1
|
Di Valentin M, Tait CE, Salvadori E, Orian L, Polimeno A, Carbonera D. Evidence for water-mediated triplet–triplet energy transfer in the photoprotective site of the peridinin–chlorophyll a–protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:85-97. [DOI: 10.1016/j.bbabio.2013.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/05/2013] [Accepted: 07/10/2013] [Indexed: 11/15/2022]
|
2
|
Chrysina M, Zahariou G, Sanakis Y, Ioannidis N, Petrouleas V. Conformational changes of the S2YZ* intermediate of the S2 to S3 transition in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:72-9. [PMID: 21377376 DOI: 10.1016/j.jphotobiol.2011.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/18/2011] [Accepted: 02/10/2011] [Indexed: 01/02/2023]
Abstract
The paper extends earlier studies on the S(2)Y(Z)* intermediate that is trapped by illumination in the temperature range 77 K to 190 K of untreated samples poised in the S(2)...Q(A) state. X-band EPR experiments on untreated and glycerol (50% v/v) treated samples at 10 K indicate that the intermediate consists of two components. A wide one with a splitting of ca 170 G, and a narrow one characterized by a splitting of ca 120 G (untreated), or 124 G (glycerol-treated samples). Lower temperatures of illumination in the above temperature range favor the wide component, which at 10 K decays faster than the narrow one. Re-illumination at 10 K after decay of the signal trapped at 77-190 K induces only the narrow component. Rapid scan experiments in the temperature range 77-190 K reveal high resolution spectra of the isolated tyz Z* radical and no evidence of alternative radicals. The two split signals are accordingly assigned to different conformations of the S(2)Y(Z)* intermediate A point-dipole simulation of the spectra yields "effective distances" between the spin densities of Y(Z)* and the Mn(4)Ca center of 5.7 Å for the wide and 6.4 Å for the narrow component. The results are discussed on the basis of a molecular model assuming two sequential proton transfers during oxidation of tyr Z. The wide component is assigned to a transient S(2)Y(Z)* conformation, that forms during the primary proton transfer.
Collapse
Affiliation(s)
- Maria Chrysina
- Institute of Materials Science, NCSR Demokritos, Athens 15310, Greece
| | | | | | | | | |
Collapse
|
3
|
Li X, Telser J, Kunz RC, Hoffman BM, Gerfen G, Ragsdale SW. Observation of organometallic and radical intermediates formed during the reaction of methyl-coenzyme M reductase with bromoethanesulfonate. Biochemistry 2010; 49:6866-76. [PMID: 20597483 DOI: 10.1021/bi100650m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the final step of methane formation, in which methyl-coenzyme M (2-methylthioethanesulfonate, methyl-SCoM) is reduced with coenzyme B (N-(7-mercaptoheptanoyl)threonine phosphate, CoBSH) to form methane and the heterodisulfide CoBS-SCoM. The active dimeric form of MCR contains two Ni(I)-F(430) prosthetic groups, one in each monomer. This report describes studies of the reaction of the active Ni(I) state of MCR (MCR(red1)) with BES (2-bromoethanesulfonate) and CoBSH or its analogue, CoB(6)SH (N-(6-mercaptohexanoyl)threonine phosphate), by transient kinetic measurements using EPR and UV-visible spectroscopy and by global fits of the data. This reaction is shown to lead to the formation of three intermediates, the first of which is assigned as an alkyl-Ni(III) species that forms as the active Ni(I)-MCR(red1) state of the enzyme decays. Subsequently, a radical (MCR(BES) radical) is formed that was characterized by multifrequency electron paramagnetic resonance (EPR) studies at X- ( approximately 9 GHz), Q- ( approximately 35 GHz), and D- ( approximately 130 GHz) bands and by electron-nuclear double resonance (ENDOR) spectroscopy. The MCR(BES) radical is characterized by g-values at 2.00340 and 1.99832 and includes a strongly coupled nonexchangeable proton with a hyperfine coupling constant of 50 MHz. Based on transient kinetic measurements, the formation and decay of the radical coincide with a species that exhibits absorption peaks at 426 and 575 nm. Isotopic substitution, multifrequency EPR, and ENDOR spectroscopic experiments rule out the possibility that MCR(BES) is a tyrosyl radical and indicate that if a tyrosyl radical is formed during the reaction, it does not accumulate to detectable levels. The results provide support for a hybrid mechanism of methanogenesis by MCR that includes both alkyl-Ni and radical intermediates.
