Technology IST AG, Stegrütistrasse 14, 9642 Ebnat-Kappel, Switzerland;
| | - Matthias Dübner
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland;
| | - Guido Panzarasa
- Laboratory of Soft and Living Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Zmerli I, Michel JP, Makky A. Bioinspired polydopamine nanoparticles: synthesis, nanomechanical properties, and efficient PEGylation strategy. J Mater Chem B 2020; 8:4489-4504. [PMID: 32365146 DOI: 10.1039/c9tb02769f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polydopamine (PDA) is a bioinspired fascinating polymer which is considered nowadays as a material of choice for designing drug delivery nanosystems. Indeed, PDA exhibits multiple interesting features including simple preparation protocols, biocompatibility, simple functionalization procedures, free radicals scavenging and photothermal/photoacoustic properties. However, because of its heterogeneous structure, clear procedures about PDA nanoparticles synthesis and PEGylation with well-defined and reproducible physicochemical properties such as size, shape and nanomechanics are still needed. In this work, we established tightly controlled experimental conditions to synthesize PDA nanoparticles with well-defined size and yield. This allowed us to identify the factors that affect the most these two parameters and to construct surface response plots with accurate predictive values of size and yield. The nanomechanical properties of PDA NPs exhibiting different sizes have been studied with AFM nanoindentation experiments. Our results demonstrated for the first time that the elasticity of PDA NPs was decreasing with their size. This could be explained by the higher geometric packing order of the stacked oligomeric fractions inside the core of the biggest PDA NPs. Next, in order to determine the best PEGylation experimental conditions of PDA NPs using thiol-terminated PEG that allow grafting the highest polymer density with proteins repelling properties, we have first optimized the PEGylation strategy on PDA films. By using a combination of QCM-D and AFM experiments, we could demonstrate that efficient PEGylation of PDA films could be done even at low PEG concentration but in the presence of NaCl which exerts a salting out effect on PEG chains improving thus the grafting density. Finally, we transposed these experimental conditions to PDA NPs and we could synthesize PEGylated PDA NPs exhibiting high stability in physiological conditions as revealed by FTIR and DLS experiments respectively.
Collapse
Affiliation(s)
- Islam Zmerli
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296, Châtenay-Malabry, France.
| | - Jean-Philippe Michel
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296, Châtenay-Malabry, France.
| | - Ali Makky
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296, Châtenay-Malabry, France.
| |
Collapse
|
8
|
Ehtiati K, Moghaddam SZ, Daugaard AE, Thormann E. How Dissociation of Carboxylic Acid Groups in a Weak Polyelectrolyte Brush Depend on Their Distance from the Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2339-2348. [PMID: 32069409 DOI: 10.1021/acs.langmuir.9b03537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A weak polyelectrolyte brush is composed of a layer of polyacids or polybases grafted by one end of their chains to a substrate surface. For such brush layers immersed in an aqueous solution, the dissociation behavior of the acidic or basic groups and the structural and physical properties of the brush layer will thus be strongly dependent on the environmental conditions. For a polyacid brush layer consisting of, e.g., poly(acrylic acid), this means that the chains in the brush layer will be charged at high pH and uncharged at low pH. However, theoretical scaling laws not only foresee the structural changes occurring in response to the pH-induced dissociation behavior but also how the dissociation behavior of the brush layer depends on the ionic strength of the aqueous solution and the density of acidic groups within the brush layer. We have herein employed spectroscopic ellipsometry and a quartz crystal microbalance with dissipation monitoring (QCM-D) to experimentally evaluate the theoretically predicted dissociation and structural behavior of PAA brushes. Spectroscopic ellipsometry allows us to study the brush thickness as a function of pH and ionic strength, while QCM-D gives us an opportunity to investigate the swelling behavior of PAA brushes at various penetration depths of propagating acoustic waves. Our studies show that the dissociation degree of the carboxylic acid groups in a PAA brush increases with increasing distance from the substrate. Moreover, the ionic strength enhances carboxylic acid dissociation, such that a higher ionic strength leads to a narrower distribution and higher average dissociation degree. In conclusion, our results provide an experimental verification of the theoretically predicted gradient in the degree of dissociation of the acid groups in weak polyacid brush layers and shows that at a pH value equal to approximately the average pKa value of the brush, the state of the acid groups varies from being almost uncharged to almost fully dissociated depending on the ionic strength and vertical position in the brush.
