1
|
Fu X, Diao W, Luo Y, Liu Y, Wang Z. Theoretical Insight into the Fluorescence Spectral Tuning Mechanism: A Case Study of Flavin-Dependent Bacterial Luciferase. J Chem Theory Comput 2024; 20:8652-8664. [PMID: 39298275 DOI: 10.1021/acs.jctc.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Bioluminescence of bacteria is widely applied in biological imaging, environmental toxicant detection, and many other situations. Understanding the spectral tuning mechanism not only helps explain the diversity of colors observed in nature but also provides principles for bioengineering new color variants for practical applications. In this study, time-dependent density functional theory (TD-DFT) and quantum mechanics and molecular mechanics (QM/MM) calculations have been employed to understand the fluorescence spectral tuning mechanism of bacterial luciferase with a focus on the electrostatic effect. The spectrum can be tuned by both a homogeneous dielectric environment and oriented external electric fields (OEEFs). Increasing the solvent polarity leads to a redshift of the fluorescence emission maximum, λF, accompanied by a substantial increase in density. In contrast, applying an OEEF along the long axis of the isoalloxazine ring (X-axis) leads to a significant red- or blue-shift in λF, depending on the direction of the OEEF, yet with much smaller changes in intensity. The effect of polar solvents is directionless, and the red-shifts can be attributed to the larger dipole moment of the S1 state compared with that of the S0 state. However, the effect of OEEFs directly correlates with the difference dipole moment between the S1 and S0 states, which is directional and is determined by the charge redistribution upon deexcitation. Moreover, the electrostatic effect of bacterial luciferase is in line with the presence of an internal electric field (IEF) pointing in the negative X direction. Finally, the key residues that contribute to this IEF and strategies for modulating the spectrum through site-directed point mutations are discussed.
Collapse
Affiliation(s)
- Xiaodi Fu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Wenwen Diao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| | - Yanling Luo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajun Liu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhanfeng Wang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
2
|
Hajda A, Grelich-Mucha M, Rybczyński P, Ośmiałowski B, Zaleśny R, Olesiak-Bańska J. BF 2-Functionalized Benzothiazole Amyloid Markers: Effect of Donor Substituents on One- and Two-Photon Properties. ACS APPLIED BIO MATERIALS 2023; 6:5676-5684. [PMID: 38060806 PMCID: PMC10731634 DOI: 10.1021/acsabm.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
Investigation of amyloids with the aid of fluorescence microscopy provides crucial insights into the development of numerous diseases associated with the formation of aggregates. Here, we present a series of BF2-functionalized benzothiazoles with electron-donating methoxy group(s), which are tested as amyloid fluorescent markers. We evaluate how the position of donor functional group(s) influences optical properties (fluorescence lifetime (τ) and fluorescence quantum yield (FQY)) in a solution and upon binding to amyloids. We elucidate the importance of surrounding environmental factors (hydrogen-bonding network, polarity, and viscosity) on the observed changes in FQY and evaluate how the localization of a donor influences radiative and nonradiative decay pathways. We conclude that a donor attached to the benzothiazole ring contributes to the increment of radiative decay pathways upon binding to amyloids (kr), while the donor attached to the flexible part of a molecule (with rotational freedom) contributes to a decrease in nonradiative decay pathways (knr). We find that the donor-acceptor-donor architecture allows us to obtain 58 times higher FQY of the dye upon binding to bovine insulin amyloids. Finally, we measure two-photon absorption (2PA) cross sections (σ2) of the dyes and their change upon binding by the two-photon excited fluorescence (2PEF) technique. Measurements reveal that dyes that exhibit the increase/decrease of σ2 values when transferred from highly polar solvents to CHCl3 present a similar behavior upon amyloid binding. Our 2PA experimental values are supported by quantum mechanics/molecular mechanics (QM/MM) simulations. Despite this trend, the values of σ2 are not the same, which points out the importance of two-photon absorption measurements of amyloid-dye complexes in order to understand the performance of 2P probes upon binding.
Collapse
Affiliation(s)
- Agata Hajda
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wroclaw, Poland
| | - Manuela Grelich-Mucha
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wroclaw, Poland
| | - Patryk Rybczyński
- Faculty
of Chemistry, Nicolaus Copernicus University, Gagarina Street 7, Toruń PL-87-100, Poland
| | - Borys Ośmiałowski
- Faculty
of Chemistry, Nicolaus Copernicus University, Gagarina Street 7, Toruń PL-87-100, Poland
| | - Robert Zaleśny
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wroclaw, Poland
| | - Joanna Olesiak-Bańska
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wroclaw, Poland
| |
Collapse
|
3
|
Aslopovsky VR, Scherbinin AV, Kleshchina NN, Bochenkova AV. Impact of the Protein Environment on Two-Photon Absorption Cross-Sections of the GFP Chromophore Anion Resolved at the XMCQDPT2 Level of Theory. Int J Mol Sci 2023; 24:11266. [PMID: 37511026 PMCID: PMC10379633 DOI: 10.3390/ijms241411266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The search for fluorescent proteins with large two-photon absorption (TPA) cross-sections and improved brightness is required for their efficient use in bioimaging. Here, we explored the impact of a single-point mutation close to the anionic form of the GFP chromophore on its TPA activity. We considered the lowest-energy transition of EGFP and its modification EGFP T203I. We focused on a methodology for obtaining reliable TPA cross-sections for mutated proteins, based on conformational sampling using molecular dynamics simulations and a high-level XMCQDPT2-based QM/MM approach. We also studied the numerical convergence of the sum-over-states formalism and provide direct evidence for the applicability of the two-level model for calculating TPA cross-sections in EGFP. The calculated values were found to be very sensitive to changes in the permanent dipole moments between the ground and excited states and highly tunable by internal electric field of the protein environment. In the case of the GFP chromophore anion, even a single hydrogen bond was shown to be capable of drastically increasing the TPA cross-section. Such high tunability of the nonlinear photophysical properties of the chromophore anions can be used for the rational design of brighter fluorescent proteins for bioimaging using two-photon laser scanning microscopy.
Collapse
Affiliation(s)
- Vladislav R Aslopovsky
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Andrei V Scherbinin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Nadezhda N Kleshchina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Anastasia V Bochenkova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
4
|
Datar A, Wright C, Matthews DA. Theoretical Investigation of the X-ray Stark Effect in Small Molecules. J Phys Chem A 2023; 127:1576-1587. [PMID: 36787229 DOI: 10.1021/acs.jpca.2c08311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
We have studied the Stark effect in the soft x-ray region for various small molecules by calculating the field-dependent x-ray absorption spectra. This effect is explained in terms of the response of molecular orbitals (core and valence), the molecular dipole moment, and the molecular geometry to the applied electric field. A number of consistent trends are observed linking the computed shifts in absorption energies and intensities with specific features of the molecular electronic structure. We find that both the virtual molecular orbitals (valence and/or Rydberg) as well as the core orbitals contribute to observed trends in a complementary fashion. This initial study highlights the potential impact of x-ray Stark spectroscopy as a tool to study electronic structure and environmental perturbations at a submolecular scale.
Collapse
Affiliation(s)
- Avdhoot Datar
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Catherine Wright
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Devin A Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
5
|
Grabarek D, Andruniów T. Quantum chemistry study of the multiphoton absorption in enhanced green fluorescent protein at the single amino acid residue level. Chemphyschem 2022; 23:e202200335. [PMID: 35875840 DOI: 10.1002/cphc.202200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/17/2022] [Indexed: 11/11/2022]
Abstract
The chromophore (CRO) of fluorescent proteins (FPs) is embedded in a complex environment that is a source of specific interactions with the CRO. Understanding how these interactions influence FPs spectral properties is important for a directed design of novel markers with desired characteristics. In this work, we apply computational chemistry methods to gain insight into one-, two- and three-photon absorption (1PA, 2PA, 3PA) tuning in enhanced green fluorescent protein (EGFP). To achieve this goal, we built EGFP models differing in: i) number and position of hydrogen-bonds (h-bonds) donors to the CRO and ii) the electric field, as approximated by polarizable force field, acting on the CRO. We find that h-bonding to the CRO's phenolate oxygen results in stronger one- and multiphoton absorption. The brighter absorption can be also achieved by creating more positive electric field near the CRO's phenolate moiety. Interestingly, while individual CRO-environment h-bonds usually enhance 1PA and 2PA, it takes a few h-bond donors to enhance 3PA. Clearly, response of the absorption intensity to many-body effects depends on the excitation mechanism. We further employ symmetry-adapted perturbation theory (SAPT) to reveal excellent (2PA) and good (3PA) correlation of multiphoton intensity with electrostatic and induction interaction energies. This points to importance of accounting for mutual CRO-environment polarization in quantitative calculations of absorption spectra in FPs.
