1
|
Artusio F, Müller L, Razza N, Cordeiro Filipe I, Olgiati F, Richter Ł, Civera E, Özkan M, Gasbarri M, Rinaldi L, Wang H, Garcìa E, Schafer J, Michot L, Butot S, Baert L, Zuber S, Halik M, Stellacci F. Broad-Spectrum Supramolecularly Reloadable Antimicrobial Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29867-29875. [PMID: 38825754 PMCID: PMC11181266 DOI: 10.1021/acsami.4c04705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Antimicrobial surfaces limit the spread of infectious diseases. To date, there is no antimicrobial coating that has widespread use because of short-lived and limited spectrum efficacy, poor resistance to organic material, and/or cost. Here, we present a paint based on waterborne latex particles that is supramolecularly associated with quaternary ammonium compounds (QACs). The optimal supramolecular pairing was first determined by immobilizing selected ions on self-assembled monolayers exposing different groups. The QAC surface loading density was then increased by using polymer brushes. These concepts were adopted to develop inexpensive paints to be applied on many different surfaces. The paint could be employed for healthcare and food production applications. Its slow release of QAC allows for long-lasting antimicrobial action, even in the presence of organic material. Its efficacy lasts for more than 90 washes, and importantly, once lost, it can readily be restored by spraying an aqueous solution of the QAC. We mainly tested cetyltrimethylammonium as QAC as it is already used in consumer care products. Our antimicrobial paint is broad spectrum as it showed excellent antimicrobial efficiency against four bacteria and four viruses.
Collapse
Affiliation(s)
- Fiora Artusio
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Lukas Müller
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Organic
Materials & Devices, Institute of Polymer Materials, Interdisciplinary
Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Nicolò Razza
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Inês Cordeiro Filipe
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Francesca Olgiati
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Łukasz Richter
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Edoardo Civera
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Melis Özkan
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Matteo Gasbarri
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Louisa Rinaldi
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Heyun Wang
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Esther Garcìa
- Nestlé
Research, Institute of Food Safety and Analytical
Sciences, Vers-chez-les-Blanc,
Box 44, 1000 Lausanne, Switzerland
| | - Julie Schafer
- Nestlé
Research, Institute of Food Safety and Analytical
Sciences, Vers-chez-les-Blanc,
Box 44, 1000 Lausanne, Switzerland
| | - Lise Michot
- Nestlé
Research, Institute of Food Safety and Analytical
Sciences, Vers-chez-les-Blanc,
Box 44, 1000 Lausanne, Switzerland
| | - Sophie Butot
- Nestlé
Research, Institute of Food Safety and Analytical
Sciences, Vers-chez-les-Blanc,
Box 44, 1000 Lausanne, Switzerland
| | - Leen Baert
- Nestlé
Research, Institute of Food Safety and Analytical
Sciences, Vers-chez-les-Blanc,
Box 44, 1000 Lausanne, Switzerland
| | - Sophie Zuber
- Nestlé
Research, Institute of Food Safety and Analytical
Sciences, Vers-chez-les-Blanc,
Box 44, 1000 Lausanne, Switzerland
| | - Marcus Halik
- Organic
Materials & Devices, Institute of Polymer Materials, Interdisciplinary
Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Francesco Stellacci
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Interfaculty
Bioengineering Institute, Ecole Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Demina PA, Sindeeva OA, Abramova AM, Saveleva MS, Sukhorukov GB, Goryacheva IY. Fluorescent polymer markers photoconvertible with a 532 nm laser for individual cell labeling. JOURNAL OF BIOPHOTONICS 2023; 16:e202200379. [PMID: 36726223 DOI: 10.1002/jbio.202200379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/07/2023]
Abstract
Fluorescent photoconvertible materials and molecules have been successfully exploited as bioimaging markers and cell trackers. Recently, the novel fluorescent photoconvertible polymer markers have been developed that allow the long-term tracking of individual labeled cells. However, it is still necessary to study the functionality of this type of fluorescent labels for various operating conditions, in particular for commonly used discrete wavelength lasers. In this article, the photoconversion of fluorescent polymer labels with both pulsed and continuous-wave lasers with 532 nm-irradiation wavelength, and under different laser power densities were studied. The photoconversion process was described and its possible mechanism was proposed. The peculiarities of fluorescent polymer capsules performance as an aqueous suspension and as a single capsule were described. We performed the successful nondestructivity marker photoconversion inside RAW 264.7 monocyte/macrophage cells under continuous-wave laser with 532 nm-irradiation wavelength, showing prospects of these fluorescent markers for long-term live cell labeling.
