1
|
Feng S, Zheng Q. Mechanism of 7H-Dibenzo[c,g]carbazole metabolism in cytochrome P450 1A1: Insights from computational studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134933. [PMID: 38925058 DOI: 10.1016/j.jhazmat.2024.134933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
7H-Dibenzo[c,g]carbazole (DBC) is a prevalent environmental contaminant that induces tumorigenesis in several experimental animals. Recently, it has been utilized to develop high-performance solar cells and organic phosphorescent materials. It is imperative to strengthen investigations of DBC metabolism to understand its potential risks to human health. In this study, human CYP1A1 was employed as the metabolic enzyme to investigate the metabolic mechanism of DBC by molecular docking, molecular dynamics (MD) simulation, and quantum mechanical (QM) calculation. The results indicate that DBC binds to CYP1A1 in two modes (mode 1 and mode 2) mainly through nonpolar solvation energies (ΔGnonpolar). The formation of the two binding modes is attributed to the anchoring effect of the hydrogen bond formed by DBC with Asp320 (mode 1) or Ser116 (mode 2). Mode 1 is a "reactive" conformation, while mode 2 is not considered a "reactive" conformation. C5 is identified as the dominant site, and the pyrrole nitrogen cannot participate in the metabolism. DBC is metabolized mainly by a distinct electrophilic addition-rearrangement mechanism, with an energy barrier of 21.74 kcal/mol. The results provide meaningful insights into the biometabolic process of DBC and contribute to understanding its environmental effects and health risks.
Collapse
Affiliation(s)
- Shi Feng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Qingchuan Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China.
| |
Collapse
|
2
|
Qureshi M, Mokkawes T, Cao Y, de Visser SP. Mechanism of the Oxidative Ring-Closure Reaction during Gliotoxin Biosynthesis by Cytochrome P450 GliF. Int J Mol Sci 2024; 25:8567. [PMID: 39201254 PMCID: PMC11354885 DOI: 10.3390/ijms25168567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
During gliotoxin biosynthesis in fungi, the cytochrome P450 GliF enzyme catalyzes an unusual C-N ring-closure step while also an aromatic ring is hydroxylated in the same reaction cycle, which may have relevance to drug synthesis reactions in biotechnology. However, as the details of the reaction mechanism are still controversial, no applications have been developed yet. To resolve the mechanism of gliotoxin biosynthesis and gain insight into the steps leading to ring-closure, we ran a combination of molecular dynamics and density functional theory calculations on the structure and reactivity of P450 GliF and tested a range of possible reaction mechanisms, pathways and models. The calculations show that, rather than hydrogen atom transfer from the substrate to Compound I, an initial proton transfer transition state is followed by a fast electron transfer en route to the radical intermediate, and hence a non-synchronous hydrogen atom abstraction takes place. The radical intermediate then reacts by OH rebound to the aromatic ring to form a biradical in the substrate that, through ring-closure between the radical centers, gives gliotoxin products. Interestingly, the structure and energetics of the reaction mechanisms appear little affected by the addition of polar groups to the model and hence we predict that the reaction can be catalyzed by other P450 isozymes that also bind the same substrate. Alternative pathways, such as a pathway starting with an electrophilic attack on the arene to form an epoxide, are high in energy and are ruled out.
Collapse
Affiliation(s)
| | | | | | - Sam P. de Visser
- Manchester Institute of Biotechnology, Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK (Y.C.)
| |
Collapse
|
3
|
Dias AHS, Cao Y, Skaf MS, de Visser SP. Machine learning-aided engineering of a cytochrome P450 for optimal bioconversion of lignin fragments. Phys Chem Chem Phys 2024; 26:17577-17587. [PMID: 38884162 DOI: 10.1039/d4cp01282h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Using machine learning, molecular dynamics simulations, and density functional theory calculations we gain insight into the selectivity patterns of substrate activation by the cytochromes P450. In nature, the reactions catalyzed by the P450s lead to the biodegradation of xenobiotics, but recent work has shown that fungi utilize P450s for the activation of lignin fragments, such as monomer and dimer units. These fragments often are the building blocks of valuable materials, including drug molecules and fragrances, hence a highly selective biocatalyst that can produce these compounds in good yield with high selectivity would be an important step in biotechnology. In this work a detailed computational study is reported on two reaction channels of two P450 isozymes, namely the O-deethylation of guaethol by CYP255A and the O-demethylation versus aromatic hydroxylation of p-anisic acid by CYP199A4. The studies show that the second-coordination sphere plays a major role in substrate binding and positioning, heme access, and in the selectivity patterns. Moreover, the local environment affects the kinetics of the reaction through lowering or raising barrier heights. Furthermore, we predict a site-selective mutation for highly specific reaction channels for CYP199A4.
Collapse
Affiliation(s)
- Artur Hermano Sampaio Dias
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Yuanxin Cao
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Munir S Skaf
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
4
|
Wang Z, Zhang R, Li Y, Zhang Q, Wang W, Wang Q. Computational study on the endocrine-disrupting metabolic activation of Benzophenone-3 catalyzed by cytochrome P450 1A1: A QM/MM approach. CHEMOSPHERE 2024; 358:142238. [PMID: 38705413 DOI: 10.1016/j.chemosphere.2024.142238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/17/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Predicting the metabolic activation mechanism and potential hazardous metabolites of environmental endocrine-disruptors is a challenging and significant task in risk assessment. Here the metabolic activation mechanism of benzophenone-3 catalyzed by P450 1A1 was investigated by using Molecular Dynamics, Quantum Mechanics/Molecular Mechanics and Density Functional Theory approaches. Two elementary reactions involved in the metabolic activation of BP-3 with P450 1A1: electrophilic addition and hydrogen abstraction reactions were both discussed. Further conversion reactions of epoxidation products, ketone products and the formaldehyde formation reaction were investigated in the non-enzymatic environment based on previous experimental reports. Binding affinities analysis of benzophenone-3 and its metabolites to sex hormone binding globulin indirectly demonstrates that they all exhibit endocrine-disrupting property. Toxic analysis shows that the eco-toxicity and bioaccumulation values of the benzophenone-3 metabolites are much lower than those of benzophenone-3. However, the metabolites are found to have skin-sensitization effects. The present study provides a deep insight into the biotransformation process of benzophenone-3 catalyzed by P450 1A1 and alerts us to pay attention to the adverse effects of benzophenone-3 and its metabolites in human livers.
Collapse
Affiliation(s)
- Zijian Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Ruiming Zhang
- College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao, 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qiao Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
5
|
Zheng M, Li Y, Zhang Q, Wang W. Selective cascade activation of polycyclic aromatic hydrocarbons in human cells: Role of enzyme's intrinsic electric field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168645. [PMID: 37992839 DOI: 10.1016/j.scitotenv.2023.168645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are major environmental organic pollutants. Some metabolites of PAHs show greater toxicity to humans while the others do not. It is highly important to decipher PAHs' regioselective activation mechanism and identify the major metabolites to accurately evaluate their public health risk. Here, we have performed a thorough computational study of benzo[a]anthracene (BA) metabolized by P450 1A1 by employing molecular docking, molecular dynamics simulations, quantum chemical calculation, and quantum mechanics/molecular mechanics calculations. Our findings show that highly-reactive species such as 3,4-epoxide, 8,9-epoxide, 3,4-diol-1,2-epoxide, and 8,9-diol-10,11-epoxide were major metabolites, which can efficiently react with guanine and damage DNA with extremely low energy barrier, therefore, supports the regioselective metabolism of BA. The origin of this selective activation is mainly contributed to both the oxygen‑carbon distance and previously overlooked enzyme's intrinsic electric field. Consequently, based on the resolved activation selectivity of BA. We built a high-throughput strategy to efficiently predict the metabolites of other PAHs. The accuracy of the strategy is validated by studying 16 PAHs on the priority control list. Hopefully this will aid the accurate evaluation of public health risks associated with PAH emissions.
Collapse
Affiliation(s)
- Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
6
|
Yue D, Hirao H. Mechanism of Selective Aromatic Hydroxylation in the Metabolic Transformation of Paclitaxel Catalyzed by Human CYP3A4. J Chem Inf Model 2023; 63:7826-7836. [PMID: 38039955 DOI: 10.1021/acs.jcim.3c01630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Paclitaxel (PTX) is heralded as one of the most successful natural-product drugs for the treatment of refractory cancers. In humans, the hepatic metabolic transformation of PTX is primarily mediated by two cytochrome P450 enzymes (P450s): CYP3A4 and CYP2C8. The impact of P450 metabolism on the anticancer effectiveness of PTX is significant. However, the precise mechanism underlying selective P450-catalyzed reactions in PTX metabolism remains elusive. To address this knowledge gap, we conducted molecular docking and molecular dynamics simulations using multiple crystal structures of CYP3A4, which originally contained other ligands. These methods enabled us to determine the most plausible binding structure of PTX within the enzyme. By further employing hybrid quantum mechanics and molecular mechanics calculations, we successfully identified two primary pathways for the reaction between compound I (Cpd I) of CYP3A4 and PTX. One of these pathways involves the formation of an epoxide, while the other proceeds through a ketone intermediate.
