1
|
Alimoradi Z, Shiri F, Shahraki S, Razmara Z, Heidari-Majd M. Experimental and Theoretical Approaches to Monitor the Behavior of Bovine Liver Catalase in Interaction with a Binuclear Bismuth Complex. ACS OMEGA 2024; 9:27071-27084. [PMID: 38947787 PMCID: PMC11209914 DOI: 10.1021/acsomega.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Here, the antioxidant potency of a binuclear Bi(III) complex {[Bi2(μ-ox)(dipic)2(H2O)2 (taa)2].H2O, where ox2- = oxalato, dipic2- = pyridine 2,6-dicarboxylato, and taa = thiourea} was evaluated using the •DPPH assay. It was demonstrated that the Bi complex exhibited a high ability to inhibit DPPH free radicals. The binding mechanism of the complex with bovine liver catalase (BLC) was also investigated, revealing structural and activity changes in the enzyme in the presence of the complex. The catalase activity in the decomposition of hydrogen peroxide increased in the presence of the Bi complex, reaching 39.8% higher than its initial activity at a concentration of 7.77 × 10-6 M. The complex exhibited a relatively high affinity for BLC, with K b values of 3.98, 0.13, and 0.09 × 105 M-1 at 303, 310, and 317 K, respectively. The mechanisms involved in the interaction were hydrogen bonding and van der Waals interactions, as validated through molecular docking simulations. Synchronous fluorescence showed that tryptophan was more affected by enzyme-complex interactions than tyrosine. In addition, a cell viability test using the MTT method revealed that at its highest concentration, the Bi complex caused a decrease in the number of cells below 50% compared to the control, while cisplatin showed negative effects at all concentrations. These findings suggest that the Bi complex has the potential to be developed as a promising candidate for BLC-related therapeutic target therapy.
Collapse
Affiliation(s)
- Zahral Alimoradi
- Department
of Chemistry, University of Zabol, Zabol 9861335856, Iran
| | - Fereshteh Shiri
- Department
of Chemistry, University of Zabol, Zabol 9861335856, Iran
| | - Somaye Shahraki
- Department
of Chemistry, University of Zabol, Zabol 9861335856, Iran
| | - Zohreh Razmara
- Department
of Chemistry, University of Zabol, Zabol 9861335856, Iran
| | - Mostafa Heidari-Majd
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol 9861615881, Iran
| |
Collapse
|
2
|
Zhuang H, Zhang X, Wu S, Yong P, Niu X. Complexation study of syringaldehyde complexed with serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123533. [PMID: 37871524 DOI: 10.1016/j.saa.2023.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
As a major flavonoid polyphenolic compound in the stem of Hibiscus taiwanensis, syringaldehyde (SA) has numerous pharmacological effects. Nevertheless, owing to its less in-depth study, its application is limited. Within this work, the interactions between serum albumin and SA were elucidated by multispectral studies. The results of ultraviolet/visible absorption spectroscopy suggest that the conformation of serum albumin can be altered by binding with SA. Fluorescence spectroscopy indicates that SA forms complexes with serum albumin, quenching its fluorescence. This suggests that the fluorescent residues of serum albumin are situated at or near the binding site. Additionally, FT-IR results confirm that SA alters the secondary structure of BSA, specifically affecting the positions of both amide I and amide II bands. Via the computational biology analyses, it was confirmed that SA binds at the active site of serum albumin and nine residues form hydrophobic interactions. In addition, the cytotoxicity of SA to BRL-3A cells was also studied, and SA had almost no toxicity to the growth of BRL-3A cells. The complex has a higher α-amylase inhibition capacity than SA alone. To sum up, this work reveals that the interaction of SA with BSA induces a conformational alteration in BSA. It also proved that SA inhibits α-amylase more significantly and has great potential in hypoglycemia.
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
3
|
Pushpa Ragini S, White J, Kirby N, Banerjee R, Reddy Bathula S, Drummond CJ, Conn CE. Novel bioactive cationic cubosomes enhance the cytotoxic effect of paclitaxel against a paclitaxel resistant prostate cancer cell-line. J Colloid Interface Sci 2023; 649:966-976. [PMID: 37392686 DOI: 10.1016/j.jcis.2023.06.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Hypothesis The study aimed to use molecular hybridization of a cationic lipid with a known pharmacophore to produce a bifunctional lipid having a cationic charge to enhance fusion with the cancer cell surface and biological activity via the pharmacophoric head group. Experiments The novel cationic lipid DMP12 [N-(2-(3-(3,4-dimethoxyphenyl) propanamido) ethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide] was synthesised by conjugating 3-(3,4-dimethoxyphenyl) propanoic acid (or 3,4-dimethoxyhydrocinnamic acid) to twin 12 carbon chains bearing a quaternary ammonium group [N-(2-aminoethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide]. The physicochemical and biological properties of DMP12 were investigated. Cubosome particles consisting of monoolein (MO) doped with DMP12 and paclitaxel were characterized using Small-angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), and Cryo-Transmission Electron Microscopy (Cryo-TEM). Combination therapy using these cubosomes was assessed in vitro against the gastric (AGS) and prostate (DU-145 and PC-3) cancer cell lines using cytotoxicity assay. Findings Monoolein (MO) cubosomes doped with DMP12 were observed to be toxic against the AGS and DU-145 cell-lines at higher cubosome concentrations (≥100 µg/ml) but had limited activity against the PC-3 cell-line. However, combination therapy consisting of 5 mol% DMP12 and 0.5 mol% paclitaxel (PTX) significantly increased the cytotoxicity against the PC-3 cell-line which was resistant to either DMP12 or PTX individually. The results demonstrate that DMP12 has a prospective role as a bioactive excipient in cancer therapy.
Collapse
Affiliation(s)
- S Pushpa Ragini
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India; School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jacinta White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Nigel Kirby
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Rajkumar Banerjee
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Surendar Reddy Bathula
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia.
| |
Collapse
|
4
|
Yao J, Li H, Lan J, Bao Y, Du X, Zhao Z, Hu G. Spectroscopic investigations on the interaction between nano plastic and catalase on molecular level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160903. [PMID: 36526206 DOI: 10.1016/j.scitotenv.2022.160903] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
As an emerging pollutant that is easily bonded with some functional proteins and the effects of their physiological expressions, nano plastics (NPs) have been widely detected in various environmental mediums, even in human blood. Compared to microplastics, less information on the interactions between NPs and proteins has been reported. Here, the interaction mechanism between common polystyrene nano plastics (PSNPs) and catalase (CAT) under two typical physiological conditions, pH 7.4 and 4.0, was investigated by UV-visible spectroscopy, circular dichroism (CD), and dynamic light scattering (DLS). Compared with the enhanced catalytic effects when increasing PSNPs at pH 7.4, a trend of initial inhibition and enhanced activity was observed at pH 4.0. Spectroscopic analysis and calculation results indicated that their binding was static, with only one binding site and stronger interactions under acidic conditions. UV-visible and CD spectra analysis demonstrated that the difference in enzymatic activity could be mainly attributed to the conformational alternation of CAT in the presence of PSNPs, which is obviously affected by solution chemistry. The change was also revealed by the hydrodynamic diameter and zeta potentials of the complexes supplied by DLS analysis. This study will help understand the health risks of nano plastic pollution and provide a theoretical basis for studying their toxicological effects.