Collapse
Affiliation(s)
- Koosha Ehtiati
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Saeed Z Moghaddam
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anders E Daugaard
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Zhang J, Cai H, Tang L, Liu G. Tuning the pH Response of Weak Polyelectrolyte Brushes with Specific Anion Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12419-12427. [PMID: 30220208 DOI: 10.1021/acs.langmuir.8b02776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The positively charged poly( N, N'-dimethylaminoethyl methacrylate) (PDMAEMA) brushes have been employed as model weak polyelectrolyte brushes (WPBs) to demonstrate the tuning of the pH response of WPBs with specific anion effects. The charge density of PDMAEMA brushes can be modulated by specific ion-pairing interactions between counterions and the protonated dimethylamino group; as a result, the strength of the pH response of PDMAEMA brushes can be tuned by specific anion effects. A more chaotropic counterion can more strongly interact with the protonated dimethylamino group, thereby more effectively neutralizing the positively charged group associated with the grafted weak polyelectrolyte chains and more remarkably suppressing the pH response of PDMAEMA brushes. Although the pH response of PDMAEMA brushes is insensitive to the anion identity at a low salt concentration, it can be tuned by specific anion effects at relatively high salt concentrations. Our study demonstrates that the pH-responsive properties of PDMAEMA brushes including hydration, conformation, oil wettability, and adhesion can be tuned by specific anion effects. The work presented here provides a method to tune the pH response of WPBs by the anion identity.
Collapse
Affiliation(s)
- Jian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Hongtao Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Ling Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|
10
|
Kou R, Zhang J, Chen Z, Liu G. Counterion Specificity of Polyelectrolyte Brushes: Role of Specific Ion-Pairing Interactions. Chemphyschem 2018; 19:1404-1413. [PMID: 29575481 DOI: 10.1002/cphc.201701256] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 11/10/2022]
Abstract
We demonstrate here that the properties of poly (2-(methacryloyloxy) ethyl trimethylammonium chloride) brushes can be tuned by counterion species. When the brushes are exposed to external chloride (Cl- ) counterions, obvious dehydration and collapse are only observed at high salt concentrations. In the presence of very strongly chaotropic perchlorate (ClO4- ), the brushes strongly dehydrate and collapse at a very low salt concentration. For the strongly chaotropic thiocyanate ion (SCN- ), the changes in hydration and conformation of the brushes are similar to those observed for ClO4- but at a smaller extent at very low salt concentrations. With the addition of kosmotropic acetate (Ac- ), hydration of the brushes increases, accompanied by a swelling of the brushes in the low-salt-concentration regime. In contrast, the brushes dehydrate and collapse with increasing concentration of Ac- in the high-salt-concentration regime. The counterion specificity of the brushes demonstrated here is determined by specific ion-pairing interactions through modulating the osmotic pressure within the brushes and the hydrophobicity of the ion pairs.