Collapse
Affiliation(s)
- Dongxiao Yue
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
7
|
Zhang Y, Mokkawes T, de Visser SP. Insights into Cytochrome P450 Enzyme Catalyzed Defluorination of Aromatic Fluorides. Angew Chem Int Ed Engl 2023; 62:e202310785. [PMID: 37641517 DOI: 10.1002/anie.202310785] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Density functional calculations establish a novel mechanism of aromatic defluorination by P450 Compound I. This is achieved via either an initial epoxide intermediate or through a 1,2-fluorine shift in an electrophilic intermediate, which highlights that the P450s can defluorinate fluoroarenes. However, in the absence of a proton donor a strong Fe-F bond can be obtained as shown from the calculations.
Collapse
Affiliation(s)
- Yi Zhang
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M17DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Thirakorn Mokkawes
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M17DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M17DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
8
|
Podgorski MN, Keto AB, Coleman T, Bruning JB, De Voss JJ, Krenske EH, Bell SG. The Oxidation of Oxygen and Sulfur-Containing Heterocycles by Cytochrome P450 Enzymes. Chemistry 2023; 29:e202301371. [PMID: 37338048 DOI: 10.1002/chem.202301371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The cytochrome P450 (CYP) superfamily of monooxygenase enzymes play important roles in the metabolism of molecules which contain heterocyclic, aromatic functional groups. Here we study how oxygen- and sulfur-containing heterocyclic groups interact with and are oxidized using the bacterial enzyme CYP199A4. This enzyme oxidized both 4-(thiophen-2-yl)benzoic acid and 4-(thiophen-3-yl)benzoic acid almost exclusively via sulfoxidation. The thiophene oxides produced were activated towards Diels-Alder dimerization after sulfoxidation, forming dimeric metabolites. Despite X-ray crystal structures demonstrating that the aromatic carbon atoms of the thiophene ring were located closer to the heme than the sulfur, sulfoxidation was still favoured with 4-(thiophen-3-yl)benzoic acid. These results highlight a preference of this cytochrome P450 enzyme for sulfoxidation over aromatic hydroxylation. Calculations predict a strong preference for homodimerization of the enantiomers of the thiophene oxides and the formation of a single major product, in broad agreement with the experimental data. 4-(Furan-2-yl)benzoic acid was oxidized to 4-(4'-hydroxybutanoyl)benzoic acid using a whole-cell system. This reaction proceeded via a γ-keto-α,β-unsaturated aldehyde species which could be trapped in vitro using semicarbazide to generate a pyridazine species. The combination of the enzyme structures, the biochemical data and theoretical calculations provides detailed insight into the formation of the metabolites formed from these heterocyclic compounds.
Collapse
Affiliation(s)
- Matthew N Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Angus B Keto
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
9
|
Hou Z, Li Y, Zheng M, Liu X, Zhang Q, Wang W. Regioselective oxidation of heterocyclic aromatic hydrocarbons catalyzed by cytochrome P450: A case study of carbazole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114964. [PMID: 37121081 DOI: 10.1016/j.ecoenv.2023.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
Recently there are increasing interests in accurately evaluating the health effects of heterocyclic PAHs. However, the activation mechanism and possible metabolites of heterocyclic PAHs catalyzed by human CYP1A1 is still elusive to a great extent. Here, leveraged to high level QM/MM calculations, the corresponding activation pathways of a representative heterocyclic PAHs, carbazole, were systematically explored. The first stage is electrophilic addition or hydrogen abstraction from N-H group. Electrophilic addition was evidenced to be more feasible and regioselectivity at C3 and C4 sites were identified. Correlations between energy barriers and key structural/electrostatic parameters reveal that O-Cα distance and Fe-O-Cα angle are the main origin for the catalytic regioselectivity. Electrophilic addition was determined as the rate-determining step and the subsequent possible reactions include epoxidation, NIH shift (the hydrogen migration from the site of hydroxylation to the adjacent carbon) and proton shuttle. The corresponding products are epoxides, ketones and hydroxylated carbazoles, respectively. The main metabolites (hydroxylated carbazoles) are estimated to be more toxic than carbazole. The regioselectivity of carbazole activated by CYP1A1 is different from the environmental processes (gas and aqueous phase). Collectively, these results will inform the in-depth understanding the metabolic processes of heterocyclic PAHs and aid the accurate evaluation of their health effects.
Collapse
Affiliation(s)
- Zexi Hou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; Shenzhen Research Institute, Shandong University, Shenzhen 518057, PR China.
| | - Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xinning Liu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
10
|
Mokkawes T, de Visser SP. Melatonin Activation by Cytochrome P450 Isozymes: How Does CYP1A2 Compare to CYP1A1? Int J Mol Sci 2023; 24:3651. [PMID: 36835057 PMCID: PMC9959256 DOI: 10.3390/ijms24043651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cytochrome P450 enzymes are versatile enzymes found in most biosystems that catalyze mono-oxygenation reactions as a means of biosynthesis and biodegradation steps. In the liver, they metabolize xenobiotics, but there are a range of isozymes with differences in three-dimensional structure and protein chain. Consequently, the various P450 isozymes react with substrates differently and give varying product distributions. To understand how melatonin is activated by the P450s in the liver, we did a thorough molecular dynamics and quantum mechanics study on cytochrome P450 1A2 activation of melatonin forming 6-hydroxymelatonin and N-acetylserotonin products through aromatic hydroxylation and O-demethylation pathways, respectively. We started from crystal structure coordinates and docked substrate into the model, and obtained ten strong binding conformations with the substrate in the active site. Subsequently, for each of the ten substrate orientations, long (up to 1 μs) molecular dynamics simulations were run. We then analyzed the orientations of the substrate with respect to the heme for all snapshots. Interestingly, the shortest distance does not correspond to the group that is expected to be activated. However, the substrate positioning gives insight into the protein residues it interacts with. Thereafter, quantum chemical cluster models were created and the substrate hydroxylation pathways calculated with density functional theory. These relative barrier heights confirm the experimental product distributions and highlight why certain products are obtained. We make a detailed comparison with previous results on CYP1A1 and identify their reactivity differences with melatonin.
Collapse
Affiliation(s)
- Thirakorn Mokkawes
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
11
|
Hermano Sampaio Dias A, Yadav R, Mokkawes T, Kumar A, Skaf MS, Sastri CV, Kumar D, de Visser SP. Biotransformation of Bisphenol by Human Cytochrome P450 2C9 Enzymes: A Density Functional Theory Study. Inorg Chem 2023; 62:2244-2256. [PMID: 36651185 PMCID: PMC9923688 DOI: 10.1021/acs.inorgchem.2c03984] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bisphenol A (BPA, 2,2-bis-(4-hydroxyphenyl)propane) is used as a precursor in the synthesis of polycarbonate and epoxy plastics; however, its availability in the environment is causing toxicity as an endocrine-disrupting chemical. Metabolism of BPA and their analogues (substitutes) is generally performed by liver cytochrome P450 enzymes and often leads to a mixture of products, and some of those are toxic. To understand the product distributions of P450 activation of BPA, we have performed a computational study into the mechanisms and reactivities using large model structures of a human P450 isozyme (P450 2C9) with BPA bound. Density functional theory (DFT) calculations on mechanisms of BPA activation by a P450 compound I model were investigated, leading to a number of possible products. The substrate-binding pocket is tight, and as a consequence, aliphatic hydroxylation is not feasible as the methyl substituents of BPA cannot reach compound I well due to constraints of the substrate-binding pocket. Instead, we find low-energy pathways that are initiated with phenol hydrogen atom abstraction followed by OH rebound to the phenolic ortho- or para-position. The barriers of para-rebound are well lower in energy than those for ortho-rebound, and consequently, our P450 2C9 model predicts dominant hydroxycumyl alcohol products. The reactions proceed through two-state reactivity on competing doublet and quartet spin state surfaces. The calculations show fast and efficient substrate activation on a doublet spin state surface with a rate-determining electrophilic addition step, while the quartet spin state surface has multiple high-energy barriers that can also lead to various side products including C4-aromatic hydroxylation. This work shows that product formation is more feasible on the low spin state, while the physicochemical properties of the substrate govern barrier heights of the rate-determining step of the reaction. Finally, the importance of the second-coordination sphere is highlighted that determines the product distributions and guides the bifurcation pathways.