Collapse
Affiliation(s)
| | - Tadeusz Andruniów
- Wroclaw University of Science and Technology, Chemistry, Wyb. Wyspianskiego, 30-516, Wroclaw, POLAND
| |
Collapse
|
6
|
Grabarek D, Andruniów T. The role of hydrogen bonds and electrostatic interactions in enhancing two-photon absorption in green and yellow fluorescent proteins. Chemphyschem 2022; 23:e202200003. [PMID: 35130370 DOI: 10.1002/cphc.202200003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Indexed: 11/07/2022]
Abstract
The spectral properties of fluorescent proteins (FPs) depend on the protein environment of the chromophore (CRO). A deeper understanding of the CRO - environment interactions in terms of FPs spectral characteristics will allow for a rational design of novel markers with desired properties. Here, we are taking a step towards achieving this important goal. With the time-dependent density functional theory (TDDFT), we calculate one- and two-photon absorption (OPA and TPA) spectra for 5 green FPs (GFPs) and 3 yellow FPs (YFPs) differing in amino acid sequence. The goal is to reveal a role of: (i) electrostatic interactions, (ii) hydrogen-bonds (h-bonds), and (iii) h-bonds together with distant electrostatic field in absorption spectra tuning. Our results point to design hypothesis towards FPs optimised for TPA-based applications. Both h-bonds and electrostatic interactions co-operate in enhancing TPA cross-section (σ TPA ) for the S 0 ->S 1 transition in GFPs. Furthermore, it seems that details of h-bonds network in the CRO's vicinity influences σ TPA response to CRO - environment electrostatic interactions in YFPs. We postulate that engineering FPs with more hydrophilic CRO's environment can lead to greater σ TPA . We also find that removing h-bonds formed with the CRO's phenolate leads to TPA enhancement for transition to higher excited states than S 1 . Particularly Y145 and T203 residues are important in this regard.
Collapse
Affiliation(s)
- Dawid Grabarek
- Department of Chemistry, Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Tadeusz Andruniów
- Department of Chemistry, Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
7
|
Vasilev K, Doppagne B, Neuman T, Rosławska A, Bulou H, Boeglin A, Scheurer F, Schull G. Internal Stark effect of single-molecule fluorescence. Nat Commun 2022; 13:677. [PMID: 35115513 PMCID: PMC8813982 DOI: 10.1038/s41467-022-28241-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/07/2022] [Indexed: 12/04/2022] Open
Abstract
The optical properties of chromophores can be efficiently tuned by electrostatic fields generated in their close environment, a phenomenon that plays a central role for the optimization of complex functions within living organisms where it is known as internal Stark effect (ISE). Here, we realised an ISE experiment at the lowest possible scale, by monitoring the Stark shift generated by charges confined within a single chromophore on its emission energy. To this end, a scanning tunneling microscope (STM) functioning at cryogenic temperatures is used to sequentially remove the two central protons of a free-base phthalocyanine chromophore deposited on a NaCl-covered Ag(111) surface. STM-induced fluorescence measurements reveal spectral shifts that are associated to the electrostatic field generated by the internal charges remaining in the chromophores upon deprotonation. The internal Stark effect, a shift of the spectral lines of a chromophore induced by electrostatic fields in its close environment, plays an important role in nature. Here the authors observe a Stark shift in the fluorescence spectrum of a phthalocyanine molecule upon charge modifications within the molecule itself, achieved by sequential removal of the central protons with a STM tip.
Collapse
Affiliation(s)
- Kirill Vasilev
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Benjamin Doppagne
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Tomáš Neuman
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Anna Rosławska
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Hervé Bulou
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Alex Boeglin
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Fabrice Scheurer
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - Guillaume Schull
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France.
| |
Collapse
|
8
|
Rossano‐Tapia M, Brown A. Quantum mechanical/molecular mechanical studies of photophysical properties of fluorescent proteins. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Alex Brown
- Department of Chemistry University of Alberta Edmonton Alberta Canada
| |
Collapse
|
9
|
Khrenova MG, Mulashkin FD, Nemukhin AV. Modeling Spectral Tuning in Red Fluorescent Proteins Using the Dipole Moment Variation upon Excitation. J Chem Inf Model 2021; 61:5125-5132. [PMID: 34601882 DOI: 10.1021/acs.jcim.1c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a model for spectral tuning in red fluorescent proteins (RFPs) based on the relation between an electronic structure descriptor, the dipole moment variation upon excitation (DMV), and the excitation energy of a protein. This approach aims to overcome the problem of accurate prediction of excitation energies in RFPs, which span a very narrow window of band maxima. The latter roughly corresponds to the energy range of 0.1 eV, which is comparable with typical errors in calculations of the excitation energy by conventional quantum chemistry methods. In this work, we demonstrate a strong quantitative correlation between DMV values, obtained computationally with modest efforts, and excitation energies ΔEex at the experimental excitation band maxima for a series of RFPs with bands between 570 and 605 nm. Protein models are constructed by motifs of the relevant crystal structures, and atomic coordinates are optimized in quantum mechanics/molecular mechanics (QM/MM) calculations with QM-subsystems composed of large chromophore-containing regions. DMV values are evaluated with the electron density computed at the time-dependent density functional theory (TDDFT) level using several functionals and basis sets. We show that the results obtained with the CAM-B3LYP, BHHLYP, and M06-2X functionals demonstrate favorable correlations between DMV and ΔEex with the mean absolute error less than 0.01 eV. Taking into account the solid theoretical grounds of the relation between the DMV and the excitation energy in fluorescent proteins, the described modeling strategy presents a rational tool for spectral tuning in these efficient markers for in vivo imaging.
Collapse
Affiliation(s)
- Maria G Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071, Russian Federation
| | - Fedor D Mulashkin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russian Federation
| |
Collapse
|
10
|
Gleason PR, Kolbaba-Kartchner B, Henderson JN, Stahl EP, Simmons CR, Mills JH. Structural Origins of Altered Spectroscopic Properties upon Ligand Binding in Proteins Containing a Fluorescent Noncanonical Amino Acid. Biochemistry 2021; 60:2577-2585. [PMID: 34415744 DOI: 10.1021/acs.biochem.1c00291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent noncanonical amino acids (fNCAAs) could serve as starting points for the rational design of protein-based fluorescent sensors of biological activity. However, efforts toward this goal are likely hampered by a lack of atomic-level characterization of fNCAAs within proteins. Here, we describe the spectroscopic and structural characterization of five streptavidin mutants that contain the fNCAA l-(7-hydroxycoumarin-4-yl)ethylglycine (7-HCAA) at sites proximal to the binding site of its substrate, biotin. Many of the mutants exhibited altered fluorescence spectra in response to biotin binding, which included both increases and decreases in fluorescence intensity as well as red- or blue-shifted emission maxima. Structural data were also obtained for three of the five mutants. The crystal structures shed light on interactions between 7-HCAA and functional groups, contributed either by the protein or by the substrate, that may be responsible for the observed changes in the 7-HCAA spectra. These data could be used in future studies aimed at the rational design of fluorescent, protein-based sensors of small molecule binding or dissociation.
Collapse
|
11
|
Drobizhev M, Molina RS, Callis PR, Scott JN, Lambert GG, Salih A, Shaner NC, Hughes TE. Local Electric Field Controls Fluorescence Quantum Yield of Red and Far-Red Fluorescent Proteins. Front Mol Biosci 2021; 8:633217. [PMID: 33763453 PMCID: PMC7983054 DOI: 10.3389/fmolb.2021.633217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Genetically encoded probes with red-shifted absorption and fluorescence are highly desirable for imaging applications because they can report from deeper tissue layers with lower background and because they provide additional colors for multicolor imaging. Unfortunately, red and especially far-red fluorescent proteins have very low quantum yields, which undermines their other advantages. Elucidating the mechanism of nonradiative relaxation in red fluorescent proteins (RFPs) could help developing ones with higher quantum yields. Here we consider two possible mechanisms of fast nonradiative relaxation of electronic excitation in RFPs. The first, known as the energy gap law, predicts a steep exponential drop of fluorescence quantum yield with a systematic red shift of fluorescence frequency. In this case the relaxation of excitation occurs in the chromophore without any significant changes of its geometry. The second mechanism is related to a twisted intramolecular charge transfer in the excited state, followed by an ultrafast internal conversion. The chromophore twisting can strongly depend on the local electric field because the field can affect the activation energy. We present a spectroscopic method of evaluating local electric fields experienced by the chromophore in the protein environment. The method is based on linear and two-photon absorption spectroscopy, as well as on quantum-mechanically calculated parameters of the isolated chromophore. Using this method, which is substantiated by our molecular dynamics simulations, we obtain the components of electric field in the chromophore plane for seven different RFPs with the same chromophore structure. We find that in five of these RFPs, the nonradiative relaxation rate increases with the strength of the field along the chromophore axis directed from the center of imidazolinone ring to the center of phenolate ring. Furthermore, this rate depends on the corresponding electrostatic energy change (calculated from the known fields and charge displacements), in quantitative agreement with the Marcus theory of charge transfer. This result supports the dominant role of the twisted intramolecular charge transfer mechanism over the energy gap law for most of the studied RFPs. It provides important guidelines of how to shift the absorption wavelength of an RFP to the red, while keeping its brightness reasonably high.