Collapse
Affiliation(s)
- Ran Kou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhen Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
11
|
Yang Z, Zhang S, Tarabara VV, Bruening ML. Aqueous Swelling of Zwitterionic Poly(sulfobetaine methacrylate) Brushes in the Presence of Ionic Surfactants. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b01830] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Shouwei Zhang
- Department
of Chemical and Biomolecular Engineering and Department of Chemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | - Merlin L. Bruening
- Department
of Chemical and Biomolecular Engineering and Department of Chemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
12
|
Nalam PC, Lee HS, Bhatt N, Carpick RW, Eckmann DM, Composto RJ. Nanomechanics of pH-Responsive, Drug-Loaded, Bilayered Polymer Grafts. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12936-12948. [PMID: 28221026 DOI: 10.1021/acsami.6b14116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stimuli-responsive polymer films play an important role in the development of smart antibacterial coatings. In this study, we consider complementary architectures of polyelectrolyte films, including a thin chitosan layer (CH), poly(acrylic acid) (PAA) brushes, and a bilayer structure of CH grafted to PAA brushes (CH/PAA) as possible candidates for targeted drug delivery platforms. Atomic force microscopy (AFM) was employed to study the structure-mechanical property relationship for these mono- and bi-layered polymer grafts at pH 7.4 and 4.0, corresponding to physiological and biofilm formation conditions, respectively. Herein, the surface interactions between polymer grafts and the negatively charged silica colloid attached to an AFM lever are considered as representative interactions between the antibacterial coating and a bacteria/biofilm. The bilayered structure of CH/PAA showed significantly reduced adhesive interactions in comparison to pure CH but slightly higher interactions in comparison to PAA films. Among PAA and CH/PAA films, upon grafting CH over the PAA brushes, the normal stiffness increased by 10-fold at pH 7.4 and 20-fold at pH 4.0. Notably, the study also showed that the addition of an antibiotic drug such as multicationic Tobramycin (TOB) impacts the mechanical properties of the antibacterial coatings. Competition between TOB and water molecules for the PAA chains is shown to determine the structural properties of PAA and CH/PAA films loaded with TOB. At high pH (7.4), the TOB molecules, which remain multicationic, strongly interact with polyanionic PAA, thereby reducing the film's compressibility. On the contrary, at low pH (4.0), the water molecules preferentially interact with TOB in comparison to uncharged PAA chains and, upon TOB release, results in a stronger film collapse together with an increase in adhesive interactions between the probe, the surface, and the elastic modulus of the film. The bacterial proliferation on these platforms when compared to the measured mechanical properties shows a direct correlation; hence, understanding nanomechanical properties can provide insights into designing new antibacterial polymer coatings.
Collapse
Affiliation(s)
| | | | - Nupur Bhatt
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853-2703, United States
| | | | | | | |
Collapse
|
13
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Yadav V, Harkin AV, Robertson ML, Conrad JC. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes. SOFT MATTER 2016; 12:3589-3599. [PMID: 26979270 DOI: 10.1039/c5sm03134f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We investigated the pH-dependent response of flat polyacid brushes of varying length and dispersity in the extended brush regime. Our model system consisted of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized on silicon substrates using a grafting-from approach at constant grafting density. We observed three trends in the pH-response: first, the dry brush thickness increased as the pH was increased for brushes above a critical length, and this effect was magnified as the dispersity increased; second, the water contact angle measured at low pH was larger for brushes of greater dispersity; and third, brushes of sufficient dispersity exhibited hysteretic memory behavior in the pH-dependence of the contact angle, in which the contact angle upon increasing and decreasing pH differed. As a consequence, the pKa of the brushes measured upon increasing pH was consistently higher than that measured upon decreasing pH. The observed pH response is consistent with proposed changes in the conformation and charge distribution of the polyelectrolyte brushes that depend on the direction of pH change and the dispersity of the brushes.
Collapse
Affiliation(s)
- Vivek Yadav
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204-4004, USA.
| | - Adrienne V Harkin
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204-4004, USA.
| | - Megan L Robertson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204-4004, USA.
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204-4004, USA.
| |
Collapse
|
15
|
Wang G, Tang B, Liu Y, Gao Q, Wang Z, Zhang X. The fabrication of a supra-amphiphile for dissipative self-assembly. Chem Sci 2016; 7:1151-1155. [PMID: 29910871 PMCID: PMC5975747 DOI: 10.1039/c5sc03907j] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/28/2015] [Indexed: 11/21/2022] Open
Abstract
Dissipative self-assembly is a challenging but attractive field of supramolecular science, because it generally concerns complex systems but is more close to the self-assembly of living bodies. In this article, we realized dissipative self-assembly by coupling a supra-amphiphile with a chemical oscillator. The supra-amphiphile was fabricated with iodine and a double hydrophilic block copolymer containing PEG segments, as the non-covalent interaction between PEG and iodine could turn PEG hydrophobic, leading to the formation of the supra-amphiphile. The self-assembly and disassembly of the supra-amphiphile could be controlled by varying the concentration of iodine. Therefore, the dissipative self-assembly of the supra-amphiphile was realized when it was coupled with the IO3--NH3OH+-OH- chemical oscillator, which was able to produce iodine periodically. Meanwhile, the kinetic data of the self-assembly and disassembly of the supra-amphiphile could be estimated by the theoretical simulation of the chemical oscillations. This line of research promotes the self-assembly of supra-amphiphiles one step forward from thermodynamic statics to a dissipative system, and also suggests a new strategy to investigate the kinetics of stimuli-responsive molecular self-assembly.