Collapse
Affiliation(s)
- Xianghui Li
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
4
|
Cox N, Ho FM, Pewnim N, Steffen R, Smith PJ, Havelius KG, Hughes JL, Debono L, Styring S, Krausz E, Pace RJ. The S1 split signal of photosystem II; a tyrosine–manganese coupled interaction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:882-9. [DOI: 10.1016/j.bbabio.2009.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 03/26/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
|
5
|
Ioannidis N, Zahariou G, Petrouleas V. The EPR spectrum of tyrosine Z* and its decay kinetics in O2-evolving photosystem II preparations. Biochemistry 2008; 47:6292-300. [PMID: 18494501 DOI: 10.1021/bi800390r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The O2-evolving complex of photosystem II, Mn 4Ca, cycles through five oxidation states, S0,..., S4, during its catalytic function, which involves the gradual abstraction of four electrons and four protons from two bound water molecules. The direct oxidant of the complex is the tyrosine neutral radical, YZ(*), which is transiently produced by the highly oxidizing power of the photoexcited chlorophyll species P680. EPR characterization of YZ(*) has been limited, until recently, to inhibited (non-oxygen-evolving) preparations. A number of relatively recent papers have demonstrated the trapping of YZ(*) in O2-evolving preparations at liquid helium temperatures as an intermediate of the S0 to S1, S1 to S2, and S2 to S3 transitions. The respective EPR spectra are broadened and split at g approximately 2 by the magnetic interaction with the Mn cluster, but this interaction collapses at temperatures higher than about 100K [Zahariou et al. (2007) Biochemistry 46, 14335 -14341]. We have conducted a study of the Tyr Z(*) transient in the temperature range 77-240 K by employing rapid or slow EPR scans. The results reveal for the first time high-resolution X-band spectra of Tyr Z(*) in the functional system and at temperatures close to the onset of the S-state transitions. We have simulated the S 2Y Z(*) spectrum using the simulation algorithm of Svistunenko and Cooper [(2004) Biophys. J. 87, 582 -595]. The small g(x) = 2.00689 value inferred from the analysis suggests either a H-bonding of Tyr Z (*) (presumably with His190) that is stronger than what has been assumed from studies of Tyr D(*) or Tyr Z(*) in Mn-depleted preparations or a more electropositive environment around Tyr Z(*). The study has also yielded for the first time direct information on the temperature variation of the YZ(*)/QA(-) recombination reaction in the various S states. The reaction follows biphasic kinetics with the slow phase dominating at low temperatures and the fast phase dominating at high temperatures. It is tentatively proposed that the slow phase represents the action of the YZ(*)/YZ(-) redox couple while the fast phase represents that of the YZ(*)/YZH couple; it is inferred that Tyr Z at elevated temperatures is protonated at rest. It is also proposed that YZ(*)/YZH is the couple that oxidizes the Mn cluster during the S1-S2 and S2-S3 transitions. A simple mechanism ensuring a rapid (concerted) protonation of Tyr Z upon oxidation of the Mn cluster is discussed, and also, a structure-based molecular model suggesting the participation of His190 into two hydrogen bonds is proposed.