Collapse
Affiliation(s)
- Artur Hermano Sampaio Dias
- Manchester
Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, ManchesterM1 7DN, United Kingdom,Center
for Computing in Engineering & Sciences, University of Campinas, Rua Josué de Castro, s/n, Campinas13083-861, Brazil
| | - Rolly Yadav
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati, Assam781039, India
| | - Thirakorn Mokkawes
- Manchester
Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, ManchesterM1 7DN, United Kingdom
| | - Asheesh Kumar
- Department
of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh (U.P.)226025, India
| | - Munir S. Skaf
- Center
for Computing in Engineering & Sciences, University of Campinas, Rua Josué de Castro, s/n, Campinas13083-861, Brazil
| | - Chivukula V. Sastri
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati, Assam781039, India,
| | - Devesh Kumar
- Department
of Physics, Siddharth University, Kapilvastu, Siddharthnagar272202, India,
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, ManchesterM1 7DN, United Kingdom,
| |
Collapse
|
12
|
de Figueiredo MRA, Barnes H, Boot CM, de Figueiredo ABTB, Nissen SJ, Dayan FE, Gaines TA. Identification of a Novel 2,4-D Metabolic Detoxification Pathway in 2,4-D-Resistant Waterhemp ( Amaranthus tuberculatus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15380-15389. [PMID: 36453610 DOI: 10.1021/acs.jafc.2c05908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A 2,4-dichlorophenoxyactic acid (2,4-D)-resistant population of Amaranthus tuberculatus (common waterhemp) from Nebraska, USA, was previously found to have rapid metabolic detoxification of the synthetic auxin herbicide 2,4-D. We purified the main 2,4-D metabolites from resistant and susceptible plants, solved their structures by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS), and synthesized the metabolites to determine their in planta toxicity. Susceptible plants conjugated 2,4-D to aspartate to form 2,4-D-aspartic acid (2,4-D-Asp), while resistant plants had a unique metabolic profile where 2,4-D was hydroxylated into 5-OH-2,4-D, followed by conjugation into a sugar metabolite (2,4-D-5-O-d-glucopyranoside) and subsequent malonylation into 2,4-D-(6'-O-malonyl)-5-O-d-glucopyranoside. Toxicological studies on waterhemp and Arabidopsis thaliana confirmed that the hydroxylated metabolite lost its auxinic action and toxicity. In contrast, the 2,4-D-Asp metabolite found in susceptible plants retained some auxinic action and toxicity. These results demonstrate that 2,4-D-resistant A. tuberculatus evolved novel detoxification reactions not present in susceptible plants to rapidly metabolize 2,4-D, potentially mediated by cytochrome P450 enzymes that perform the initial 5-hydroxylation reaction. This novel mechanism is more efficient to detoxify 2,4-D and produces metabolites with lower toxicity compared to the aspartic acid conjugation found in susceptible waterhemp.
Collapse
Affiliation(s)
- Marcelo R A de Figueiredo
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Hamlin Barnes
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Claudia M Boot
- Department of Chemistry, Materials and Molecular Analysis Center, Colorado State University, Fort Collins, Colorado 80523, United States
| | | | - Scott J Nissen
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
13
|
Mokkawes T, Lim ZQ, de Visser SP. Mechanism of Melatonin Metabolism by CYP1A1: What Determines the Bifurcation Pathways of Hydroxylation versus Deformylation? J Phys Chem B 2022; 126:9591-9606. [PMID: 36380557 PMCID: PMC9706573 DOI: 10.1021/acs.jpcb.2c07200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Melatonin, a widely applied cosmetic active ingredient, has a variety of uses as a skin protector through antioxidant and anti-inflammatory functions as well as giving the body UV-induced defenses and immune system support. In the body, melatonin is synthesized from a tryptophan amino acid in a cascade of reactions, but as melatonin is toxic at high concentrations, it is metabolized in the human skin by the cytochrome P450 enzymes. The P450s are diverse heme-based mono-oxygenases that catalyze oxygen atom-transfer processes that trigger metabolism and detoxification reactions in the body. In the catalytic cycle of the P450s, a short-lived high-valent iron(IV)-oxo heme cation radical is formed that has been proposed to be the active oxidant. How and why it activates melatonin in the human body and what the origin of the product distributions is, are unknown. This encouraged us to do a detailed computational study on a typical human P450 isozyme, namely CYP1A1. We initially did a series of molecular dynamics simulations with substrate docked into several orientations. These simulations reveal a number of stable substrate-bound positions in the active site, which may lead to differences in substrate activation channels. Using tunneling analysis on the full protein structures, we show that two of the four binding conformations lead to open substrate-binding pockets. As a result, in these open pockets, the substrate is not tightly bound and can escape back into the solution. In the closed conformations, in contrast, the substrate is mainly oriented with the methoxy group pointing toward the heme, although under a different angle. We then created large quantum cluster models of the enzyme and focused on the chemical reaction mechanisms for melatonin activation, leading to competitive O-demethylation and C6-aromatic hydroxylation pathways. The calculations show that active site positioning determines the product distributions, but the bond that is activated is not necessarily closest to the heme in the enzyme-substrate complex. As such, the docking and molecular dynamics positioning of the substrate versus oxidant can give misleading predictions on product distributions. In particular, in quantum mechanics cluster model I, we observe that through a tight hydrogen bonding network, a preferential 6-hydroxylation of melatonin is obtained. However, O-demethylation becomes possible in alternative substrate-binding orientations that have the C6-aromatic ring position shielded. Finally, we investigated enzymatic and non-enzymatic O-demethylation processes and show that the hydrogen bonding network in the substrate-binding pocket can assist and perform this step prior to product release from the enzyme.
Collapse
Affiliation(s)
- Thirakorn Mokkawes
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K.,Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Ze Qing Lim
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K.,Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K.,Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.,
| |
Collapse
|
14
|
Peng W, Yan S, Zhang X, Liao L, Zhang J, Shaik S, Wang B. How Do Preorganized Electric Fields Function in Catalytic Cycles? The Case of the Enzyme Tyrosine Hydroxylase. J Am Chem Soc 2022; 144:20484-20494. [DOI: 10.1021/jacs.2c09263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Langxing Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Jinyan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190407 Jerusalem, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| |
Collapse
|
15
|
Zhou J, Zhang X, Li Y, Feng S, Zhang Q, Wang W. Endocrine-disrupting metabolic activation of 2-nitrofluorene catalyzed by human cytochrome P450 1A1: A QM/MM approach. ENVIRONMENT INTERNATIONAL 2022; 166:107355. [PMID: 35751956 DOI: 10.1016/j.envint.2022.107355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Nitropolycyclic aromatic hydrocarbons (NPAHs) present one of the most important airborne pollutants. Recent studies have shown that one of the most abundant NPAHs, 2-Nitrofluorene (NF), was supposed to be converted to endocrine-disrupting metabolites by cytochrome P450 1A1 (CYP1A1) in human cells. However, the mechanism is still largely unexplored. Here the metabolic activation and transformation mechanism of NF catalyzed by CYP1A1 were systematically studied with the aid of Molecular Dynamics, Density Functional Theory and Quantum Mechanics/Molecular Mechanics techniques. We evidence that CYP1A1 can activate NF through two elementary processes: (i) electrophilic addition (12.4 kcal·mol-1) or hydrogen abstraction (38.2 kcal·mol-1) and (ii) epoxidation (5.9 and 8.7 kcal·mol-1) or NIH shift (12.5 and 14.9 kcal·mol-1) or proton shuttle (12.1 kcal·mol-1). Electrophilic addition was found to be the rate-determining step while epoxidation rather than NIH shift or proton shuttle is the more feasible pathway after electrophilic addition. Metabolites 6,7-epoxide-2-nitrofluorene and 7,8-epoxide-2-nitrofluorene were identified as the major epoxidation products. Epoxides are unstable and easy to react with hydrated hydrogen ions and hydroxyls to produce endocrine disrupter 7-hydroxy-2-nitrofluorene. Toxic analysis shows that some of the metabolites are more toxic to model aquatic organisms (e.g. Green algea) than NF. Binding affinity analysis to human sex hormone binding globulin reveals that NF metabolites all have endocrine-disrupting potential. This study provides a comprehensive understanding on the biotransformation process of NF and may aid future studies on various NPAHs activation catalyzed by human P450 enzyme.
Collapse
Affiliation(s)
- Junhua Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xin Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Shanshan Feng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
16
|
Zhou TP, Deng WH, Wu Y, Liao RZ. QM/MM Calculations Suggested Concerted O‒O Bond Cleavage and Substrate Oxidation by Nonheme Diiron Toluene/o‐xylene Monooxygenase. Chem Asian J 2022; 17:e202200490. [DOI: 10.1002/asia.202200490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tai-Ping Zhou
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Wen-Hao Deng
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Yuzhou Wu
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Rong-Zhen Liao
- Huazhong University of Science and technology College of Chemistry and Chemical Engeneering Luoyulu 1037 430074 Wuhan CHINA
| |
Collapse
|
17
|
Zhang S, Li X, Wang Y, Wei J, Zhang X, Liu Y. Computational Study of the Peroxygenase Mechanism Catalyzed by Hemoglobin Dehaloperoxidase Involved in the Degradation of Chlorophenols. Inorg Chem 2022; 61:2628-2639. [PMID: 35080380 DOI: 10.1021/acs.inorgchem.1c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biochemical evidence showed that hemoglobin dehaloperoxidase (DHP B) from Amphitrite Ornata is a multifunctional hemoprotein that catalyzes both dehalogenation and hydroxylation of halophenols via the peroxidase and peroxygenase mechanism, respectively, which sets the basis for the degradation of halophenols. In the peroxygenase mechanism, the reaction was previously suggested to be triggered either by the hydrogen atom abstraction by the Fe═O center or by the proton abstraction by His55. To illuminate the peroxygenase mechanism of DHP B at the atomistic level, on the basis of the high-resolution crystal structure, computational models were constructed, and a series of quantum mechanical/molecular mechanical calculations have been performed. According to the calculation results, the pathway (Path a) initiated by the H-abstraction by the Fe═O center is feasible. In another pathway (Path b), His55 can abstract the proton from the hydroxyl group of the substrate (4-Cl-o-cresol) to initiate the reaction; however, its feasibility depends on the prior electron transfer from the substrate to the porphyrin group. The rate-limiting step of Path a is the OH-rebound, which corresponds to an energy barrier of 14.7 kcal/mol at the quartet state. His55 acts as an acid-base catalyst and directly involves in the catalysis. Our mutant study indicates that His55 can be replaced by other titratable residues. These findings may provide useful information for further understanding of the catalytic reaction of DHP B and for the design of enzymes in the degradation of pollutants, in particular, halophenols.