Collapse
Affiliation(s)
- Mikhail Drobizhev
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| | - Rosana S Molina
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| | - Patrik R Callis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | | | - Gerard G Lambert
- Department of Neurosciences, UC San Diego, San Diego, CA, United States
| | - Anya Salih
- Antares & Fluoresci Research, Dangar Island, NSW, Australia
| | - Nathan C Shaner
- Department of Neurosciences, UC San Diego, San Diego, CA, United States
| | - Thomas E Hughes
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| |
Collapse
|
12
|
Donon J, Habka S, Mons M, Brenner V, Gloaguen E. Conformational analysis by UV spectroscopy: the decisive contribution of environment-induced electronic Stark effects. Chem Sci 2021; 12:2803-2815. [PMID: 34164044 PMCID: PMC8179363 DOI: 10.1039/d0sc06074g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
UV chromophores are frequently used as probes of the molecular structure. In particular, they are sensitive to the electric field generated by the molecular environment, resulting in the observation of Stark effects on UV spectra. While these environment-induced electronic Stark effects (EI-ESE) are already used for conformational analysis in the condensed phase, this work explores the potential of such an approach when performed at much higher conformational resolution in the gas phase. By investigating model alkali benzylacetate and 4-phenylbutyrate ion pairs, where the electric field applied to the phenyl ring is chemically tuned by changing the nature of the alkali cation, this work demonstrates that precise conformational assignments can be proposed based on the correlation between the conformation-dependent calculated electric fields and the frequency of the electronic transitions observed in the experimental UV spectra. Remarkably, the sole analysis of Stark effects and fragmentation patterns in mass-selected UV spectra provided an accurate and complete conformational analysis, where spectral differences as small as a few cm-1 between electronic transitions were rationalized. This case study illustrates that the identification of EI-ESE together with their interpretation at the modest cost of a ground state electric field calculation qualify UV spectroscopy as a powerful tool for conformational analysis.
Collapse
Affiliation(s)
- Jeremy Donon
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| | - Sana Habka
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| | - Michel Mons
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| | - Valérie Brenner
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| | - Eric Gloaguen
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| |
Collapse
|
13
|
Khrenova MG, Mulashkin FD, Bulavko ES, Zakharova TM, Nemukhin AV. Dipole Moment Variation Clears Up Electronic Excitations in the π-Stacked Complexes of Fluorescent Protein Chromophores. J Chem Inf Model 2020; 60:6288-6297. [PMID: 33206518 DOI: 10.1021/acs.jcim.0c01028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose a quantitative structure-property relationship (QSPR) model for prediction of spectral tuning in cyan, green, orange, and red fluorescent proteins, which are engineered by motifs of the green fluorescent protein. Protein variants, in which their chromophores are involved in the π-stacking interaction with amino acid residues tyrosine, phenylalanine, and histidine, are prospective markers useful in bioimaging and super-resolution microscopy. In this work, we constructed training sets of the π-stacked complexes of four fluorescent protein chromophores (of the green, orange, red, and cyan series) with various substituted benzenes and imidazoles and tested the use of dipole moment variation upon excitation (DMV) as a descriptor to evaluate the vertical excitation energies in these systems. To validate this approach, we computed and analyzed electron density distributions of the π-stacked complexes and correlated the QSPR predictions with the reference values of the transition energies obtained using the high-level ab initio quantum chemistry methods. According to our results, the use of the DMV descriptor allows one to predict excitation energies in the π-stacked complexes with errors not exceeding 0.1 eV, which makes this model a practically useful tool in the development of efficient fluorescent markers for in vivo imaging.
Collapse
Affiliation(s)
- Maria G Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russian Federation
| | - Fedor D Mulashkin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Egor S Bulavko
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Tatiana M Zakharova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russian Federation
| |
Collapse
|
14
|
Grabarek D, Andruniów T. What is the Optimal Size of the Quantum Region in Embedding Calculations of Two-Photon Absorption Spectra of Fluorescent Proteins? J Chem Theory Comput 2020; 16:6439-6455. [PMID: 32862643 PMCID: PMC7586329 DOI: 10.1021/acs.jctc.0c00602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
We
systematically investigate an impact of the size and content
of a quantum (QM) region, treated at the density functional theory
level, in embedding calculations on one- (OPA) and two-photon absorption
(TPA) spectra of the following fluorescent proteins (FPs) models: Aequorea victoria green FP (avGFP) with neutral (avGFP-n)
and anionic (avGFP-a) chromophore as well as Citrine FP. We find that
amino acid (a.a.) residues as well as water molecules hydrogen-bonded
(h-bonded) to the chromophore usually boost both OPA and TPA processes
intensity. The presence of hydrophobic a.a. residues in the quantum
region also non-negligibly affects both absorption spectra but decreases
absorption intensity. We conclude that to reach a quantitative description
of OPA and TPA spectra in multiscale modeling of FPs, the quantum
region should consist of a chromophore and most of a.a. residues and
water molecules in a radius
of 0.30–0.35 nm (ca. 200–230 atoms)
when the remaining part of the system is approximated by the electrostatic
point-charges. The optimal size of the QM region can be reduced to
80–100 atoms by utilizing a more advanced polarizable embedding
model. We also find components of the QM region that are specific
to a FP under study. We propose that the F165 a.a. residue is important
in tuning the TPA spectrum of avGFP-n but not other investigated FPs.
In the case of Citrine, Y203 and M69 a.a. residues must definitely
be part of the QM subsystem. Furthermore, we find that long-range
electrostatic interactions between the QM region and the rest of the
protein cannot be neglected even for the most extensive QM regions
(ca. 350 atoms).
Collapse
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
15
|
Łukasiewicz ŁG, Rammo M, Stark C, Krzeszewski M, Jacquemin D, Rebane A, Gryko DT. Ground‐ and Excited‐State Symmetry Breaking and Solvatofluorochromism in Centrosymmetric Pyrrolo[3,2‐
b
]pyrroles Possessing two Nitro Groups. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Łukasz G. Łukasiewicz
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44–52 01-224 Warsaw Poland
| | - Matt Rammo
- National Institute of Chemical Physics and Biophysics Akadeemia tee 23 12618 Tallinn Estonia
| | - Charlie Stark
- National Institute of Chemical Physics and Biophysics Akadeemia tee 23 12618 Tallinn Estonia
| | - Maciej Krzeszewski
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44–52 01-224 Warsaw Poland
| | - Denis Jacquemin
- CEISAM laboratory – UMR 6230University of Nantes 2, rue de la Houssinière 44322 Nantes France
| | - Aleksander Rebane
- National Institute of Chemical Physics and Biophysics Akadeemia tee 23 12618 Tallinn Estonia
- Department of PhysicsMontana State University Bozeman, MT 59717 USA
| | - Daniel T. Gryko
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44–52 01-224 Warsaw Poland
| |
Collapse
|
16
|
Donon J, Habka S, Vaquero-Vara V, Brenner V, Mons M, Gloaguen E. Electronic Stark Effect in Isolated Ion Pairs. J Phys Chem Lett 2019; 10:7458-7462. [PMID: 31647874 DOI: 10.1021/acs.jpclett.9b02675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stark spectral shifts of a molecular probe are commonly used to estimate the local electric field in condensed media. The very large fields reported, typically in the 0.1-10 GV m-1 range, are, however, difficult to reproduce in a controlled manner, limiting the calibration of these molecular probes to ranges below 0.1 GV m-1. In this context, we investigated gas-phase, isolated, molecular ion pairs, where a phenyl ring is immersed in the electric field produced by the nearby ionic groups. The intensity of the electric field is chemically tuned in the 1 GV m-1 range by changing the nature of the cations, and the phenyl ring response is monitored by UV spectroscopy. A quadratic Stark effect is observed, demonstrating the possibility to characterize molecular probes in a solvent-free environment and in the very large field range they typically meet in condensed media such as biological environments.
