1
|
Drakopoulos SX, Vryonis O, Špitalský Z, Peidayesh H, Lendvai L. Thermoplastic Starch Processed under Various Manufacturing Conditions: Thermal and Electrical Properties. Biomacromolecules 2024; 25:5938-5948. [PMID: 39148453 DOI: 10.1021/acs.biomac.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Eco-friendly materials like carbohydrate-based polymers are important for a sustainable future. Starch is particularly promising because of its biodegradability and abundance but its processing to thermoplastic starch requires optimization. Here we developed thermoplastic maize starch materials based on three manufacturing protocols, namely: (1) starch/glycerol manual mixing and extrusion, (2) starch/glycerol manual mixing, extrusion, and kneading, (3) starch/glycerol/water manual mixing and kneading. The physical properties were investigated by differential scanning calorimetry, thermogravimetric analysis, and broadband dielectric spectroscopy. As expected from a partially miscible blend, the dielectric spectra revealed two distinct α-relaxations for the glycerol-rich and the starch-rich phases, respectively. By employing kneading after extrusion, the miscibility between the two phases was found to improve based on thermal and dielectric methods. Moreover, the addition of water during the premixing stage was observed to facilitate phase separation between starch and glycerol, with the α-relaxation dynamics of the latter being comparable to pure glycerol.
Collapse
Affiliation(s)
- Stavros X Drakopoulos
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Orestis Vryonis
- Tony Davies High Voltage Laboratory, Department of Electronic and Computer Science, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| | - Zdenko Špitalský
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta, 9, 845 41 Bratislava, Slovakia
| | - Hamed Peidayesh
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta, 9, 845 41 Bratislava, Slovakia
| | - László Lendvai
- Department of Materials Science and Engineering, Széchenyi István University, Egyetem tér 1, Győr H-9026, Hungary
| |
Collapse
|
2
|
Ullah S, Andrio A, Marí-Guaita J, Ullah H, Méndez-Blas A, Del Castillo Vázquez RM, Mari B, Compañ V. An intrinsic electrical conductivity study of perovskite powders MAPbX 3 (X = I, Br, Cl) to investigate its effect on their photovoltaic performance. Phys Chem Chem Phys 2024; 26:6736-6751. [PMID: 38323471 DOI: 10.1039/d3cp05686d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
An investigation into the intrinsic electrical conductivity of perovskite powders MAPbX3, where X represents iodine (I), bromine (Br), or chlorine (Cl), was conducted to explore its impact on their photovoltaic performance. Results revealed that MAPbCl3 demonstrated light absorption ability in the ultraviolet and visible regions, while MAPbBr3 showed capacity for light absorption at longer wavelengths in the visible spectrum. On the other hand, MAPbI3 exhibited good absorption at longer wavelengths, indicating its ability to absorb light in the near-infrared region. The optical bandgap of each perovskite was determined to be 2.90 eV for MAPbCl3, 2.20 eV for MAPbBr3, and 1.47 eV for MAPbI3. The electrical conductivities of these powders were measured in-plane using the four-probe method and through-plane by electrochemical impedance spectroscopy (EIS). Electrochemical impedance spectroscopy (EIS) studies revealed a significant change in the conductivity of the MAPbI3 perovskite at temperatures between 80 °C and 100 °C. This change could be attributed to structural modifications induced when the temperature exceeds these values. The through-plane conductivity changed from 3 × 10-8 S cm-1 at 60 °C to approximately 6 × 10-5 S cm-1 at 120 °C and around 2 × 10-3 S cm-1 at 200 °C. Meanwhile, the sheet conductivity (in-plane conductivity) measurements performed at ambient temperature reveal that sheet conductivities are 489 × 103 S m-1, 486 × 103 S m-1 and 510 × 103 S m-1 for MAPbBr3, MAPbCl3 and MAPbI3, respectively. This study provides valuable insights for optimizing the performance of perovskite solar cells. Understanding how dopants influence the electrical conductivity and photovoltaic properties of the perovskite material, this work will enable researchers to design and engineer more efficient and stable solar cell devices based on MAPbX3 perovskites.
Collapse
Affiliation(s)
- Shafi Ullah
- Instituto de diseño y Fabricación (IDF), Universitat Politècnica de València (UPV), Camino de Vera, s/n, 46022 Valencia, Spain.
| | - Andreu Andrio
- Departamento de Física Aplicada, Universitat Jaume I, Avda. Sos Baynat, s/n, 12080-Castellón de la Plana, Spain
| | - Julia Marí-Guaita
- Instituto de diseño y Fabricación (IDF), Universitat Politècnica de València (UPV), Camino de Vera, s/n, 46022 Valencia, Spain.
| | - Hanif Ullah
- Department of Electrical Engineering, Federal Urdu University (FUUAST), Islamabad, Pakistan
| | - Antonio Méndez-Blas
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla, 72570, Mexico
| | | | - Bernabé Mari
- Instituto de diseño y Fabricación (IDF), Universitat Politècnica de València (UPV), Camino de Vera, s/n, 46022 Valencia, Spain.
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
3
|
Schulz A, Moch K, Hinz Y, Lunkenheimer P, Böhmer R. Translational and reorientational dynamics in carboxylic acid-based deep eutectic solvents. J Chem Phys 2024; 160:074503. [PMID: 38380750 DOI: 10.1063/5.0189533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
The glass formation and the dipolar reorientational motions in deep eutectic solvents (DESs) are frequently overlooked, despite their crucial role in defining the room-temperature physiochemical properties. To understand the effects of these dynamics on the ionic conductivity and their relation to the mechanical properties of the DES, we conducted broadband dielectric and rheological spectroscopy over a wide temperature range on three well-established carboxylic acid-based natural DESs. These are the eutectic mixtures of choline chloride with oxalic acid (oxaline), malonic acid (maline), and phenylacetic acid (phenylaceline). In all three DESs, we observe signs of a glass transition in the temperature dependence of their dipolar reorientational and structural dynamics, as well as varying degrees of motional decoupling between the different observed dynamics. Maline and oxaline display a breaking of the Walden rule near the glass-transition temperature, while the relation between the dc conductivity and dipolar relaxation time in both maline and phenylaceline is best described by a power law. The glass-forming properties of the investigated systems not only govern the orientational dipolar motions and rheological properties, which are of interest from a fundamental point of view, but they also affect the dc conductivity, even at room temperature, which is of high technical relevance.