Collapse
Affiliation(s)
- Shiqing Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
18
|
Coleman T, Kirk AM, Lee JHZ, Doherty DZ, Bruning JB, Krenske EH, De Voss JJ, Bell SG. Different Geometric Requirements for Cytochrome P450-Catalyzed Aliphatic Versus Aromatic Hydroxylation Results in Chemoselective Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alicia M. Kirk
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joel H. Z. Lee
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Daniel Z. Doherty
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B. Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
19
|
Zhang R, Li P, Zhang R, Shi X, Li Y, Zhang Q, Wang W. Computational study on the detoxifying mechanism of DDT metabolized by cytochrome P450 enzymes. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125457. [PMID: 33652222 DOI: 10.1016/j.jhazmat.2021.125457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Predicting the detoxifying mechanism and potential toxic derivatives of xenobiotic substances is significant for risk assessment. The present study delineated the detoxifying mechanism of 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene (DDT) metabolized by human P450 enzymes using a combination of molecular dynamic (MD), quantum mechanics/molecular mechanics (QM/MM) and density functional theory (DFT). This study highlights that DDT can be metabolized by P450 enzymes through the hydrogen abstraction and electrophilic addition mechanism, and the main derivatives are epoxides (2,3-oxide-DDT and 3,4-oxide-DDT), DDE and dicofol. The epoxides are unstable and the C-O bond cleavage easily occurs by the reaction with hydronium ion or hydroxyl radicals, yielding endocrine disruptor hydroxylated DDT. The eco-toxicity evaluation indicates that the derivatives of DDT are less toxic than DDT, and the solubility increase of the derivatives can accelerate their excretion from the body. The study can provide an understanding of the biotransformation of DDT by the P450 enzymes in human livers.
Collapse
Affiliation(s)
- Ruiming Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Pengfei Li
- Shandong Academy for Environmental Planning, Jinan 250014, PR China
| | - Ruiying Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xiangli Shi
- College of Geography and Environment, Shandong Normal University, Jinan 250014, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
20
|
Zhu L, Huo X, Zhou J, Zhang Q, Wang W. Metabolic activation mechanism of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB136) by cytochrome P450 2B6: A QM/MM approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145579. [PMID: 33652317 DOI: 10.1016/j.scitotenv.2021.145579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Cytochrome P450 enzymes (CYPs) play an essential role in the bio-transformation of polychlorinated biphenyls (PCBs). The present work implemented quantum mechanic/molecular mechanic methods (QM/MM) and density functional theory (DFT) to study the metabolic activation of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB136) catalyzed by CYP2B6. Electrophilic additions at the Cα and Cβ positions generate different active intermediates. The electrophilic addition energy barrier of Cβ is 10.9 kcal/mol higher than that of Cα, and Cα is the preferred site for the electrophilic addition reaction. Based on the previous experimental studies, this work investigated the mechanism of converting active intermediates into OH-PCB136, which has high toxicity in a non-enzymatic environment. Structural analysis via the electrostatic and noncovalent interactions indicates that Phe108, Ile114, Phe115, Phe206, Phe297, Ala298, Leu363, Val367, TIP32475 and TIP32667 play crucial roles in substrate recognition and metabolism. The analysis suggests that the halogen-π interactions are important factors for the metabolism of CYP2B6 to halogenated environmental pollutants. This work improved the understanding of the metabolism and activation process of chiral PCBs, and can be used as a guide to improve the microbial degradation efficiency of PCB136.
Collapse
Affiliation(s)
- Ledong Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xinxi Huo
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; Office of Supervisory and Audit, Shandong University, Qingdao 266237, PR China
| | - Jie Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
21
|
Zhang J, Meng H, Kong X, Cheng X, Ma T, He H, Du W, Yang S, Li S, Zhang L. Combined effects of polyethylene and organic contaminant on zebrafish (Danio rerio): Accumulation of 9-Nitroanthracene, biomarkers and intestinal microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116767. [PMID: 33640823 DOI: 10.1016/j.envpol.2021.116767] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 05/06/2023]
Abstract
Microplastics, as emerging pollutant, are predicted to act as carriers for organic pollutants, but the carrier role and bio-toxic effects with other pollutants in environments are poorly acknowledged. In this study, both the single and combined effects of polyethylene (PE, 10 and 40 mg/L) with the particle size of 100-150 μm and 9-Nitroanthracene (9-NAnt, 5 and 500 μg/L) on zebrafish (Danio rerio) had been investigated. The results illustrated that PE could be as 9-NAnt carrier to enter into zebrafish body, but significantly reduced the bioaccumulation of 9-NAnt, due to the occurrence of adsorption interactions between the simultaneous presence of both PE and 9-NAnt. After 4 days, the enzymes activity of cytochrome P4501A, acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), lactate dehydrogenase (LDH), and the abundance of malondialdehyde (MDA), lipid peroxide (LPO) responded strongly to low-dose PE exposure (10 mg/L). After 7 days exposure to PE-9-NAnt (40 mg/L), the P4501A activity increased significantly, but the activities of AChE and LDH were inhibited clearly, causing certain neurotoxicity and disorders of energy metabolism to zebrafish. The analysis of integrated biomarker response index (IBR) suggested that PE had greater bio-toxicity to zebrafish in all exposure groups after short-term exposure, but the PE-9-NAnt complex showed greater bio-toxicity after 7 days, which indicated that complex exposure of PE-9-NAnt had a delayed effect on the bio-toxicity of zebrafish. Furthermore, analysis of the intestinal microbiota exhibited that under the conditions of the exposure group with 9-NAnt, the relative abundance of the five dominant bacterial phyla (Proteobacteria, Firmicutes, Fusobacteriota, Bacteroidota and Verrucomicrobiota) changed greatly. Overall, this study confirmed that PE could carry 9-NAnt into fish causing bioaccumulation, but in the case of coexisting exposures, PE reduced 9-NAnt bioaccumulation, suggesting that microplastics with other emerging pollutants in chronic toxicity are probably next objects in future works.
Collapse
Affiliation(s)
- Jinghua Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Han Meng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Xiangcheng Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Tao Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, PR China.
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| |
Collapse
|
22
|
Yuan C, Ouyang Q, Wang X, Li X, Tan H, Chen G. Interactive Regulation between Aliphatic Hydroxylation and Aromatic Hydroxylation of Thaxtomin D in TxtC: A Theoretical Investigation. Inorg Chem 2021; 60:6433-6445. [PMID: 33861573 DOI: 10.1021/acs.inorgchem.1c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TxtC is an unusual bifunctional cytochrome P450 that is able to perform sequential aliphatic and aromatic hydroxylation of the diketopiperazine substrate thaxtomin D in two distinct sites to produce thaxtomin A. Though the X-ray structure of TxtC complexed with thaxtomin D revealed a binding mode for its aromatic hydroxylation, the preferential hydroxylation site is aliphatic C14. It is thus intriguing to unravel how TxtC accomplishes such two-step catalytic hydroxylation on distinct aliphatic and aromatic carbons and why the aliphatic site is preferred in the hydroxylation step. In this work, by employing molecular docking and molecular dynamics (MD) simulation, we revealed that thaxtomin D could adopt two different conformations in the TxtC active site, which were equal in energy with either the aromatic C20-H or aliphatic C14-H pointing toward the active Cpd I oxyferryl moiety. Further ONIOM calculations indicated that the energy barrier for the rate-limiting hydroxylation step on the aliphatic C14 site was 9.6 kcal/mol more favorable than that on the aromatic C20 site. The hydroxyl group on the monohydroxylated intermediate thaxtomin B C14 site formed hydrogen bonds with Ser280 and Thr385, which induced the l-Phe moiety to rotate around the Cβ-Cγ bond of the 4-nitrotryptophan moiety. Thus, it adopted an energetically favorable conformation with aromatic C20 adjacent to the oxyferryl moiety. In addition, the hydroxyl group induced solvent water molecules to enter the active site, which propelled thaxtomin B toward the heme plane and resulted in heme distortion. Based on this geometrical layout, the rate-limiting aromatic hydroxylation energy barrier decreased to 15.4 kcal/mol, which was comparable to that of the thaxtomin D aliphatic hydroxylation process. Our calculations indicated that heme distortion lowered the energy level of the lowest Cpd I α-vacant orbital, which promoted electron transfer in the rate-limiting thaxtomin B aromatic hydroxylation step in TxtC.
Collapse
Affiliation(s)
- Chang Yuan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Qingwen Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xixi Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xichen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Hongwei Tan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
23
|
Zhu L, Zhou J, Zhang Q, Li Y, Wang W. Computational study on the metabolic activation mechanism of PeCDD by Cytochrome P450 1A1. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124276. [PMID: 33158646 DOI: 10.1016/j.jhazmat.2020.124276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Cytochrome P450 enzymes (CYPs) are crucial for metabolizing dioxin compounds such as 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD). Here we have applied molecular dynamic simulations (MD), quantum mechanics/molecular mechanics methods (QM/MM) and density functional theory (DFT) to investigate the metabolic activation and transformation of PeCDD catalyzed by CYP1A1. Our QM/MM calculations highlight that PeCDD can be activated by P450s through the well-known electrophilic addition mechanism with an average energy barrier of 20.9 kcal/mol. Based on the results of previous experimental studies, further conversions of ketone products and epoxidation products that are mediated by P450 enzymes were investigated through DFT calculations. Analysis of the structures via the noncovalent interactions (NCI) method and the distortion-interaction model suggests that amino acids Ser122, Ala317, Ile386 and Leu496 play important roles in the metabolic process.