Collapse
Affiliation(s)
- Guangtong Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering , Department of Chemistry , Tsinghua University , Haidian District , Beijing 100084 , China .
| | - Bohan Tang
- Key Lab of Organic Optoelectronics & Molecular Engineering , Department of Chemistry , Tsinghua University , Haidian District , Beijing 100084 , China .
| | - Yang Liu
- School of Chemical Engineering and Technology , China University of Mining & Technology , Xuzhou , Jiangsu 221116 , China
| | - Qingyu Gao
- School of Chemical Engineering and Technology , China University of Mining & Technology , Xuzhou , Jiangsu 221116 , China
| | - Zhiqiang Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering , Department of Chemistry , Tsinghua University , Haidian District , Beijing 100084 , China .
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering , Department of Chemistry , Tsinghua University , Haidian District , Beijing 100084 , China .
| |
Collapse
|
16
|
Kou R, Zhang J, Wang T, Liu G. Interactions between Polyelectrolyte Brushes and Hofmeister Ions: Chaotropes versus Kosmotropes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10461-8. [PMID: 26359677 DOI: 10.1021/acs.langmuir.5b02698] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We have investigated the interactions between the positively charged poly[2-(methacryloyloxy)ethyltrimethylammonium chloride] (PMETAC) brushes and the Hofmeister anions and the interactions between the negatively charged poly(3-sulfopropyl methacrylate potassium) (PSPMA) brushes and the Hofmeister cations using a combination of quartz crystal microbalance with dissipation and spectroscopic ellipsometry. A V-shaped anion series is observed in terms of the ion-specific interactions between the PMETAC brushes and the Hofmeister anions. We have found that the chaotropic and kosmotropic anions interact with the PMETAC brushes in different manners. The ion-specific interactions between the PMETAC brushes and the chaotropic anions are dominated by the direct interactions between the anions and the positively charged quaternary ammonium group via ion pairing mediated by ionic hydration strength or polarizability, whereas the ion-specific interactions between the PMETAC brushes and the kosmotropic anions are dominated by the competition for water molecules between the anions and the brushes. The ion-specific interactions between the PMETAC brushes and the anions have significant influences on both the hydration and the conformation of the brushes. The cations exhibit weaker specific ion effects on the PSPMA brushes in comparison with the specific anion effects on the PMETAC brushes.
Collapse
Affiliation(s)
- Ran Kou
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China , Hefei, P. R. China 230026
| | - Jian Zhang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China , Hefei, P. R. China 230026
| | - Tao Wang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China , Hefei, P. R. China 230026
| | - Guangming Liu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China , Hefei, P. R. China 230026
| |
Collapse
|
17
|
Borisova OV, Billon L, Richter RP, Reimhult E, Borisov OV. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7684-7694. [PMID: 26070329 DOI: 10.1021/acs.langmuir.5b01993] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report on the synthesis of novel pH- and electro-responsive polyelectrolyte brushes from a gold substrate by direct one-step nitroxide-mediated polymerization of acrylic acid (AA) or copolymerization of AA and styrene (S). In the latter case, amphiphilic brushes of block-gradient copolymers PAA-b-(PAA-grad-PS) comprising one PAA block and one block with the gradient sequence of AA and S were obtained. The block-gradient copolymers are initiated from the surface by the start of the PAA block. The brushes were characterized by XPS and ellipsometry. (1)H NMR confirmed the gradient sequence of the PAA-grad-PS copolymer block. The pH- and electro-responsive properties of the brushes were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) in combination with electrochemistry. This method provides evidence of swelling of the PAA brushes proportional to the contour length of the chains at elevated pH, whereas the response functions of the block-gradient copolymers are more complex and point to intermolecular aggregation in the brush at low pH. Monitoring of the changes in resonance frequency and dissipation of the QCM-D also demonstrates that application of negative voltage to the substrate leads to swelling of the brush; application of a positive voltage provokes only a transient collapse of the brush in proportion to the applied voltage.