Collapse
Affiliation(s)
- Jiaqiang Yao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haimei Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yan Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xianfa Du
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| |
Collapse
|
5
|
Naziris N, Sekowski S, Olchowik-Grabarek E, Buczkowski A, Balcerzak Ł, Chrysostomou V, Pispas S, Małecka M, Bryszewska M, Ionov M. Biophysical interactions of mixed lipid-polymer nanoparticles incorporating curcumin: Potential as antibacterial agent. BIOMATERIALS ADVANCES 2022; 144:213200. [PMID: 36442451 DOI: 10.1016/j.bioadv.2022.213200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The technology of lipid nanoparticles has a long history in drug delivery, which begins with the discovery of liposomes by Alec D Bangham in the 1960s. Since then, numerous studies have been conducted on these systems, and several nanomedicinal products that utilize them have entered the market, with the latest being the COVID-19 vaccines. Despite their success, many aspects of their biophysical behavior are still under investigation. At the same time, their combination with other classes of biomaterials to create more advanced platforms is a promising endeavor. Herein, we developed mixed lipid-polymer nanoparticles with incorporated curcumin as a drug delivery system for therapy, and we studied its interactions with various biosystems. Initially, the nanoparticle physicochemical properties were investigated, where their size, size distribution, surface charge, morphology, drug incorporation and stability were assessed. The incorporation of the drug molecule was approximately 99.8 % for a formulated amount of 10 % by weight of the total membrane components and stable in due time. The association of the nanoparticles with human serum albumin and the effect that this brings upon their properties was studied by several biophysical techniques, including light scattering, thermal analysis and circular dichroism. As a biocompatibility assessment, interactions with erythrocyte membranes and hemolysis induced by the nanoparticles were also studied, with empty nanoparticles being more toxic than drug-loaded ones at high concentrations. Finally, interactions with bacterial membrane proteins of Staphylococcus aureus and the antibacterial effect of the nanoparticles were evaluated, where the effect of curcumin was improved when incorporated inside the nanoparticles. Overall, the developed mixed nanoparticles are promising candidates for the delivery of curcumin to infectious and other types of diseases.
Collapse
Affiliation(s)
- Nikolaos Naziris
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Szymon Sekowski
- Department of Microbiology and Biotechnology, Laboratory of Molecular Biophysics, Faculty of Biology, University of Bialystok, Konstanty Ciolkowski Street 1J, 15-245 Białystok, Poland
| | - Ewa Olchowik-Grabarek
- Department of Microbiology and Biotechnology, Laboratory of Molecular Biophysics, Faculty of Biology, University of Bialystok, Konstanty Ciolkowski Street 1J, 15-245 Białystok, Poland
| | - Adam Buczkowski
- Division of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz 90-236, Poland
| | - Łucja Balcerzak
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Varvara Chrysostomou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Magdalena Małecka
- Division of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz 90-236, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
6
|
Song MT, Wang WZ, Lu Y, Han RM, Skibsted LH, Zhang JP. Double-Site Binding and Anti-/Pro-oxidation of Luteolin on Bovine Serum Albumin Mediated by Copper(II) Coordination. ACS OMEGA 2022; 7:19521-19534. [PMID: 35721975 PMCID: PMC9202249 DOI: 10.1021/acsomega.2c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The interactions of luteolin (Lut) with bovine serum albumin (BSA) mediated by Cu(II) were investigated by spectroscopic, calorimetric, and molecular dynamic (MD) methods. Fluorescence studies showed that the binding of Lut to BSA was significantly enhanced by Cu(II) coordination with the number of binding sites and binding constant increasing from n = 1 and K a = 3.2 × 105 L·mol-1 for Lut to n = 2 and K a = 7.1 × 105 L·mol-1 for a 1:1 Cu(II)-luteolin complex, in agreement with the results from isothermal titration calorimetry (ITC). Site-specific experiments with warfarin and ibuprofen and MD confirmed that two binding sites of BSA were sequentially occupied by two Cu(II)-luteolin complexes. Cu(II) coordination increased the antioxidant activity of luteolin by 60% in the inhibition of carbonyl formation from the oxidation of amino groups in the side chain of BSA induced by the peroxyl radical ROO•; however, it counteracted the antioxidant effects of luteolin and played pro-oxidative roles in BSA aggregation induced by •OH.
Collapse
Affiliation(s)
- Meng-Ting Song
- Key
Laboratory of Advanced Light Conversion Materials and Biophotonics,
Department of Chemistry, Renmin University
of China, Beijing 100872, China
| | - Wen-Zhu Wang
- Key
Laboratory of Advanced Light Conversion Materials and Biophotonics,
Department of Chemistry, Renmin University
of China, Beijing 100872, China
| | - Yao Lu
- Key
Laboratory of Advanced Light Conversion Materials and Biophotonics,
Department of Chemistry, Renmin University
of China, Beijing 100872, China
| | - Rui-Min Han
- Key
Laboratory of Advanced Light Conversion Materials and Biophotonics,
Department of Chemistry, Renmin University
of China, Beijing 100872, China
| | - Leif H. Skibsted
- Department
of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Jian-Ping Zhang
- Key
Laboratory of Advanced Light Conversion Materials and Biophotonics,
Department of Chemistry, Renmin University
of China, Beijing 100872, China
| |
Collapse
|
7
|
Kistwal T, Mukhopadhyay A, Dasgupta S, Sharma KP, Datta A. Ultraslow Biological Water-Like Dynamics in Waterless Liquid Protein. J Phys Chem Lett 2022; 13:4389-4393. [PMID: 35548934 DOI: 10.1021/acs.jpclett.2c00702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescence correlation spectroscopy and time-dependent fluorescence Stokes shift have been employed to elucidate dynamics in different time scales, ranging from picoseconds to nanoseconds, for human serum albumin, in its native and cationized forms as well as in the self-assembled complex of the cationized protein with the polymer surfactant (PS) glycolic acid ethoxylate lauryl ether. The effect of crowding in this complex, especially in the waterless condition, is of prime importance in this context. Excellent correlation of the dynamics with the structures, obtained by circular dichroism and Fourier transform infrared spectroscopy, has been observed. Slow solvation, associated classically with biological water, has been observed in these systems, even in the waterless condition. This apparently intriguing observation has been rationalized by the relaxation of segments of the protein and the PS in the microenvironment of the fluorescent probe.
Collapse
Affiliation(s)
- Tanuja Kistwal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anasua Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Souradip Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kamendra P Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Yeggoni DP, Rachamallu A, Subramanyam R. Comparative binding studies of bacosine with human serum albumin and α-1-acid glycoprotein biophysical evaluation and computational approach. J Pharm Biomed Anal 2021; 209:114478. [PMID: 34894460 DOI: 10.1016/j.jpba.2021.114478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/25/2023]
Abstract
Bacosine (BAC) is a natural product isolated from a herb and used in the Ayurvedic system of medicine. It is reported to have a wide array of biological activities, which has generated interest in its therapeutic potential. To better understand how BAC may operate as a potential anti-cancer therapeutic, we examined its anti-cancer properties in the human breast cancer cell line, MCF-7. In order to get an idea of how it may behave in vivo, we also evaluated its interaction with human serum albumin (HSA) and α-1-acid glycoprotein (AGP) using fluorescence spectroscopy and in silico molecular modelling. Based on our in vitro studies, we found that BAC inhibited MCF-7 cell growth in a dose-dependent manner with an IC50 value of 9 µM. In addition, the intrinsic fluorescence of HSA and AGP was quenched by BAC, consistent with a static quenching mechanism. Fluorescence emission spectroscopy revealed a binding of 2.97 ± 0.01 × 104 M-1 for HSA-BAC which corresponded to a free energy change of - 6.07 kcal/mol at 25 °C. In addition, we found that BAC had a binding constant of 1.8 ± 0.02 × 103 M-1 to AGP which corresponded to a change in free energy - 4.42 kcal/mol at 25 °C. We also identified the site of BAC binding to the HSA protein using the site-specific marker, phenylbutazone, along with molecular docking studies. Circular dichroism spectra revealed partial changes in the secondary structure of HSA in the presence of BAC suggesting direct interactions. Molecular dynamics simulations demonstrated that the HSA-BAC complex reaches an equilibration state at around 4 ns, suggesting that the HSA-BAC complex is quite stable. Our results provide evidence that serum proteins can act as a carrier protein for BAC, potentially impacting its development as an anti-cancer agent.
