1
|
Schifano NP, Caputo GA. Investigation of the Role of Hydrophobic Amino Acids on the Structure-Activity Relationship in the Antimicrobial Venom Peptide Ponericin L1. J Membr Biol 2022; 255:537-551. [PMID: 34792624 PMCID: PMC9114170 DOI: 10.1007/s00232-021-00204-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
Venom mixtures from insects, reptiles, and mollusks have long been a source of bioactive peptides which often have alternative uses as therapeutics. While these molecules act in numerous capacities, there have been many venom components that act on the target cells through membrane disruptive mechanisms. These peptides have long been of interest as potential antimicrobial peptide platforms, but the inherent cytotoxicity of venom peptides often results in poor therapeutic potential. Despite this, efforts are ongoing to identify and characterize venom peptide which exhibit high antimicrobial activity with low cytotoxicity and modify these to further enhance the efficacy while reducing toxicity. One example is ponericin L1 from Neoponera goeldii which has been demonstrated to have good antimicrobial activity and low in vitro cytotoxicity. The L1 sequence was modified by uniformly replacing the native hydrophobic residues with either Leu, Ile, Phe, Ala, or Val. Spectroscopic and microbiological approaches were employed to investigate how the amino acid sequence changes impacted membrane interaction, secondary structure, and antimicrobial efficacy. The L1 derivatives showed varying degrees of bilayer interaction, in some cases driven by bilayer composition. Several of the variants exhibited enhanced antimicrobial activity compared to the parent strain, while others lost all activity. Interestingly, the variant containing Val lost all antimicrobial activity and ability to interact with bilayers. Taken together the results indicate that peptide secondary structure, amino acid composition, and hydrophobicity all play a role in peptide activity, although this is a delicate balance that can result in non-specific binding or complete loss of activity if specific amino acids are incorporated.
Collapse
Affiliation(s)
- Nicholas P Schifano
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Gregory A Caputo
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA.
- Department of Molecular & Cellular Biosciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA.
| |
Collapse
|
2
|
Brahma R, Raghuraman H. Measuring Membrane Penetration Depths and Conformational Changes in Membrane Peptides and Proteins. J Membr Biol 2022; 255:469-483. [PMID: 35274157 DOI: 10.1007/s00232-022-00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
Abstract
The structural organization and dynamic nature of the biomembrane components are important determinants for numerous cellular functions. Particularly, membrane proteins are critically important for various physiological functions and are important drug targets. The mechanistic insights on the complex functionality of membrane lipids and proteins can be elucidated by understanding the interplay between structure and dynamics. In this regard, membrane penetration depth represents an important parameter to obtain the precise depth of membrane-embedded molecules that often define the conformation and topology of membrane probes and proteins. In this review, we discuss about the widely used fluorescence quenching-based methods (parallax method, distribution analysis, and dual-quencher analysis) to accurately determine the membrane penetration depths of fluorescent probes that are either membrane-embedded or attached to lipids and proteins. Further, we also discuss a relatively novel fluorescence quenching method that utilizes tryptophan residue as the quencher, namely the tryptophan-induced quenching, which is sensitive to monitor small-scale conformational changes (short distances of < 15 Å) and useful in mapping distances in proteins. We have provided numerous examples for the benefit of readers to appreciate the importance and applicability of these simple yet powerful methods to study membrane proteins.
Collapse
Affiliation(s)
- Rupasree Brahma
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF, Bidhannagar, Kolkata, 700 064, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF, Bidhannagar, Kolkata, 700 064, India.
| |
Collapse
|
3
|
Pal S, Chakraborty H, Chattopadhyay A. Lipid Headgroup Charge Controls Melittin Oligomerization in Membranes: Implications in Membrane Lysis. J Phys Chem B 2021; 125:8450-8459. [PMID: 34254509 DOI: 10.1021/acs.jpcb.1c02499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melittin, a hemolytic peptide present in bee venom, represents one of the most well-studied amphipathic antimicrobial peptides, particularly in terms of its membrane interaction and activity. Nevertheless, no consensus exists on the oligomeric state of membrane-bound melittin. We previously reported on the differential microenvironments experienced by melittin in zwitterionic and negatively charged phospholipid membranes. In this work, we explore the role of negatively charged lipids in the oligomerization of membrane-bound melittin (labeled with 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)) utilizing a quantitative photobleaching homo-FRET assay. Our results show that the presence of negatively charged lipids decreases melittin oligomeric size to ∼50% of that observed in zwitterionic membranes. This is possibly due to differential energetics of binding of the peptide monomer to membranes of different compositions and could explain the reduced lytic activity yet tighter binding of melittin in negatively charged membranes. These results constitute one of the first experimental observations on the role of phospholipid headgroup charge in the oligomerization of melittin in membranes and is relevant in light of previous apparently contradictory reports on oligomerization of membrane-bound melittin. Our results highlight the synergistic interplay of peptide-membrane binding events and peptide oligomerization in modulating the organization, dynamics, and function of amphipathic α-helical peptides.
