1
|
Verdejo-Torres O, Vargas-Pavia T, Fatima S, Clapham PR, Duenas-Decamp MJ. Implications of the 375W mutation for HIV-1 tropism and vaccine development. J Virol 2024; 98:e0152223. [PMID: 38169306 PMCID: PMC10804988 DOI: 10.1128/jvi.01522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/05/2023] [Indexed: 01/05/2024] Open
Abstract
Understanding how different amino acids affect the HIV-1 envelope (Env) trimer will greatly help the design and development of vaccines that induce broadly neutralizing antibodies (bnAbs). A tryptophan residue at position 375 that opens the CD4 binding site without modifying the trimer apex was identified using our saturation mutagenesis strategy. 375W was introduced into a large panel of 27 transmitted/founder, acute stage, chronic infection, and AIDS macrophage-tropic and non-macrophage-tropic primary envelopes from different clades (A, B, C, D, and G) as well as complex and circulating recombinants. We evaluated soluble CD4 and monoclonal antibody neutralization of WT and mutant Envs together with macrophage infection. The 375W substitution increased sensitivity to soluble CD4 in all 27 Envs and macrophage infection in many Envs including an X4 variant. Importantly, 375W did not impair or abrogate neutralization by potent bnAbs. Variants that were already highly macrophage tropic were compromised for macrophage tropism, indicating that other structural factors are involved. Of note, we observed a macrophage-tropic (clade G) and intermediate macrophage-tropic (clades C and D) primary Envs from the blood and not from the central nervous system (CNS), indicating that such variants could be released from the brain or evolve outside the CNS. Our data also indicate that "intermediate" macrophage-tropic variants should belong to a new class of HIV-1 tropism. These Envs infected macrophages more efficiently than non-macrophage-tropic variants without reaching the high levels of macrophage-tropic brain variants. In summary, we show that 375W is ideal for inclusion into HIV-1 vaccines, increasing Env binding to CD4 for widely diverse Envs from different clades and disease stages.IMPORTANCESubstitutions exposing the CD4 binding site (CD4bs) on HIV-1 trimers but still occluding non-neutralizing, immunogenic epitopes are desirable to develop HIV-1 vaccines. If such substitutions induce similar structural changes in trimers across diverse clades, they could be exploited for the development of multi-clade envelope (Env) vaccines. We show that the 375W substitution increases CD4 affinity for envelopes of all clades, circulating recombinant forms, and complex Envs tested, independent of disease stage. Clade B and C Envs with an exposed CD4bs were described for macrophage-tropic strains from the central nervous system (CNS). Here, we show that intermediate (clades C and D) and macrophage-tropic (clade G) envelopes can be detected outside the CNS. Vaccines targeting the CD4bs will be particularly effective against such strains and CNS disease.
Collapse
Affiliation(s)
- Odette Verdejo-Torres
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Tania Vargas-Pavia
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Syeda Fatima
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Paul R. Clapham
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Maria J. Duenas-Decamp
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Amine Zerizer M, Nemdili H, Zouchoune B. Electron transfers’ assessment between stannol ring of triple-decker complexes and M(CO)5 (M = Cr, Mo, W), MnCp(CO)2 and CoCp(CO) metallic fragments: Bonding and energy decomposition analysis. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Tumba NL, Naicker P, Stoychev S, Killick MA, Owen GR, Papathanasopoulos MA. Covalent binding of human two-domain CD4 to an HIV-1 subtype C SOSIP.664 trimer modulates its structural dynamics. Biochem Biophys Res Commun 2022; 612:181-187. [PMID: 35550505 DOI: 10.1016/j.bbrc.2022.04.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) mediates host cell infection by binding to the cellular receptor CD4. Recombinant Env bound to CD4 has been explored for its potential as an HIV vaccine immunogen as receptor binding exposes otherwise shielded, conserved functional sites. Previous preclinical studies showed an interchain disulphide linkage facilitated between Env and 2dCD4S60C generates an immunogenic complex that elicits potent, broadly neutralizing antibodies (bNAbs) against clinically relevant HIV-1. This study investigated conformational dynamics of 2dCD4WT and 2dCD4S60C bound to an HIV-1C SOSIP.664 Env trimer using hydrogen-deuterium exchange mass spectrometry. The Env:2dCD4S60C complex maintains key contact residues required for MHCII and Env/gp120 binding and the residues encompassing Ibalizumab's epitope. Important residues remaining anchored, with an increased flexibility in surrounding regions, evidenced by the higher exchange seen in flanking residues compared to Env:2dCD4WT. While changes in Env:2dCD4S60C dynamics in domain 1 were moderate, domain 2 exhibited greater variation. Lack of stability-inducing H-bonds in these allosteric sites suggest the improved immunogenicity of Env:2dCD4S60C result from exposed CD4 residues providing diverse/novel antigenic targets for the development of potent, broadly neutralizing Ibalizumab-like antibodies.