Collapse
Affiliation(s)
- Daniel Pushparaju Yeggoni
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Aparna Rachamallu
- National Institute of Animal Biotechnology, Q City Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
9
|
A pair of homoisoflavonoid analogues (6-aldehydo-isoophiopogonanone A/6-aldehydo-isoophiopogonanone B) from Ophiopogon japonicus as a tyrosinase inhibitor: inhibitory activity, conformational change and mechanism. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03902-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomater 2021; 134:57-78. [PMID: 34364016 DOI: 10.1016/j.actbio.2021.07.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Although an established drug delivery platform, liposomes have not fulfilled their true potential. In the body, interactions of liposomes are mediated by the layer of plasma proteins adsorbed on the surface, the protein corona. The review aims to collect the data of the last decade on liposome protein corona, tracing the path from interactions of individual proteins to the effects mediated by the protein corona in vivo. It offers a classification of the approaches to exploitation of the protein corona-rather than elimination thereof-based on the bilayer composition-corona composition-molecular interactions-biological performance framework. The multitude of factors that affect each level of this relationship urge to the widest implementation of bioinformatics tools to predict the most effective liposome compositions relying on the data on protein corona. Supplementing the picture with new pieces of accurately reported experimental data will contribute to the accuracy and efficiency of the predictions. STATEMENT OF SIGNIFICANCE: The review focuses on liposomes as an established nanomedicine platform and analyzes the available data on how the protein corona formed on liposome surface in biological fluids affects performance of the liposomes. The review offers a rigorous account of existing literature and critical analysis of methodology currently applied to the assessment of liposome-plasma protein interactions. It introduces a classification of the approaches to exploitation of the protein corona and tailoring liposome carriers to advance the field of nanoparticulate drug delivery systems for the benefit of patients.
Collapse
|
11
|
Sugumar K, Vignesh G, Arunachalam (Retired) S. A Comparative Study on Interactions of Ternary Copper(II) Complexes and Their Analogues Anchored Polymer (BPEI) with Serum Albumins. ChemistrySelect 2021. [DOI: 10.1002/slct.202100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kannan Sugumar
- School of Chemistry Bharathidasan University Tiruchirappalli 620024 India
- Department of Chemistry Bishop Heber College (Autonomous) Tiruchirappalli 620017 India
| | - Gopalsamy Vignesh
- Department of Chemistry Einstein College of Arts and Science Tirunelveli 627012 India
| | | |
Collapse
|
12
|
Simsir EA, Erdemir S, Tabakci M, Tabakci B. Nano-scale selective and sensitive optical sensor for metronidazole based on fluorescence quenching: 1H-Phenanthro[9,10-d]imidazolyl-calix[4]arene fluorescent probe. Anal Chim Acta 2021; 1162:338494. [PMID: 33926701 DOI: 10.1016/j.aca.2021.338494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/11/2021] [Accepted: 04/01/2021] [Indexed: 11/18/2022]
Abstract
It is crucial to determine and control the metronidazole (MET) ingredient in food and pharmaceuticals for human health and food safety. Even though many sensors have been previously reported to detect MET, there is still a need for a highly selective and sensitive, easy, fast, cost-effective sensor in this area. Herein, we report a fluorescent calix[4]arene derivative (PIMC) for highly selective and sensitive and facile and rapid MET detection based on fluorescence (FL) quenching. The highest FL quenching occurs when PIMC is exposed to MET solution at 400 nm (λex = 340). Owing to the quenching efficacy of MET linearly up to 5.5 × 104 nM was obtained a detection limit of 2.44 nM. Besides, interferences of other pharmaceuticals and ions on probe performance were investigated. The FL probe was successful in MET detection without the assistance of any separation techniques in a pharmaceutical sample (tablet) with an acceptable recovery of 101.3%. The applicability of the current probe as a paper-based sensor to MET detection has been successfully tested. As a result, the proposed probe presents a fast and suitable strategy to sensitive and selective detect MET and proves a good potential for practical applications, especially pharmaceutical preparations.
Collapse
Affiliation(s)
| | - Serkan Erdemir
- Selçuk University, Department of Chemistry, 42150, Konya, Turkey
| | - Mustafa Tabakci
- Konya Technical University, Department of Chemical Engineering, 42150, Konya, Turkey
| | - Begum Tabakci
- Selçuk University, Department of Chemistry, 42150, Konya, Turkey.
| |
Collapse
|
13
|
Phosphatidylinositol Stabilizes Fluid-Phase Liposomes Loaded with a Melphalan Lipophilic Prodrug. Pharmaceutics 2021; 13:pharmaceutics13040473. [PMID: 33915726 PMCID: PMC8067299 DOI: 10.3390/pharmaceutics13040473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Previously, a liposomal formulation of a chemotherapeutic agent melphalan (Mlph) incorporated in a fluid lipid bilayer of natural phospholipids in the form of dioleoylglyceride ester (MlphDG) was developed and the antitumor effect was confirmed in mouse models. The formulation composed of egg phosphatidylcholine (ePC), soybean phosphatidylinositol (PI), and MlphDG (8:1:1, by mol) showed stability in human serum for at least 4–5 h. On the contrary, replacing PI with pegylation of the liposomes, promoted fast dissociation of the components from the bilayer. In this work, interactions of MlphDG-liposomes with the most abundant plasma protein—albumin—in function of the presence of PI in the formulation were explored using Fourier transform infrared spectroscopy. The release of MlphDG from the liposomes was studied by asymmetrical flow field-flow fractionation (AF4) using micelles formed by a polyethylene glycol conjugate with phosphatidylethanolamine to mimic the physiological lipid sink like lipoproteins. Our results show that PI actually protects the membrane of MlphDG-liposomes from the protein penetration, presumably due to pairing between the positively charged MlphDG and negatively charged PI, which compensates for the heterogeneity of the lipid bilayer. The AF4 technique also evidences high stability of the formulation as a drug carrier.
Collapse
|
14
|
Chemometrics in investigation of small molecule-biomacromolecule interactions: A review. Int J Biol Macromol 2021; 181:478-493. [PMID: 33798569 DOI: 10.1016/j.ijbiomac.2021.03.184] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/27/2021] [Indexed: 01/24/2023]
Abstract
Chemometrics is chemical discipline in which mathematical and statistical methods are coupled with chemical data to extract useful information which cannot be extracted by the use of conventional methods. When experimental techniques are assisted by chemometric methods, very interesting studies will be performed which enable us to obtain valuable information about the system under our study. Chemico-biological interactions are very useful studies which are performed to obtain information about binding of small molecules with biological macromolecules. Recently, these studies have been assisted by chemometric methods to perform advanced studies which can help us to have a deep insight to them. Literature survey showed us that multivariate analysis of the chemico-biological interactions is becoming popular and nowadays, chemometricians are using multivariate chemometric methods for resolving chemico-biological interactions. This article focuses on the works published in the literature to provide a background for those who are interested to work in this field and finally, the results will be discussed and concluded.