Collapse
Affiliation(s)
- Sreetama Pal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201 002, India.,CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India
| | - Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.,School of Chemistry, Sambalpur University, Burla, Odisha 768 019, India
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| |
Collapse
|
4
|
Sakurai H, Nishimura K, Yamamoto S, Maruyama T, Tamura A. Molecular Design of pH-Responsive Helix Peptides That Can Damage Tumor Cells Selectively. ACS APPLIED BIO MATERIALS 2021; 4:2442-2452. [DOI: 10.1021/acsabm.0c01407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Haruka Sakurai
- Graduate School of Science, Department of Chemistry, Kobe University, Nada, Kobe 657-8501, Japan
| | - Kanon Nishimura
- Graduate School of Engineering, Department of Chemical Science and Engineering, Kobe University, Nada, Kobe 657-8501, Japan
| | - Shota Yamamoto
- Graduate School of Engineering, Department of Chemical Science and Engineering, Kobe University, Nada, Kobe 657-8501, Japan
| | - Tatsuo Maruyama
- Graduate School of Engineering, Department of Chemical Science and Engineering, Kobe University, Nada, Kobe 657-8501, Japan
| | - Atsuo Tamura
- Graduate School of Science, Department of Chemistry, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
5
|
Necelis MR, Santiago-Ortiz LE, Caputo GA. Investigation of the Role of Aromatic Residues in the Antimicrobial Peptide BuCATHL4B. Protein Pept Lett 2021; 28:388-402. [PMID: 32798369 PMCID: PMC8259864 DOI: 10.2174/0929866527666200813202918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Antimicrobial Peptides (AMPs) are an attractive alternative to traditional small molecule antibiotics as AMPs typically target the bacterial cell membrane. A Trp-rich peptide sequence derived from water buffalo (Bubalus bubalis), BuCATHL4B was previously identified as a broad-spectrum antimicrobial peptide. OBJECTIVE In this work, native Trp residues were replaced with other naturally occurring aromatic amino acids to begin to elucidate the importance of these residues on peptide activity. METHODS Minimal Inhibitory Concentration (MIC) results demonstrated activity against seven strains of bacteria. Membrane and bilayer permeabilization assays were performed to address the role of bilayer disruption in the activity of the peptides. Lipid vesicle binding and quenching experiments were also performed to gain an understanding of how the peptides interacted with lipid bilayers. RESULTS MIC results indicate the original, tryptophan-rich sequence, and the phenylalanine substituted sequences exhibit strong inhibition of bacterial growth. In permeabilization assays, peptides with phenylalanine substitutions have higher levels of membrane permeabilization than those substituted with tyrosine. In addition, one of the two-tyrosine substituted sequence, YWY, behaves most differently in the lowest antimicrobial activity, showing no permeabilization of bacterial membranes. Notably the antimicrobial activity is inherently species dependent, with varying levels of activity against different bacteria. CONCLUSION There appears to be little correlation between membrane permeabilization and activity, indicating these peptides may have additional mechanisms of action beyond membrane disruption. The results also identify two sequences, denoted FFF and YYW, which retain antibacterial activity but have markedly reduced hemolytic activity.
Collapse
Affiliation(s)
- Matthew R Necelis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | | | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| |
Collapse
|
6
|
Senetra AS, Necelis MR, Caputo GA. Investigation of the structure-activity relationship in ponericin L1 from Neoponera goeldii. Pept Sci (Hoboken) 2020; 112:e24162. [PMID: 33937618 PMCID: PMC8086892 DOI: 10.1002/pep2.24162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Abstract
Naturally derived antimicrobial peptides have been an area of great interest because of high selectivity against bacterial targets over host cells and the limited development of bacterial resistance to these molecules throughout evolution. There are also a significant number of venom-derived peptides that exhibit antimicrobial activity in addition to activity against mammals or other organisms. Many venom peptides share the same net cationic, amphiphilic nature as host-defense peptides, making them an attractive target for development as potential antibacterial agents. The peptide ponericin L1 derived from Neoponera goeldii was used as a model to investigate the role of cationic residues and net charge on peptide activity. Using a combination of spectroscopic and microbiological approaches, the role of cationic residues and net charge on antibacterial activity, lipid bilayer interactions, and bilayer and membrane permeabilization were investigated. The L1 peptide and derivatives all showed enhanced binding to lipid vesicles containing anionic lipids, but still bound to zwitterionic vesicles. None of the derivatives were especially effective at permeabilizing lipid bilayers in model vesicles, in-tact Escherichia coli, or human red blood cells. Taken together the results indicate that the lack of facial amphiphilicity regarding charge segregation may impact the ability of the L1 peptides to effectively permeabilize bilayers despite effective binding. Additionally, increasing the net charge of the peptide by replacing the lone anionic residue with either Gln or Lys dramatically improved efficacy against several bacterial strains without increasing hemolytic activity.