Collapse
Affiliation(s)
- Jeremy Donon
- LIDYL, CEA , CNRS, Université Paris Saclay ; CEA Saclay, Bât 522 , 91191 Gif-sur-Yvette , France
| | - Sana Habka
- LIDYL, CEA , CNRS, Université Paris Saclay ; CEA Saclay, Bât 522 , 91191 Gif-sur-Yvette , France
| | - Vanesa Vaquero-Vara
- LIDYL, CEA , CNRS, Université Paris Saclay ; CEA Saclay, Bât 522 , 91191 Gif-sur-Yvette , France
| | - Valérie Brenner
- LIDYL, CEA , CNRS, Université Paris Saclay ; CEA Saclay, Bât 522 , 91191 Gif-sur-Yvette , France
| | - Michel Mons
- LIDYL, CEA , CNRS, Université Paris Saclay ; CEA Saclay, Bât 522 , 91191 Gif-sur-Yvette , France
| | - Eric Gloaguen
- LIDYL, CEA , CNRS, Université Paris Saclay ; CEA Saclay, Bât 522 , 91191 Gif-sur-Yvette , France
| |
Collapse
|
17
|
Nifosì R, Mennucci B, Filippi C. The key to the yellow-to-cyan tuning in the green fluorescent protein family is polarisation. Phys Chem Chem Phys 2019; 21:18988-18998. [PMID: 31464320 DOI: 10.1039/c9cp03722e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computational approaches have to date failed to fully capture the large (about 0.4 eV) excitation energy tuning displayed by the nearly identical anionic chromophore in different green fluorescent protein (GFP) variants. Here, we present a thorough comparative study of a set of proteins in this sub-family, including the most red- (phiYFP) and blue-shifted (mTFP0.7) ones. We employ a classical polarisable embedding through induced dipoles and combine it with time-dependent density functional theory and multireference perturbation theory in order to capture both state-specific induction contributions and the coupling of the polarisation of the protein to the chromophore transition density. The obtained results show that only upon inclusion of both these two effects generated by the mutual polarisation between the chromophore and the protein can the full spectral tuning be replicated. We finally discuss how this mutual polarisation affects the correlation between excitation energies, dipole moment variation, and molecular electrostatic field.
Collapse
Affiliation(s)
- Riccardo Nifosì
- NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Claudia Filippi
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
18
|
Haynes EP, Rajendran M, Henning CK, Mishra A, Lyon AM, Tantama M. Quantifying Acute Fuel and Respiration Dependent pH Homeostasis in Live Cells Using the mCherryTYG Mutant as a Fluorescence Lifetime Sensor. Anal Chem 2019; 91:8466-8475. [PMID: 31247720 PMCID: PMC6623984 DOI: 10.1021/acs.analchem.9b01562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intracellular pH plays a key role in physiology, and its measurement in living specimens remains a crucial task in biology. Fluorescent protein-based pH sensors have gained widespread use, but there is limited spectral diversity for multicolor detection, and it remains a challenge to measure absolute pH values. Here we demonstrate that mCherryTYG is an excellent fluorescence lifetime pH sensor that significantly expands the modalities available for pH quantification in live cells. We first report the 1.09 Å X-ray crystal structure of mCherryTYG, exhibiting a fully matured chromophore. We next determine that it has an extraordinarily large dynamic range with a 2 ns lifetime change from pH 5.5 to 9.0. Critically, we find that the sensor maintains a p Ka of 6.8 independent of environment, whether as the purified protein in solution or expressed in live cells. Furthermore, the lifetime measurements are robustly independent of total fluorescence intensity and scatter. We demonstrate that mCherryTYG is a highly effective sensor using time-resolved fluorescence spectroscopy on live-cell suspensions, which has been previously overlooked as an easily accessible approach for quantifying intracellular pH. As a red fluorescent sensor, we also demonstrate that mCherryTYG is spectrally compatible with the ATeam sensor and EGFP for simultaneous dual-color measurements of intracellular pH, ATP, and extracellular pH. In a proof-of-concept, we quantify acute respiration-dependent pH homeostasis that exhibits a stoichiometric relationship with the ATP-generating capacity of the carbon fuel choice in E. coli. Broadly speaking, our work presents a previously unemployed methodology that will greatly facilitate continuous pH quantification.
Collapse
Affiliation(s)
- Emily P. Haynes
- Department of Chemistry, Purdue University, 560 Oval Drive, Box 68, West Lafayette, IN 47907, USA
| | - Megha Rajendran
- Department of Chemistry, Purdue University, 560 Oval Drive, Box 68, West Lafayette, IN 47907, USA
- Institute for Integrative Neuroscience, Purdue University, 560 Oval Drive, Box 68, West Lafayette, IN 47907, USA
| | | | | | - Angeline M. Lyon
- Department of Chemistry, Purdue University, 560 Oval Drive, Box 68, West Lafayette, IN 47907, USA
- Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, 560 Oval Drive, Box 68, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, 560 Oval Drive, Box 68, West Lafayette, IN 47907, USA
| | - Mathew Tantama
- Department of Chemistry, Purdue University, 560 Oval Drive, Box 68, West Lafayette, IN 47907, USA
- Institute for Integrative Neuroscience, Purdue University, 560 Oval Drive, Box 68, West Lafayette, IN 47907, USA
- Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, 560 Oval Drive, Box 68, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Andrews DL. Effects of Intrinsic Local Fields on Molecular Fluorescence and Energy Transfer: Dipole Mechanisms and Surface Potentials. J Phys Chem B 2019; 123:5015-5023. [PMID: 30908043 DOI: 10.1021/acs.jpcb.9b00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general theory is developed to identify the influence of local dipole fields on fluorescence and intermolecular electronic excitation transfer. The analysis, based on electrodynamical principles, identifies the fundamental quantum mechanisms and delivers full analytical results. The aim is to afford new physical insights, assisting the interpretation of measurements on the specific effects of local molecular dipoles on direct fluorescence and on fluorescence resonance energy transfer. Dipole field effects, which include those originating from intrinsically polar chromophores and surface field gradients, also prove to be manifest in electronic transitions of quadrupole symmetry character. The results have particular significance for fluorescence studies of cell membrane biophysics.
Collapse
Affiliation(s)
- David L Andrews
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| |
Collapse
|
20
|
Lanin AA, Chebotarev AS, Barykina NV, Subach FV, Zheltikov AM. The whither of bacteriophytochrome-based near-infrared fluorescent proteins: Insights from two-photon absorption spectroscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800353. [PMID: 30414251 DOI: 10.1002/jbio.201800353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 06/08/2023]
Abstract
We present one- and two-photon-absorption fluorescence spectroscopic analysis of biliverdin (BV) chromophore-based single-domain near-infrared fluorescent proteins (iRFPs). The results of these studies are used to estimate the internal electric fields acting on BV inside iRFPs and quantify the electric dipole properties of this chromophore, defining the red shift of excitation and emission spectra of BV-based iRFPs. The iRFP studied in this work is shown to fit well the global diagram of the red-shift tunability of currently available BV-based iRFPs as dictated by the quadratic Stark effect, suggesting the existence of the lower bound for the strongest red shifts attainable within this family of fluorescent proteins. The absolute value of the two-photon absorption (TPA) cross section of a fluorescent calcium sensor based on the studied iRFP is found to be significantly larger than the TPA cross sections of other widely used genetically encodable fluorescent calcium sensors.
Collapse
Affiliation(s)
- Aleksandr A Lanin
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Russian Quantum Center, Skolkovo, Russia
| | - Artem S Chebotarev
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Natalia V Barykina
- INBICST, Moscow Institute of Physics and Technology, Moscow, Russia
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Fedor V Subach
- INBICST, Moscow Institute of Physics and Technology, Moscow, Russia
- Kurchatov Institute National Research Center, Moscow, Russia
| | - Aleksei M Zheltikov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas
- Russian Quantum Center, Skolkovo, Russia
- Kurchatov Institute National Research Center, Moscow, Russia
| |
Collapse
|
21
|
Molina RS, Qian Y, Wu J, Shen Y, Campbell RE, Drobizhev M, Hughes TE. Understanding the Fluorescence Change in Red Genetically Encoded Calcium Ion Indicators. Biophys J 2019; 116:1873-1886. [PMID: 31054773 PMCID: PMC6531872 DOI: 10.1016/j.bpj.2019.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/02/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
For over 20 years, genetically encoded Ca2+ indicators have illuminated dynamic Ca2+ signaling activity in living cells and, more recently, whole organisms. We are just now beginning to understand how they work. Various fluorescence colors of these indicators have been developed, including red. Red ones are promising because longer wavelengths of light scatter less in tissue, making it possible to image deeper. They are engineered from a red fluorescent protein that is circularly permuted and fused to a Ca2+-sensing domain. When Ca2+ binds, a conformational change in the sensing domain causes a change in fluorescence. Three factors can contribute to this fluorescence change: 1) a shift in the protonation equilibrium of the chromophore, 2) a change in fluorescence quantum yield, and 3) a change in the extinction coefficient or the two-photon cross section, depending on if it is excited with one or two photons. Here, we conduct a systematic study of the photophysical properties of a range of red Ca2+ indicators to determine which factors are the most important. In total, we analyzed nine indicators, including jRGECO1a, K-GECO1, jRCaMP1a, R-GECO1, R-GECO1.2, CAR-GECO1, O-GECO1, REX-GECO1, and a new variant termed jREX-GECO1. We find that these could be separated into three classes that each rely on a particular set of factors. Furthermore, in some cases, the magnitude of the change in fluorescence was larger with two-photon excitation compared to one-photon because of a change in the two-photon cross section, by up to a factor of two.