Collapse
|
15
|
The interplay of phloem-mobile signals in plant development and stress response. Biosci Rep 2021; 40:226464. [PMID: 32955092 PMCID: PMC7538631 DOI: 10.1042/bsr20193329] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/28/2023] Open
Abstract
Plants integrate a variety of biotic and abiotic factors for optimal growth in their given environment. While some of these responses are local, others occur distally. Hence, communication of signals perceived in one organ to a second, distal part of the plant and the coordinated developmental response require an intricate signaling system. To do so, plants developed a bipartite vascular system that mediates the uptake of water, minerals, and nutrients from the soil; transports high-energy compounds and building blocks; and traffics essential developmental and stress signals. One component of the plant vasculature is the phloem. The development of highly sensitive mass spectrometry and molecular methods in the last decades has enabled us to explore the full complexity of the phloem content. As a result, our view of the phloem has evolved from a simple transport path of photoassimilates to a major highway for pathogens, hormones and developmental signals. Understanding phloem transport is essential to comprehend the coordination of environmental inputs with plant development and, thus, ensure food security. This review discusses recent developments in its role in long-distance signaling and highlights the role of some of the signaling molecules. What emerges is an image of signaling paths that do not just involve single molecules but rather, quite frequently an interplay of several distinct molecular classes, many of which appear to be transported and acting in concert.
Collapse
|
16
|
Takahara M, Mochizuki S, Wakabayashi R, Minamihata K, Goto M, Sakurai K, Kamiya N. Extending the Half-Life of a Protein in Vivo by Enzymatic Labeling with Amphiphilic Lipopeptides. Bioconjug Chem 2021; 32:655-660. [PMID: 33689283 DOI: 10.1021/acs.bioconjchem.1c00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthesis of lipid-protein conjugates is one of the significant techniques in drug delivery systems of proteins; however, the intact conjugation of a lipid and protein is yet challenging due to the hydrophobicity of lipid molecules. In order to facilitate easy handling of the lipid moiety in conjugation, we have focused on a microbial transglutaminase (MTG) that can ligate specific lysine (K) and glutamine (Q) residues in lipopeptides and a protein of interest. As MTG substrates, monolipid- and dilipid-fused amphiphilic short lipopeptide substrates (lipid-G3S-RHK or lipid2-KG3S-RHK) were designed. These amphiphilic lipopeptides and a model protein (enhanced green fluorescent protein, EGFP) fused with LLQG (LQ-EGFP) were both water-soluble, and thus lipid-protein conjugates were efficiently obtained through the MTG reaction with a >80% conversion rate of LQ-EGFP even using cholesterol-G3S-RHK. In vitro cell adhesion and in vivo half-life stability of the successfully obtained lipid-protein conjugates were evaluated, showing that the monocholesterol-G3S-RHK modification of a protein gave the highest cell adhesion efficiency and longest half-life time by formation of a stable albumin/lipid-protein complex.
Collapse
Affiliation(s)
- Mari Takahara
- Department of Materials Science & Chemical Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminamiku, Kitakyushu 802-0985, Japan
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, the University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu 808-0135, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, the University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu 808-0135, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
17
|
Bahreinipour M, Zarei H, Dashtestani F, Rashidiani J, Eskandari K, Zarandi SAM, Ardestani SK, Watabe H. Radioprotective effect of nanoceria and magnetic flower-like iron oxide microparticles on gamma radiation-induced damage in BSA protein. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
18
|
Azevedo C, Nilsen J, Grevys A, Nunes R, Andersen JT, Sarmento B. Engineered albumin-functionalized nanoparticles for improved FcRn binding enhance oral delivery of insulin. J Control Release 2020; 327:161-173. [DOI: 10.1016/j.jconrel.2020.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
|
19
|
Zarei L, Asadi Z, Samolova E, Dusek M, Amirghofran Z. Pyrazolate as bridging ligand in stabilization of self-assemble Cu(II) Schiff base complexes: Synthesis, structural investigations, DNA/protein (BSA) binding and growth inhibitory effects on the MCF7, CT-26, MDA-MB-231 cell lines. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119674] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Kaempferol inhibits the activity of pancreatic lipase and its synergistic effect with orlistat. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
21
|
Chanphai P, Bourassa P, Tajmir-Riahi HA. An Overview of the Loading Efficacy of Cationic Lipids with Milk Proteins: A Potential Application for Lipid Delivery. Curr Med Chem 2020; 27:4109-4117. [DOI: 10.2174/0929867325666180608122439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022]
Abstract
In this review, the loading efficacies of helper and Cationic Lipids Cholesterol
(CHOL), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), Dioctadecyl Dimethyl-
Ammonium Bromide (DDAB) and Dioleoyl Phosphatidylethanolamine (DOPE) with milk β-
lactoglobulin, α-casein and β-casein were compared in aqueous solution at physiological conditions.
Structural analysis showed that lipids bind milk proteins via hydrophilic, hydrophobic
and H-bonding contacts with DOTAP and DDAB forming more stable protein conjugates.
Loading efficacy was 30-50% and enhanced with cationic lipids. Lipid conjugation altered
protein conformation, causing a partial protein structural destabilization. Milk proteins are
capable of transporting lipids in vitro.
Collapse
Affiliation(s)
- Penprapa Chanphai
- Department de Chemistry-Biochemistry, University of Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres (Quebec) G9A 5H7, Canada
| | - Philippe Bourassa
- Department de Chemistry-Biochemistry, University of Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres (Quebec) G9A 5H7, Canada
| | - Heidar Ali Tajmir-Riahi
- Department de Chemistry-Biochemistry, University of Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres (Quebec) G9A 5H7, Canada
| |
Collapse
|
22
|
Cui Y. Binding of levobupivacaine-loaded gold nanoparticles to human serum albumin: a simulated physiological study. LUMINESCENCE 2020; 35:1269-1276. [PMID: 32608125 DOI: 10.1002/bio.3888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 11/11/2022]
Abstract
Techniques such as Fourier transform infrared (FTIR), ultraviolet-visible (UV-vis) spectra, fluorescence, circular dichroism (CD) and spectroscopy were applied to elucidate the formation, structure and physicochemical properties of levobupivacaine-gold nanoparticle (LGN) binding to human serum albumin (HSA). Thermodynamic parameters (ΔG = -2.58 × 104 J·mol-1 , ΔS = -7.80 J·mol-1 ·K-1 , and ΔS = -2.82 × 104 J·mol-1 at 305 K) suggested one weak binding site on HSA, which was governed by van der Waals forces as well as hydrogen bonds. Moreover, the outcomes of UV-vis, CD, FTIR, synchronous and three-dimensional fluorescence suggested that the microenvironment of HSA had been changed with addition of LGN. Based on the results of fluorescence resonance energy transfer, a distance of 2.8 nm between the LGN and HSA was observed. This approach has potential value for illustrating the pharmacodynamics of LGN when in combination with transmembrane transport, biomolecular function effect, and other experiments.