Collapse
Affiliation(s)
- A Schulz
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - K Moch
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Y Hinz
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
4
|
Schulz A, Lunkenheimer P, Loidl A. Rotational dynamics, ionic conductivity, and glass formation in a ZnCl2-based deep eutectic solvent. J Chem Phys 2024; 160:054502. [PMID: 38341686 DOI: 10.1063/5.0187729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
Glass formation and reorientational motions are widespread but often-neglected features of deep eutectic solvents although both can be relevant for the technically important ionic conductivity at room temperature. Here, we investigate these properties for two mixtures of ethylene glycol and ZnCl2, which were recently considered superior electrolyte materials for application in zinc-ion batteries. For this purpose, we employed dielectric spectroscopy performed in a broad temperature range, extending from the supercooled state at low temperatures up to the liquid phase around room temperature and beyond. We find evidence for a relaxation process arising from dipolar reorientation dynamics, which reveals the clear signatures of glassy freezing. This freezing also governs the temperature dependence of the ionic dc conductivity. We compare the obtained results with those for deep eutectic solvents that are formed by the same hydrogen-bond donor, ethylene glycol, but by two different salts, choline chloride and lithium triflate. The four materials reveal significantly different ionic and reorientational dynamics. Moreover, we find varying degrees of decoupling of rotational dipolar and translational ionic motions, which can partly be described by a fractional Debye-Stokes-Einstein relation. The typical glass-forming properties of these solvents strongly affect their room-temperature conductivity.
Collapse
Affiliation(s)
- A Schulz
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - A Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| |
Collapse
|
5
|
Palumbo O, Paolone A, Philippi F, Rauber D, Welton T. Dynamics in Quaternary Ionic Liquids with Non-Flexible Anions: Insights from Mechanical Spectroscopy. Int J Mol Sci 2023; 24:11046. [PMID: 37446222 DOI: 10.3390/ijms241311046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The present work investigates how mechanical properties and ion dynamics in ionic liquids (ILs) can be affected by ILs' design while considering possible relationships between different mechanical and transport properties. Specifically, we study mechanical properties of quaternary ionic liquids with rigid anions by means of Dynamical Mechanical Analysis (DMA). We are able to relate the DMA results to the rheological and transport properties provided by viscosity, conductivity, and diffusion coefficient measurements. A good agreement is found in the temperature dependence of different variables described by the Vogel-Fulcher-Tammann model. In particular, the mechanical spectra of all the measured liquids showed the occurrence of a relaxation, for which the analysis suggested its attribution to a diffusive process, which becomes evident when the ion dynamics are not affected by the fast structural reorganization of flexible anions on a local level.
Collapse
Affiliation(s)
- Oriele Palumbo
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale A. Moro 5, I-00185 Rome, Italy
| | - Annalisa Paolone
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale A. Moro 5, I-00185 Rome, Italy
| | - Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Daniel Rauber
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany
| | - Tom Welton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| |
Collapse
|
6
|
Matsumoto M, Takeuchi K, Inoue Y, Tsunashima K, Yamada H. Molecular Insight into the Ionic Conduction of Quaternary Ammonium and Phosphonium Cation-Based Ionic Liquids Using Dielectric and Spectroscopy Analyses. J Phys Chem B 2022; 126:10490-10499. [PMID: 36417887 DOI: 10.1021/acs.jpcb.2c06110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We analyzed the primary properties of ionic liquids (ILs) comprising quaternary phosphonium cations and bis(trifluoromethylsulfonyl) amide anions and compared them with those of corresponding quaternary-ammonium-cation-based ILs. Broadband dielectric spectroscopy was used to confirm the coupling between the translational and orientational motions of ions, and our results demonstrated that the high ionic conductivity of the phosphonium-based ILs was attributed to their fast rotational dynamics. The differences between ILs with different cations were further evaluated using vibrational (Raman and terahertz) spectroscopy. The Raman spectroscopy data revealed that the cation structure affected the conformation and flexibility (conformational change) of the anion. Furthermore, terahertz spectroscopy allowed us to evaluate the relationship between ion transport and intermolecular interactions between the cation and anion of ILs.
Collapse
Affiliation(s)
- Mitsuhiro Matsumoto
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara639-1080, Japan
| | - Kazuki Takeuchi
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara639-1080, Japan
| | - Yohtaro Inoue
- Research Division of Polymer Functional Materials, Osaka Research Institute of Industrial Science and Technology, 2-7-1 Ayumino, Izumi, Osaka594-1157, Japan
| | - Katsuhiko Tsunashima
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Gobo, Wakayama644-0023, Japan
| | - Hirohisa Yamada
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara639-1080, Japan
| |
Collapse
|
7
|
Confinement Effects on the Magnetic Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrachloroferrate(III). Molecules 2022; 27:molecules27175591. [PMID: 36080357 PMCID: PMC9458203 DOI: 10.3390/molecules27175591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Confinement effects for the magnetoresponsive ionic liquid 1-ethyl-3-methylimidazolium tetrachloroferrate(III), [C2mim]FeCl4, are explored from thermal, spectroscopic, and magnetic points of view. Placing the ionic liquid inside SBA-15 mesoporous silica produces a significant impact on the material’s response to temperature, pressure, and magnetic fields. Isobaric thermal experiments show melting point reductions that depend on the pore diameter of the mesopores. The confinement-induced reductions in phase transition temperature follow the Gibbs–Thomson equation if a 1.60 nm non-freezable interfacial layer is postulated to exist along the pore wall. Isothermal pressure-dependent infrared spectroscopy reveals a similar modification to phase transition pressures, with the confined ionic liquid requiring higher pressures to trigger phase transformation than the unconfined system. Confinement also impedes ion transport as activation energies are elevated when the ionic liquid is placed inside the mesopores. Finally, the antiferromagnetic ordering that characterizes unconfined [C2mim]FeCl4 is suppressed when the ionic liquid is confined in 5.39-nm pores. Thus, confinement provides another avenue for manipulating the magnetic properties of this compound.
Collapse
|
8
|
Charge Transport and Glassy Dynamics in Blends Based on 1-Butyl-3-vinylbenzylimidazolium Bis(trifluoromethanesulfonyl)imide Ionic Liquid and the Corresponding Polymer. Polymers (Basel) 2022; 14:polym14122423. [PMID: 35745999 PMCID: PMC9227190 DOI: 10.3390/polym14122423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Charge transport, diffusion properties, and glassy dynamics of blends of imidazolium-based ionic liquid (IL) and the corresponding polymer (polyIL) were examined by Pulsed-Field-Gradient Nuclear Magnetic Resonance (PFG-NMR) and rheology coupled with broadband dielectric spectroscopy (rheo-BDS). We found that the mechanical storage modulus (G′) increases with an increasing amount of polyIL and G′ is a factor of 10,000 higher for the polyIL compared to the monomer (GIL′= 7.5 Pa at 100 rad s−1 and 298 K). Furthermore, the ionic conductivity (σ0) of the IL is a factor 1000 higher than its value for the polymerized monomer with 3.4×10−4 S cm−1 at 298 K. Additionally, we found the Haven Ratio (HR) obtained through PFG-NMR and BDS measurements to be constant around a value of 1.4 for the IL and blends with 30 wt% and 70 wt% polyIL. These results show that blending of the components does not have a strong impact on the charge transport compared to the charge transport in the pure IL at room temperature, but blending results in substantial modifications of the mechanical properties. Furthermore, it is highlighted that the increase in σ0 might be attributed to the addition of a more mobile phase, which also possibly reduces ion-ion correlations in the polyIL.