Collapse
Affiliation(s)
- Alexandria S. Senetra
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, U.S.A
| | - Matthew R. Necelis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, U.S.A
| | - Gregory A. Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, U.S.A
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, U.S.A
| |
Collapse
|
7
|
Belluati A, Mikhalevich V, Yorulmaz Avsar S, Daubian D, Craciun I, Chami M, Meier WP, Palivan CG. How Do the Properties of Amphiphilic Polymer Membranes Influence the Functional Insertion of Peptide Pores? Biomacromolecules 2019; 21:701-715. [DOI: 10.1021/acs.biomac.9b01416] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Viktoria Mikhalevich
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Saziye Yorulmaz Avsar
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Davy Daubian
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Wolfgang P. Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
8
|
Walker JA, Sorkin MR, Ledesma F, Kabaria SR, Barfield RM, Rabuka D, Alabi CA. Hydrophilic Sequence-Defined Cross-Linkers for Antibody–Drug Conjugates. Bioconjug Chem 2019; 30:2982-2988. [DOI: 10.1021/acs.bioconjchem.9b00713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua A. Walker
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14850, United States
| | - Michelle R. Sorkin
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14850, United States
| | - Francis Ledesma
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14850, United States
| | - Sneha R. Kabaria
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14850, United States
| | - Robyn M. Barfield
- Catalent Biologics, 5703 Hollis Street, Emeryville, California 94608, United States
| | - David Rabuka
- Catalent Biologics, 5703 Hollis Street, Emeryville, California 94608, United States
| | - Christopher A. Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14850, United States
| |
Collapse
|
9
|
Raghuraman H, Chatterjee S, Das A. Site-Directed Fluorescence Approaches for Dynamic Structural Biology of Membrane Peptides and Proteins. Front Mol Biosci 2019; 6:96. [PMID: 31608290 PMCID: PMC6774292 DOI: 10.3389/fmolb.2019.00096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins mediate a number of cellular functions and are associated with several diseases and also play a crucial role in pathogenicity. Due to their importance in cellular structure and function, they are important drug targets for ~60% of drugs available in the market. Despite the technological advancement and recent successful outcomes in determining the high-resolution structural snapshot of membrane proteins, the mechanistic details underlining the complex functionalities of membrane proteins is least understood. This is largely due to lack of structural dynamics information pertaining to different functional states of membrane proteins in a membrane environment. Fluorescence spectroscopy is a widely used technique in the analysis of functionally-relevant structure and dynamics of membrane protein. This review is focused on various site-directed fluorescence (SDFL) approaches and their applications to explore structural information, conformational changes, hydration dynamics, and lipid-protein interactions of important classes of membrane proteins that include the pore-forming peptides/proteins, ion channels/transporters and G-protein coupled receptors.
Collapse
Affiliation(s)
- H. Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | | | | |
Collapse
|
10
|
Húmpola MV, Rey MC, Spontón PG, Simonetta AC, Tonarelli GG. A Comparative Study of the Antimicrobial and Structural Properties of Short Peptides and Lipopeptides Containing a Repetitive Motif KLFK. Protein Pept Lett 2019; 26:192-203. [PMID: 30526450 DOI: 10.2174/0929866526666181208144629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last years, Antimicrobial Peptides (AMPs) and lipopeptides have received attention as promising candidates to treat infections caused by resistant microorganisms. OBJECTIVE The main objective of this study was to investigate the effect of repetitive KLFK motifs and the attachment of aliphatic acids to the N-terminus of (KLFK)n peptides on therapeutic properties. METHODS Minimal inhibitory concentration against Gram (+) and (-) bacteria and yeast of synthetic compounds were determined by broth microtiter dilution method, and the toxicity was evaluated by hemolysis assay. Membrane-peptide interaction studies were performed with model phospholipid membranes mimicking those of bacterial and mammalian cells by Fluorescence Spectroscopy. The secondary structure in solution and membranes was determined by Circular Dichroism. RESULTS Our results showed that the resulting compounds have inhibitory activity against bacteria and fungi. The (KLFK)3 peptide showed the highest therapeutic index against bacterial and yeast strains, and the (KLFK)2 peptide conjugated with octanoic acid was the most active against yeasts. All the lipopeptides containing long-chain fatty acids (C14 or longer) were highly hemolytic at low concentrations. The antimicrobial activity of (KLFK)2 and (KLFK)3 lipopeptides was mainly associated with improved stability of the amphipathic secondary structure, which showed high contributions of α-helix in dipalmitoylphosphatidylglycerol (DPPG) vesicles. CONCLUSION The repetition of the KLFK sequence and the conjugation with lipid tails allowed obtained compounds with high antimicrobial activity and low toxicity, becoming good candidates for treating infectious diseases.