Collapse
Affiliation(s)
- Ledong Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Jie Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
24
|
Don CG, Smieško M. Deciphering Reaction Determinants of Altered-Activity CYP2D6 Variants by Well-Tempered Metadynamics Simulation and QM/MM Calculations. J Chem Inf Model 2020; 60:6642-6653. [PMID: 33269921 DOI: 10.1021/acs.jcim.0c01091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The xenobiotic metabolizing enzyme CYP2D6 is the P450 cytochrome family member with the highest rate of polymorphism. This causes changes in the enzyme activity and specificity, which can ultimately lead to adverse reactions during drug treatment. To avoid or lower CYP-related toxicity risks, prediction of the most likely positions within a molecule where a metabolic reaction might occur is paramount. In order to obtain accurate predictions, it is crucial to understand all phenomena within the active site of the enzyme that contribute to an efficient substrate recognition and the subsequent catalytic reaction together with their relative weight within the overall thermodynamic context. This study aims to define the weight of the driving forces upon the C-H bond activation within CYP2D6 wild-type and a clinically relevant allelic variant with increased activity (CYP2D6*53) featuring two amino acid mutations in close vicinity of the heme. First, we investigated the steric and electrostatic complementarity of the substrate bufuralol using well-tempered metadynamics simulations with the aim to obtain the free energy profiles for each site of metabolism (SoM) within the different active sites. Second, the stereoelectronic complementarity was determined for each SoM within the two different active-site environments. Relying on the well-tempered metadynamics simulation energy profiles of each SoM, we identified the binding mode that was closest to the preferred transition-state geometry for efficient C-H bond activation. The binding modes were then used as starting structures for the quantum mechanics/molecular mechanics calculations performed to quantify the corresponding activation barriers. Our results show the relevance of the steric component in orienting the SoM in an energetically accessible position toward the heme. However, the corresponding intrinsic reactivity and electronic complementarity within the active site must be accurately evaluated in order to obtain a meaningful reaction prediction, from which the predominant SoM can be determined. The F120I mutation lowered the activation barrier for the major site and one of the minor SoMs. However, it had an impact neither on the CYP2D6 enantioselectivity preference of the oxidation reaction nor on the stereoselectivity from the substrate point of view.
Collapse
Affiliation(s)
- Charleen G Don
- Computational Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Martin Smieško
- Computational Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
25
|
Hussain R, Yadav R, Ahmed M, Khan TA, Kumar D, Akhter Y. Interplay between two spin states determines the hydroxylation catalyzed by P
450
monooxygenase from
Trichoderma brevicompactum. J Comput Chem 2020; 41:1330-1336. [DOI: 10.1002/jcc.26177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Razak Hussain
- Department of BotanyAligarh Muslim University Aligarh Uttar Pradesh India
| | - Rolly Yadav
- Department of Applied PhysicsSchool for Physical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow Uttar Pradesh India
| | - Mushtaq Ahmed
- Centre for Molecular BiologySchool of Life Sciences, Central University of Jammu Bagla Jammu and Kashmir India
| | - Tabreiz A. Khan
- Department of BotanyAligarh Muslim University Aligarh Uttar Pradesh India
| | - Devesh Kumar
- Department of Applied PhysicsSchool for Physical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow Uttar Pradesh India
| | - Yusuf Akhter
- Department of BiotechnologyBabasaheb Bhimrao Ambedkar University Lucknow Uttar Pradesh India
| |
Collapse
|
26
|
QM Calculations in ADMET Prediction. Methods Mol Biol 2020; 2114:285-305. [PMID: 32016900 DOI: 10.1007/978-1-0716-0282-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In recent years, there has been an increase in the application of quantum mechanics (QM) methods to describe properties related to the ADMET profile of small molecules. The application of these methods allows calculating useful descriptors and physiochemical properties contributing to ADMET prediction. Considering that QM methods are the only one that describe the electronic state of a molecules, such methods are particularly useful for studying the metabolism of drugs; furthermore, the introduction of mixed QM and molecular mechanics (QM/MM) is also increasing the understanding of drug interaction with cytochromes from a mechanistic point of view. Finally, combining the increase number of experimental data with machine learning algorithms and QM-derived descriptors allowed the creation of an end-user software capable of affecting the drug discovery process.
Collapse
|
27
|
Wasukan N, Kuno M, Maniratanachote R. Molecular Docking as a Promising Predictive Model for Silver Nanoparticle-Mediated Inhibition of Cytochrome P450 Enzymes. J Chem Inf Model 2019; 59:5126-5134. [PMID: 31714078 DOI: 10.1021/acs.jcim.9b00572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cytochrome P450 (CYP) enzymes are responsible for oxidative metabolisms of a large number of xenobiotics. In this study, we investigated interactions of silver nanoparticles (AgNPs) and silver ions (Ag+) with six CYP isoforms, namely, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4, within CYP-specific inhibitor-binding pockets by molecular docking and quantum mechanical (QM) calculations. The docking results revealed that the Ag3 cluster, not Ag+, interacted with key amino acids of CYP2C9, CYP2C19, and CYP2D6 within a distance of about 3 Å. Moreover, the QM analysis confirmed that the amino acid residues of these CYP enzymes strongly interacted with the Ag3 cluster, providing more insight into the mechanism of the potential inhibition of CYP enzyme activities. Interestingly, these results are consistent with previous in vitro data indicating that AgNPs inhibited activities of CYP2C and CYP2D in rat liver microsomes. It is suggested that the Ag3 cluster is a minimal unit of AgNPs for in silico modeling. In summary, we demonstrated that molecular docking, together with QM analysis, is a promising tool to predict AgNP-mediated CYP inhibition. These methods are useful for deeper understanding of reaction mechanisms and could be used for other nanomaterials.
Collapse
Affiliation(s)
- Nootcharin Wasukan
- National Science and Technology Development Agency (NSTDA) , 111 Thailand Science Park , Khlong Luang , Pathum Thani 12120 , Thailand
| | - Mayuso Kuno
- Department of Chemistry, Faculty of Science , Srinakharinwirot University , Sukhumwit 23 , Wattana District, Bangkok 10110 , Thailand
| | - Rawiwan Maniratanachote
- National Science and Technology Development Agency (NSTDA) , 111 Thailand Science Park , Khlong Luang , Pathum Thani 12120 , Thailand
| |
Collapse
|
28
|
Schneider M, Pons JL, Labesse G, Bourguet W. In Silico Predictions of Endocrine Disruptors Properties. Endocrinology 2019; 160:2709-2716. [PMID: 31265055 PMCID: PMC6804484 DOI: 10.1210/en.2019-00382] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/26/2019] [Indexed: 01/12/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are a broad class of molecules present in our environment that are suspected to cause adverse effects in the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous ligands. The characterization of the harmful interaction between environmental compounds and their potential cellular targets and the development of robust in vivo, in vitro, and in silico screening methods are important for assessment of the toxic potential of large numbers of chemicals. In this context, computer-aided technologies that will allow for activity prediction of endocrine disruptors and environmental risk assessments are being developed. These technologies must be able to cope with diverse data and connect chemistry at the atomic level with the biological activity at the cellular, organ, and organism levels. Quantitative structure-activity relationship methods became popular for toxicity issues. They correlate the chemical structure of compounds with biological activity through a number of molecular descriptors (e.g., molecular weight and parameters to account for hydrophobicity, topology, or electronic properties). Chemical structure analysis is a first step; however, modeling intermolecular interactions and cellular behavior will also be essential. The increasing number of three-dimensional crystal structures of EDCs' targets has provided a wealth of structural information that can be used to predict their interactions with EDCs using docking and scoring procedures. In the present review, we have described the various computer-assisted approaches that use ligands and targets properties to predict endocrine disruptor activities.
Collapse
Affiliation(s)
- Melanie Schneider
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jean-Luc Pons
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Gilles Labesse
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
- Correspondence: Gilles Labesse, PhD, or William Bourguet, PhD, Centre de Biochimie Structurale, 29 rue de Navacelles, 34090 Montpellier, France. E-mail: or
| | - William Bourguet
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
- Correspondence: Gilles Labesse, PhD, or William Bourguet, PhD, Centre de Biochimie Structurale, 29 rue de Navacelles, 34090 Montpellier, France. E-mail: or
| |
Collapse
|
29
|
Bao L, Liu W, Li Y, Wang X, Xu F, Yang Z, Yue Y, Zuo C, Zhang Q, Wang W. Carcinogenic Metabolic Activation Process of Naphthalene by the Cytochrome P450 Enzyme 1B1: A Computational Study. Chem Res Toxicol 2019; 32:603-612. [PMID: 30794404 DOI: 10.1021/acs.chemrestox.8b00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabolic activation and transformation of naphthalene by the cytochrome P450 enzyme (CYP 1B1) plays an important role in its potential carcinogenicity. The process has been explored by a quantum mechanics/molecular mechanics (QM/MM) computational method. Molecular dynamic simulations were performed to explore the interaction between naphthalene and CYP 1B1. Naphthalene involves α- and β-carbon, the electrophilic addition of which would result in different reaction pathways. Our computational results show that both additions on α- and β-carbon can generate naphthalene 1,2-oxide. The activation barrier for the addition on β-carbon is higher than that for the α-carbon by 2.6 kcal·mol-1, which is possibly caused by the proximity between β-carbon and the iron-oxo group of Cpd I in the system. We also found that naphthalene 1,2-oxide is unstable and the O-C bond cleavage easily occurs via cellular hydronium ion, hydroxyl radical/anion; then it will convert to the potential ultimate carcinogen 1,2-naphthoquinone. The results demonstrate and inform a detailed process of generating naphthalene 1,2-oxide and new predictions for its conversion.