Collapse
|
9
|
Dielectric Study of Tetraalkylammonium and Tetraalkylphosphonium Levulinate Ionic Liquids. Int J Mol Sci 2022; 23:ijms23105642. [PMID: 35628452 PMCID: PMC9145921 DOI: 10.3390/ijms23105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
Broadband dielectric spectroscopy in a broad temperature range was employed to study ionic conductivity and dynamics in tetraalkylammonium- and tetraalkylphosphonium-based ionic liquids (ILs) having levulinate as a common anion. Combining data for ionic conductivity with data obtained for viscosity in a Walden plot, we show that ionic conductivity is controlled by viscosity while a strong association of ions takes place. Higher values for ionic conductivities in a broad temperature range were found for the tetraalkylphosphonium-based IL compared to its ammonium homolog in accordance with its lower viscosity. Levulinate used in the present study as anion was found to interact and associate stronger with the cations forming ion-pairs or other complexes compared to the NTf2 anion studied in literature. In order to analyze dielectric data, different fitting approaches were employed. The original random barrier model cannot well describe the conductivity especially at the higher frequencies region. In electric modulus representation, two overlapping mechanisms contribute to the broad low frequencies peak. The slower process is related to the conduction mechanism and the faster to the main polarization process of the complex dielectric permittivity representation. The correlation of the characteristic time scales of the previous relaxation processes was discussed in terms of ionic interactions.
Collapse
|
10
|
Schulz A, Lunkenheimer P, Loidl A. Lithium-salt-based deep eutectic solvents: Importance of glass formation and rotation-translation coupling for the ionic charge transport. J Chem Phys 2021; 155:044503. [PMID: 34340372 DOI: 10.1063/5.0055493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lithium-salt-based deep eutectic solvents, where the only cation is Li+, are promising candidates as electrolytes in electrochemical energy-storage devices, such as batteries. We have performed broadband dielectric spectroscopy on three such systems, covering a broad temperature and dynamic range that extends from the low-viscosity liquid around room temperature down to the glassy state approaching the glass-transition temperature. We detect a relaxational process that can be ascribed to dipolar reorientational dynamics and exhibits the clear signatures of glassy freezing. We find that the temperature dependence of the ionic dc conductivity and its room-temperature value also are governed by the glassy dynamics of these systems, depending, e.g., on the glass-transition temperature and fragility. Compared to the previously investigated corresponding systems, containing choline chloride instead of a lithium salt, both the reorientational and ionic dynamics are significantly reduced due to variations in the glass-transition temperature and the higher ionic potential of the lithium ions. These lithium-based deep eutectic solvents partly exhibit significant decoupling of the dipolar reorientational and the ionic translational dynamics and approximately follow a fractional Debye-Stokes-Einstein relation, leading to an enhancement of the dc conductivity, especially at low temperatures. The presented results clearly reveal the importance of decoupling effects and of the typical glass-forming properties of these systems for the technically relevant room-temperature conductivity.
Collapse
Affiliation(s)
- A Schulz
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - A Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| |
Collapse
|
11
|
Peltekoff A, Brixi S, Niskanen J, Lessard BH. Ionic Liquid Containing Block Copolymer Dielectrics: Designing for High-Frequency Capacitance, Low-Voltage Operation, and Fast Switching Speeds. JACS AU 2021; 1:1044-1056. [PMID: 34467348 PMCID: PMC8395628 DOI: 10.1021/jacsau.1c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 05/09/2023]
Abstract
Polymerized ionic liquids (PILs) are a potential solution to the large-scale production of low-power consuming organic thin-film transistors (OTFTs). When used as the device gating medium in OTFTs, PILs experience a double-layer capacitance that enables thickness independent, low-voltage operation. PIL microstructure, polymer composition, and choice of anion have all been reported to have an effect on device performance, but a better structure property relationship is still required. A library of 27 well-defined, poly(styrene)-b-poly(1-(4-vinylbenzyl)-3-butylimidazolium-random-poly(ethylene glycol) methyl ether methacrylate) (poly(S)-b-poly(VBBI+[X]-r-PEGMA)) block copolymers, with varying PEGMA/VBBI+ ratios and three different mobile anions (where X = TFSI-, PF6 - or BF4 -), were synthesized, characterized and integrated into OTFTs. The fraction of VBBI+ in the poly(VBBI+[X]-r-PEGMA) block ranged from to 100 mol % and led to glass transition temperatures (T g) between -7 and 55 °C for that block. When VBBI+ composition was equal or above 50 mol %, the block copolymer self-assembled into well-ordered domains with sizes between 22 and 52 nm, depending on the composition and choice of anion. The block copolymers double-layer capacitance (C DL) and ionic conductivity (σ) were found to correlate to the polymer self-assembly and the T g of the poly(VBBI+[X]-r-PEGMA) block. Finally, the block copolymers were integrated into OTFTs as the gating medium that led to n-type devices with threshold voltages of 0.5-1.5 V while maintaining good electron mobilities. We also found that the greater the σ of the PIL, the greater the OTFT operating frequency could reach. However, we also found that C DL is not strictly proportional to OTFT output currents.