Collapse
Affiliation(s)
- O V Borisova
- ‡Department of Polymer Science, Moscow State University, Leninskie Gory, Moscow 119191, Russia
| | | | - R P Richter
- §CICbiomaGUNE, 20009 Donostia-San Sebastian, Spain
- ∥Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- ⊥Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - E Reimhult
- #Department of Nanobiotechnology, Institute for Biologically Inspired Materials, University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria
| | - O V Borisov
- ∇Mechanics and Optics, St. Petersburg National Research University of Information Technologies, 197101 St. Petersburg, Russia
| |
Collapse
|
18
|
Nabika H, Inumata T, Kitahata H, Unoura K. Effect of gold nanoparticles on chemical oscillators: A comparative study of the experimental and simulated results. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
|
20
|
Delcroix MF, Demoustier-Champagne S, Dupont-Gillain CC. Quartz crystal microbalance study of ionic strength and pH-dependent polymer conformation and protein adsorption/desorption on PAA, PEO, and mixed PEO/PAA brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:268-277. [PMID: 24328402 DOI: 10.1021/la403891k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The conformation of polymer chains grafted on a substrate influences protein adsorption. In a previous study, adsorption/desorption of albumin was demonstrated on mixed poly(ethylene oxide) (PEO)/poly(acrylic acid) (PAA) brushes, triggered by solutions of adequate pH and ionic strength (I). In the present work, homolayers of PEO or PAA are submitted to saline solutions with pH from 3 to 9 and I from 10(-5) to 10(-1) M, and their conformation is evaluated in real time using quartz crystal microbalance with dissipation monitoring (QCM-D). Shrinkage/swelling of PAA chains and hydration and salt condensation in the brush are evidenced. The adsorption of human serum albumin (HSA) onto such brushes is also monitored in these different saline solutions, leading to a deep understanding of the influence of polymer chain conformation, modulated by pH and I, on protein adsorption. A detailed model of the conformation of PEO/PAA mixed brushes depending on pH and I is then proposed, providing a rationale for the identification of conditions for the successive adsorption and desorption of proteins on such mixed brushes. The adsorption/desorption of albumin on PEO/PAA is demonstrated using QCM-D.
Collapse
Affiliation(s)
- M F Delcroix
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain , Croix du Sud 1 (L7.04.01), 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
21
|
Qi XJ, Lu CH, Liu X, Shimron S, Yang HH, Willner I. Autonomous control of interfacial electron transfer and the activation of DNA machines by an oscillatory pH system. NANO LETTERS 2013; 13:4920-4924. [PMID: 23988015 DOI: 10.1021/nl402873y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An oscillatory pH system is implemented to drive oscillatory pH-switchable DNA machines and to control pH-stimulated electron transfer at electrode surfaces. The oscillatory pH system drives the autonomous opening and closure of DNA tweezers and activates a DNA pendulum by the pH-stimulated formation and dissociation of i-motif structures. Also, a sequence-programmed nucleic acid monolayer-functionalized electrode undergoes autonomous oscillatory pH transitions between random coil and i-motif configurations, leading to the control of electron transfer at electrode surfaces.
Collapse
Affiliation(s)
- Xiu-Juan Qi
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry and Chemical Engineering, Fuzhou University , Fuzhou 350002, China
| | | | | | | | | | | |
Collapse
|
22
|
Masuda T, Hidaka M, Murase Y, Akimoto AM, Nagase K, Okano T, Yoshida R. Self-Oscillating Polymer Brushes. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Masuda T, Hidaka M, Murase Y, Akimoto AM, Nagase K, Okano T, Yoshida R. Self-Oscillating Polymer Brushes. Angew Chem Int Ed Engl 2013; 52:7468-71. [DOI: 10.1002/anie.201301988] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/09/2013] [Indexed: 11/12/2022]
|
24
|
Fontani G, Gaspari R, Spencer ND, Passerone D, Crockett R. Adsorption and friction behavior of amphiphilic polymers on hydrophobic surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4760-4771. [PMID: 23509926 DOI: 10.1021/la400263r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The ability of amphiphilic polymers to self-assemble and form a gel or gel-like layer has been investigated by means of both experimental and theoretical studies on alkylated derivatives of poly(acrylic acid). Experiments were performed to determine the relationship between amphiphilic polymer chemistry, structure, water retention, and friction in the presence of hydrophobic substrates. The results indicate that the amphiphilic polymer forms a water-enriched, friction-reducing adsorbed layer on hydrophobic surfaces. The shear moduli and viscosities of the adsorbed layers, as determined by fitting the Voigt model to QCM-D data, were consistent with the presence of a gel. Computational studies on HPAA-12 were performed and are consistent with the presence of adsorbed conformations, in which the lowest free energy in the model corresponded to a partially adsorbed molecule, with a small fraction of hydrophobic side chains being compelled, for configurational reasons, to point into the bulk water. This would support the possibility of the formation of either a gel-like layer or surface aggregation. However, because the adsorption experiments showed no evidence of aggregation, this strongly suggests the formation of a gel.