Collapse
Affiliation(s)
- Yanhong Cui
- Department of Pain Treatment, Zibo Municipal Hospital, China
| |
Collapse
|
23
|
Yadav P, Kumar Yadav J, Dixit AK, Agarwal A, Kumar Awasthi S. Insight into the interaction of benzothiazole tethered triazole analogues with human serum albumin: Spectroscopy and molecular docking approaches. LUMINESCENCE 2019; 34:812-822. [PMID: 31317650 DOI: 10.1002/bio.3676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/23/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
The interaction of four benzothiazole tethered triazole analogues (MS43, MS70, MS71, and MS78) with human serum albumin (HSA) was investigated using various spectroscopic techniques (ultraviolet-visible (UV-vis) light absorption, fluorescence, circular dichroism (CD), molecular docking and density functional theory (DFT) studies). Fluorescence quenching constants (~1012 ) revealed a static mode of quenching and binding constants (Kb ~104 ) indicating the strong affinity of these analogues for HSA. Further alteration in the secondary structure of HSA in the presence of these analogues was also confirmed by far UV-CD spectroscopy. The intensity loss in CD studied at 222 nm indicated an increase in random coil/β-sheet conformations in the protein. Binding energy values (MS71 (-9.3 kcal mol-1 ), MS78 (-8.02 kcal mol-1 ), MS70 (-7.16 kcal mol-1 ) and MS43 (-6.81 kcal mol-1 )) obtained from molecular docking revealed binding of these analogues with HSA. Molecular docking and DFT studies validated the experimental results, as these four analogues bind with HSA at site II through hydrogen bonding and hydrophobic interactions.
Collapse
Affiliation(s)
- Priyanka Yadav
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Jitendra Kumar Yadav
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | | | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
24
|
Maji A, Beg M, Das S, Sahoo NK, Jha PK, Islam MM, Hossain M. Binding interaction study on human serum albumin with bactericidal gold nanoparticles synthesized from a leaf extract ofMusa balbisiana: a multispectroscopic approach. LUMINESCENCE 2019; 34:563-575. [PMID: 31044511 DOI: 10.1002/bio.3639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Anukul Maji
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Maidul Beg
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Somnath Das
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Nandan Kumar Sahoo
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Pradeep K Jha
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Md Maidul Islam
- Department of Chemistry, Aliah University, West Bengal, India
| | - Maidul Hossain
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
25
|
Development of clay-protein based composite nanoparticles modified single-used sensor platform for electrochemical cytosensing application. Biosens Bioelectron 2019; 132:230-237. [DOI: 10.1016/j.bios.2019.02.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022]
|
26
|
Zarei L, Asadi Z, Dusek M, Eigner V. Homodinuclear Ni (II) and Cu (II) Schiff base complexes derived from O-vanillin with a pyrazole bridge: Preparation, crystal structures, DNA and protein (BSA) binding, DNA cleavage, molecular docking and cytotoxicity study. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Nguyen VP, Palanikumar L, Kennel SJ, Alves DS, Ye Y, Wall JS, Magzoub M, Barrera FN. Mechanistic insights into the pH-dependent membrane peptide ATRAM. J Control Release 2019; 298:142-153. [PMID: 30763623 PMCID: PMC6408977 DOI: 10.1016/j.jconrel.2019.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/28/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
pH-responsive peptides are promising therapeutic molecules that can specifically target the plasma membrane in the acidified extracellular medium that bathes cells in tumors. We designed the acidity-triggered rational membrane (ATRAM) peptide to have a pH-responsive membrane interaction. At physiological pH, ATRAM binds to the membrane surface in a largely unstructured conformation, while in acidic conditions it inserts into lipid bilayers forming a transmembrane helix. However, the molecular mechanism ATRAM uses to target and insert into tumor cells remains poorly understood. Here, we determined that ATRAM inserts into cancer cells with a preferential membrane orientation, where the C-terminus of the peptide traverses the plasma membrane and explores the cytoplasm. Using biophysical techniques, we determined that the membrane interaction of ATRAM is contingent on the concentration of the peptide. Kinetic studies showed that membrane insertion occurs in at least three steps, where only the first step was affected by the membrane density of ATRAM. These observations, combined with membrane binding and leakage data, indicate that the interaction of ATRAM with lipid membranes is dependent on its oligomerization state. SPECT/CT imaging in mice revealed that ATRAM accumulates in the blood pool, where it has a prolonged circulation time (> 4 h). Since fast peptide clearance and degradation in circulation are major problems for clinical development, we studied the mechanism ATRAM uses to remain in the blood stream. Using binding and transfer assays, we determined that ATRAM binds reversibly to human serum albumin. We propose that ATRAM uses albumin as a carrier in the blood stream to evade clearance and proteolysis before interacting with the plasma membrane of cancer cells. We also show that ATRAM is able to be deliver liposomes to cells in a pH dependent way. Our data highlight the potential of ATRAM as a specific therapeutic agent for diseases that lead to acidic tissues, including cancer.
Collapse
Affiliation(s)
- Vanessa P Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Loganathan Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stephen J Kennel
- Departments of Medicine & Radiology, University of Tennessee Medical Center, Knoxville, TN, United States
| | - Daiane S Alves
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Yujie Ye
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Jonathan S Wall
- Departments of Medicine & Radiology, University of Tennessee Medical Center, Knoxville, TN, United States
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States.
| |
Collapse
|
28
|
Nonspecific nanocarriers for doxorubicin and cytarabine in the presence of fatted and defatted human albumin. Part I. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Manojkumar Y, Ambika S, Arulkumar R, Gowdhami B, Balaji P, Vignesh G, Arunachalam S, Venuvanalingam P, Thirumurugan R, Akbarsha MA. Synthesis, DNA and BSA binding, in vitro anti-proliferative and in vivo anti-angiogenic properties of some cobalt(iii) Schiff base complexes. NEW J CHEM 2019. [DOI: 10.1039/c9nj01269a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the recent times metal complexes with dual mechanisms of action, anti-cancer and anti-angiogenic, have gained substantial interest in the field of medicinal chemistry.
Collapse
Affiliation(s)
| | - Subramanian Ambika
- Department of Chemistry
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Rasu Arulkumar
- Department of Chemistry
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Balakrishnan Gowdhami
- National Center for Alternatives to Animal Experiments
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Perumalsamy Balaji
- National Center for Alternatives to Animal Experiments
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Gobalsamy Vignesh
- Department of Chemistry
- Einstein Art and Science College
- Tirunelveli-627012
- India
| | | | | | - Ramaswamy Thirumurugan
- National Center for Alternatives to Animal Experiments
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | | |
Collapse
|
30
|
Chilom CG, Bacalum M, Stanescu MM, Florescu M. Insight into the interaction of human serum albumin with folic acid: A biophysical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:648-656. [PMID: 29982155 DOI: 10.1016/j.saa.2018.06.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Folic acid (FA) is a water soluble bioactive food constituent from the vitamin B-family complex (B9). FA deficiency can lead to a variety of human health problems, while a high intake of FA can reduce the cytotoxicity of natural killer cells. The main goal of this study was to investigate the interaction of FA with human serum albumin (HSA) at physiological pH using ATR-FTIR, fluorescence spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy in order to understand the role of HSA as a blood transporter for FA in aqueous solution that can be used in different therapies. The quenching of HSA in the presence of FA was followed and the binding constant (Kb) was determined. The variation of electrochemical parameters proved that the FA binds to immobilized HSA and the binding constant was ten times than the value obtained when the interaction takes place between free molecules in solution when studied by fluorescence quenching. The results can be used in future studies to improve drug delivery systems or cellular uptake of folic acid and food components conjugated to HSA nanoparticles or nanocapsules.