Collapse
Affiliation(s)
- Alexander
J. Peltekoff
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Samantha Brixi
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Jukka Niskanen
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Benoît H. Lessard
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
12
|
Reuter D, Münzner P, Gainaru C, Lunkenheimer P, Loidl A, Böhmer R. Translational and reorientational dynamics in deep eutectic solvents. J Chem Phys 2021; 154:154501. [DOI: 10.1063/5.0045448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. Reuter
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - P. Münzner
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - C. Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - P. Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - A. Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - R. Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
13
|
Haddad B, Kachroudi A, Turky G, Belarbi EH, Lamouri A, Villemin D, Rahmouni M, Sylvestre A. The interplay between molecular structure and dielectric propertiesin ionic liquids: A comparative study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Steinrücken E, Becher M, Vogel M. On the molecular mechanisms of α and β relaxations in ionic liquids. J Chem Phys 2020; 153:104507. [DOI: 10.1063/5.0019271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Elisa Steinrücken
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Manuel Becher
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
15
|
Thermal and spectroscopic investigations on three phosphonium based ionic liquids for industrial and biological applications. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Carboxymethyl Cellulose-Based Hydrogel: Dielectric Study, Antimicrobial Activity and Biocompatibility. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04655-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Shi M, Yu SS, Zhang H, Liu SX, Duan HB. A hybrid molecular rotor crystal with dielectric relaxation and thermochromic luminescence. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Wang Y, Jarošová R, Swain GM, Blanchard GJ. Characterizing the Magnitude and Structure-Dependence of Free Charge Density Gradients in Room-Temperature Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3038-3045. [PMID: 32148037 DOI: 10.1021/acs.langmuir.0c00237] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have reported previously on the existence of charge-induced long-range organization in the room-temperature ionic liquid (RTIL), BMIM+BF4-. The induced organization is in the form of a free charge density gradient (ρf) that exists over ca. 100 μm into the RTIL in contact with a charged surface. The fluorescence anisotropy decay of a trace-level charged chromophore in the RTIL is measured as a function of distance from the indium-doped tin oxide support surface to probe this free charge density gradient. We report here on the characterization of the free charge density gradient in five different imidazolium RTILs and use these data to evaluate the magnitude of the induced free charge density gradient. Both the extent and magnitude of this gradient depend on the chemical structures of the cationic and anionic constituents of the RTIL used. Control over the magnitude of ρf has implications for the utility of RTILs for a host of applications that remain to be explored fully.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Romana Jarošová
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Greg M Swain
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Gary J Blanchard
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
19
|
Bostwick JE, Zanelotti CJ, Iacob C, Korovich AG, Madsen LA, Colby RH. Ion Transport and Mechanical Properties of Non-Crystallizable Molecular Ionic Composite Electrolytes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Joshua E. Bostwick
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Curt J. Zanelotti
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ciprian Iacob
- National Research and Development Institute for Cryogenic and Isotopic Technologies, ICSI, Rm. Valcea 240050, Romania
- Institute of Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Andrew G. Korovich
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Louis A. Madsen
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ralph H. Colby
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
20
|
K P SH, Thayyil MS, Rajan VK, Antony A. The Interplay between Charge Transport and CO 2 Capturing Mechanism in [EMIM][SCN] Ionic Liquid: A Broadband Dielectric Study. J Phys Chem B 2019; 123:6618-6626. [PMID: 31274317 DOI: 10.1021/acs.jpcb.9b03929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hoisted increment in the CO2 emission in the atmosphere is a noteworthy environmental problem. Gas-liquid absorption is a well-known strategy that can be used to control CO2 emissions from an increased rate of fossil fuel industrializations. In this work, a combination of broadband dielectric spectroscopy, Fourier infrared (FTIR) spectroscopy, and quantum chemical calculations were used to study the absorption, desorption and kinetic mechanism of a room temperature imidazolium ionic liquid (IL) with cyanide anion, 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) on CO2 exposure. Initially, the charge transport and glassy dynamics of [EMIM][SCN] is investigated in a wide frequency and temperature range using broadband dielectric spectroscopy and differential scanning calorimetry. The conductivity relaxation was well fitted with Havriliak-Negami function in the modulus formalism, while the dc conductivity correlated well with the Barton-Nakajima-Namikawa relation. Then, the conductometric approach was taken to monitor the interplay between the ionic conductivity of [EMIM][SCN] and diffusion of captured CO2 in it. The resistance of the IL increases upon CO2 exposure, indicating a chemical change at the molecular level of [EMIM][SCN]. The possible CO2 capturing mechanisms for [EMIM][SCN] were investigated with density functional theory calculations and FTIR spectroscopy. Thus, this work proposes a new strategy to explain the mechanism underlined in chemisorption of CO2 in the [EMIM][SCN]. This can be extended to more promising CO2 capturing materials including ionic liquids especially imidazolium-based ionic liquids with cyanide anions like dicyanimide, tricyanometanide, tetracyanoborate, etc.
Collapse
|
21
|
Correia D, Costa C, Sabater i Serra R, Gómez Tejedor J, Teruel Biosca L, de Zea Bermudez V, Esperança J, Reis P, Andrio Balado A, Meseguer-Dueñas J, Lanceros-Méndez S, Gomez Ribelles J. Molecular relaxation and ionic conductivity of ionic liquids confined in a poly(vinylidene fluoride) polymer matrix: Influence of anion and cation type. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Frenzel F, Borchert P, Anton AM, Strehmel V, Kremer F. Charge transport and glassy dynamics in polymeric ionic liquids as reflected by their inter- and intramolecular interactions. SOFT MATTER 2019; 15:1605-1618. [PMID: 30672557 DOI: 10.1039/c8sm02135j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polymeric ionic liquids (PILs) form a novel class of materials in which the extraordinary properties of ionic liquids (ILs) are combined with the mechanical stability of polymeric systems qualifying them for multifold applications. In the present study broadband dielectric spectroscopy (BDS), Fourier transform infrared spectroscopy (FTIR), AC-chip calorimetry (ACC) and differential scanning calorimetry (DSC) are combined in order to unravel the interplay between charge transport and glassy dynamics. Three low molecular weight ILs and their polymeric correspondents are studied with systematic variations of anions and cations. For all examined samples charge transport takes place by glassy dynamics assisted hopping conduction. In contrast to low molecular weight ILs the thermal activation of DC conductivity for the polymeric systems changes from a Vogel-Fulcher-Tammann- to an Arrhenius-dependence at a (sample specific) temperature Tσ0. This temperature has been widely discussed to coincide with the glass transition temperature Tg, a refined analysis, instead, reveals Tσ0 of all PILs under study at up to 80 K higher values. In effect, below the Tσ0 charge transport in PILs becomes more efficient - albeit on a much lower level compared to the low molecular weight pendants - indicating conduction paths along the polymer chain. This is corroborated by analysing the temperature dependence of specific IR-active vibrations showing at Tσ0 distinct changes in the spectral position and the oscillator strength, whereas other molecular units are not affected. This leads to the identification of charge transport responsive (CTR) as well as charge transport irresponsive (CTI) moieties and paves the way to a refined molecular understanding of electrical conduction in PILs.
Collapse
Affiliation(s)
- Falk Frenzel
- Leipzig University, Peter Debye Institute for Soft Matter Physics I, Linnéstrasse 5, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
23
|
Shigenobu K, Nakanishi A, Ueno K, Dokko K, Watanabe M. Glyme–Li salt equimolar molten solvates with iodide/triiodide redox anions. RSC Adv 2019; 9:22668-22675. [PMID: 35519483 PMCID: PMC9067099 DOI: 10.1039/c9ra03580j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/19/2019] [Indexed: 01/02/2023] Open
Abstract
Room-temperature-fused Li salt solvates that exhibit ionic liquid-like behaviour can be formed using particular combinations of multidentate glymes and lithium salts bearing weakly coordinating anions, and are now deemed a subset of ionic liquids, viz. solvate ionic liquids (SILs). Herein, we report redox-active glyme–Li salt molten solvates consisting of tetraethyleneglycol ethylmethyl ether (G4Et) and lithium iodide/triiodide, [Li(G4Et)]I and [Li(G4Et)]I3. The coordination structure of the complex ions and the thermal, transport, and electrochemical properties of these molten Li salt solvates were investigated to diagnose whether they can be categorized as SILs. [Li(G4Et)]+ and I3− were found to remain stable as discrete ions and exist as well-dissociated forms in the liquid state, indicating that [Li(G4Et)]I3 can be classified as a good SIL. This study also clarified that the I− and I3− counter anions exhibit an electrochemical redox reaction in the highly concentrated molten Li salt solvates. The redox-active molten Li solvates were further studied as a highly concentrated catholyte for use in rechargeable semi-liquid lithium batteries. Although the cell constructed using [Li(G4Et)]I3 failed to charge after the initial discharge step, the cell containing [Li(G4Et)]I demonstrates reversible charge–discharge behaviour with a high volumetric energy density of 180 W h L−1 based on the catholyte volume. Redox-active glyme–Li salt equimolar molten solvates based on a I−/I3− couple could be employed as a highly concentrated catholyte for semi-liquid rechargeable lithium batteries.![]()
Collapse
Affiliation(s)
- Keisuke Shigenobu
- Department of Chemistry and Biotechnology
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Azusa Nakanishi
- Department of Chemistry and Biotechnology
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Kazuhide Ueno
- Department of Chemistry and Biotechnology
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Kaoru Dokko
- Department of Chemistry and Biotechnology
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Masayoshi Watanabe
- Department of Chemistry and Biotechnology
- Yokohama National University
- Yokohama 240-8501
- Japan
| |
Collapse
|
24
|
Valverde D, Garcia-Bernabé A, Andrio A, García-Verdugo E, Luis SV, Compañ V. Free ion diffusivity and charge concentration on cross-linked polymeric ionic liquid iongel films based on sulfonated zwitterionic salts and lithium ions. Phys Chem Chem Phys 2019; 21:17923-17932. [PMID: 31380865 DOI: 10.1039/c9cp01903k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The properties of various mixtures of a zwitterionic ionic liquid (ZIs-1) and LiNTf2, including their conductivity, have been studied showing how they can be adjusted through their molar composition. Conductivity tends to increase with the LiNTf2 content although it presents a minimum at the region close to the eutectic point. These mixtures also provide excellent features as liquid phases for the preparation of composite materials based on crosslinked PILs. The prepared films display excellent and tuneable properties as conducting materials, with conductivities that can be higher than 10-2 S cm-1 above 100 °C. The selected polymeric compositions show very good mechanical properties and thermal stability, even for low crosslinking degrees, along with a suitable flexibility and good transparency. The final properties of the films correlate with the composition of the monomeric mixture used and with that of the ZIs-1:LiNTf2 mixture.