Collapse
Affiliation(s)
- Rosana S Molina
- Department of Cell Biology & Neuroscience, Montana State University, Bozeman, Montana
| | - Yong Qian
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jiahui Wu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Mikhail Drobizhev
- Department of Cell Biology & Neuroscience, Montana State University, Bozeman, Montana
| | - Thomas E Hughes
- Department of Cell Biology & Neuroscience, Montana State University, Bozeman, Montana.
| |
Collapse
|
22
|
Sourdon A, Gary-Bobo M, Maynadier M, Garcia M, Majoral JP, Caminade AM, Mongin O, Blanchard-Desce M. Dendrimeric Nanoparticles for Two-Photon Photodynamic Therapy and Imaging: Synthesis, Photophysical Properties, Innocuousness in Daylight and Cytotoxicity under Two-Photon Irradiation in the NIR. Chemistry 2019; 25:3637-3649. [PMID: 30620107 DOI: 10.1002/chem.201805617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 12/27/2022]
Abstract
The synthesis and the photophysical properties of a new class of fully organic monodisperse nanoparticles for combined two-photon imaging and photodynamic therapy are described. The design of such nanoparticles is based on the covalent immobilization of a dedicated quadrupolar dye that combines excellent two-photon absorbing (2PA) properties, fluorescence and singlet oxygen generation ability, in a phosphorous-based dendrimeric architecture. First, a bifunctional quadrupolar dye bearing two different grafting moieties, a phenol function and an aldehyde function, was synthesized. It was then covalently grafted through its phenol function to a phosphorus-based dendrimer scaffold of generation 1. The remaining aldehyde functions were then used to continue the dendrimer synthesis up to generation 2, introducing finally 24 water-solubilizing triethyleneglycol chains at its periphery. A dendrimer confining 12 photoactive quadrupolar units in its inner scaffold and showing water solubility was thus obtained. Interestingly, the G1 and G2 dendrimers retain some fluorescence as well as significant singlet oxygen production efficiencies while they were found to show very high 2PA cross-sections in a broad range of the NIR biological spectral window. Hydrophilic dendrimer G2 was tested in vitro on breast cancer cells, first in one- and two-photon microscopy, which allowed for visualization of their cell internalization, then in two-photon photodynamic therapy. While being nontoxic in the dark and, more importantly, under exposure to daylight, dendrimer G2 proved to be a very efficient cell-death inducer only under two-photon irradiation in the NIR.
Collapse
Affiliation(s)
- Aude Sourdon
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Marie Maynadier
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Olivier Mongin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | | |
Collapse
|
23
|
Grabarek D, Andruniów T. Assessment of Functionals for TDDFT Calculations of One- and Two-Photon Absorption Properties of Neutral and Anionic Fluorescent Proteins Chromophores. J Chem Theory Comput 2018; 15:490-508. [PMID: 30485096 DOI: 10.1021/acs.jctc.8b00769] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Performance of DFT functionals with different percentages of exact Hartree-Fock exchange energy (EX) is assessed for recovery of the CC2 reference one- (OPA) and two-photon absorption (TPA) spectra of fluorescent proteins chromophores in vacuo. The investigated DFT functionals, together with their EX contributions are BLYP (0%), B3LYP (20%), B1LYP (25%), BHandHLYP (50%), and CAM-B3LYP (19% at short range and 65% at long range). Our test set consists of anionic and neutral chromophores as naturally occurring in the fluorescent proteins. For the first time, we compare TDDFT and CC2 methods for higher excited states than the S1 state, exhibiting relatively large TPA intensity. Our TDDFT results for neutral chromophores reveal an increase in excitation energies as well as TPA and OPA intensities errors, compared to CC2-derived results, as the DFT functional contains less exact exchange. The long-range-corrected CAM-B3LYP functional performs the best, closely followed by BHandHLYP, while BLYP usually significantly underestimates all investigated spectral properties, hence being the worst in reproducing the reference CC2 results. The hybrid B3LYP and B1LYP functionals can be roughly placed in between. We propose that TDDFT may underestimate the TPA intensities for neutral chromophores of fluorescent proteins due to underestimated oscillator strengths between some excited states. In the case of anionic chromophores, we find that B3LYP and B1LYP functionals overcome others in terms of reproducing CC2 excitation energies. On the other hand, however, TPA intensity is usually significantly underestimated, and in this respect, CAM-B3LYP functional seems to be again superior. In contrast to the case of neutral chromophores, it seems that a large magnitude of excited-state dipole moments or changes in dipole moments upon excitation may be the driving force behind high TPA transition moments.
Collapse
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering and Modelling Group , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| |
Collapse
|
24
|
Homans RJ, Khan RU, Andrews MB, Kjeldsen AE, Natrajan LS, Marsden S, McKenzie EA, Christie JM, Jones AR. Two photon spectroscopy and microscopy of the fluorescent flavoprotein, iLOV. Phys Chem Chem Phys 2018; 20:16949-16955. [DOI: 10.1039/c8cp01699b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Homans et al. show that engineered LOV-domains are amenable to two photon activation both in vitro and in human cells.
Collapse
Affiliation(s)
- Rachael J. Homans
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
- Manchester Institute of Biotechnology
| | - Raja U. Khan
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
- Manchester Institute of Biotechnology
| | - Michael B. Andrews
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
| | - Annemette E. Kjeldsen
- Institute of Molecular, Cell and Systems Biology
- College of Medical, Veterinary and Life Sciences
- University of Glasgow
- Glasgow
- UK
| | - Louise S. Natrajan
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
| | - Steven Marsden
- School of Biological Sciences
- The University of Manchester
- Manchester
- UK
| | - Edward A. McKenzie
- Manchester Institute of Biotechnology
- The University of Manchester
- Manchester
- UK
| | - John M. Christie
- Institute of Molecular, Cell and Systems Biology
- College of Medical, Veterinary and Life Sciences
- University of Glasgow
- Glasgow
- UK
| | - Alex R. Jones
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
- Manchester Institute of Biotechnology
| |
Collapse
|
25
|
Molina R, Tran TM, Campbell RE, Lambert GG, Salih A, Shaner NC, Hughes TE, Drobizhev M. Blue-Shifted Green Fluorescent Protein Homologues Are Brighter than Enhanced Green Fluorescent Protein under Two-Photon Excitation. J Phys Chem Lett 2017; 8:2548-2554. [PMID: 28530831 PMCID: PMC5474692 DOI: 10.1021/acs.jpclett.7b00960] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Fluorescent proteins (FPs) are indispensable markers for two-photon imaging of live tissue, especially in the brains of small model organisms. The quantity of physiologically relevant data collected, however, is limited by heat-induced damage of the tissue due to the high intensities of the excitation laser. We seek to minimize this damage by developing FPs with improved brightness. Among FPs with the same chromophore structure, the spectral properties can vary widely due to differences in the local protein environment. Using a physical model that describes the spectra of FPs containing the anionic green FP (GFP) chromophore, we predict that those that are blue-shifted in one-photon absorption will have stronger peak two-photon absorption cross sections. Following this prediction, we present 12 blue-shifted GFP homologues and demonstrate that they are up to 2.5 times brighter than the commonly used enhanced GFP (EGFP).
Collapse
Affiliation(s)
- Rosana
S. Molina
- Department
of Cell Biology & Neuroscience, Montana
State University, Bozeman, Montana 59717, United States
| | - Tam M. Tran
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Robert E. Campbell
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | | | - Anya Salih
- Western
Sydney University, Penrith South DC, New South Wales 1797, Australia
| | - Nathan C. Shaner
- Scintillon
Institute, San Diego, California 92121, United States
| | - Thomas E. Hughes
- Department
of Cell Biology & Neuroscience, Montana
State University, Bozeman, Montana 59717, United States
| | - Mikhail Drobizhev
- Department
of Cell Biology & Neuroscience, Montana
State University, Bozeman, Montana 59717, United States
| |
Collapse
|
26
|
Nanda KD, Krylov AI. Effect of the diradical character on static polarizabilities and two-photon absorption cross sections: A closer look with spin-flip equation-of-motion coupled-cluster singles and doubles method. J Chem Phys 2017; 146:224103. [DOI: 10.1063/1.4984822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
27
|
Lin CY, Both J, Do K, Boxer SG. Mechanism and bottlenecks in strand photodissociation of split green fluorescent proteins (GFPs). Proc Natl Acad Sci U S A 2017; 114:E2146-E2155. [PMID: 28242710 PMCID: PMC5358378 DOI: 10.1073/pnas.1618087114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Split GFPs have been widely applied for monitoring protein-protein interactions by expressing GFPs as two or more constituent parts linked to separate proteins that only fluoresce on complementing with one another. Although this complementation is typically irreversible, it has been shown previously that light accelerates dissociation of a noncovalently attached β-strand from a circularly permuted split GFP, allowing the interaction to be reversible. Reversible complementation is desirable, but photodissociation has too low of an efficiency (quantum yield <1%) to be useful as an optogenetic tool. Understanding the physical origins of this low efficiency can provide strategies to improve it. We elucidated the mechanism of strand photodissociation by measuring the dependence of its rate on light intensity and point mutations. The results show that strand photodissociation is a two-step process involving light-activated cis-trans isomerization of the chromophore followed by light-independent strand dissociation. The dependence of the rate on temperature was then used to establish a potential energy surface (PES) diagram along the photodissociation reaction coordinate. The resulting energetics-function model reveals the rate-limiting process to be the transition from the electronic excited-state to the ground-state PES accompanying cis-trans isomerization. Comparisons between split GFPs and other photosensory proteins, like photoactive yellow protein and rhodopsin, provide potential strategies for improving the photodissociation quantum yield.