Collapse
Affiliation(s)
- Nancy L Tumba
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Previn Naicker
- Council for Scientific and Industrial Research, Biosciences, Pretoria, 0001, South Africa
| | - Stoyan Stoychev
- Council for Scientific and Industrial Research, Biosciences, Pretoria, 0001, South Africa
| | - Mark A Killick
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Gavin R Owen
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa.
| | - Maria A Papathanasopoulos
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| |
Collapse
|
4
|
Parker Miller E, Finkelstein MT, Erdman MC, Seth PC, Fera D. A Structural Update of Neutralizing Epitopes on the HIV Envelope, a Moving Target. Viruses 2021; 13:v13091774. [PMID: 34578355 PMCID: PMC8472920 DOI: 10.3390/v13091774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Antibodies that can neutralize diverse HIV-1 strains develop in ~10–20% of HIV-1 infected individuals, and their elicitation is a goal of vaccine design. Such antibodies can also serve as therapeutics for those who have already been infected with the virus. Structural characterizations of broadly reactive antibodies in complex with the HIV-1 spike indicate that there are a limited number of sites of vulnerability on the spike. Analysis of their structures can help reveal commonalities that would be useful in vaccine design and provide insights on combinations of antibodies that can be used to minimize the incidence of viral resistance mutations. In this review, we give an update on recent structures determined of the spike in complex with broadly neutralizing antibodies in the context of all epitopes on the HIV-1 spike identified to date.
Collapse
|
5
|
Aiamkitsumrit B, Sullivan NT, Nonnemacher MR, Pirrone V, Wigdahl B. Human Immunodeficiency Virus Type 1 Cellular Entry and Exit in the T Lymphocytic and Monocytic Compartments: Mechanisms and Target Opportunities During Viral Disease. Adv Virus Res 2015; 93:257-311. [PMID: 26111588 DOI: 10.1016/bs.aivir.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the course of human immunodeficiency virus type 1 infection, a number of cell types throughout the body are infected, with the majority of cells representing CD4+ T cells and cells of the monocyte-macrophage lineage. Both types of cells express, to varying levels, the primary receptor molecule, CD4, as well as one or both of the coreceptors, CXCR4 and CCR5. Viral tropism is determined by both the coreceptor utilized for entry and the cell type infected. Although a single virus may have the capacity to infect both a CD4+ T cell and a cell of the monocyte-macrophage lineage, the mechanisms involved in both the entry of the virus into the cell and the viral egress from the cell during budding and viral release differ depending on the cell type. These host-virus interactions and processes can result in the differential targeting of different cell types by selected viral quasispecies and the overall amount of infectious virus released into the extracellular environment or by direct cell-to-cell spread of viral infectivity. This review covers the major steps of virus entry and egress with emphasis on the parts of the replication process that lead to differences in how the virus enters, replicates, and buds from different cellular compartments, such as CD4+ T cells and cells of the monocyte-macrophage lineage.