Collapse
Affiliation(s)
- David Valverde
- Dpto. Química Inorgánica y Orgánica, Universidad Jaume I, Avda. Sos, Baynat s/n, Castellon 12071, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Reuter D, Binder C, Lunkenheimer P, Loidl A. Ionic conductivity of deep eutectic solvents: the role of orientational dynamics and glassy freezing. Phys Chem Chem Phys 2019; 21:6801-6809. [DOI: 10.1039/c9cp00742c] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dielectric spectroscopy reveals that the ionic conductivity of deep eutectic solvents is closely coupled to their reorientational dipolar relaxation dynamics.
Collapse
Affiliation(s)
- Daniel Reuter
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg
- 86135 Augsburg
- Germany
| | - Catharina Binder
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg
- 86135 Augsburg
- Germany
| | - Peter Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg
- 86135 Augsburg
- Germany
| | - Alois Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg
- 86135 Augsburg
- Germany
| |
Collapse
|
26
|
Barjola A, Escorihuela J, Andrio A, Giménez E, Compañ V. Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs). NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1042. [PMID: 30551604 PMCID: PMC6316602 DOI: 10.3390/nano8121042] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 01/04/2023]
Abstract
The zeolitic imidazolate frameworks (ZIFs) ZIF-8, ZIF-67, and a Zn/Co bimetallic mixture (ZMix) were synthesized and used as fillers in the preparation of composite sulfonated poly(ether ether ketone) (SPEEK) membranes. The presence of the ZIFs in the polymeric matrix enhanced proton transport relative to that observed for SPEEK or ZIFs alone. The real and imaginary parts of the complex conductivity were obtained by electrochemical impedance spectroscopy (EIS), and the temperature and frequency dependence of the real part of the conductivity were analyzed. The results at different temperatures show that the direct current (dc) conductivity was three orders of magnitude higher for composite membranes than for SPEEK, and that of the SPEEK/ZMix membrane was higher than those for SPEEK/Z8 and SPEEK/Z67, respectively. This behavior turns out to be more evident as the temperature increases: the conductivity of the SPEEK/ZMix was 8.5 × 10-3 S·cm-1, while for the SPEEK/Z8 and SPEEK/Z67 membranes, the values were 2.5 × 10-3 S·cm-1 and 1.6 × 10-3 S·cm-1, respectively, at 120 °C. Similarly, the real and imaginary parts of the complex dielectric constant were obtained, and an analysis of tan δ was carried out for all of the membranes under study. Using this value, the diffusion coefficient and the charge carrier density were obtained using the analysis of electrode polarization (EP).
Collapse
Affiliation(s)
- Arturo Barjola
- Escuela Técnica Superior de Ingenieros Industriales, Departamento de Termodinámica Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46020 Valencia, Spain.
| | - Jorge Escorihuela
- Escuela Técnica Superior de Ingenieros Industriales, Departamento de Termodinámica Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46020 Valencia, Spain.
| | - Andreu Andrio
- Departamento de Física Aplicada, Universitat Jaume I, Avda. Sos Baynat, s/n, 12080, Castelló de la Plana, Spain.
| | - Enrique Giménez
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera s/n, 46020 Valencia, Spain.
| | - Vicente Compañ
- Escuela Técnica Superior de Ingenieros Industriales, Departamento de Termodinámica Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46020 Valencia, Spain.
| |
Collapse
|
27
|
Abe H, Tsuzuki S, Ozawa S. Anion effects on amorphization and crystallization in room-temperature ionic liquids. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Jafta CJ, Bridges C, Haupt L, Do C, Sippel P, Cochran MJ, Krohns S, Ohl M, Loidl A, Mamontov E, Lunkenheimer P, Dai S, Sun XG. Ion Dynamics in Ionic-Liquid-Based Li-Ion Electrolytes Investigated by Neutron Scattering and Dielectric Spectroscopy. CHEMSUSCHEM 2018; 11:3512-3523. [PMID: 30133183 DOI: 10.1002/cssc.201801321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/30/2018] [Indexed: 06/08/2023]
Abstract
A detailed understanding of the diffusion mechanisms of ions in pure and doped ionic liquids remains an important aspect in the design of new ionic-liquid electrolytes for energy storage. To gain more insight into the widely used imidazolium-based ionic liquids, the relationship between viscosity, ionic conductivity, diffusion coefficients, and reorientational dynamics in the ionic liquid 3-methyl-1-methylimidazolium bis(trifluoromethanesulfonyl)imide (DMIM-TFSI) with and without lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) was examined. The diffusion coefficients for the DMIM+ cation and the role of ion aggregates were investigated by using the quasielastic neutron scattering (QENS) and neutron spin echo techniques. Two diffusion mechanisms are observed for the DMIM+ cation with and without Li-TFSI, that is, translational and local. The data additionally suggest that Li+ ion transport along with ion aggregates, known as the vehicle mechanism, may play a significant role in the ion diffusion process. These dielectric-spectroscopy investigations in a broad temperature and frequency range reveal a typical α-β-relaxation scenario. The α relaxation mirrors the glassy freezing of the dipolar ions, and the β relaxation exhibits the signatures of a Johari-Goldstein relaxation. In contrast to the translational mode detected by neutron scattering, arising from the decoupled faster motion of the DMIM+ ions, the α relaxation is well coupled to the dc charge transport, that is, the average translational motion of all three ion species in the material. The local diffusion process detected by QENS is only weakly dependent on temperature and viscosity and can be ascribed to the typical fast dynamics of glass-forming liquids.