Collapse
Affiliation(s)
- María Verónica Húmpola
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina
| | - María Carolina Rey
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina
| | - Pablo Gabriel Spontón
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina.,Catedras de Microbiologia y Biotecnologia, Departamento de Ingenieria en Alimentos, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Arturo Carlos Simonetta
- Catedras de Microbiologia y Biotecnologia, Departamento de Ingenieria en Alimentos, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Georgina Guadalupe Tonarelli
- Departamento de Quimica Organica, Facultad de Bioquimica y Cs. Biologicas, Universidad Nacional del Litoral (U.N.L), Santa Fe, Argentina
| |
Collapse
|
11
|
Environmentally sensitive probes for monitoring protein-membrane interactions at nanomolar concentrations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:852-859. [DOI: 10.1016/j.bbamem.2017.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/31/2016] [Accepted: 01/19/2017] [Indexed: 12/28/2022]
|
12
|
Ryzhova O, Vus K, Trusova V, Kirilova E, Kirilov G, Gorbenko G, Kinnunen P. Novel benzanthrone probes for membrane and protein studies. Methods Appl Fluoresc 2016; 4:034007. [PMID: 28355153 DOI: 10.1088/2050-6120/4/3/034007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The applicability of a series of novel benzanthrone dyes to monitoring the changes in physicochemical properties of lipid bilayer and to differentiating between the native and aggregated protein states has been evaluated. Based on the quantitative parameters of the dye-membrane and dye-protein binding derived from the fluorimetric titration data, the most prospective membrane probes and amyloid tracers have been selected from the group of examined compounds. Analysis of the red edge excitation shifts of the membrane- and amyloid-bound dyes provided information on the properties of benzanthrone binding sites within the lipid and protein matrixes. To understand how amyloid specificity of benzanthrones correlates with their structure, quantitative structure activity relationship (QSAR) analysis was performed involving a range of quantum chemical molecular descriptors. A statistically significant model was obtained for predicting the sensitivity of novel benzanthrone dyes to amyloid fibrils.
Collapse
Affiliation(s)
- Olga Ryzhova
- Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine. Author to whom any correspondence should be addressed: Department of Nuclear and Medical Physics, 12-191 Staroshyskivska Str., Kharkiv 61070, Ukraine
| | | | | | | | | | | | | |
Collapse
|
13
|
Zamotaiev OM, Shvadchak V, Sych TP, Melnychuk NA, Yushchenko D, Mely Y, Pivovarenko VG. Environment-sensitive quinolone demonstrating long-lived fluorescence and unusually slow excited-state intramolecular proton transfer kinetics. Methods Appl Fluoresc 2016; 4:034004. [PMID: 28355165 DOI: 10.1088/2050-6120/4/3/034004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new small fluorescent dye based on 3-hydroxybenzo[g]quinolone, a benzo-analogue of Pseudomonas quinolone signal species, has been synthesized. The dye demonstrates interesting optical properties, with absorption in the visible region, two band emission due to an excited-state intramolecular proton transfer (ESIPT) reaction and high fluorescence quantum yield in both protic and aprotic media. Time-resolved fluorescence spectroscopy shows that the ESIPT reaction time is unusually long (up to 8 ns), indicating that both forward and backward ESIPT reactions are very slow in comparison to other 3-hydroxyquinolones. In spite of these slow rate constants, the ESIPT reaction was found to show a reversible character as a result of the very long lifetimes of both N* and T* forms (up to 16 ns). The ESIPT reaction rate is mainly controlled by the hydrogen bond donor ability in protic solvents and the polarity in aprotic solvents. Using large unilamellar vesicles and giant unilamellar vesicles of different lipid compositions, the probe was shown to preferentially label liquid disordered phases.