Collapse
Affiliation(s)
- Chi-Yun Lin
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012
| | - Johan Both
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012
| | - Keunbong Do
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012
| |
Collapse
|
28
|
Hontani Y, Shcherbakova DM, Baloban M, Zhu J, Verkhusha VV, Kennis JTM. Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics. Sci Rep 2016; 6:37362. [PMID: 27857208 PMCID: PMC5114657 DOI: 10.1038/srep37362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are of great interest for in vivo imaging. They utilize biliverdin (BV) as a chromophore, which is a heme degradation product, and therefore they are straightforward to use in mammalian tissues. Here, we report on fluorescence properties of NIR FPs with key alterations in their BV binding sites. BphP1-FP, iRFP670 and iRFP682 have Cys residues in both PAS and GAF domains, rather than in the PAS domain alone as in wild-type BphPs. We found that NIR FP variants with Cys in the GAF or with Cys in both PAS and GAF show blue-shifted emission with long fluorescence lifetimes. In contrast, mutants with Cys in the PAS only or no Cys residues at all exhibit red-shifted emission with shorter lifetimes. Combining these results with previous biochemical and BphP1-FP structural data, we conclude that BV adducts bound to Cys in the GAF are the origin of bright blue-shifted fluorescence. We propose that the long fluorescence lifetime follows from (i) a sterically more constrained thioether linkage, leaving less mobility for ring A than in canonical BphPs, and (ii) that π-electron conjugation does not extend on ring A, making excited-state deactivation less sensitive to ring A mobility.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Jingyi Zhu
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - John T M Kennis
- Department of Physics and Astronomy, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
29
|
Park JW, Rhee YM. Electric Field Keeps Chromophore Planar and Produces High Yield Fluorescence in Green Fluorescent Protein. J Am Chem Soc 2016; 138:13619-13629. [PMID: 27662359 DOI: 10.1021/jacs.6b06833] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The green fluorescent protein and its designed variants fluoresce efficiently. Because the isolated chromophore is not fluorescent in a practical sense, it is apparent that the protein environment plays a crucial role in its efficiency. Because of various obstacles in studying excited state dynamics of complex systems, however, the detailed mechanism of this efficiency enhancement is not yet clearly elucidated. Here, by adopting excited state nonadiabatic molecular dynamics simulations together with an interpolated quantum chemical potential model of the chromophore, we find that the strong electric field from the protein matrix contributes dominantly to the motional restriction of the chromophore. The delay in twisting motion subsequently obstructs the nonradiative decay that competes with fluorescence, leading naturally to an enhancement in light-emitting efficiency. Surprisingly, steric constraints make only a minor contribution to these aspects. Through residue specific analyses, we identify a group of key residues that control the excited state behavior. Testing a series of mutant GFPs with different brightnesses also supports the view regarding the importance of protein electrostatics. Our findings may provide a useful guide toward designing new fluorescent chemical systems in the future.
Collapse
Affiliation(s)
- Jae Woo Park
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS) , Pohang 37673, Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH) , Pohang 37673, Korea
| | - Young Min Rhee
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS) , Pohang 37673, Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH) , Pohang 37673, Korea
| |
Collapse
|
30
|
Salem MA, Twelves I, Brown A. Prediction of two-photon absorption enhancement in red fluorescent protein chromophores made from non-canonical amino acids. Phys Chem Chem Phys 2016; 18:24408-16. [PMID: 27534378 DOI: 10.1039/c6cp03865d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two-photon spectroscopy of fluorescent proteins is a powerful bio-imaging tool known for deep tissue penetration and little cellular damage. Being less sensitive than the one-photon microscopy alternatives, a protein with a large two-photon absorption (TPA) cross-section is needed. Here, we use time-dependent density functional theory (TD-DFT) at the B3LYP and CAM-B3LYP/6-31+G(d,p) levels of theory to screen twenty-two possible chromophores that can be formed upon replacing the amino-acid Tyr66 that forms the red fluorescent protein (RFP) chromophore with a non-canonical amino acid. The two-level model for TPA was used to assess the properties (i.e., transition dipole moment, permanent dipole moment difference, and the angle between them) leading to the TPA cross-sections determined via response theory. Computing TPA cross-sections with B3LYP and CAM-B3LYP yields similar overall trends. Results using both functionals agree that the RFP-derived model of the Gold Fluorescent Protein chromophore (Model 20) has the largest intrinsic TPA cross-section at the optimized geometry. TPA was further computed for selected chromophores following conformational changes: variation of both the dihedral angle of the acylimine moiety and the tilt and twist angles between the rings of the chromophore. The TPA cross-section assumed an oscillatory trend with the rotation of the acylimine dihedral, and the TPA is maximized in the planar conformation for almost all models. Model 21 (a hydroxyquinoline derivative) is shown to be comparable to Model 20 in terms of TPA cross-section. The conformational study on Model 21 shows that the acylimine angle has a much stronger effect on the TPA than its tilt and twist angles. Having an intrinsic TPA ability that is more than 7 times that of the native RFP chromophore, Models 20 and 21 appear to be very promising for future experimental investigation.
Collapse
Affiliation(s)
- M Alaraby Salem
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| | | | | |
Collapse
|
31
|
List NH, Jensen HJA, Kongsted J. Local electric fields and molecular properties in heterogeneous environments through polarizable embedding. Phys Chem Chem Phys 2016; 18:10070-80. [PMID: 27007060 DOI: 10.1039/c6cp00669h] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In spectroscopies, the local field experienced by a molecule embedded in an environment will be different from the externally applied electromagnetic field, and this difference may significantly alter the response and transition properties of the molecule. The polarizable embedding (PE) model has previously been developed to model the local field contribution stemming from the direct molecule-environment coupling of the electromagnetic response properties of molecules in solution as well as in heterogeneous environments, such as proteins. Here we present an extension of this approach to address the additional effective external field effect, i.e., the manifestations of the environment polarization induced by the external field, which allows for the calculation of properties defined in terms of the external field. Within a response framework, we report calculations of the one- and two-photon absorption (1PA and 2PA, respectively) properties of PRODAN-methanol clusters as well as the fluorescent protein DsRed. Our results demonstrate the necessity of accounting for both the dynamical reaction field and effective external field contributions to the local field in order to reproduce full quantum chemical reference calculations. For the lowest π→π* transition in DsRed, inclusion of effective external field effects gives rise to a 1.9- and 3.5-fold reduction in the 1PA and 2PA cross-sections, respectively. The effective external field is, however, strongly influenced by the heterogeneity of the protein matrix, and the resulting effect can lead to either screening or enhancement depending on the nature of the transition under consideration.
Collapse
|
32
|
Steindal AH, Beerepoot MTP, Ringholm M, List NH, Ruud K, Kongsted J, Olsen JMH. Open-ended response theory with polarizable embedding: multiphoton absorption in biomolecular systems. Phys Chem Chem Phys 2016; 18:28339-28352. [DOI: 10.1039/c6cp05297e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present the theory and implementation of an open-ended framework for electric response properties that includes effects from the molecular environment modeled by the polarizable embedding model.
Collapse
Affiliation(s)
- Arnfinn Hykkerud Steindal
- Centre of Theoretical and Computational Chemistry
- Department of Chemistry
- University of Tromsø—The Arctic University of Norway
- N-9037 Tromsø
- Norway
| | - Maarten T. P. Beerepoot
- Centre of Theoretical and Computational Chemistry
- Department of Chemistry
- University of Tromsø—The Arctic University of Norway
- N-9037 Tromsø
- Norway
| | - Magnus Ringholm
- Centre of Theoretical and Computational Chemistry
- Department of Chemistry
- University of Tromsø—The Arctic University of Norway
- N-9037 Tromsø
- Norway
| | - Nanna Holmgaard List
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense
- Denmark
| | - Kenneth Ruud
- Centre of Theoretical and Computational Chemistry
- Department of Chemistry
- University of Tromsø—The Arctic University of Norway
- N-9037 Tromsø
- Norway
| | - Jacob Kongsted
- Department of Physics
- Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense
- Denmark
| | | |
Collapse
|
33
|
List NH, Olsen JMH, Kongsted J. Excited states in large molecular systems through polarizable embedding. Phys Chem Chem Phys 2016; 18:20234-50. [DOI: 10.1039/c6cp03834d] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the polarizable embedding model enables rational design of light-sensitive functional biological materials.