Collapse
Affiliation(s)
- Charl J Jafta
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Craig Bridges
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Leon Haupt
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Pit Sippel
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
| | - Malcolm J Cochran
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stephan Krohns
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
| | - Michael Ohl
- Jülich Centre for Neutron Science, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alois Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Peter Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
| | - Sheng Dai
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xiao-Guang Sun
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
29
|
Fuentes I, Andrio A, García-Bernabé A, Escorihuela J, Viñas C, Teixidor F, Compañ V. Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Phys Chem Chem Phys 2018; 20:10173-10184. [PMID: 29594295 DOI: 10.1039/c8cp00372f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conductivity of a series of composite membranes, based on polybenzimidazole (PBI) containing the metallacarborane salt M[Co(C2B9H11)2], M[COSANE] and tetraphenylborate, M[B(C6H5)4], M[TPB] both anions having the same number of atoms and the same negative charge, has been investigated. Different cations (M = H+, Li+ and Na+) have been studied and the composite membranes have been characterized by water uptake, swelling ratios, ATR FT-IR, thermogravimetric analysis and electrochemical impedance spectroscopy to explore the dielectric response and ion dynamics in composite membranes. Our results show that conductivity increases with increasing temperature and it is higher for H+ than for Li+ and Na+ for all temperatures under study. The mobility of Li+ is greater in [COSANE]- than in [TPB]- composite PBI@membranes while for Na+ it is the opposite. The temperature dependence of the conductivity of the composite was followed by a typical Arrhenius behaviour with two different regions: (1) between 20 and 100 °C, and (2) between 100 and 150 °C. Using the analysis of electrode polarization (EP) based on the Thrukhan theory we have calculated the ionic diffusion coefficients and the density of carriers. From the double logarithmic plot of the imaginary part of the conductivity (σ'') versus frequency in the entire range of temperatures studied we have determined for each sample at each temperature, the frequency values of the onset (fON) and full development of electrode polarization (fMAX), respectively, which permit us to calculate static permittivity.
Collapse
Affiliation(s)
- Isabel Fuentes
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abe H, Kishimura H, Takaku M, Watanabe M, Hamaya N. Low-temperature and high-pressure phases of a room-temperature ionic liquid and polyiodides: 1-methyl-3-propylimidazolium iodide. Faraday Discuss 2018; 206:49-60. [DOI: 10.1039/c7fd00172j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experimental results are summarized on the P–T–m diagram. In pure [C3mim][I], amorphous phase appeared both at low-temperature and high-pressure. Stoichiometric [C3mim][I3] promotes crystallization, while non-stoichiometric [C3mim][I3.66] indicates anomalies.
Collapse
Affiliation(s)
- Hiroshi Abe
- Department of Materials Science and Engineering
- National Defense Academy
- Yokosuka 239-8686
- Japan
| | - Hiroaki Kishimura
- Department of Materials Science and Engineering
- National Defense Academy
- Yokosuka 239-8686
- Japan
| | - Mayumi Takaku
- Graduate School of Humanities and Sciences
- Ochanomizu University
- Bunkyo-ku
- Japan
| | - Mai Watanabe
- Graduate School of Humanities and Sciences
- Ochanomizu University
- Bunkyo-ku
- Japan
| | - Nozomu Hamaya
- Graduate School of Humanities and Sciences
- Ochanomizu University
- Bunkyo-ku
- Japan
| |
Collapse
|
31
|
Cosby T, Vicars Z, Mapesa EU, Tsunashima K, Sangoro J. Charge transport and dipolar relaxations in phosphonium-based ionic liquids. J Chem Phys 2017; 147:234504. [DOI: 10.1063/1.5011190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tyler Cosby
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Zachariah Vicars
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Emmanuel Urandu Mapesa
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Katsuhiko Tsunashima
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, 77 Noshima, Nada-cho, Gobo, Wakayama 644-0023, Japan
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
32
|
Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.10.095] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Palumbo O, Trequattrini F, Appetecchi G, Conte L, Paolone A. Relaxation dynamics in pyrrolidinium based ionic liquids: The role of the anion conformers. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Thoms E, Sippel P, Reuter D, Weiß M, Loidl A, Krohns S. Dielectric study on mixtures of ionic liquids. Sci Rep 2017; 7:7463. [PMID: 28785071 PMCID: PMC5547043 DOI: 10.1038/s41598-017-07982-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022] Open
Abstract
Ionic liquids are promising candidates for electrolytes in energy-storage systems. We demonstrate that mixing two ionic liquids allows to precisely tune their physical properties, like the dc conductivity. Moreover, these mixtures enable the gradual modification of the fragility parameter, which is believed to be a measure of the complexity of the energy landscape in supercooled liquids. The physical origin of this index is still under debate; therefore, mixing ionic liquids can provide further insights. From the chemical point of view, tuning ionic liquids via mixing is an easy and thus an economic way. For this study, we performed detailed investigations by broadband dielectric spectroscopy and differential scanning calorimetry on two mixing series of ionic liquids. One series combines an imidazole based with a pyridine based ionic liquid and the other two different anions in an imidazole based ionic liquid. The analysis of the glass-transition temperatures and the thorough evaluations of the measured dielectric permittivity and conductivity spectra reveal that the dynamics in mixtures of ionic liquids are well defined by the fractions of their parent compounds.
Collapse
Affiliation(s)
- E Thoms
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany.,Division for Biophysics and Molecular Physics, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500, Chorzow, Poland
| | - P Sippel
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany.
| | - D Reuter
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany
| | - M Weiß
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany
| | - A Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany.,Institute for Materials Resource Management, University of Augsburg, 86135, Augsburg, Germany
| | - S Krohns
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany.,Institute for Materials Resource Management, University of Augsburg, 86135, Augsburg, Germany
| |
Collapse
|
35
|
Ordikhani Seyedlar A, Stapf S, Mattea C. Cation Dynamics in Supercooled and Solid Alkyl Methylimidazolium Bromide Ionic Liquids. J Phys Chem B 2017; 121:5363-5373. [PMID: 28485936 DOI: 10.1021/acs.jpcb.7b01712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular dynamics of alkyl methylimidazolium bromide ionic liquids with different side groups of the cation are studied over a wide range of temperatures, covering the supercooled and crystalline states. Nuclear magnetic resonance relaxation dispersion (NMRD) at different magnetic field strengths was combined with NMR pulsed field gradient (PFG) diffusion measurements in order to obtain a description of the temperature dependence of the cationic mobility. While an Arrhenius dependence of the correlation times was found at high temperatures, a deviation is observed below a critical temperature of Tdyn ∼ 275 K which corresponds to about 1.25 Tg for two of the substances. The macroscopic diffusion coefficient, on the other hand, is best described by a VFT dependence down to a similar temperature, and a much weaker temperature dependence below. Measurements carried out in the crystalline state of 1-butyl-3-methylimidazolium bromide (Bmim Br) exhibit a dramatically increased self-diffusion coefficient in agreement with earlier reports of strong dynamic heterogeneity in the presence of minute amounts of water.