Collapse
Affiliation(s)
- Giacomo Fontani
- Swiss Federal Laboratories for Materials Science and Technology, Empa, Duebendorf, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Ma C, Wu B, Zhang G. Protein-protein resistance investigated by quartz crystal microbalance. Colloids Surf B Biointerfaces 2012; 104:5-10. [PMID: 23298581 DOI: 10.1016/j.colsurfb.2012.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 11/17/2022]
Abstract
By use of quartz crystal microbalance with dissipation (QCM-D), we have investigated the adsorption of proteins such as fibrinogen, bovine serum albumin or lysozyme on the surface of soy protein film in PBS buffer solution in real time. Our studies demonstrate that the proteins can be adsorbed on soy protein film at a pH between the isoelectric point (pI(sp)) of soy protein film and that (pI(fp)) of the foreign protein, where the adsorption decreases with the concentration of added salt. Beyond the pH range, soy protein generally resists the adsorption of the foreign protein due to electrostatic repulsion, which is slightly affected by the concentration of the added salt in the range we investigated. At a pH close to pI(sp) or pI(fp), the proteins can also be adsorbed on soy protein film due to hydrophobic interactions. The present study reveals that the protein resistance of soy protein film is determined by electrostatic interactions, hydrophobic interactions and hydrogen bonding between the foreign protein and soy protein.
Collapse
Affiliation(s)
- Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | | |
Collapse
|
26
|
Cui J, Nguyen TH, Ceolín M, Berger R, Azzaroni O, del Campo A. Phototunable Response in Caged Polymer Brushes. Macromolecules 2012. [DOI: 10.1021/ma300274b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jiaxi Cui
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Thi-Huong Nguyen
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Marcelo Ceolín
- Instituto de Investigaciones
Fisicoquímicas Teóricas y Aplicadas (INIFTA) CONICET, Universidad Nacional de La Plata, CC 16 Suc. 4 (1900)
La Plata, Argentina
| | - Rüdiger Berger
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Omar Azzaroni
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- Instituto de Investigaciones
Fisicoquímicas Teóricas y Aplicadas (INIFTA) CONICET, Universidad Nacional de La Plata, CC 16 Suc. 4 (1900)
La Plata, Argentina
| | - Aránzazu del Campo
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
27
|
Eudragit E100 surface activity and lipid interactions. Colloids Surf B Biointerfaces 2012; 91:84-9. [DOI: 10.1016/j.colsurfb.2011.10.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 02/04/2023]
|
28
|
Ye S, Liu G, Li H, Chen F, Wang X. Effect of dehydration on the interfacial water structure at a charged polymer surface: negligible χ(3) contribution to sum frequency generation signal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:1374-1380. [PMID: 22149290 DOI: 10.1021/la203690p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Interfacial water structure at charged surfaces plays a key role in many physical, chemical, biological, environmental, and industrial processes. Understanding the release of interfacial water from the charged solid surfaces during dehydration process may provide insights into the mechanism of protein folding and the nature of weak molecular interactions. In this work, sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by quartz crystal microbalance (QCM) measurements, has been applied to study the interfacial water structure at polyelectrolyte covered surfaces. Poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) chains are grafted on solid surfaces to investigate the change of interfacial water structure with varying surface charge density induced by tuning the solution pH. At pH ≤ 7.1, SFG-VS intensity is linear to the loss of mass of interfacial water caused by the dehydration of PDMAEMA chains, and no reorientation of the strongly bonded water molecules is observed in the light of χ(ppp)/χ(ssp) ratio. χ((3)) contribution to SFG signal is deduced based on the combination of SFG and QCM results. It is the first direct experimental evidence to reveal that the χ((3)) has a negligible contribution to SFG signal of the interfacial water at a charged polymer surface.