Collapse
Affiliation(s)
- Lei Bao
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Wen Liu
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Yanwei Li
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Xueyu Wang
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Fei Xu
- Shenzhen Research Institute of Shandong University , Shenzhen 518057 , People's Republic of China
| | - Zhongyue Yang
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Yue Yue
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Chenpeng Zuo
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Qingzhu Zhang
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Wenxing Wang
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| |
Collapse
|
30
|
Fu Z, Chen J. Xenobiotic Metabolism by Cytochrome P450 Enzymes: Insights Gained from Molecular Simulations. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2019. [DOI: 10.1007/978-3-030-16443-0_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Ramesh M, Bharatam PV. Formation of a Toxic Quinoneimine Metabolite from Diclofenac: A Quantum Chemical Study. Drug Metab Lett 2018; 13:64-76. [PMID: 30210009 DOI: 10.2174/1872312812666180913120736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Diclofenac is a non-steroidal antiinflammatory drug. It is predominantly metabolized by CYP2C9. 4'-hydroxydiclofenac and its quinoneimine are the metabolites of diclofenac. However, few numbers of serious cases of idiosyncratic hepatotoxicity due to diclofenac metabolism were reported. The formation of the quinoneimine metabolite was found to be responsible for this idiosyncratic toxicity. Quinoneimine is an over-oxidized metabolite of diclofenac. METHOD In this work, computational studies were conducted to detail the formation of a quinoneimine metabolite from diclofenac. Further, the idiosyncratic toxicity of quinoneimine due to its reactivity was also investigated by quantum chemical analysis. RESULTS & CONCLUSION The results demonstrate the possibility of formation of quinoneimine metabolite due to various factors that are involved in the metabolism of diclofenac. The present study may provide the structural in-sights during the drug development processes to avoid the metabolism directed idiosyncratic toxicity.
Collapse
Affiliation(s)
- Muthusamy Ramesh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar (Mohali)-160 062, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar (Mohali)-160 062, India
| |
Collapse
|
32
|
Biodegradation of Cosmetics Products: A Computational Study of Cytochrome P450 Metabolism of Phthalates. INORGANICS 2017. [DOI: 10.3390/inorganics5040077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Rokob TA. Pathways for Arene Oxidation in Non-Heme Diiron Enzymes: Lessons from Computational Studies on Benzoyl Coenzyme A Epoxidase. J Am Chem Soc 2016; 138:14623-14638. [PMID: 27682344 DOI: 10.1021/jacs.6b06987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxygenation of aromatic rings using O2 is catalyzed by several non-heme carboxylate-bridged diiron enzymes. In order to provide a general mechanistic description for these reactions, computational studies were carried out at the ONIOM(B3LYP/BP86/Amber) level on the non-heme diiron enzyme benzoyl coenzyme A epoxidase, BoxB. The calculations revealed four possible pathways for attacking the aromatic ring: (a) electrophilic (2e-) attack by a bis(μ-oxo)-diiron(IV) species (Q pathway); (b) electrophilic (2e-) attack via the σ* orbital of a μ-η2:η2-peroxo-diiron(III) intermediate (Pσ* pathway); (c) radical (1e-) attack via the π*-orbital of a superoxo-diiron(II,III) species (Pπ* pathway); (d) radical (1e-) attack of a partially quenched bis(μ-oxo)-diiron(IV) intermediate (Q' pathway). The results allowed earlier work of de Visser on olefin epoxidation by diiron complexes and QM-cluster studies of Liao and Siegbahn on BoxB to be put into a broader perspective. Parallels with epoxidation using organic peracids were also examined. Specifically for the BoxB enzyme, the Q pathway was found to be the most preferred, but the corresponding bis(μ-oxo)-diiron(IV) species is significantly destabilized and not expected to be directly observable. Epoxidation via the Pσ* pathway represents an energetically somewhat higher lying alternative; possible strategies for experimental discrimination are discussed. The selectivity toward epoxidation is shown to stem from a combination of inherent electronic properties of the thioacyl substituent and enzymatic constraints. Possible implications of the results for toluene monooxygenases are considered as well.
Collapse
Affiliation(s)
- Tibor András Rokob
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
34
|
Silva PJ. Will 1,2-dihydro-1,2-azaborine-based drugs resist metabolism by cytochrome P450 compound I? PeerJ 2016; 4:e2299. [PMID: 27547588 PMCID: PMC4974919 DOI: 10.7717/peerj.2299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/06/2016] [Indexed: 11/20/2022] Open
Abstract
1,2-dihydro-1,2-azaborine is a structural and electronic analogue of benzene which is able to occupy benzene-binding pockets in T4 lysozyme and has been proposed as suitable arene-mimicking group for biological and pharmaceutical applications. Its applicability in a biological context requires it to be able to resist modification by xenobiotic-degrading enzymes like the P450 cytochromes. Quantum chemical computations described in this work show that 1,2-dihydro-1,2-azaborine is much more prone to modification by these enzymes than benzene, unless steric crowding of the ring prevents it from reaching the active site, or otherwise only allows reaction at the less reactive C4-position. This novel heterocyclic compound is therefore expected to be of limited usefulness as an aryl bioisostere.
Collapse
Affiliation(s)
- Pedro J Silva
- FP-ENAS, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa , Porto , Portugal
| |
Collapse
|
35
|
Fu Z, Wang Y, Chen J, Wang Z, Wang X. How PBDEs Are Transformed into Dihydroxylated and Dioxin Metabolites Catalyzed by the Active Center of Cytochrome P450s: A DFT Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8155-8163. [PMID: 27363260 DOI: 10.1021/acs.est.6b00524] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Predicting metabolism of chemicals and potential toxicities of relevant metabolites remains a vital and difficult task in risk assessment. Recent findings suggested that polybrominated diphenyl ethers (PBDEs) can be transformed into dihydroxylated and dioxin metabolites catalyzed by cytochrome P450 enzymes (CYPs), whereas the mechanisms pertinent to these transformations remain largely unknown. Here, by means of density functional theory (DFT) calculations, we probed the metabolic pathways of 2,2',4,4'-tetraBDE (BDE-47) using the active center model of CYPs (Compound I). Results show that BDE-47 is first oxidized to monohydroxylated products (HO-BDEs), wherein a keto-enol tautomerism is identified for rearrangement of the cyclohexenone intermediate. Dihydroxylation with HO-BDEs as precursors, has a unique phenolic H-abstraction and hydroxyl rebound pathway that is distinct from that for monohydroxylation, which accounts for the absence of epoxides in in vitro studies. Furthermore, we found only dihydroxylated PBDEs with heterophenyl -OH substituents ortho- and meta- to the ether bond serve as precursors for dioxins, which are evolved from aryl biradical coupling of diketone intermediates that are produced from dehydrogenation of the dihydroxylated PBDEs by Compound I. This study may enlighten the development of computational models that afford mechanism-based prediction of the xenobiotic biotransformation catalyzed by CYPs.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Xingbao Wang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
36
|
Grandner JM, Cacho RA, Tang Y, Houk KN. Mechanism of the P450-Catalyzed Oxidative Cyclization in the Biosynthesis of Griseofulvin. ACS Catal 2016; 6:4506-4511. [PMID: 28503354 DOI: 10.1021/acscatal.6b01068] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Griseofulvin is an anti-fungal agent which has recently been determined to have potential anti-viral and anti-cancer applications. The role of specific enzymes involved in the biosynthesis of this natural product has previously been determined, but the mechanism by which a p450, GsfF, catalyzes the key oxidative cyclization of griseophenone B remains unknown. Using density functional theory (DFT), we have determined the mechanism of this oxidation that forms the oxa-spiro core of griseofulvin. Computations show GsfF preferentially performs two sequential phenolic O-H abstractions rather than epoxidation to form an arene oxide intermediate. This conclusion is supported by experimental kinetic isotope effects.
Collapse
Affiliation(s)
- Jessica M. Grandner
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ralph A. Cacho
- Department
of Chemical and Biomolecular Engineering, University of California, Los
Angeles, California 90095, United States
| | - Yi Tang
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Los
Angeles, California 90095, United States
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Los
Angeles, California 90095, United States
| |
Collapse
|
37
|
Capoferri L, Leth R, ter Haar E, Mohanty AK, Grootenhuis PDJ, Vottero E, Commandeur JNM, Vermeulen NPE, Jørgensen FS, Olsen L, Geerke DP. Insights into regioselective metabolism of mefenamic acid by cytochrome P450 BM3 mutants through crystallography, docking, molecular dynamics, and free energy calculations. Proteins 2016; 84:383-96. [PMID: 26757175 DOI: 10.1002/prot.24985] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 BM3 (CYP102A1) mutant M11 is able to metabolize a wide range of drugs and drug-like compounds. Among these, M11 was recently found to be able to catalyze formation of human metabolites of mefenamic acid and other nonsteroidal anti-inflammatory drugs (NSAIDs). Interestingly, single active-site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain of the protein mutant M11 was expressed, purified, and crystallized, and its X-ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free-energy calculations to address protein flexibility. In this way, preferred binding modes that are consistent with oxidation at the experimentally observed sites of metabolism (SOMs) were identified. Whereas docking could not be used to retrospectively predict experimental trends in regioselectivity, we were able to rank binding modes in line with the preferred SOMs of mefenamic acid by M11 and its mutants by including protein flexibility and dynamics in free-energy computation. In addition, we could obtain structural insights into the change in regioselectivity of mefenamic acid hydroxylation due to single active-site mutations. Our findings confirm that use of MD and binding free-energy calculation is useful for studying biocatalysis in those cases in which enzyme binding is a critical event in determining the selective metabolism of a substrate.