Collapse
Affiliation(s)
- Amin Ordikhani Seyedlar
- Department of Technical Physics II/Polymer Physics, Institute of Physics, Ilmenau University of Technology , PO Box 10 05 65, D-98684 Ilmenau, Germany
| | - Siegfried Stapf
- Department of Technical Physics II/Polymer Physics, Institute of Physics, Ilmenau University of Technology , PO Box 10 05 65, D-98684 Ilmenau, Germany
| | - Carlos Mattea
- Department of Technical Physics II/Polymer Physics, Institute of Physics, Ilmenau University of Technology , PO Box 10 05 65, D-98684 Ilmenau, Germany
| |
Collapse
|
36
|
Frenzel F, Guterman R, Anton AM, Yuan J, Kremer F. Molecular Dynamics and Charge Transport in Highly Conductive Polymeric Ionic Liquids. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00554] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Falk Frenzel
- Institute
of Experimental Physics I, Leipzig University, Linnéstrasse 5, 04103 Leipzig, Germany
| | - Ryan Guterman
- Department
of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 OT Golm, 14424 Potsdam, Germany
| | - A. Markus Anton
- Institute
of Experimental Physics I, Leipzig University, Linnéstrasse 5, 04103 Leipzig, Germany
| | - Jiayin Yuan
- Department
of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 OT Golm, 14424 Potsdam, Germany
| | - Friedrich Kremer
- Institute
of Experimental Physics I, Leipzig University, Linnéstrasse 5, 04103 Leipzig, Germany
| |
Collapse
|
37
|
Fuentes I, Andrio A, Teixidor F, Viñas C, Compañ V. Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Phys Chem Chem Phys 2017; 19:15177-15186. [DOI: 10.1039/c7cp02526b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Scheme of the proposed mechanism to explain the mobility of the cations through the monomers COSANE and TPB. While in COSANE the mechanism is through jumps (hopping mechanism) in TPB the ionic transport is vehicular.
Collapse
Affiliation(s)
- Isabel Fuentes
- Institut de Ciència de Materials de Barcelona
- 08193 Bellaterra
- Spain
| | - Andreu Andrio
- Departamento de Física aplicada
- Universitat Jaume I
- 12080 Castellón
- Spain
| | | | - Clara Viñas
- Institut de Ciència de Materials de Barcelona
- 08193 Bellaterra
- Spain
| | - Vicente Compañ
- Escuela Técnica Superior de Ingenieros Industriales
- Departamento de Termodinámica Aplicada
- Universidad Politécnica de Valencia
- 46020 Valencia
- Spain
| |
Collapse
|
38
|
Sippel P, Dietrich V, Reuter D, Aumüller M, Lunkenheimer P, Loidl A, Krohns S. Impact of water on the charge transport of a glass-forming ionic liquid. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.08.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Tong YB, Liu SX, Zou Y, Xue C, Duan HB, Liu JL, Ren XM. Insight into Understanding Dielectric Behavior of a Zn-MOF Using Variable-Temperature Crystal Structures, Electrical Conductance, and Solid-State 13C NMR Spectra. Inorg Chem 2016; 55:11716-11726. [PMID: 27791361 DOI: 10.1021/acs.inorgchem.6b01759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Zn-based metal-organic framework (MOF)/porous coordination polymer (PCP), (EMIM)[Zn(SIP)] (1) (SIP3- = 5-sulfoisophthalate, EMIM+ = 1-ethyl-3-methylimidazolium), was synthesized using the ionothermal reaction. The Zn2+ ion adopts distorted square pyramid coordination geometry with five oxygen atoms from three carboxylates and one sulfo group. One of two carboxylates in SIP3- serves as a μ2-bridge ligand to link two Zn2+ ions and form the dinuclear SBU, and such SBUs are connected by SIP3- ligands to build the three-dimensional framework with rutile (rtl) topology. The cations from the ion-liquid fill the channels. This MOF/PCP shows two-step dielectric anomalies together with two-step dielectric relaxations; the variable-temperature single-crystal structure analyses disclosed the dielectric anomaly occurring at ca. 280 K is caused by an isostructural phase transition. Another dielectric anomaly is related to the dynamic disorder of the cations in the channels. Electric modulus, conductance, and variable-temperature solid-state 13C CP/MAS NMR spectra analyses revealed that two-step dielectric relaxations result from the dynamic motion of the cations as well as the direct-current conduction and electrode effect, respectively.
Collapse
Affiliation(s)
- Yuan-Bo Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Shao-Xian Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Yang Zou
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Chen Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Hai-Bao Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing 210009, P. R. China.,School of Environmental Science, Nanjing Xiao Zhuang University , Nanjing 211171, P. R. China
| | - Jian-Lan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University , Nanjing 210009, P. R. China.,College of Materials Science and Engineering, Nanjing Tech University , Nanjing 210009, P. R. China.,State Key Lab & Coordination Chemistry Institute, Nanjing University , Nanjing 210093, P. R. China
| |
Collapse
|
40
|
García-Bernabé A, Rivera A, Granados A, Luis SV, Compañ V. Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Frenzel F, Folikumah MY, Schulz M, Anton AM, Binder WH, Kremer F. Molecular Dynamics and Charge Transport in Polymeric Polyisobutylene-Based Ionic Liquids. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Falk Frenzel
- Institute
of Experimental Physics I, Leipzig University, Linnéstrasse 5, 04103 Leipzig, Germany
| | - Makafui Y. Folikumah
- Institute
of Chemistry, Macromolecular Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Matthias Schulz
- Institute
of Chemistry, Macromolecular Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - A. Markus Anton
- Institute
of Experimental Physics I, Leipzig University, Linnéstrasse 5, 04103 Leipzig, Germany
| | - Wolfgang H. Binder
- Institute
of Chemistry, Macromolecular Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Friedrich Kremer
- Institute
of Experimental Physics I, Leipzig University, Linnéstrasse 5, 04103 Leipzig, Germany
| |
Collapse
|
42
|
Palumbo O, Trequattrini F, Vitucci FM, Paolone A. Relaxation Dynamics and Phase Transitions in Ionic Liquids: Viscoelastic Properties from the Liquid to the Solid State. J Phys Chem B 2015; 119:12905-11. [DOI: 10.1021/acs.jpcb.5b06039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- O. Palumbo
- CNR-ISC, U.O.S. La Sapienza, Piazzale A. Moro 5, 00185 Roma, Italy
| | - F. Trequattrini
- Physics
Department, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - F. M. Vitucci
- CNR-ISC, U.O.S. La Sapienza, Piazzale A. Moro 5, 00185 Roma, Italy
| | - A. Paolone
- CNR-ISC, U.O.S. La Sapienza, Piazzale A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
43
|
Sippel P, Lunkenheimer P, Krohns S, Thoms E, Loidl A. Importance of liquid fragility for energy applications of ionic liquids. Sci Rep 2015; 5:13922. [PMID: 26355037 PMCID: PMC4564824 DOI: 10.1038/srep13922] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/11/2015] [Indexed: 01/27/2023] Open
Abstract
Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry, in various electrochemical devices, and even for such "exotic" purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility.