Collapse
Affiliation(s)
- Benjamas Aiamkitsumrit
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Neil T Sullivan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Pollara J, Bonsignori M, Moody MA, Pazgier M, Haynes BF, Ferrari G. Epitope specificity of human immunodeficiency virus-1 antibody dependent cellular cytotoxicity [ADCC] responses. Curr HIV Res 2014; 11:378-87. [PMID: 24191939 PMCID: PMC3878369 DOI: 10.2174/1570162x113116660059] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/19/2013] [Accepted: 09/28/2013] [Indexed: 12/02/2022]
Abstract
Antibody dependent cellular cytotoxicity [ADCC] has been suggested to play an important role in control of Human Immunodeficiency Virus-1 [HIV-1] viral load and protection from infection. ADCC antibody responses have been mapped to multiple linear and conformational epitopes within the HIV-1 envelope glycoproteins gp120 and gp41. Many epitopes targeted by antibodies that mediate ADCC overlap with those recognized by antibodies capable of virus neutralization. In addition, recent studies conducted with human monoclonal antibodies derived from HIV-1 infected individuals and HIV-1 vaccine-candidate vaccinees have identified a number of antibodies that lack the ability to capture primary HIV-1 isolates or mediate neutralizing activity, but are able to bind to the surface of infected CD4+ T cells and mediate ADCC. Of note, the conformational changes in the gp120 that may not exclusively relate to binding of the CD4 molecule are important in exposing epitopes recognized by ADCC responses. Here we discuss the HIV-1 envelope epitopes targeted by ADCC antibodies in the context of the potential protective capacities of ADCC.
Collapse
Affiliation(s)
- Justin Pollara
- Department of Surgery, Duke University Medical Center, P.O. Box 2926, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Aiamkitsumrit B, Dampier W, Antell G, Rivera N, Martin-Garcia J, Pirrone V, Nonnemacher MR, Wigdahl B. Bioinformatic analysis of HIV-1 entry and pathogenesis. Curr HIV Res 2014; 12:132-61. [PMID: 24862329 PMCID: PMC4382797 DOI: 10.2174/1570162x12666140526121746] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/18/2014] [Accepted: 05/06/2014] [Indexed: 02/07/2023]
Abstract
The evolution of human immunodeficiency virus type 1 (HIV-1) with respect to co-receptor utilization has been shown to be relevant to HIV-1 pathogenesis and disease. The CCR5-utilizing (R5) virus has been shown to be important in the very early stages of transmission and highly prevalent during asymptomatic infection and chronic disease. In addition, the R5 virus has been proposed to be involved in neuroinvasion and central nervous system (CNS) disease. In contrast, the CXCR4-utilizing (X4) virus is more prevalent during the course of disease progression and concurrent with the loss of CD4(+) T cells. The dual-tropic virus is able to utilize both co-receptors (CXCR4 and CCR5) and has been thought to represent an intermediate transitional virus that possesses properties of both X4 and R5 viruses that can be encountered at many stages of disease. The use of computational tools and bioinformatic approaches in the prediction of HIV-1 co-receptor usage has been growing in importance with respect to understanding HIV-1 pathogenesis and disease, developing diagnostic tools, and improving the efficacy of therapeutic strategies focused on blocking viral entry. Current strategies have enhanced the sensitivity, specificity, and reproducibility relative to the prediction of co-receptor use; however, these technologies need to be improved with respect to their efficient and accurate use across the HIV-1 subtypes. The most effective approach may center on the combined use of different algorithms involving sequences within and outside of the env-V3 loop. This review focuses on the HIV-1 entry process and on co-receptor utilization, including bioinformatic tools utilized in the prediction of co-receptor usage. It also provides novel preliminary analyses for enabling identification of linkages between amino acids in V3 with other components of the HIV-1 genome and demonstrates that these linkages are different between X4 and R5 viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102.
| |
Collapse
|
8
|
Li L, Chen H, Zhao RN, Han JG. The investigations on HIV-1 gp120 bound with BMS-488043 by using docking and molecular dynamics simulations. J Mol Model 2012; 19:905-17. [PMID: 23086459 DOI: 10.1007/s00894-012-1619-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 09/30/2012] [Indexed: 11/30/2022]
Abstract
BMS-488043, like its predecessor BMS-378806, is a small molecule that can block the interactions between gp120 and CD4, and has shown good clinical efficacy. However, the crystal structure of drug-gp120 complexes or the full-length gp120 free of bound ligand is unpublished until now. Docking combined with molecular dynamics simulation is used to investigate the binding mode between BMS-488043 and gp120. On the basis of the analysis of the simulated results, the plausible binding mode is acquired, such as the changes of binding mode in the trajectory and the calculated binding free energy. Subsequently, a number of residues which make contacts with the small molecule are studied by binding free energy decomposition to understand the mutation experiments, such as Trp427, Ser375, and Thr257 residues with the help of the acquired binding mode above. Especially, the importance of the hydrophobic groove formed by residues Ile371 and Gly472 which bind BMS-488043 is elaborated, which has not been explored much. In addition, theoretical investigations on the dynamics behavior of the gp120 associated with BMS-488043 enhanced binding are performed; the results indicate that the BMS-488043 may be more deeply inserted into the Phe43 cavity compared with the previous binding mode acquired by docking.