Collapse
Affiliation(s)
- Nikolaos Ioannidis
- Institute of Materials Science, NCSR Demokritos, 153 10 Aghia Paraskevi Attikis, Greece
| | | | | |
Collapse
|
6
|
Yeagle GJ, Gilchrist ML, McCarrick RM, Britt RD. Multifrequency pulsed electron paramagnetic resonance study of the S2 state of the photosystem II manganese cluster. Inorg Chem 2008; 47:1803-14. [PMID: 18330971 DOI: 10.1021/ic701680c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multifrequency electron spin-echo envelope modulation (ESEEM) spectroscopy is employed to measure the strength of the hyperfine coupling of magnetic nuclei to the paramagnetic (S = 1/2) S2 form of photosystem II (PSII). Previous X-band-frequency ESEEM studies indicated that one or more histidine nitrogens are electronically coupled to the tetranuclear manganese cluster in the S2 state of PSII. However, the spectral resolution was relatively poor at the approximately 9 GHz excitation frequency, precluding any in-depth analysis of the corresponding bonding interaction between the detected histidine and the manganese cluster. Here we report ESEEM experiments using higher X-, P-, and Ka-band microwave frequencies to target PSII membranes isolated from spinach. The X- to P-band ESEEM spectra suffer from the same poor resolution as that observed in previous experiments, while the Ka-band spectra show remarkably well-resolved features that allow for the direct determination of the nuclear quadrupolar couplings for a single I = 1(14)N nucleus. The Ka-band results demonstrate that at an applied field of 1.1 T we are much closer to the exact cancellation limit (alpha iso = 2nu(14)N) that optimizes ESEEM spectra. These results reveal hyperfine (alpha iso = 7.3 +/- 0.20 MHz and alpha dip = 0.50 +/- 0.10 MHz) and nuclear quadrupolar (e(2)qQ = 1.98 +/- 0.05 MHz and eta = 0.84 +/- 0.06) couplings for a single (14)N nucleus magnetically coupled to the manganese cluster in the S 2 state of PSII. These values are compared to the histidine imidazole nitrogen hyperfine and nuclear quadrupolar couplings found in superoxidized manganese catalase as well as (14)N couplings in relevant manganese model complexes.
Collapse
Affiliation(s)
- Gregory J Yeagle
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
7
|
Shevela D, Klimov V, Messinger J. Interactions of photosystem II with bicarbonate, formate and acetate. PHOTOSYNTHESIS RESEARCH 2007; 94:247-64. [PMID: 17653834 DOI: 10.1007/s11120-007-9200-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 05/16/2007] [Indexed: 05/16/2023]
Abstract
In this study, we probe the effects of bicarbonate (hydrogencarbonate), BC, removal from photosystem II in spinach thylakoids by measuring flash-induced oxygen evolution patterns (FIOPs) with a Joliot-type electrode. For this we compared three commonly employed methods: (1) washing in BC-free medium, (2) formate addition, and (3) acetate addition. Washing of the samples with buffers depleted of BC and CO2 by bubbling with argon (Method 1) under our conditions leads to an increase in the double hit parameter of the first flash (beta 1), while the miss parameter and the overall activity remain unchanged. In contrast, addition of 40-50 mM formate or acetate results in a significant increase in the miss parameter and to an approximately 50% (formate) and approximately 10% (acetate) inhibition of the overall oxygen evolution activity, but not to an increased beta 1 parameter. All described effects could be reversed by washing with formate/acetate free buffer and/or addition of 2-10 mM bicarbonate. The redox potential of the water-oxidizing complex (WOC) in samples treated by Method 1 is compared to samples containing 2 mM bicarbonate in two ways: (1) The lifetimes of the S0, S2, and S3 states were measured, and no differences were found between the two sample types. (2) The S1, S0, S(-1), and S(-2) states were probed by incubation with small concentrations of NH2OH. These experiments displayed a subtle, yet highly reproducible difference in the apparent Si/S(-i) state distribution which is shown to arise from the interaction of BC with PSII in the already reduced states of the WOC. These data are discussed in detail by also taking into account the CO2 concentrations present in the buffers after argon bubbling and during the measurements. These values were measured by membrane-inlet mass spectrometry (MIMS).