Collapse
Affiliation(s)
- P. Sippel
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - P. Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - S. Krohns
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - E. Thoms
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - A. Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
44
|
Leys J, Tripathi CSP, Glorieux C, Zahn S, Kirchner B, Longuemart S, Lethesh KC, Nockemann P, Dehaen W, Binnemans K. Electrical conductivity and glass formation in nitrile-functionalized pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids: chain length and odd-even effects of the alkyl spacer between the pyrrolidinium ring and the nitrile group. Phys Chem Chem Phys 2015; 16:10548-57. [PMID: 24740743 DOI: 10.1039/c4cp00259h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The electrical conductivity of a series of pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids, functionalized with a nitrile (cyano) group at the end of an alkyl chain attached to the cation, was studied in the temperature range between 173 K and 393 K. The glass formation of the ionic liquids is influenced by the length of the alkyl spacer separating the nitrile function from the pyrrolidinium ring. The electrical conductivity and the viscosity do not show a monotonic dependence on the alkyl spacer length, but rather an odd-even effect. An explanation for this behavior is given, including the potential energy landscape picture for the glass transition.
Collapse
Affiliation(s)
- Jan Leys
- KU Leuven, Laboratorium voor Akoestiek en Thermische Fysica, Departement Natuurkunde en Sterrenkunde, Celestijnenlaan 200D bus 2416, 3001 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yamaguchi T, Yonezawa T, Koda S. Study on the temperature-dependent coupling among viscosity, conductivity and structural relaxation of ionic liquids. Phys Chem Chem Phys 2015; 17:19126-33. [DOI: 10.1039/c5cp02335a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The frequency-dependent viscosity and conductivity of three imidazolium-based ionic liquids were measured at several temperatures in the MHz region, and the results are compared with the intermediate scattering functions determined by neutron spin echo spectroscopy.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya
- Japan
| | - Takuya Yonezawa
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya
- Japan
| | - Shinobu Koda
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya
- Japan
| |
Collapse
|
46
|
Carvalho T, Augusto V, Rocha Â, Lourenço NMT, Correia NT, Barreiros S, Vidinha P, Cabrita EJ, Dionísio M. Ion jelly conductive properties using dicyanamide-based ionic liquids. J Phys Chem B 2014; 118:9445-59. [PMID: 25059510 DOI: 10.1021/jp502870q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The thermal behavior and transport properties of several ion jellys (IJs), a composite that results from the combination of gelatin with an ionic liquid (IL), were investigated by dielectric relaxation spectroscopy (DRS), differential scanning calorimetry (DSC), and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG NMR). Four different ILs containing the dicyanamide anion were used: 1-butyl-3-methylimidazolium dicyanamide (BMIMDCA), 1-ethyl-3-methylimidazolium dicyanamide (EMIMDCA), 1-butyl-1-methylpyrrolidinium dicyanamide (BMPyrDCA), and 1-butylpyridinium dicyanamide (BPyDCA); the bulk ILs were also investigated for comparison. A glass transition was detected by DSC for all materials, ILs and IJs, allowing them to be classified as glass formers. Additionally, an increase in the glass transition temperature upon dehydration was observed with a greater extent for IJs, attributed to a greater hindrance imposed by the gelatin matrix after water removal, rendering the IL less mobile. While crystallization is observed for some ILs with negligible water content, it was never detected for any IJ upon thermal cycling, which persist always as fully amorphous materials. From DRS measurements, conductivity and diffusion coefficients for both cations (D+) and anions (D-) were extracted. D+ values obtained by DRS reveal excellent agreement with those obtained from PFG NMR direct measurements, obeying the same VFTH equation over a large temperature range (ΔT ≈ 150 K) within which D+ varies around 10 decades. At temperatures close to room temperature, the IJs exhibit D values comparable to the most hydrated (9%) ILs. The IJ derived from EMIMDCA possesses the highest conductivity and diffusion coefficient, respectively, ∼10(-2) S·cm(-1) and ∼10(-10) m(2)·s(-1). For BMPyrDCA the relaxational behavior was analyzed through the complex permittivity and modulus formalism allowing the assignment of the detected secondary relaxation to a Johari-Goldstein process. Besides the relevant information on the more fundamental nature providing physicochemical details on ILs behavior, new doorways are opened for practical applications by using IJ as a strategy to produce novel and stable electrolytes for different electrochemical devices.
Collapse
Affiliation(s)
- Tânia Carvalho
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Griffin PJ, Cosby T, Holt AP, Benson RS, Sangoro JR. Charge Transport and Structural Dynamics in Carboxylic-Acid-Based Deep Eutectic Mixtures. J Phys Chem B 2014; 118:9378-85. [DOI: 10.1021/jp503105g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Philip J. Griffin
- Department of Physics and Astronomy, ‡Department of Chemical and Biomolecular
Engineering, and §Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Tyler Cosby
- Department of Physics and Astronomy, ‡Department of Chemical and Biomolecular
Engineering, and §Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Adam P. Holt
- Department of Physics and Astronomy, ‡Department of Chemical and Biomolecular
Engineering, and §Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Roberto S. Benson
- Department of Physics and Astronomy, ‡Department of Chemical and Biomolecular
Engineering, and §Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Joshua R. Sangoro
- Department of Physics and Astronomy, ‡Department of Chemical and Biomolecular
Engineering, and §Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
48
|
Sangoro JR. Charge transport and dipolar relaxations in an alkali metal oligoether carboxylate ionic liquid. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3299-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Sangoro JR, Iacob C, Agapov AL, Wang Y, Berdzinski S, Rexhausen H, Strehmel V, Friedrich C, Sokolov AP, Kremer F. Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids. SOFT MATTER 2014; 10:3536-3540. [PMID: 24718358 DOI: 10.1039/c3sm53202j] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Charge transport and structural dynamics in low molecular weight and polymerized 1-vinyl-3-pentylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) are investigated by a combination of broadband dielectric spectroscopy, dynamic mechanical spectroscopy and differential scanning calorimetry. While the dc conductivity and fluidity exhibit practically identical temperature dependence for the non-polymerized IL, a significant decoupling of ionic conduction from structural dynamics is observed for the polymerized IL. In addition, the dc conductivity of the polymerized IL exceeds that of its molecular counterpart by four orders of magnitude at their respective calorimetric glass transition temperatures. This is attributed to the unusually high mobility of the anions especially at lower temperatures when the structural dynamics is significantly slowed down. A simple physical explanation of the possible origin of the remarkable decoupling of ionic conductivity from structural dynamics is proposed.
Collapse
Affiliation(s)
- J R Sangoro
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sonnleitner T, Turton DA, Waselikowski S, Hunger J, Stoppa A, Walther M, Wynne K, Buchner R. Dynamics of RTILs: A comparative dielectric and OKE study. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2013.09.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|