Collapse
Affiliation(s)
- O M Zamotaiev
- Department of Chemistry, National Taras Shevchenko University of Kyiv, 01601 Kyiv, Ukraine
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhang R, Yan F, Huang Y, Kong D, Ye Q, Xu J, Chen L. Rhodamine-based ratiometric fluorescent probes based on excitation energy transfer mechanisms: construction and applications in ratiometric sensing. RSC Adv 2016. [DOI: 10.1039/c6ra06956h] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rhodamine is a convenient platform for the construction of “OFF–ON” ratiometric excitation energy transfer fluorescent probes.
Collapse
Affiliation(s)
- Ruiqi Zhang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes
- Key Lab of Fiber Modification and Functional Fiber of Tianjin
- College of Environmental and Chemical Engineering
- Tianjin Polytechnic University
- 300387 Tianjin
| | - Fanyong Yan
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes
- Key Lab of Fiber Modification and Functional Fiber of Tianjin
- College of Environmental and Chemical Engineering
- Tianjin Polytechnic University
- 300387 Tianjin
| | - Yicun Huang
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes
- Key Lab of Fiber Modification and Functional Fiber of Tianjin
- College of Environmental and Chemical Engineering
- Tianjin Polytechnic University
- 300387 Tianjin
| | - Depeng Kong
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes
- Key Lab of Fiber Modification and Functional Fiber of Tianjin
- College of Environmental and Chemical Engineering
- Tianjin Polytechnic University
- 300387 Tianjin
| | - Qianghua Ye
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes
- Key Lab of Fiber Modification and Functional Fiber of Tianjin
- College of Environmental and Chemical Engineering
- Tianjin Polytechnic University
- 300387 Tianjin
| | - Jinxia Xu
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes
- Key Lab of Fiber Modification and Functional Fiber of Tianjin
- College of Environmental and Chemical Engineering
- Tianjin Polytechnic University
- 300387 Tianjin
| | - Li Chen
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes
- Key Lab of Fiber Modification and Functional Fiber of Tianjin
- College of Environmental and Chemical Engineering
- Tianjin Polytechnic University
- 300387 Tianjin
| |
Collapse
|
15
|
Appadu A, Jelokhani-Niaraki M, DeBruin L. Conformational Changes and Association of Membrane-Interacting Peptides in Myelin Membrane Models: A Case of the C-Terminal Peptide of Proteolipid Protein and the Antimicrobial Peptide Melittin. J Phys Chem B 2015; 119:14821-30. [DOI: 10.1021/acs.jpcb.5b07375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ashtina Appadu
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Masoud Jelokhani-Niaraki
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| | - Lillian DeBruin
- Department
of Chemistry and
Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, Canada N2L 3C5
| |
Collapse
|
16
|
Mitra M, Chaudhuri A, Patra M, Mukhopadhyay C, Chakrabarti A, Chattopadhyay A. Organization and Dynamics of Tryptophan Residues in Brain Spectrin: Novel Insight into Conformational Flexibility. J Fluoresc 2015; 25:707-17. [DOI: 10.1007/s10895-015-1556-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
|
17
|
The structure, morphology, and the metal-enhanced fluorescence of nano-Ag/ZnO core–shell structure. APPLIED NANOSCIENCE 2014. [DOI: 10.1007/s13204-014-0345-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Postupalenko VY, Zamotaiev OM, Shvadchak VV, Strizhak AV, Pivovarenko VG, Klymchenko AS, Mely Y. Dual-fluorescence L-amino acid reports insertion and orientation of melittin peptide in cell membranes. Bioconjug Chem 2013; 24:1998-2007. [PMID: 24266665 DOI: 10.1021/bc400325n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monitoring insertion and orientation of peptides in situ on cell membranes remains a challenge. To this end, we synthesized an l-amino acid (AFaa) containing a dual-fluorescence dye of the 3-hydroxyflavone family, as a side chain. In contrast to other labeling approaches using a flexible linker, the AFaa fluorophore, introduced by solid phase synthesis into desired position of a peptide, is attached closely to its backbone with well-defined orientation, and, therefore, could reflect its localization in the membrane. This concept was validated by replacing the leucine-9 (L9) and tryptophan-19 (W19) residues by AFaa in melittin, a well-studied membrane-active peptide. Due to high sensitivity of AFaa dual emission to the environment polarity, we detected a much deeper insertion of L9 peptide position into the bilayer, compared to the W19 position. Moreover, using fluorescence microscopy with a polarized light excitation, we found different orientation of AFaa at L9 and W19 positions of melittin in the bilayers of giant vesicles and cellular membranes. These results suggested that in the natural membranes, similarly to the model lipid bilayers, melittin is preferentially oriented parallel to the membrane surface. The developed amino acid and the proposed methodology will be of interest to study other membrane peptides.