Collapse
Affiliation(s)
- Luigi Capoferri
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, De Boelelaan 1083, 1081 HV Amsterdam, the Netherlands
| | - Rasmus Leth
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Ernst ter Haar
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210
| | - Arun K Mohanty
- Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210
| | | | - Eduardo Vottero
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, De Boelelaan 1083, 1081 HV Amsterdam, the Netherlands
| | - Jan N M Commandeur
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, De Boelelaan 1083, 1081 HV Amsterdam, the Netherlands
| | - Nico P E Vermeulen
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, De Boelelaan 1083, 1081 HV Amsterdam, the Netherlands
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lars Olsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Daan P Geerke
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University, De Boelelaan 1083, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
38
|
Li XX, Wang Y, Zheng QC, Zhang HX. Detoxification of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by cytochrome P450 enzymes: A theoretical investigation. J Inorg Biochem 2015; 154:21-8. [PMID: 26544505 DOI: 10.1016/j.jinorgbio.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 10/12/2015] [Accepted: 10/19/2015] [Indexed: 11/24/2022]
Abstract
Two types of detoxification routes, N-demethylation to form 4-phenyl-1,2,3,6-tetrahydropyridine (PTP) and aromatic hydroxylation to generate 4-(4'-hydroxyphenyl)-1-methyl-1,2,3,6-tetrahydropyridine (MPTP-OH), for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mediated by Compound I (Cpd I) of cytochrome P450 are investigated theoretically using hybrid density functional calculations. Quantum chemical results reveal that for the N-demethylation, the initial C-H bond activation is achieved via a hydrogen atom transfer (HAT) mechanism. This is followed by a subsequent O-rebound to yield the carbinolamine intermediate. Due to the nature of pericyclic reaction, the generated carbinolamine decomposes in a non-enzymatic aqueous environment with the assistance of water molecules, forming amine and hydrated formaldehyde. For the aromatic hydroxylation, an initial addition of Cpd I to the substrate occurs mainly through a side-on approach with a subsequent proton shuttle to form the phenol product. A comparison of the energy barriers for both routes indicates that the N-demethylation (7.5/5.7kcal/mol for the quartet/doublet state in solvent) is thermodynamically more favorable than the aromatic hydroxylation process (14.9/14.8kcal/mol for the quartet/doublet state in solvent). This trend is in good agreement with the experimental product distribution, viz., the N-demethylation product PTP is more than the aromatic hydroxylation product MPTP-OH. Taken together, these observations not only enrich our knowledge on the mechanistic details of the N-dealkylation and the aromatic hydroxylation by P450s, but also provide certain insights into the metabolism of other analogous toxins.
Collapse
Affiliation(s)
- Xiao-Xi Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China; State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Qing-Chuan Zheng
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130023, People's Republic of China; State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Hong-Xing Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| |
Collapse
|
39
|
Scharkoi O, Becker R, Esslinger S, Weber M, Nehls I. Predicting sites of cytochrome P450-mediated hydroxylation applied to CYP3A4 and hexabromocyclododecane. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2014.898845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Muñoz Robles V, Ortega-Carrasco E, Alonso-Cotchico L, Rodriguez-Guerra J, Lledós A, Maréchal JD. Toward the Computational Design of Artificial Metalloenzymes: From Protein–Ligand Docking to Multiscale Approaches. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Victor Muñoz Robles
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Elisabeth Ortega-Carrasco
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Lur Alonso-Cotchico
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Jaime Rodriguez-Guerra
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Barcelona, Spain
| |
Collapse
|
41
|
Liao RZ, Siegbahn PEM. Mechanism and selectivity of the dinuclear iron benzoyl-coenzyme A epoxidase BoxB. Chem Sci 2015; 6:2754-2764. [PMID: 28706665 PMCID: PMC5489048 DOI: 10.1039/c5sc00313j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
DFT calculations are used to elucidate the reaction mechanism and selectivity of BoxB catalyzed benzoyl-CoA epoxidation.
Benzoyl-CoA epoxidase is a dinuclear iron enzyme that catalyzes the epoxidation reaction of the aromatic ring of benzoyl-CoA with chemo-, regio- and stereo-selectivity. It has been suggested that this enzyme may also catalyze the deoxygenation reaction of epoxide, suggesting a unique bifunctionality among the diiron enzymes. We report a density functional theory study of this enzyme aimed at elucidating its mechanism and the various selectivities. The epoxidation is suggested to start with the binding of the O2 molecule to the diferrous center to generate a diferric peroxide complex, followed by concerted O–O bond cleavage and epoxide formation. Two different pathways have been located, leading to (2S,3R)-epoxy and (2R,3S)-epoxy products, with barriers of 17.6 and 20.4 kcal mol–1, respectively. The barrier difference is 2.8 kcal mol–1, corresponding to a diastereomeric excess of about 99 : 1. Further isomerization from epoxide to phenol is found to have quite a high barrier, which cannot compete with the product release step. After product release into solution, fast epoxide–oxepin isomerization and racemization can take place easily, leading to a racemic mixture of (2S,3R) and (2R,3S) products. The deoxygenation of epoxide to regenerate benzoyl-CoA by a diferrous form of the enzyme proceeds via a stepwise mechanism. The C2–O bond cleavage happens first, coupled with one electron transfer from one iron center to the substrate, to form a radical intermediate, which is followed by the second C3–O bond cleavage. The first step is rate-limiting with a barrier of only 10.8 kcal mol–1. Further experimental studies are encouraged to verify our results.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory for Large-Format Battery Materials and System , Ministry of Education , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China .
| | - Per E M Siegbahn
- Department of Organic Chemistry , Arrhenius Laboratory , Stockholm University , SE-10691 Stockholm , Sweden .
| |
Collapse
|
42
|
Wang X, Chen J, Wang Y, Xie H, Fu Z. Transformation pathways of MeO-PBDEs catalyzed by active center of P450 enzymes: a DFT investigation employing 6-MeO-BDE-47 as a case. CHEMOSPHERE 2015; 120:631-636. [PMID: 25462307 DOI: 10.1016/j.chemosphere.2014.09.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/27/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
Recent in vivo and in vitro experiments indicated that methoxylated polybrominated diphenyl ethers (MeO-PBDEs) can be biotransformed into hydroxylated PBDEs (HO-PBDEs) that are more toxic than PBDEs and MeO-PBDEs. Nevertheless, the enzymatic transformation mechanism is not clear. We hypothesized that cytochrome P450 enzymes (CYPs) play a key role in the transformation and employed the density functional theory calculations to unveil the mechanism. The transformation of a model compound, 6-MeO-BDE-47, catalyzed by the active center of CYPs (Compound I), was computed. For the first time, our results show that the energy barriers for the addition of Compound I to the C atoms on the phenyl of 6-MeO-BDE-47 are much higher than that for hydroxylation of the methoxyl, indicating that O-demethylation is a dominating metabolic pathway. This is in line with experimental observations performed by others. The pathways for the transformation of 6-MeO-BDE-47 catalyzed by Compound I were clarified. A C-H bond of the methoxyl is activated by Compound I, followed by radical rebound to form carbinol intermediates, then the carbinols decompose to form 6-HO-BDE-47 with the assistance of water molecules. The computational method can be potentially employed to develop models that predict biotransformation of xenobiotics catalyzed by CYPs.
Collapse
Affiliation(s)
- Xingbao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongbin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
43
|
Bren U, Fuchs JE, Oostenbrink C. Cooperative binding of aflatoxin B1 by cytochrome P450 3A4: a computational study. Chem Res Toxicol 2014; 27:2136-47. [PMID: 25398138 DOI: 10.1021/tx5004062] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aflatoxin B1 (AFB1)-the most potent natural carcinogen known to men-is metabolized by cytochrome P450 3A4 (CYP3A4), either to the genotoxic AFB1 exo-8,9-epoxide or to the detoxified 3α-hydroxy AFB1. The activation of the procarcinogen proceeds in a highly cooperative fashion, which differs from common allosteric regulation in the sense that it can be attributed to simultaneous occupancy of a single large and malleable active site by multiple ligand molecules. Unfortunately, unlike in the case of ketoconazole, there is currently no experimental structure available for the doubly ligated CYP3A4-AFB1 complex. Therefore, we employed a sequential molecular docking protocol to create various possible doubly ligated complexes and subsequently performed molecular dynamics simulations and free-energy calculations to check for their consistency with the available experimental data on regio- and stereoselectivity of both AFB1 oxidations as well as with available kinetic data. Only the system in which the first AFB1 molecule was bound in a face-on C8-C9 epoxidation mode and the second AFB1 molecule was bound in a side-on 3α-hydroxylation mode-a result of an unconstrained molecular docking protocol-has successfully fulfilled all the imposed criteria and is therefore proposed as the most likely structure of the doubly ligated complex of CYP3A4 with AFB1. The empirical Linear Interaction Energy method revealed that shape complementarity through nonpolar dispersion interactions between the two bound AFB1 molecules is the main source of the experimentally observed positive homotropic cooperativity. The reported study represents a nice example of how state-of-the-art molecular modeling techniques can be used to study complicated macromolecular complexes, whose structures have not yet been experimentally determined, and to validate these against the available experimental data. The proposed structure will facilitate future studies on the rational design of successful AFB1 modulators or on human subpopulations characterized by specific CYP3A4 polymorphisms that are especially sensitive to AFB1.