Collapse
Affiliation(s)
- Claudia G Chilom
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Str. Atomistilor no. 405, CP MG - 11, Bucuresti-Magurele RO 077125, Romania
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, "Horia Hulubei" National Institute of Physics and Nuclear Engineering, Str. Reactorului no. 30, P.O. BOX MG-6, Bucharest-Magurele, Romania.
| | - Mirela M Stanescu
- Faculty of Applied Sciences, University Politehnica of Bucharest, Splaiul Independentei no. 313, sector 6, RO-060042 Bucharest, Romania
| | - Monica Florescu
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Colina Universitatii no. 1, Building C, room CI30, 500068, Brasov, Romania.
| |
Collapse
|
31
|
Arabi SH, Aghelnejad B, Schwieger C, Meister A, Kerth A, Hinderberger D. Serum albumin hydrogels in broad pH and temperature ranges: characterization of their self-assembled structures and nanoscopic and macroscopic properties. Biomater Sci 2018; 6:478-492. [PMID: 29446432 DOI: 10.1039/c7bm00820a] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report extended pH- and temperature-induced preparation procedures and explore the materials and molecular properties of different types of hydrogels made from human and bovine serum albumin, the major transport protein in the blood of mammals. We describe the diverse range of properties of these hydrogels at three levels: (1) their viscoelastic (macroscopic) behavior, (2) protein secondary structure changes during the gelation process (via ATR-FTIR spectroscopy), and (3) the hydrogel fatty acid (FA) binding capacity and derive from this the generalized tertiary structure through CW EPR spectroscopy. We describe the possibility of preparing hydrogels from serum albumin under mild conditions such as low temperatures (notably below albumin's denaturation temperature) and neutral pH value. As such, the proteins retain most of their native secondary structure. We find that all the combined data indicate a two-stage gelation process that is studied in detail. We summarize these findings and the explored dependences of the gels on pH, temperature, concentration, and incubation time by proposing phase diagrams for both HSA and BSA gel-states. As such, it has become possible to prepare gels that have the desired nanoscopic and macroscopic properties, which can, in future, be tested for, e.g., drug delivery applications.
Collapse
Affiliation(s)
- S Hamidreza Arabi
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany.
| | - Behdad Aghelnejad
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany.
| | - Christian Schwieger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany.
| | - Annette Meister
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany.
| | - Andreas Kerth
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany.
| | - Dariush Hinderberger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany.
| |
Collapse
|
32
|
Zhang X, Chytil P, Etrych T, Liu W, Rodrigues L, Winter G, Filippov SK, Papadakis CM. Binding of HSA to Macromolecular pHPMA Based Nanoparticles for Drug Delivery: An Investigation Using Fluorescence Methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7998-8006. [PMID: 29949376 DOI: 10.1021/acs.langmuir.8b01015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphiphilic poly( N-(2-hydroxypropyl)methacrylamide) copolymers ( pHPMA) bearing cholesterol side groups in phosphate buffer saline self-assemble into nanoparticles (NPs) which can be used as tumor-targeted drug carriers. It was previously shown by us that human serum albumin (HSA) interacts weakly with the NPs. However, the mechanism of this binding could not be resolved due to overlapping of signals from the complex system. Here, we use fluorescence labeling to distinguish the components and to characterize the binding: On the one hand, a fluorescent dye was attached to pHPMA, so that the diffusion behavior of the NPs could be studied in the presence of HSA using fluorescence lifetime correlation spectroscopy. On the other hand, quenching of the intrinsic fluorescence of HSA revealed the origin of the binding, which is mainly the complexation between HSA and cholesterol side groups. Furthermore, a binding constant was obtained.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Physik-Department, Physik weicher Materie , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Petr Chytil
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| | - Weiwei Liu
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Ludwig-Maximilians-Universität München , Butenandtstr. 5 , 81377 Munich , Germany
| | - Leticia Rodrigues
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Ludwig-Maximilians-Universität München , Butenandtstr. 5 , 81377 Munich , Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Ludwig-Maximilians-Universität München , Butenandtstr. 5 , 81377 Munich , Germany
| | - Sergey K Filippov
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| | - Christine M Papadakis
- Physik-Department, Physik weicher Materie , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| |
Collapse
|
33
|
Manjubaashini N, Kesavan MP, Rajesh J, Daniel Thangadurai T. Multispectroscopic and bioimaging approach for the interaction of rhodamine 6G capped gold nanoparticles with bovine serum albumin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:374-384. [PMID: 29763760 DOI: 10.1016/j.jphotobiol.2018.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
Binding interaction of Bovine Serum Albumin (BSA) with newly prepared rhodamine 6G-capped gold nanoparticles (Rh6G-Au NPs) under physiological conditions (pH 7.2) was investigated by a wide range of photophysical techniques. Rh6G-Au NPs caused the static quenching of the intrinsic fluorescence of BSA that resulted from the formation of ground-state complex between BSA and Rh6G-Au NPs. The binding constant from fluorescence quenching method (Ka = 1.04 × 104 L mol-1; LoD = 14.0 μM) is in accordance with apparent association constant (Kapp = 1.14 × 101 M-1), which is obtained from absorption spectral studies. Förster resonance energy transfer (FRET) efficiency between the tryptophan (Trp) residue of BSA and fluorophore of Rh6G-Au NPs during the interaction was calculated to be 90%. The free energy change (ΔG = -23.07 kJ/mol) of BSA-Rh6G-Au NPs complex was calculated based on modified Stern-Volmer Plot. The time-resolved fluorescence analysis confirmed that quenching of BSA follows static mechanism through the formation of ground state complex. Furthermore, synchronous and three-dimensional fluorescence measurement, Raman spectral analysis and Circular Dichroism spectrum results corroborate the strong binding between Rh6G-Au NPs and BSA, which causes the conformational changes on BSA molecule. In addition, fluorescence imaging experiments of BSA in living human breast cancer (HeLa) cells was successfully demonstrated, which articulated the value of Rh6G-Au NPs practical applications in biological systems.
Collapse
Affiliation(s)
- N Manjubaashini
- Department of Nanoscience and Technology, Sri Ramakrishana Engineering College, Coimbatore, Tamilnadu 641 022, India
| | | | | | - T Daniel Thangadurai
- Department of Nanoscience and Technology, Sri Ramakrishana Engineering College, Coimbatore, Tamilnadu 641 022, India.
| |
Collapse
|
34
|
Sharma A, Chaudhuri TK. Physicochemical characterization of E. coli -derived human serum albumin and its comparison with the human plasma counterpart reveals it as a promising biosimilar. J Biotechnol 2018. [DOI: 10.1016/j.jbiotec.2018.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Kallubai M, Reddy SP, Dubey S, Ramachary DB, Subramanyam R. Spectroscopic evaluation of synthesized 5β-dihydrocortisol and 5β-dihydrocortisol acetate binding mechanism with human serum albumin and their role in anticancer activity. J Biomol Struct Dyn 2018; 37:623-640. [PMID: 29375009 DOI: 10.1080/07391102.2018.1433554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our study focus on the biological importance of synthesized 5β-dihydrocortisol (Dhc) and 5β-dihydrocortisol acetate (DhcA) molecules, the cytotoxic study was performed on breast cancer cell line (MCF-7) normal human embryonic kidney cell line (HEK293), the IC50 values for MCF-7 cells were 28 and 25 μM, respectively, whereas no toxicity in terms of cell viability was observed with HEK293 cell line. Further experiment proved that Dhc and DhcA induced 35.6 and 37.7% early apoptotic cells and 2.5, 2.9% late apoptotic cells, respectively, morphological observation of cell death through TUNEL assay revealed that Dhc and DhcA induced apoptosis in MCF-7 cells. The complexes of HSA-Dhc and HSA-DhcA were observed as static quenching, and the binding constants (K) was 4.7 ± .03 × 104 M-1 and 3.9 ± .05 × 104 M-1, and their binding free energies were found to be -6.4 and -6.16 kcal/mol, respectively. The displacement studies confirmed that lidocaine 1.4 ± .05 × 104 M-1 replaced Dhc, and phenylbutazone 1.5 ± .05 × 104 M-1 replaced by DhcA, which explains domain I and domain II are the binding sites for Dhc and DhcA. Further, FT-IR, synchronous spectroscopy, and CD results revealed that the secondary structure of HSA was altered in the presence of Dhc and DhcA. Furthermore, the atomic force microscopy and transmission electron microscopy showed that the dimensions like height and molecular size of the HSA-Dhc and HSA-DhcA complex were larger compared to HSA alone. Detailed analysis through molecular dynamics simulations also supported greater stability of HSA-Dhc and HSA-DhcA complexes, and root-mean-square-fluctuation interpreted the binding site of Dhc as domain IB and domain IIA for DhcA. This information is valuable for further development of steroid derivative with improved pharmacological significance as novel anti-cancer drugs.