Collapse
Affiliation(s)
- Viktoriia Y Postupalenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie , 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Burton MG, Huang QM, Hossain MA, Wade JD, Clayton AHA, Gee ML. Long-time-scale interaction dynamics between a model antimicrobial peptide and giant unilamellar vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14613-14621. [PMID: 24168523 DOI: 10.1021/la403083m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The interaction dynamics between a lytic peptide and a biomembrane was studied using time-lapse fluorescence lifetime imaging microscopy. The model membrane was 1,2-dipalmitoyl-sn-glycero-3-phosphochloine giant unilamellar vesicles (GUVs), and the peptide was the K14 derivative of melittin, to which the polarity-sensitive fluorescent probe AlexaFluor 430 was grafted. The interaction of the peptide with the GUVs resulted in a progressive quenching of the fluorescence lifetime over a period of minutes. From previous photophysics characterization of the peptide, we were able to deconvolve the contribution of three distinct peptide states to the lifetime trajectory and use this data to develop a kinetics model for the interaction process. It was found that the peptide-membrane interaction was well described by a two-step mechanism: peptide monomer adsorption followed by membrane surface migration, assembly, and insertion to form membrane pores. There was an equilibrium exchange between pore and surface monomers at all lipid/peptide (L/P) concentration ratios, suggesting that the fully inserted phase was reached, even at low peptide concentrations. In contrast to previous studies, there was no evidence of critical behavior; irrespective of L/P ratio, lytic pores were the dominant peptide state at equilibrium and were formed even at very low peptide concentrations. We suggest that this behavior is seen in GUVs because their low curvature means low Laplace pressure. Membrane elasticity is therefore relatively ineffective at damping the thermal fluctuations of lipid molecules that lead to random molecular-level lipid protrusions and membrane undulations. The transient local membrane deformations that result from these thermal fluctuations create the conditions necessary for facile peptide insertion.
Collapse
Affiliation(s)
- Matthew G Burton
- School of Chemistry and ‡Florey Department of Neuroscience and Mental Health, Centre for Neuroscience Research Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Zaidi N, Ahmad E, Rehan M, Rabbani G, Ajmal MR, Zaidi Y, Subbarao N, Khan RH. Biophysical Insight into Furosemide Binding to Human Serum Albumin: A Study To Unveil Its Impaired Albumin Binding in Uremia. J Phys Chem B 2013; 117:2595-604. [DOI: 10.1021/jp3069877] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nida Zaidi
- Interdisciplinary Biotechnology
Unit, Aligarh Muslim University, Aligarh
202002, India
| | - Ejaz Ahmad
- Interdisciplinary Biotechnology
Unit, Aligarh Muslim University, Aligarh
202002, India
| | - Mohd Rehan
- School of
Computational and
Integrative Sciences, Jawaharlal Nehru University, New Delhi 110062, India
| | - Gulam Rabbani
- Interdisciplinary Biotechnology
Unit, Aligarh Muslim University, Aligarh
202002, India
| | - Mohammad R. Ajmal
- Interdisciplinary Biotechnology
Unit, Aligarh Muslim University, Aligarh
202002, India
| | - Yusra Zaidi
- Department of Zoology, Aligarh Muslim University, Aligarh 202002,
India
| | - Naidu Subbarao
- School of
Computational and
Integrative Sciences, Jawaharlal Nehru University, New Delhi 110062, India
| | - Rizwan H. Khan
- Interdisciplinary Biotechnology
Unit, Aligarh Muslim University, Aligarh
202002, India
| |
Collapse
|
21
|
Irudayam SJ, Berkowitz ML. Binding and reorientation of melittin in a POPC bilayer: computer simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2975-81. [PMID: 22877705 DOI: 10.1016/j.bbamem.2012.07.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/26/2022]
Abstract
We performed, using an all-atom force field, molecular dynamics computer simulations to study the binding of melittin to the POPC bilayer and its subsequent reorientation in this bilayer. The binding process involves a simultaneous folding and adsorption of the peptide to the bilayer, followed by the creation of a "U shaped" conformation. The reorientation of melittin from the parallel to the perpendicular conformation requires charged residues to cross the hydrophobic core of the bilayer. This is accomplished by a creation of defects in the bilayer that are filled out with water. The defects are caused by peptide charged residues dragging the lipid headgroup atoms along with them, as they reorient. With increased concentration of melittin water defects form stable pores; this makes it easier for the peptide N-terminus to reorient. Our results complement experimental and computational observations of the melittin/lipid bilayer interaction.