Collapse
Affiliation(s)
- Liang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China
| | | | | | | |
Collapse
|
9
|
Shrivastava IH, Wendel K, LaLonde JM. Spontaneous rearrangement of the β20/β21 strands in simulations of unliganded HIV-1 glycoprotein, gp120. Biochemistry 2012; 51:7783-93. [PMID: 22963284 DOI: 10.1021/bi300878d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binding of the viral spike drives cell entry and infection by HIV-1 to the cellular CD4 and chemokine receptors with associated conformational change of the viral glycoprotein envelope, gp120. Crystal structures of the CD4-gp120-antibody ternary complex reveal a large internal gp120 cavity formed by three domains-the inner domain, outer domain, and bridging sheet domain-and are capped by CD4 residue Phe43. Several structures of gp120 envelope in complex with various antibodies indicated that the bridging sheet adopts varied conformations. Here, we examine bridging sheet dynamics using a crystal structure of gp120 bound to the F105 antibody exhibiting an open bridging sheet conformation and with an added V3 loop. The two strands of the bridging sheet β2/β3 and β20/β21 are dissociated from each other and are directed away from the inner and outer domains. Analysis of molecular dynamics (MD) trajectories indicates that the β2/β3 and β20/β21 strands rapidly rearrange to interact with the V3 loop and the inner and outer domains, respectively. Residue N425 on β20 leads the conformational rearrangement of the β20/β21 strands by interacting with W112 on the inner domain and F382 on the outer domain. An accompanying shift is observed in the inner domain as helix α1 exhibits a loss in helicity and pivots away from helix α5. The two simulations provide a framework for understanding the conformational diversity of the bridging sheet and the propensity of the β20/β21 strand to refold between the inner and outer domains of gp120, in the absence of a bound ligand.
Collapse
Affiliation(s)
- Indira H Shrivastava
- Department of Systems and Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.
| | | | | |
Collapse
|
10
|
HIV gp120 H375 is unique to HIV-1 subtype CRF01_AE and confers strong resistance to the entry inhibitor BMS-599793, a candidate microbicide drug. Antimicrob Agents Chemother 2012; 56:4257-67. [PMID: 22615295 DOI: 10.1128/aac.00639-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BMS-599793 is a small molecule entry inhibitor that binds to human immunodeficiency virus type 1 (HIV-1) gp120, resulting in the inhibition of CD4-dependent entry into cells. Since BMS-599793 is currently considered a candidate microbicide drug, we evaluated its efficacy against a number of primary patient HIV isolates from different subtypes and circulating recombinant forms (CRFs) and showed that activity varied between ∼3 ρM and 7 μM at 50% effective concentrations (EC(50)s). Interestingly, CRF01_AE HIV-1 isolates consistently demonstrated natural resistance against this compound. Genotypic analysis of >1,600 sequences (Los Alamos HIV sequence database) indicated that a single amino acid polymorphism in Env, H375, may account for the observed BMS-599793 resistance in CRF01_AE HIV-1. Results of site-directed mutagenesis experiments confirmed this hypothesis, and in silico drug docking simulations identified a drug resistance mechanism at the molecular level. In addition, CRF01_AE viruses were shown to be resistant to multiple broadly neutralizing monoclonal antibodies. Thus, our results not only provide insight into how Env polymorphisms may contribute to entry inhibitor resistance but also may help to elucidate how HIV can evade some broadly neutralizing antibodies. Furthermore, the high frequency of H375 in CRF01_AE HIV-1, and its apparent nonoccurrence in other subtypes, could serve as a means for rapid identification of CRF01_AE infections.
Collapse
|
11
|
Da LT, Quan JM, Wu YD. Understanding the binding mode and function of BMS-488043 against HIV-1 viral entry. Proteins 2011; 79:1810-9. [DOI: 10.1002/prot.23005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/10/2011] [Accepted: 01/20/2011] [Indexed: 11/08/2022]
|