Collapse
Affiliation(s)
- P A Demina
- Science Medical Center, Saratov State University, Saratov, Russia
| | - O A Sindeeva
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - A M Abramova
- Science Medical Center, Saratov State University, Saratov, Russia
| | - M S Saveleva
- Science Medical Center, Saratov State University, Saratov, Russia
| | - G B Sukhorukov
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - I Y Goryacheva
- Science Medical Center, Saratov State University, Saratov, Russia
| |
Collapse
|
3
|
Azman N'A, Bekale L, Nguyen TX, Kah JCY. Polyelectrolyte stiffness on gold nanorods mediates cell membrane damage. NANOSCALE 2020; 12:14021-14036. [PMID: 32579657 DOI: 10.1039/d0nr03288c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Charge and surface chemistry of gold nanorods (AuNRs) are often considered the predictive factors for cell membrane damage. Unfortunately, extensive research on AuNR passivated with polyelectrolyte (PE) ligand shell (AuNR-PE) has hitherto left a vital knowledge gap between the mechanical stability of the ligand shell and the cytotoxicity of AuNR-PEs. Here, the agreement between unbiased coarse-grained molecular dynamics (CGMD) simulation and empirical outcomes on hemolysis of red blood cells by AuNR-PEs demonstrates for the first time, a direct impact of the mechanical stability of the PE shell passivating the AuNRs on the lipid membrane rupture. Such mechanical stability is ultimately modulated by the rigidity of the PE components. The CGMD simulation results also reveal the mechanism where the PE chain adsorbs near the surface of the lipid bilayer without penetrating the hydrophobic core of the bilayer, which allows the hydrophobic AuNR core to be in direct contact with the hydrophobic interior of the lipid bilayer, thereby perforating the lipid membrane to induce membrane damage.
Collapse
Affiliation(s)
- Nurul 'Ain Azman
- Department of Biomedical Engineering, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|
4
|
Nekrasov AA, Iakobson OD, Gribkova OL. Some Specific Features in the Applying the Method of Raman Spectroelectrochemistry while Studying Polyaniline Electrosynthesis in Polymeric-Acid Medium. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193519110119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Wang J, Tan SH, Nguyen AV, Evans GM, Nguyen NT. A Microfluidic Method for Investigating Ion-Specific Bubble Coalescence in Salt Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11520-11524. [PMID: 27753495 DOI: 10.1021/acs.langmuir.6b03266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper reports the direct and precise measurement of bubble coalescence in salt solutions using microfluidics. We directly visualized the bubble coalescence process in a microchannel using high-speed imaging and evaluated the shortest coalescence time to determine the transition concentration of sodium halide solutions. We found the transition concentration is ion-specific, and the capacity of sodium halide salts to inhibit bubble coalescence follows the order of NaF > NaCl > NaBr > NaI. The microfluidic method overcomes the inherent uncertainties in conventional large-scale devices and methods.