Collapse
Affiliation(s)
- Sheeba J Irudayam
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, NC 27599, USA.
| | | |
Collapse
|
22
|
Goretta SA, Kinoshita M, Mori S, Tsuchikawa H, Matsumori N, Murata M. Effects of chemical modification of sphingomyelin ammonium group on formation of liquid-ordered phase. Bioorg Med Chem 2012; 20:4012-9. [DOI: 10.1016/j.bmc.2012.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/21/2022]
|
23
|
Dang YQ, Li HW, Wu Y. Construction of a supramolecular Förster resonance energy transfer system and its application based on the interaction between Cy3-labeled melittin and phosphocholine encapsulated quantum dots. ACS APPLIED MATERIALS & INTERFACES 2012; 4:1267-1272. [PMID: 22356839 DOI: 10.1021/am3000984] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Due to possessing unique optical properties, semiconductor quantum dots (QDs) have been applied to construct bioconjugates. Using QDs as donors, the Förster resonance energy transfer (FRET) system can be developed and applied to biological imaging and sensing, and various construction strategies have been reported. To provide a new practicable method, we introduce a protocol with two routes to construct a supramolecular FRET system based on the high-affinity interaction between melittin and phosphocholine. Melittin exists with a random coil structure in aqueous environments but will adopt a bent helix when inserted into natural or artificial membranes. Such specific and high affinity protein-membrane interaction makes it possible to construct a QDs-based FRET system. The strategy applying protein-membrane interaction to construct a QDs-based FRET system can be applied to the investigation on the protein-membrane interaction through distance-depended FRET and further proteolysis of trypsin. Because of the existence of various protein-membrane interactions in real life, the system has the potential to be expanded to other related systems.
Collapse
Affiliation(s)
- Yong-Qiang Dang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun, 130012, China
| | | | | |
Collapse
|
24
|
Wang J, Pham DT, Kee TW, Clafton SN, Guo X, Clements P, Lincoln SF, Prud’homme RK, Easton CJ. Aggregation and Host–Guest Interactions in Dansyl-Substituted Poly(acrylate)s in the Presence of β-Cyclodextrin and a β-Cyclodextrin Dimer in Aqueous Solution: A UV–Vis, Fluorescence, 1H NMR, and Rheological Study. Macromolecules 2011. [DOI: 10.1021/ma202055a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jie Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Duc-Truc Pham
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tak W. Kee
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Scott N. Clafton
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Philip Clements
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen F. Lincoln
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Robert K. Prud’homme
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Christopher J. Easton
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
25
|
|
26
|
Haldar S, Chaudhuri A, Chattopadhyay A. Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift. J Phys Chem B 2011; 115:5693-706. [PMID: 21428321 DOI: 10.1021/jp200255e] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamics of confined water has interesting implications in the organization and function of molecular assemblies such as membranes. A direct consequence of this type of organization is the restriction imposed on the mobility of the constituent structural units. Interestingly, this restriction (confinement) of mobility couples the motion of solvent (water) molecules with the slow moving molecules in the assembly. It is in this context that the red edge excitation shift (REES) represents a sensitive approach to monitor the environment and dynamics around a fluorophore in such organized assemblies. A shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of the absorption band, is termed REES. REES relies on slow solvent reorientation in the excited state of a fluorophore that can be used to monitor the environment and dynamics around a fluorophore in a host assembly. In this article, we focus on the application of REES to monitor organization and dynamics of membrane probes and proteins.
Collapse
Affiliation(s)
- Sourav Haldar
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007 India
| | | | | |
Collapse
|
27
|
Quantitative assessment of peptide–lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1999-2012. [DOI: 10.1016/j.bbamem.2010.07.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 07/13/2010] [Accepted: 07/13/2010] [Indexed: 11/23/2022]
|
28
|
Saikusa K, Kono Y, Izumi S. Topology and dynamics of melittin within the liposome revealed by a combination of mass spectrometry and chemical modification. Biochem Biophys Res Commun 2010; 397:1-4. [PMID: 20398628 DOI: 10.1016/j.bbrc.2010.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 05/29/2023]
Abstract
The topology and dynamics of melittin within the liposome were investigated by a mass spectrometry coupled with acetylation. The MALDI-TOF MS and MALDI-QIT-TOF MS/MS analyses revealed that only N-terminal amine of melittin was dominantly acetylated in the presence of liposome although all of four primary amines were completely and rapidly acetylated in aqueous solution. This result indicates that melittin adopts the N-terminal-outside transmembrane topology within the liposome. The time course of acetylation followed the first-order kinetics at any examined temperatures (6-30 degrees C). The rate constant was less than that of the acetylation of melittin in aqueous solution. The activation energy for acetylation (74 kJ mol(-1)) was comparable to that for dissociation of a lipid monomer from the membrane, suggesting a float-like longitudinal motion of melittin within the liposome. These results demonstrate that a mass spectrometry combined with chemical modification is very efficient way for clarifying the topology and dynamics of peptides bound to the membrane.