Collapse
Affiliation(s)
- Urban Bren
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences , Muthgasse 18, AT-1190 Vienna, Austria
| | | | | |
Collapse
|
44
|
Hirao H, Thellamurege N, Zhang X. Applications of density functional theory to iron-containing molecules of bioinorganic interest. Front Chem 2014; 2:14. [PMID: 24809043 PMCID: PMC4010748 DOI: 10.3389/fchem.2014.00014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/10/2014] [Indexed: 12/29/2022] Open
Abstract
The past decades have seen an explosive growth in the application of density functional theory (DFT) methods to molecular systems that are of interest in a variety of scientific fields. Owing to its balanced accuracy and efficiency, DFT plays particularly useful roles in the theoretical investigation of large molecules. Even for biological molecules such as proteins, DFT finds application in the form of, e.g., hybrid quantum mechanics and molecular mechanics (QM/MM), in which DFT may be used as a QM method to describe a higher prioritized region in the system, while a MM force field may be used to describe remaining atoms. Iron-containing molecules are particularly important targets of DFT calculations. From the viewpoint of chemistry, this is mainly because iron is abundant on earth, iron plays powerful (and often enigmatic) roles in enzyme catalysis, and iron thus has the great potential for biomimetic catalysis of chemically difficult transformations. In this paper, we present a brief overview of several recent applications of DFT to iron-containing non-heme synthetic complexes, heme-type cytochrome P450 enzymes, and non-heme iron enzymes, all of which are of particular interest in the field of bioinorganic chemistry. Emphasis will be placed on our own work.
Collapse
Affiliation(s)
- Hajime Hirao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological UniversitySingapore, Singapore
| | | | | |
Collapse
|
45
|
Gnanasambandan T, Gunasekaran S, Seshadri S. FT-IR, FT-Raman, UV–Vis spectral and normal coordinate analysis of chlorzoxazone. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.12.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM. Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 2014; 114:3601-58. [PMID: 24410477 DOI: 10.1021/cr400388t] [Citation(s) in RCA: 448] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
47
|
Rydberg P, Jørgensen FS, Olsen L. Use of density functional theory in drug metabolism studies. Expert Opin Drug Metab Toxicol 2013; 10:215-27. [PMID: 24295134 DOI: 10.1517/17425255.2014.864278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The cytochrome P450 enzymes (CYPs) metabolize many drug compounds. They catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be generated. Density functional theory (DFT) has, over the past decade, been shown to be a powerful tool to rationalize and predict the possible metabolites generated by the CYPs as well as other drug-metabolizing enzymes. AREAS COVERED We review applications of DFT on reactions performed by the CYPs and other drug-metabolizing enzymes able to perform oxidation reactions, with an emphasis on predicting which metabolites are produced. We also cover calculations of binding energies for complexes in which the ligands interact directly with the heme iron atom. EXPERT OPINION DFT is a useful tool for prediction of the site of metabolism. The use of small models of the enzymes work surprisingly well for most CYP isoforms. This is probably due to the fact that the binding of the substrates is not the major determinant. When binding of the substrate plays a significant role, the well-known issue of determining the free energy of binding is the challenge. How approaches taking the protein environment into account, like docking, MD and QM/MM, can be used are discussed.
Collapse
Affiliation(s)
- Patrik Rydberg
- University of Copenhagen, Department of Drug Design and Pharmacology , Denmark
| | | | | |
Collapse
|
48
|
Lev B, Roux B, Noskov SY. Relative Free Energies for Hydration of Monovalent Ions from QM and QM/MM Simulations. J Chem Theory Comput 2013; 9:4165-75. [PMID: 26592407 DOI: 10.1021/ct400296w] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methods directly evaluating the hydration structure and thermodynamics of physiologically relevant cations (Na(+), K(+), Cl(-), etc.) have wide ranging applications in the fields of inorganic, physical, and biological chemistry. All-atom simulations based on accurate potential energy surfaces appear to offer a viable option for assessing the chemistry of ion solvation. Although MD and free energy simulations of ion solvation with classical force fields have proven their usefulness, a number of challenges still remain. One of them is the difficulty of force field benchmarking and validation against structural and thermodynamic data obtained for a condensed phase. Hybrid quantum mechanical/molecular mechanical (QM/MM) models combined with sampling algorithms have the potential to provide an accurate solvation model and to incorporate the effects from the surrounding, which is often missing in gas-phase ab initio computations. Herein, we report the results from QM/MM free energy simulations of Na(+)/K(+) and Cl(-)/Br(-) hydration where we simultaneously characterized the relative thermodynamics of ion solvation and changes in the solvation structure. The Flexible Inner Region Ensemble Separator (FIRES) method was used to impose a spatial separation between QM region and the outer sphere of solvent molecules treated with the CHARMM27 force field. FEP calculations based on QM/MM simulations utilizing the CHARMM/deMon2k interface were performed with different basis set combinations for K(+)/Na(+) and Cl(-)/Br(-) perturbations to establish the dependence of the computed free energies on the basis set level. The dependence of the computed relative free energies on the size of the QM and MM regions is discussed. The current methodology offers an accurate description of structural and thermodynamic aspects of the hydration of alkali and halide ions in neat solvents and can be used to obtain thermodynamic data on ion solvation in condensed phase along with underlying structural properties of the ion-solvent system.
Collapse
Affiliation(s)
- Bogdan Lev
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, The University of Calgary , 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Sciences, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States of America
| | - Sergei Yu Noskov
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, The University of Calgary , 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
49
|
Lonsdale R, Houghton KT, Żurek J, Bathelt CM, Foloppe N, de Groot MJ, Harvey JN, Mulholland AJ. Quantum mechanics/molecular mechanics modeling of regioselectivity of drug metabolism in cytochrome P450 2C9. J Am Chem Soc 2013; 135:8001-15. [PMID: 23641937 PMCID: PMC3670427 DOI: 10.1021/ja402016p] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Cytochrome P450 enzymes (P450s) are
important in drug metabolism
and have been linked to adverse drug reactions. P450s display broad
substrate reactivity, and prediction of metabolites is complex. QM/MM
studies of P450 reactivity have provided insight into important details
of the reaction mechanisms and have the potential to make predictions
of metabolite formation. Here we present a comprehensive study of
the oxidation of three widely used pharmaceutical compounds (S-ibuprofen, diclofenac, and S-warfarin)
by one of the major drug-metabolizing P450 isoforms, CYP2C9. The reaction
barriers to substrate oxidation by the iron-oxo species (Compound
I) have been calculated at the B3LYP-D/CHARMM27 level for different
possible metabolism sites for each drug, on multiple pathways. In
the cases of ibuprofen and warfarin, the process with the lowest activation
energy is consistent with the experimentally preferred metabolite.
For diclofenac, the pathway leading to the experimentally observed
metabolite is not the one with the lowest activation energy. This
apparent inconsistency with experiment might be explained by the two
very different binding modes involved in oxidation at the two competing
positions. The carboxylate of diclofenac interacts strongly with the
CYP2C9 Arg108 side chain in the transition state for formation of
the observed metabolite—but not in that for the competing pathway.
We compare reaction barriers calculated both in the presence and in
the absence of the protein and observe a marked improvement in selectivity
prediction ability upon inclusion of the protein for all of the substrates
studied. The barriers calculated with the protein are generally higher
than those calculated in the gas phase. This suggests that active-site
residues surrounding the substrate play an important role in controlling
selectivity in CYP2C9. The results show that inclusion of sampling
(particularly) and dispersion effects is important in making accurate
predictions of drug metabolism selectivity of P450s using QM/MM methods.
Collapse
Affiliation(s)
- Richard Lonsdale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Edmund GHC, Lewis DFV, Howlin BJ. Modelling species selectivity in rat and human cytochrome P450 2D enzymes. PLoS One 2013; 8:e63335. [PMID: 23691026 PMCID: PMC3653926 DOI: 10.1371/journal.pone.0063335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/31/2013] [Indexed: 12/03/2022] Open
Abstract
Updated models of the Rat Cytochrome P450 2D enzymes are produced based on the recent x-ray structures of the Human P450 2D6 enzyme both with and without a ligand bound. The differences in species selectivity between the epimers quinine and quinidine are rationalised using these models and the results are discussed with regard to previous studies. A close approach to the heme is not observed in this study. The x-ray structure of the enzyme with a ligand bound is shown to be a better model for explaining the observed experimental binding of quinine and quinidine. Hence models with larger closed binding sites are recommended for comparative docking studies. This is consistent with molecular recognition in Cytochrome P450 enzymes being the result of a number of non-specific interactions in a large binding site.
Collapse
Affiliation(s)
- Grace H. C. Edmund
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - David F. V. Lewis
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Brendan J. Howlin
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|