Collapse
Affiliation(s)
- Monika Kallubai
- a Department of Plant Sciences, School of Life Sciences , University of Hyderabad , Hyderabad 500046 , India
| | - Srinivasa P Reddy
- b Catalysis Laboratory, School of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| | - Shreya Dubey
- a Department of Plant Sciences, School of Life Sciences , University of Hyderabad , Hyderabad 500046 , India
| | - Dhevalapally B Ramachary
- b Catalysis Laboratory, School of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| | - Rajagopal Subramanyam
- a Department of Plant Sciences, School of Life Sciences , University of Hyderabad , Hyderabad 500046 , India
| |
Collapse
|
36
|
Moradi S, Taran M, Shahlaei M. Investigation on human serum albumin and Gum Tragacanth interactions using experimental and computational methods. Int J Biol Macromol 2018; 107:2525-2533. [DOI: 10.1016/j.ijbiomac.2017.10.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/20/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
|
37
|
Zhang X, Niebuur BJ, Chytil P, Etrych T, Filippov SK, Kikhney A, Wieland DCF, Svergun DI, Papadakis CM. Macromolecular pHPMA-Based Nanoparticles with Cholesterol for Solid Tumor Targeting: Behavior in HSA Protein Environment. Biomacromolecules 2018; 19:470-480. [PMID: 29381335 DOI: 10.1021/acs.biomac.7b01579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoparticles (NPs) that form by self-assembly of amphiphilic poly(N-(2-hydroxypropyl)-methacrylamide) (pHPMA) copolymers bearing cholesterol side groups are potential drug carriers for solid tumor treatment. Here, we investigate their behavior in solutions of human serum albumin (HSA) in phosphate buffered saline. Mixed solutions of NPs, from polymer conjugates with or without the anticancer drug doxorubicin (Dox) bound to them, and HSA at concentrations up to the physiological value are characterized by synchrotron small-angle X-ray scattering and isothermal titration calorimetry. When Dox is absent, a small amount of HSA molecules bind to the cholesterol groups that form the core of the NPs by diffusing through the loose pHPMA shell or get caught in meshes formed by the pHPMA chains. These interactions are strongly hindered by the presence of Dox, which is distributed in the pHPMA shell, meaning that the delivery of Dox by the NPs in the human body is not affected by the presence of HSA.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Technische Universität München , Physik-Department, Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany
| | - Bart-Jan Niebuur
- Technische Universität München , Physik-Department, Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany
| | - Petr Chytil
- Institute of Macromolecular Chemistry , Czech Academy of Sciences, v. v. i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Tomas Etrych
- Institute of Macromolecular Chemistry , Czech Academy of Sciences, v. v. i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Sergey K Filippov
- Institute of Macromolecular Chemistry , Czech Academy of Sciences, v. v. i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Alexey Kikhney
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - D C Florian Wieland
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Christine M Papadakis
- Technische Universität München , Physik-Department, Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
38
|
Xu G, Hao C, Zhang L, Sun R. The interaction between BSA and DOTAP at the air-buffer interface. Sci Rep 2018; 8:407. [PMID: 29321490 PMCID: PMC5762638 DOI: 10.1038/s41598-017-18689-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/15/2017] [Indexed: 11/09/2022] Open
Abstract
In this article, the interaction between bovine serum albumin (BSA) and the cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) at the air-buffer interface was investigated at different subphase's pH values (pH = 3, 5 and 10). Surface pressure measurements (π - A) and penetration kinetics process (π - t) were carried out to reveal the interaction mechanism and the dynamical behavior. The data showed that π - A isotherms moved towards larger mean molecular area when the concentration of BSA ([BSA]) increased, the amount of BSA adsorbed onto DOTAP monolayer reached a threshold value at a [BSA] of 5 × 10-8 M, and BSA desorbed from the lipid monolayer as time goes by. The results revealed that the association of BSA with DOTAP at the air-buffer interface was affected by the subphase's pH value. When pH = 10, the interaction mechanism between them was a combination of hydrophobic interaction and electrostatic attraction, so BSA molecules could be well separated and purified from complex mixtures. AFM images demonstrated that pH value and [BSA] could affect the morphology feature of DOTAP monolayer and the adsorption and desorption processes of BSA. So the study provides an important experimental basis and theoretical support for learning the interaction mechanism among biomolecules in separation and purification of biomolecules and biosensor.
Collapse
Affiliation(s)
- Guoqing Xu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China.
| | - Lei Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
39
|
Agudelo D, Bourassa P, Bariyanga J, Tajmir-Riahi H. Loading efficacy and binding analysis of retinoids with milk proteins: a short review. J Biomol Struct Dyn 2017; 36:4246-4254. [DOI: 10.1080/07391102.2017.1411833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D. Agudelo
- Département de Chemistry-Biochemistry, Physics, Université du Québec à Trois-Rivières, C. P. 500, Trois-Rivières G9A 5H7, Québec, Canada
| | - P. Bourassa
- Département de Chemistry-Biochemistry, Physics, Université du Québec à Trois-Rivières, C. P. 500, Trois-Rivières G9A 5H7, Québec, Canada
| | - J. Bariyanga
- Department of Chemistry, University of Hawaii-West O’ahu, 96-129 Ala Ike, Pearl City 96782, HI, USA
| | - H.A. Tajmir-Riahi
- Département de Chemistry-Biochemistry, Physics, Université du Québec à Trois-Rivières, C. P. 500, Trois-Rivières G9A 5H7, Québec, Canada
| |
Collapse
|
40
|
Zhao X, Lu D, Liu QS, Li Y, Feng R, Hao F, Qu G, Zhou Q, Jiang G. Hematological Effects of Gold Nanorods on Erythrocytes: Hemolysis and Hemoglobin Conformational and Functional Changes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700296. [PMID: 29270341 PMCID: PMC5737108 DOI: 10.1002/advs.201700296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/07/2017] [Indexed: 05/09/2023]
Abstract
Gold nanorods (GNRs) are a unique class of metal nanostructures that have attractive potentials in biomedical applications, and the concern on their biological safety is concomitantly increasing. Hemocompatibility is extremely important as their contact with blood circulation is unavoidable during in vivo delivery. Herein, two kinds of GNRs coated with hexadecyltrimethylammonium bromide (C-GNRs) or poly(sodium-p-styrenesulfonate) are used to test their potential toxicological effects in blood. C-GNRs with positive surface charges efficiently induce hemolysis when encountering erythrocytes. Cellular internalization of C-GNRs is found, and they subsequently bind with hemoglobin, forming bioconjugates. The interaction between hemoglobin and C-GNR (stoichiometry 32.7:1) is regulated by electrostatic forces. Chromophores like tryptophan (Trp) are found to interact with C-GNRs, causing enhancement in fluorescence intensity. The conformation of protein is partially altered, evidenced by decrease in α-helical, increase in β-sheet and random coil of hemoglobin. Although C-GNRs do not essentially decrease oxygen binding capacity of hemoglobin, they hamper oxygen release from the protein. Heme, the oxygen binding unit, releases from hemoglobin upon C-GNR treatment, which could contribute to C-GNR-induced hemolysis. This study demonstrates the hematological effects of GNRs, revealing their potential risk in biomedical applications.