Collapse
Affiliation(s)
- Jianlong Wang
- School of Chemical Engineering, University of Queensland , Brisbane, QLD 4072, Australia
| | - Say Hwa Tan
- Queensland Micro- and Nanotechnology Centre, Griffith University , Brisbane, QLD 4111, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, University of Queensland , Brisbane, QLD 4072, Australia
| | - Geoffrey M Evans
- School of Engineering, University of Newcastle , Callaghan, NSW 2308, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University , Brisbane, QLD 4111, Australia
| |
Collapse
|
6
|
Li N, Hao X, Kang BH, Li NB, Luo HQ. Sensitive and selective turn-on fluorescence method for cetyltrimethylammonium bromide determination based on acridine orange-polystyrene sulfonate complex. LUMINESCENCE 2015; 31:1025-30. [DOI: 10.1002/bio.3069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Na Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering; Southwest University; Chongqing People's Republic of China
| | - Xia Hao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering; Southwest University; Chongqing People's Republic of China
| | - Bei Hua Kang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering; Southwest University; Chongqing People's Republic of China
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering; Southwest University; Chongqing People's Republic of China
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering; Southwest University; Chongqing People's Republic of China
| |
Collapse
|
7
|
Alba M, Formentín P, Ferré-Borrull J, Pallarès J, Marsal LF. pH-responsive drug delivery system based on hollow silicon dioxide micropillars coated with polyelectrolyte multilayers. NANOSCALE RESEARCH LETTERS 2014; 9:411. [PMID: 25221455 PMCID: PMC4151279 DOI: 10.1186/1556-276x-9-411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/08/2014] [Indexed: 05/05/2023]
Abstract
We report on the fabrication of polyelectrolyte multilayer-coated hollow silicon dioxide micropillars as pH-responsive drug delivery systems. Silicon dioxide micropillars are based on macroporous silicon formed by electrochemical etching. Due to their hollow core capable of being loaded with chemically active agents, silicon dioxide micropillars provide additional function such as drug delivery system. The polyelectrolyte multilayer was assembled by the layer-by-layer technique based on the alternative deposition of cationic and anionic polyelectrolytes. The polyelectrolyte pair poly(allylamine hydrochloride) and sodium poly(styrene sulfonate) exhibited pH-responsive properties for the loading and release of a positively charged drug doxorubicin. The drug release rate was observed to be higher at pH 5.2 compared to that at pH 7.4. Furthermore, we assessed the effect of the number of polyelectrolyte bilayers on the drug release loading and release rate. Thus, this hybrid composite could be potentially applicable as a pH-controlled system for localized drug release.
Collapse
Affiliation(s)
- María Alba
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007, Spain
| | - Pilar Formentín
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007, Spain
| | - Josep Ferré-Borrull
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007, Spain
| | - Josep Pallarès
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007, Spain
| | - Lluís F Marsal
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007, Spain
| |
Collapse
|
8
|
Feldötö Z, Varga I, Blomberg E. Influence of salt and rinsing protocol on the structure of PAH/PSS polyelectrolyte multilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17048-17057. [PMID: 20886835 DOI: 10.1021/la102351f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A quartz crystal microbalance (QCM) and dual polarization interferometry (DPI) have been utilized to study how the structure of poly(allylamine hydrochloride) (PAH)/poly(styrene sulfonate) (PSS) multilayers is affected by the rinsing method (i.e., the termination of polyelectrolyte adsorption). The effect of the type of counterions used in the deposition solution was also investigated, and the polyelectrolyte multilayers were formed in a 0.5 M electrolyte solution (NaCl and KBr). From the measurements, it was observed that thicker layers were obtained when using KBr in the deposition solution than when using NaCl. Three different rinsing protocols have been studied: (i) the same electrolyte solution as used during multilayer formation, (ii) pure water, and (iii) first a salt solution (0.5 M) and then pure water. When the multilayer with PAH as the outermost layer was exposed to pure water, an interesting phenomenon was discovered: a large change in the energy dissipation was measured with the QCM. This could be attributed to the swelling of the layer, and from both QCM and DPI it is obvious that only the outermost PAH layer swells (to a thickness of 25-30 nm) because of a decrease in ionic strength and hence an increase in intra- and interchain repulsion, whereas the underlying layers retain a very rigid and compact structure with a low water content. Interestingly, the outermost PAH layer seems to obtain very similar thicknesses in water independent of the electrolyte used for the multilayer buildup. Another interesting aspect was that the measured thickness with the DPI evaluated by a single-layer model did not correlate with the estimated thickness from the model calculations performed on the QCM-D data. Thus, we applied a two-layer model to evaluate the DPI data and the results were in excellent agreement with the QCM-D results. To our knowledge, this evaluation of DPI data has not been done previously.
Collapse
Affiliation(s)
- Zsombor Feldötö
- Surface & Corrosion Science, Department of Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | | | | |
Collapse
|