Collapse
Affiliation(s)
- Shuji Ye
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, PR China 230026.
| | | | | | | | | |
Collapse
|
29
|
pH-Wave Propagation in the Microchannel Modified with pH-Responsive Molecule. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2012. [DOI: 10.1380/ejssnt.2012.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Nováková A, Schreiberová L, Schreiber I. Study of dynamics of glucose-glucose oxidase-ferricyanide reaction. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2011. [DOI: 10.1134/s003602441113019x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Cui J, Azzaroni O, del Campo A. Polymer Brushes with Phototriggered and Phototunable Swelling and pH Response. Macromol Rapid Commun 2011; 32:1699-703. [DOI: 10.1002/marc.201100435] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/19/2011] [Indexed: 11/11/2022]
|
32
|
Wang X, Liu G, Zhang G. Conformational behavior of grafted weak polyelectrolyte chains: effects of counterion condensation and nonelectrostatic anion adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:9895-9901. [PMID: 21774468 DOI: 10.1021/la201057h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Poly[(2-dimethylamino)ethyl methacrylate] (PDEM) is completely charged, partially charged, and uncharged at pH 4, 7, and 10, respectively. We have investigated the salt effects on the conformational change of PDEM chains grafted on a surface at different pH by using quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance (SPR). The changes in frequency (Δf) and dissipation (ΔD) in QCM-D measurements demonstrate that the conformational behavior is governed by counterion condensation at pH 4 and 7 but by nonelectrostatic anion adsorption at pH 10. The addition of Na(2)SO(4) induces more collapse of the grafted layer than that of NaClO(3) at pH 4 and 7. However, they have a similar effect at pH 10. The shift of resonance unit (ΔRU) in SPR measurements reflects the changes of layer thickness and layer refractive index. At pH 4, ΔRU decreases with ionic strength in the presence of Na(2)SO(4), indicating the decrease of layer thickness or the chain collapse. However, ΔRU exhibits a minimum as the ionic strength increases in the case of NaClO(3). This is because the effects of the layer thickness and refractive index are dominant in the low and high ionic strength regimes, respectively. At pH 7, ΔRU slightly varies with ionic strength in the case of either Na(2)SO(4) or NaClO(3), indicating that the effects of the layer thickness and refractive index are comparable during the layer collapse. At pH 10, the shift in ΔRU suggests that the nonelectrostatic anion adsorption governs the conformational behavior of the PDEM chains.
Collapse
Affiliation(s)
- Xiaowen Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, PR China 230026
| | | | | |
Collapse
|
33
|
Veeregowda DH, van der Mei HC, Busscher HJ, Sharma PK. Influence of fluoride-detergent combinations on the visco-elasticity of adsorbed salivary protein films. Eur J Oral Sci 2011; 119:21-6. [PMID: 21244507 DOI: 10.1111/j.1600-0722.2010.00798.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The visco-elasticity of salivary-protein films is related to mouthfeel, lubrication, biofilm formation, and protection against erosion and is influenced by the adsorption of toothpaste components. The thickness and the visco-elasticity of hydrated films (determined using a quartz crystal microbalance) of 2-h-old in vitro-adsorbed salivary-protein films were 43.5 nm and 9.4 MHz, respectively, whereas the dehydrated thickness, measured using X-ray photoelectron spectroscopy, was 2.4 nm. Treatment with toothpaste slurries decreased the thickness of the film, depending on the fluoride-detergent combination involved. Secondary exposure to saliva resulted in a regained thickness of the film to a level similar to its original thickness; however, no association was found between the thickness of hydrated and dehydrated films, indicating differences in film structure. Treatment with stannous fluoride/sodium lauryl sulphate (SnF(2)/SLS)-containing toothpaste slurries yielded a strong, immediate two-fold increase in characteristic film frequency (f(c)) with respect to untreated films, indicating cross-linking in adsorbed salivary-protein films by Sn(2+) that was absent when SLS was replaced with sodium hexametaphosphate (NaHMP). Secondary exposure to saliva of films treated with SnF(2) caused a strong, six-fold increase in f(c) compared with primary salivary-protein films, regardless of whether SLS or NaHMP was the detergent. This suggests that ionized stannous is not directly available for cross-linking in combination with highly negatively charged NaHMP, but becomes slowly available after initial treatment to cause cross-linking during secondary exposure to saliva.