Collapse
Affiliation(s)
- Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R.China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R.China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qian S. Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R.China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yiling Li
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R.China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Rui Feng
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R.China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Fang Hao
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R.China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R.China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R.China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R.China
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
41
|
Yuan L, Liu M, Sun B, Liu J, Wei X, Wang Z, Wang B, Han J. Calorimetric and spectroscopic studies on the competitive behavior between (−)-epigallocatechin-3-gallate and 5-fluorouracil with human serum albumin. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Efficient gene delivery by oligochitosan conjugated serum albumin: Facile synthesis, polyplex stability, and transfection. Carbohydr Polym 2017; 183:37-49. [PMID: 29352891 DOI: 10.1016/j.carbpol.2017.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Chitosan and its derivatives have shown to be potential gene carriers with biocompatiblility and safety. However, their practical delivery is far from being ideal because of the low transfection efficiency. The present work describes the potential of a natural protein, bovine serum albumin (BSA), conjugated with a natural oligosaccharide, oligochitosan (OC), as a considerable promising approach for a safe and efficient non-viral gene delivery vector. The FTIR spectra proved the effective conjugation of BSA with OC through covalent bond. The condensation ability of plasmid DNA (pDNA) with a BSA-OC biopolymer was analyzed by gel retardation assay, competition binding assay, and dynamic light scattering used to measure the nanoparticle size. In addition, the BSA-OC biopolymer showed the protection of pDNA from enzymatic degradation by DNase I and showed good stability when exposed to 50% fetal bovine serum. The transfection efficiency was evaluated in the presence of 10% serum-supplemented media or serum-free media on three kinds of mammalian cells. Our results showed that the BSA-OC biopolymer is a good non-viral vehicle for gene delivery. We investigated the parameters such as the pDNA payload, temperature, incubating duration, and biopolymer/pDNA ratio on the transfection efficiency. This hybrid vehicle had the ability to transfect 90% of cells and to maintain 80% of cell viability. The aforementioned results suggest that the facile synthesis of the BSA-OC biopolymer could overcome the cytotoxicity problem and transfection barriers during in vitro gene delivery.
Collapse
|
43
|
Maji A, Beg M, Mandal AK, Das S, Jha PK, Hossain M. Study of the interaction of human serum albumin with Alstonia scholaris leaf extract-mediated silver nanoparticles having bactericidal property. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Maji A, Beg M, Mandal AK, Das S, Jha PK, Kumar A, Sarwar S, Hossain M, Chakrabarti P. Spectroscopic interaction study of human serum albumin and human hemoglobin with Mersilea quadrifolia leaves extract mediated silver nanoparticles having antibacterial and anticancer activity. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Liu J, Yan X, Yue Y, Zhao S. Investigation of the interaction of aurantio-obtusin with human serum albumin by spectroscopic and molecular docking methods. LUMINESCENCE 2017; 33:104-111. [DOI: 10.1002/bio.3378] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jianming Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Henan Normal University; Xinxiang Henan P. R. China
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan P. R. China
| | - Xuyang Yan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Henan Normal University; Xinxiang Henan P. R. China
| | - Yuanyuan Yue
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Henan Normal University; Xinxiang Henan P. R. China
- Henan Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan P. R. China
| | - Shufang Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Henan Normal University; Xinxiang Henan P. R. China
| |
Collapse
|
46
|
Interactions between epinastine and human serum albumin: Investigation by fluorescence, UV–vis, FT–IR, CD, lifetime measurement and molecular docking. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Cao H, Yi Y. Study on the interaction of chromate with bovine serum albumin by spectroscopic method. Biometals 2017; 30:529-539. [PMID: 28523598 DOI: 10.1007/s10534-017-0022-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022]
Abstract
The interaction between two chromates [sodium chromate (Na2CrO4) and potassium chromate K2CrO4)] and bovine serum albumin (BSA) in physiological buffer (pH 7.4) was investigated by the fluorescence quenching technique. The results of fluorescence titration revealed that two chromates could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure. The apparent binding constants K and number of binding sites n of chromate with BSA were obtained by the fluorescence quenching method. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) were negative, indicating that the interaction of two chromates with BSA was driven mainly by van der Waals forces and hydrogen bonds. The process of binding was a spontaneous process in which Gibbs free energy change was negative. The distance r between donor (BSA) and acceptor (chromate) was calculated based on Forster's non-radiative energy transfer theory. The results of UV-Vis absorption, synchronous fluorescence, three-dimensional fluorescence and circular dichroism (CD) spectra showed that two chromates induced conformational changes of BSA.
Collapse
Affiliation(s)
- Hongguang Cao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanli Yi
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
48
|
Rezende JDP, Ferreira GMD, Ferreira GMD, da Silva LHM, do Carmo Hepanhol da Silva M, Pinto MS, Pires ACDS. Polydiacetylene/triblock copolymer nanosensor for the detection of native and free bovine serum albumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:535-543. [DOI: 10.1016/j.msec.2016.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 11/30/2022]
|
49
|
Kristensen K, Urquhart AJ, Thormann E, Andresen TL. Binding of human serum albumin to PEGylated liposomes: insights into binding numbers and dynamics by fluorescence correlation spectroscopy. NANOSCALE 2016; 8:19726-19736. [PMID: 27874129 DOI: 10.1039/c6nr05455b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Liposomes for medical applications are often administered by intravenous injection. Once in the bloodstream, the liposomes are covered with a "protein corona", which impacts the behavior and eventual fate of the liposomes. Currently, many aspects of the liposomal protein corona are not well understood. For example, there is generally a lack of knowledge about the liposome binding affinities and dynamics of common types of blood plasma proteins. Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique that potentially can provide such knowledge. In this study, we have used FCS to investigate the binding of human serum albumin (HSA) to standard types of PEGylated fluid-phase liposomes (consisting of DOPC and DOPE-PEG2k) and PEGylated gel-phase liposomes (consisting of DSPC and DSPE-PEG2k) with various PEG chain surface densities. We detected no significant binding of HSA to the PEGylated fluid-phase liposomes. In contrast, we found that HSA bound tightly to the PEGylated gel-phase liposomes, although only a low number of HSA molecules could be accommodated per liposome. Overall, we believe that our data provides a useful benchmark for other researchers interested in studying the liposomal protein corona.
Collapse
Affiliation(s)
- Kasper Kristensen
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. and Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Andrew J Urquhart
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. and Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark and Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas L Andresen
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. and Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
50
|
Dar AM, Uzzaman S, Ahmad MS, Khan Y. Steroidal imidazoles: Synthesis, characterization, molecular docking studies with DNA and in vitro cytotoxicity. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1755-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|