Collapse
Affiliation(s)
- Nanna Holmgaard List
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- 5230 Odense M
- Denmark
| | | | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- 5230 Odense M
- Denmark
| |
Collapse
|
34
|
List NH, Beerepoot MTP, Olsen JMH, Gao B, Ruud K, Jensen HJA, Kongsted J. Molecular quantum mechanical gradients within the polarizable embedding approach--application to the internal vibrational Stark shift of acetophenone. J Chem Phys 2015; 142:034119. [PMID: 25612701 DOI: 10.1063/1.4905909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn-Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange-repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.
Collapse
Affiliation(s)
- Nanna Holmgaard List
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark
| | - Maarten T P Beerepoot
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jógvan Magnus Haugaard Olsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark
| | - Bin Gao
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark
| |
Collapse
|
35
|
Long- and Short-Range Electrostatic Fields in GFP Mutants: Implications for Spectral Tuning. Sci Rep 2015; 5:13223. [PMID: 26286372 PMCID: PMC4541067 DOI: 10.1038/srep13223] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/20/2015] [Indexed: 12/27/2022] Open
Abstract
The majority of protein functions are governed by their internal local electrostatics. Quantitative information about these interactions can shed light on how proteins work and allow for improving/altering their performance. Green fluorescent protein (GFP) and its mutation variants provide unique optical windows for interrogation of internal electric fields, thanks to the intrinsic fluorophore group formed inside them. Here we use an all-optical method, based on the independent measurements of transition frequency and one- and two-photon absorption cross sections in a number of GFP mutants to evaluate these internal electric fields. Two physical models based on the quadratic Stark effect, either with or without taking into account structural (bond-length) changes of the chromophore in varying field, allow us to separately evaluate the long-range and the total effective (short- and long-range) fields. Both types of the field quantitatively agree with the results of independent molecular dynamic simulations, justifying our method of measurement.
Collapse
|
36
|
Ultrafast excited-state dynamics and fluorescence deactivation of near-infrared fluorescent proteins engineered from bacteriophytochromes. Sci Rep 2015; 5:12840. [PMID: 26246319 PMCID: PMC4526943 DOI: 10.1038/srep12840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/10/2015] [Indexed: 12/17/2022] Open
Abstract
Near-infrared fluorescent proteins, iRFPs, are recently developed genetically encoded fluorescent probes for deep-tissue in vivo imaging. Their functions depend on the corresponding fluorescence efficiencies and electronic excited state properties. Here we report the electronic excited state deactivation dynamics of the most red-shifted iRFPs: iRFP702, iRFP713 and iRFP720. Complementary measurements by ultrafast broadband fluorescence and absorption spectroscopy show that single exponential decays of the excited state with 600~700 ps dominate in all three iRFPs, while photoinduced isomerization was completely inhibited. Significant kinetic isotope effects (KIE) were observed with a factor of ~1.8 in D2O, and are interpreted in terms of an excited-state proton transfer (ESPT) process that deactivates the excited state in competition with fluorescence and chromophore mobility. On this basis, new approaches for rational molecular engineering may be applied to iRFPs to improve their fluorescence.
Collapse
|
37
|
Doan PH, Pitter DRG, Kocher A, Wilson JN, Goodson T. Two-Photon Spectroscopy as a New Sensitive Method for Determining the DNA Binding Mode of Fluorescent Nuclear Dyes. J Am Chem Soc 2015; 137:9198-201. [DOI: 10.1021/jacs.5b02674] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Phi H. Doan
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Demar R. G. Pitter
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Andrea Kocher
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James N. Wilson
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Theodore Goodson
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
38
|
Stoltzfus CR, Barnett LM, Drobizhev M, Wicks G, Mikhaylov A, Hughes TE, Rebane A. Two-photon directed evolution of green fluorescent proteins. Sci Rep 2015; 5:11968. [PMID: 26145791 PMCID: PMC4491718 DOI: 10.1038/srep11968] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/12/2015] [Indexed: 01/15/2023] Open
Abstract
Directed evolution has been used extensively to improve the properties of a variety of fluorescent proteins (FPs). Evolutionary strategies, however, have not yet been used to improve the two-photon absorption (2PA) properties of a fluorescent protein, properties that are important for two-photon imaging in living tissues, including the brain. Here we demonstrate a technique for quantitatively screening the two-photon excited fluorescence (2PEF) efficiency and 2PA cross section of tens of thousands of mutant FPs expressed in E. coli colonies. We use this procedure to move EGFP through three rounds of two-photon directed evolution leading to new variants showing up to a 50% enhancement in peak 2PA cross section and brightness within the near-IR tissue transparency wavelength range.
Collapse
Affiliation(s)
| | - Lauren M. Barnett
- Cell Biology Neuroscience Department, Montana State University, Bozeman MT. 59717
| | | | - Geoffrey Wicks
- Physics Department, Montana State University, Bozeman MT. 59717
| | | | - Thomas E. Hughes
- Cell Biology Neuroscience Department, Montana State University, Bozeman MT. 59717
| | - Aleksander Rebane
- Physics Department, Montana State University, Bozeman MT. 59717
- National Institute of Chemical Physics and Biophysics, Tallinn, Estonia, 12618
| |
Collapse
|
39
|
Hense A, Nienhaus K, Nienhaus GU. Exploring color tuning strategies in red fluorescent proteins. Photochem Photobiol Sci 2015; 14:200-12. [PMID: 25597270 DOI: 10.1039/c4pp00212a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/31/2014] [Indexed: 01/01/2023]
Abstract
Red-emitting fluorescent proteins (RFPs) with fluorescence emission above 600 nm are advantageous for cell and tissue imaging applications for various reasons. Fluorescence from an RFP is well separated from cellular autofluorescence, which is in the green region of the spectrum, and red light is scattered less, which allows thicker specimens to be imaged. Moreover, the phototoxic response of cells is lower for red than blue or green light exposure. Further red-shifted FP variants can be obtained by genetic modifications causing an extension of the conjugated π-electron system of the chromophore, or by placing amino acids near the chromophore that stabilize its excited state or destabilize its ground state. We have selected the tetrameric RFP eqFP611 from Entacmaea quadricolor as a lead structure and discuss several rational design trials to generate RFP variants with improved photochemical properties.
Collapse
Affiliation(s)
- Anika Hense
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany.
| | | | | |
Collapse
|
40
|
Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat Chem Biol 2014; 10:512-23. [PMID: 24937069 DOI: 10.1038/nchembio.1556] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/16/2014] [Indexed: 12/23/2022]
Abstract
Synergistic advances in optical physics, probe design, molecular biology, labeling techniques and computational analysis have propelled fluorescence imaging into new realms of spatiotemporal resolution and sensitivity. This review aims to discuss advances in fluorescent probes and live-cell labeling strategies, two areas that remain pivotal for future advances in imaging technology. Fluorescent protein- and bio-orthogonal-based methods for protein and RNA imaging are discussed as well as emerging bioengineering techniques that enable their expression at specific genomic loci (for example, CRISPR and TALENs). Important attributes that contribute to the success of each technique are emphasized, providing a guideline for future advances in dynamic live-cell imaging.
Collapse
|
41
|
List NH, Pimenta FM, Holmegaard L, Jensen RL, Etzerodt M, Schwabe T, Kongsted J, Ogilby PR, Christiansen O. Effect of chromophore encapsulation on linear and nonlinear optical properties: the case of “miniSOG”, a protein-encased flavin. Phys Chem Chem Phys 2014; 16:9950-9. [DOI: 10.1039/c3cp54470b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
McLean AM, Socher E, Varnavski O, Clark TB, Imperiali B, Goodson T. Two-photon fluorescence spectroscopy and imaging of 4-dimethylaminonaphthalimide peptide and protein conjugates. J Phys Chem B 2013; 117:15935-42. [PMID: 24245815 DOI: 10.1021/jp407321g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report detailed photophysical studies on the two-photon fluorescence processes of the solvatochromic fluorophore 4-DMN as a conjugate of the calmodulin (CaM) and the associated CaM-binding peptide M13. Strong two-photon fluorescence enhancement has been observed which is associated with calcium binding. It is found that the two-photon absorption cross-section is strongly dependent on the local environment surrounding the 4-DMN fluorophore in the CaM conjugates, providing sensitivity between sites of fluorophore attachment. Utilizing time-resolved measurements, the emission dynamics of 4-DMN under various environmental (solvent) conditions are analyzed. In addition, anisotropy measurements reveal that the 4-DMN-S38C-CaM system has restricted rotation in the calcium-bound calmodulin. To establish the utility for cellular imaging, two-photon fluorescence microscopy studies were also carried out with the 4-DMN-modified M13 peptide in cells. Together, these studies provide strong evidence that 4-DMN is a useful probe in two-photon imaging, with advantageous properties for cellular experiments.