Collapse
Affiliation(s)
- Kazumi Saikusa
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Japan
| | | | | |
Collapse
|
29
|
Organization and dynamics of tryptophans in the molten globule state of bovine α-lactalbumin utilizing wavelength-selective fluorescence approach: Comparisons with native and denatured states. Biochem Biophys Res Commun 2010; 394:1082-6. [DOI: 10.1016/j.bbrc.2010.03.130] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/20/2010] [Indexed: 10/19/2022]
|
30
|
Lignell M, Becker HC. Recognition and binding of a helix-loop-helix peptide to carbonic anhydrase occurs via partly folded intermediate structures. Biophys J 2010; 98:425-33. [PMID: 20141756 PMCID: PMC2814212 DOI: 10.1016/j.bpj.2009.10.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/29/2009] [Accepted: 10/01/2009] [Indexed: 10/19/2022] Open
Abstract
We have studied the association of a helix-loop-helix peptide scaffold carrying a benzenesulfonamide ligand to carbonic anhydrase using steady-state and time-resolved fluorescence spectroscopy. The helix-loop-helix peptide, developed for biosensing applications, is labeled with the fluorescent probe dansyl, which serves as a polarity-sensitive reporter of the binding event. Using maximum entropy analysis of the fluorescence lifetime of dansyl at 1:1 stoichiometry reveals three characteristic fluorescence lifetime groups, interpreted as differently interacting peptide/protein structures. We characterize these peptide/protein complexes as mostly bound but unfolded, bound and partly folded, and strongly bound and folded. Furthermore, analysis of the fluorescence anisotropy decay resulted in three different dansyl rotational correlation times, namely 0.18, 1.2, and 23 ns. Using the amplitudes of these times, we can correlate the lifetime groups with the corresponding fluorescence anisotropy component. The 23-ns rotational correlation time, which appears with the same amplitude as a 17-ns fluorescence lifetime, shows that the dansyl fluorophore follows the rotational diffusion of carbonic anhydrase when it is a part of the folded peptide/protein complex. A partly folded and partly hydrated interfacial structure is manifested in an 8-ns dansyl fluorescence lifetime and a 1.2-ns rotational correlation time. This structure, we believe, is similar to a molten-globule-like interfacial structure, which allows segmental movement and has a higher degree of solvent exposure of dansyl. Indirect excitation of dansyl on the helix-loop-helix peptide through Förster energy transfer from one or several tryptophans in the carbonic anhydrase shows that the helix-loop-helix scaffold binds to a tryptophan-rich domain of the carbonic anhydrase. We conclude that binding of the peptide to carbonic anhydrase involves a transition from a disordered to an ordered structure of the helix-loop-helix scaffold.
Collapse
Affiliation(s)
| | - Hans-Christian Becker
- Department of Photochemistry and Molecular Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Lignell M, Tegler LT, Becker HC. Hydrated and dehydrated tertiary interactions--opening and closing--of a four-helix bundle peptide. Biophys J 2009; 97:572-80. [PMID: 19619472 DOI: 10.1016/j.bpj.2009.04.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/26/2009] [Accepted: 04/01/2009] [Indexed: 11/15/2022] Open
Abstract
The structural heterogeneity and thermal denaturation of a dansyl-labeled four-helix bundle homodimeric peptide was studied with steady-state and time-resolved fluorescence spectroscopy and with circular dichroism (CD). At room temperature the fluorescence decay of the polarity-sensitive dansyl, located in the hydrophobic core region, can be described by a broad distribution of fluorescence lifetimes, reflecting the heterogeneous microenvironment. However, the lifetime distribution is nearly bimodal, which we ascribe to the presence of two major conformational subgroups. Since the fluorescence lifetime reflects the water content of the four-helix bundle conformations, we can use the lifetime analysis to monitor the change in hydration state of the hydrophobic core of the four-helix bundle. Increasing the temperature from 9 degrees C to 23 degrees C leads to an increased population of molten-globule-like conformations with a less ordered helical backbone structure. The fluorescence emission maximum remains constant in this temperature interval, and the hydrophobic core is not strongly affected. Above 30 degrees C the structural dynamics involve transient openings of the four-helix bundle structure, as evidenced by the emergence of a water-quenched component and less negative CD. Above 60 degrees C the homodimer starts to dissociate, as shown by the increasing loss of CD and narrow, short-lived fluorescence lifetime distributions.
Collapse
Affiliation(s)
- Martin Lignell
- Department of Photochemistry and Molecular Sciences, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|