Collapse
Affiliation(s)
- Deepak H Veeregowda
- Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | | | | | | |
Collapse
|
34
|
Schüwer N, Klok HA. Tuning the pH sensitivity of poly(methacrylic acid) brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4789-4796. [PMID: 21425827 DOI: 10.1021/la200347u] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The pH-induced swelling and collapse of surface-tethered, weak polyelectrolyte brushes is of interest for the development of actuators or to allow pH controlled transport or adsorption. This contribution discusses results of an extensive series of quartz crystal microbalance (QCM) experiments that aimed at (i) further understanding the influence of brush thickness and density on the pH responsiveness of poly(methacrylic acid) (PMAA) brushes and (ii) developing strategies that allow one to engineer the pH responsiveness and dynamic response range of PMAA based brushes. It was observed that, due to their high grafting density, the apparent pK(a) of surface-tethered PMAA differs from that of the corresponding free polymer in solution and also covers a broader pH range. The pK(a) of the PMAA brushes was found to depend on both brush thickness and density; thicker brushes showed a higher pK(a) value, and brushes of higher density started to swell at higher pH. The second part of the paper demonstrates the feasibility of the N-hydroxysuccinimide-mediated post-polymerization modification to engineer the pH responsiveness of the PMAA brushes. By using appropriate amine functionalized acids, it was possible to tune both the pH of maximum response as well as the dynamic response range of these PMAA based polyelectrolyte brushes.
Collapse
Affiliation(s)
- Nicolas Schüwer
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
35
|
Peng B, Liu N, Lin Y, Wang L, Zhang W, Niu Z, Wang Q, Su Z. Self-assembly of anisotropic tobacco mosaic virus nanoparticles on gold substrate. Sci China Chem 2011. [DOI: 10.1007/s11426-010-4177-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
De Giglio E, Cafagna D, Ricci M, Sabbatini L, Cometa S, Ferretti C, Mattioli-Belmonte M. Biocompatibility of Poly(Acrylic Acid) Thin Coatings Electro-synthesized onto TiAlV-based Implants. J BIOACT COMPAT POL 2010. [DOI: 10.1177/0883911510372290] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The protection of metal orthopedic implants against corrosion is a crucial medical problem. It was found that electrochemical polymerization of thin, passive poly(acrylic acid) (PAA) films on titanium and TiAlV substrates provides good anti-corrosion properties. In this work, an investigation of anti-corrosion features was carried out to clarify the hypothesis of the presence of an electrostatic contribution to the performance of a PAA coating. Ion release tests were performed at three different pHs; the pH dependence of the polymer swelling was examined by quartz crystal microbalance with dissipation monitoring, to establish the role of this phenomenon on the polymer barrier properties. The potential application of these PAA thin films as biocompatible protective coatings for metal implants and compatibility towards MG-63 human osteoblast-like cells was assessed.
Collapse
Affiliation(s)
- E. De Giglio
- Department of Chemistry, University of Bari, Bari, Italy
| | - D. Cafagna
- Department of Chemistry, University of Bari, Bari, Italy
| | - M.A. Ricci
- Department of Chemistry, University of Bari, Bari, Italy
| | - L. Sabbatini
- Department of Chemistry, University of Bari, Bari, Italy
| | - S. Cometa
- Laboratory of Bioactive Polymeric Materials for Biomedical & Environmental Applications, Chemistry & Industrial Chemistry Department University of Pisa, Pisa, Italy,
| | - C. Ferretti
- Department of Molecular Pathology and Innovative Therapies Marche Polytechnic University, Ancona, Italy
| | - M. Mattioli-Belmonte
- Department of Molecular Pathology and Innovative Therapies Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
37
|
Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok HA. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 2010; 109:5437-527. [PMID: 19845393 DOI: 10.1021/cr900045a] [Citation(s) in RCA: 1227] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raphaël Barbey
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
38
|
Skrdla PJ. Observation of oscillatory behavior during the dissolution of a pharmaceutical compound and evidence for the existence of an inverse Ostwald rule. Phys Chem Chem Phys 2010; 12:3788-98. [DOI: 10.1039/b917966f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|