Collapse
Affiliation(s)
- Alan M McLean
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | |
Collapse
|
43
|
Cai D, Marques MAL, Nogueira F. Full Color Modulation of Firefly Luciferase through Engineering with Unified Stark Effect. J Phys Chem B 2013; 117:13725-30. [DOI: 10.1021/jp405665v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Duanjun Cai
- Fujian
Key Laboratory of Semiconductor Materials and Applications, Department
of Physics, Xiamen University, Xiamen 361005, China
- CFC,
Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra, Portugal
| | - Miguel A. L. Marques
- CFC,
Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra, Portugal
- Université de Lyon, F-69000 Lyon, France and LPMCN, CNRS, UMR 5586, Université Lyon 1, F-69622 Villeurbanne, France
| | - Fernando Nogueira
- CFC,
Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra, Portugal
| |
Collapse
|
44
|
Bairu S, Ramakrishna G. Two-Photon Absorption Properties of Chromophores in Micelles: Electrostatic Interactions. J Phys Chem B 2013; 117:10484-91. [DOI: 10.1021/jp405416d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Semere Bairu
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Guda Ramakrishna
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
45
|
Spies C, Finkler B, Acar N, Jung G. Solvatochromism of pyranine-derived photoacids. Phys Chem Chem Phys 2013; 15:19893-905. [DOI: 10.1039/c3cp53082e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
List NH, Olsen JMH, Jensen HJA, Steindal AH, Kongsted J. Molecular-Level Insight into the Spectral Tuning Mechanism of the DsRed Chromophore. J Phys Chem Lett 2012; 3:3513-3521. [PMID: 26290981 DOI: 10.1021/jz3014858] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a detailed study of the protein environmental effects on the one- and two-photon absorption (1PA and 2PA, respectively) properties of the S0-S1 transition in the DsRed protein using the polarizable embedding density functional theory formalism. We find that steric factors and chromophore-protein interactions act in concert to enhance the 2PA activity inside the protein while adversely blue-shifting the 1PA maximum. A two-state model reveals that the 2PA intensity gain is primarily governed by the increased change in the permanent dipole moment between the ground and the excited states acquired inside the protein. Our results indicate that this mainly is attributable to counter-directional contributions stemming from Lys163 and the conserved Arg95 with the former additionally identified as a key residue in the color tuning mechanism. The results provide new insight into the tuning mechanism of DsRed and suggest a possible strategy for simultaneous improvement of its 1PA and 2PA properties.
Collapse
Affiliation(s)
- Nanna H List
- †Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jógvan Magnus H Olsen
- †Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hans Jørgen Aa Jensen
- †Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Arnfinn H Steindal
- ‡Centre of Theoretical and Computational Chemistry, Department of Chemistry, N-9037 Tromsø, Norway
| | - Jacob Kongsted
- †Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
47
|
Drobizhev M, Scott JN, Callis PR, Rebane A. All-Optical Sensing of the Components of the Internal Local Electric Field in Proteins. IEEE PHOTONICS JOURNAL 2012; 4:1996-2001. [PMID: 25419440 PMCID: PMC4238891 DOI: 10.1109/jphot.2012.2221124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Here, we present a new all-optical method of interrogation of the internal electric field vector inside proteins. The method is based on experimental evaluation of the permanent dipole moment change upon excitation and the pure electronic transition frequency of a fluorophore embedded in a protein matrix. The permanent dipole moment change can be obtained from two-photon absorption measurements. In addition, permanent dipole moment change, tensor of polarizability change, and transition frequency for the free chromophore should be calculated quantum-mechanically. This allows obtaining the components of the electric field by considering the second-order Stark shift. We use the fluorescent protein mCherry as an example to demonstrate the applicability of the method.
Collapse
Affiliation(s)
- M Drobizhev
- Department of Physics, Montana State University, Bozeman, MT 59717 USA
| | - J N Scott
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - P R Callis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - A Rebane
- Department of Physics, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
48
|
Drobizhev M, Hughes TE, Stepanenko Y, Wnuk P, O'Donnell K, Scott JN, Callis PR, Mikhaylov A, Dokken L, Rebane A. Primary role of the chromophore bond length alternation in reversible photoconversion of red fluorescence proteins. Sci Rep 2012; 2:688. [PMID: 23008753 PMCID: PMC3449290 DOI: 10.1038/srep00688] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/05/2012] [Indexed: 11/08/2022] Open
Abstract
Rapid photobleaching of fluorescent proteins can limit their use in imaging applications. The underlying kinetics is multi-exponential and strongly depends on the local chromophore environment. The first, reversible, step may be attributed to a rotation around one of the two exocyclic C-C bonds bridging phenol and imidazolinone groups in the chromophore. However it is not clear how the protein environment controls this motion - either by steric hindrances or by modulating the electronic structure of the chromophore through electrostatic interactions. Here we study the first step of the photobleaching kinetics in 13 red fluorescent proteins (RFPs) with different chromophore environment and show that the associated rate strongly correlates with the bond length alternation (BLA) of the two bridge bonds. The sign of the BLA appears to determine which rotation is activated. Our results present experimental evidence for the dominance of electronic effects in the conformational dynamics of the RFP chromophore.
Collapse
Affiliation(s)
- Mikhail Drobizhev
- Department of Physics, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Salomonnson E, Mihalko LA, Verkhusha VV, Luker KE, Luker GD. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:96001. [PMID: 22975677 PMCID: PMC3438408 DOI: 10.1117/1.jbo.17.9.096001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 05/23/2023]
Abstract
Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. While prior studies have analyzed two photon absorption properties of isolated fluorescent proteins, there is limited information about two photon excitation and fluorescence emission profiles of fluorescent proteins expressed in living cells and intact tissues. Multiphoton microscopy was used to analyze fluorescence outputs of multiple blue, green, and red fluorescent proteins in cultured cells and orthotopic tumor xenografts of human breast cancer cells. It is shown that commonly used orange and red fluorescent proteins are excited efficiently by 750 to 760 nm laser light in living cells, enabling dual color imaging studies with blue or cyan proteins without changing excitation wavelength. It is also shown that small incremental changes in excitation wavelength significantly affect emission intensities from fluorescent proteins, which can be used to optimize multi-color imaging using a single laser wavelength. These data will direct optimal selection of fluorescent proteins for multispectral two photon microscopy.
Collapse
Affiliation(s)
- Emma Salomonnson
- University of Michigan Medical School, Department of Radiology, 109 Zina Pitcher Place, A526 BSRB, Ann Arbor, Michigan 48109-2200
| | - Laura Anne Mihalko
- University of Michigan Medical School, Department of Radiology, 109 Zina Pitcher Place, A526 BSRB, Ann Arbor, Michigan 48109-2200
| | - Vladislav V. Verkhusha
- Albert Einstein College of Medicine, Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, 1300 Morris Park Avenue, Ullmann Building, Room 1217 Bronx, New York
| | - Kathryn E. Luker
- University of Michigan Medical School, Department of Radiology, 109 Zina Pitcher Place, A526 BSRB, Ann Arbor, Michigan 48109-2200
| | - Gary D. Luker
- University of Michigan Medical School, Department of Radiology, 109 Zina Pitcher Place, A526 BSRB, Ann Arbor, Michigan 48109-2200
- University of Michigan Medical School, Department of Microbiology and Immunology, 109 Zina Pitcher Place, A526 BSRB, Ann Arbor, Michigan 48109-2200
| |
Collapse
|
50
|
Drobizhev M, Makarov NS, Tillo SE, Hughes TE, Rebane A. Describing two-photon absorptivity of fluorescent proteins with a new vibronic coupling mechanism. J Phys Chem B 2012; 116:1736-44. [PMID: 22224830 PMCID: PMC3280616 DOI: 10.1021/jp211020k] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fluorescent proteins (FPs) are widely used in two-photon microscopy as genetically encoded probes. Understanding the physical basics of their two-photon absorption (2PA) properties is therefore crucial for creation of two-photon brighter mutants. On the other hand, it can give us better insight into molecular interactions of the FP chromophore with a complex protein environment. It is known that, compared to the one-photon absorption spectrum, where the pure electronic transition is the strongest, the 2PA spectrum of a number of FPs is dominated by a vibronic transition. The physical mechanism of such intensity redistribution is not understood. Here, we present a new physical model that explains this effect through the "Herzberg-Teller"-type vibronic coupling of the difference between the permanent dipole moments in the ground and excited states (Δμ) to the bond-length-alternating coordinate. This model also enables us to quantitatively describe a large variability of the 2PA peak intensity in a series of red FPs with the same chromophore through the interference between the "Herzberg-Teller" and Franck-Condon terms.
Collapse
Affiliation(s)
- M Drobizhev
- Department of Physics, Montana State University, Bozeman, Montana, USA
| | | | | | | | | |
Collapse
|