Collapse
Affiliation(s)
- Dmitriy Shevela
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
8
|
Kern J, Biesiadka J, Loll B, Saenger W, Zouni A. Structure of the Mn4-Ca cluster as derived from X-ray diffraction. PHOTOSYNTHESIS RESEARCH 2007; 92:389-405. [PMID: 17492491 DOI: 10.1007/s11120-007-9173-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 04/10/2007] [Indexed: 05/15/2023]
Abstract
The catalytic centre for light-induced water oxidation in photosystem II (PSII) is a multinuclear metal cluster containing four manganese and one calcium cations. Knowing the structure of this biological catalyst is of utmost importance for unravelling the mechanism of water oxidation in photosynthesis. In this review we describe the current state of the X-ray structure determination at 3.0 A resolution of the water oxidation complex (WOC) of PSII. The arrangement of metal cations in the cluster, their coordination and protein surroundings are discussed with regard to spectroscopic and mutagenesis studies. Limitations of the presently available structural data are pointed out and possible perspectives for the future are outlined, including the combination of X-ray diffraction and X-ray spectroscopy on single crystals.
Collapse
Affiliation(s)
- Jan Kern
- Institut für Chemie, Max Volmer Laboratorium für Biophysikalische Chemie, Sekr. PC 14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | | | | | | | | |
Collapse
|
9
|
Un S, Boussac A, Sugiura M. Characterization of the Tyrosine-Z Radical and Its Environment in the Spin-Coupled S2TyrZ• State of Photosystem II from Thermosynechococcus elongatus. Biochemistry 2007; 46:3138-50. [PMID: 17323926 DOI: 10.1021/bi062084f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mn4Ca cluster of photosystem II (PSII) goes through five sequential oxidation states (S0-S4) in the water oxidation process that also involves a tyrosine radical intermediate (TyrZ*). An S2TyrZ* state in which the Mn4Ca cluster and TyrZ* are magnetically coupled to each other and which is characterized by a distinct "split-signal" EPR spectrum can be generated in acetate-treated PSII. This state was examined by high-field EPR (HFEPR) in PSII from Thermosynechococcus elongatus isolated from a D2-Tyr160Phe mutant to avoid spectral contributions from TyrD*. In contrast to the same state in plants, both antiferromagnetic and ferromagnetic spin-spin couplings were observed. The intrinsic g values of TyrZ* in the coupled state were directly measured from the microwave frequency dependence of the HFEPR spectrum. The TyrZ* gx value in the antiferromagnetic centers was 2.0083, indicating that the coupled radical was in a less electropositive environment than in Mn-depleted PSII. Two gx values were found in the ferromagnetically coupled centers, 2.0069 and 2.0079. To put these values in perspective, the second redox-active tyrosine, TyrD*, was examined in various electrostatic environments. The TyrD* gx value changed from 2.0076 in the wild type to 2.0095 when the hydrogen bond from histidine 189 to TyrD* was removed using the D2-His189Leu mutant, indicating a change to a significantly less electropositive environment. BLY3P/6-31+G** density functional calculations on the hydrogen-bonded p-ethylphenoxy radical-imidazole supermolecular model complex showed that the entire range of Tyr* gx values, from 2.0065 to 2.0095, could be explained by the combined effects of hydrogen bonding and the dielectric constant of the local protein environment.
Collapse
Affiliation(s)
- Sun Un
- Service de Bioénergétique, URA CNRS 2096, DBJC, CEA Saclay, 91191 Gif sur Yvette, France.
| | | | | |
Collapse
|
10
|
Affiliation(s)
- James P McEvoy
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
11
|
Su JH, Havelius KGV, Mamedov F, Ho FM, Styring S. Split EPR signals from photosystem II are modified by methanol, reflecting S state-dependent binding and alterations in the magnetic coupling in the CaMn4 cluster. Biochemistry 2006; 45:7617-27. [PMID: 16768457 DOI: 10.1021/bi060333u] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methanol binds to the CaMn4 cluster in photosystem II (PSII). Here we report the methanol dependence of the split EPR signals originating from the magnetic interaction between the CaMn4 cluster and the Y(Z)* radical in PSII which are induced by illumination at 5 K. We found that the magnitudes of the "split S1" and "split S3" signals induced in the S1 and S3 states of PSII centers, respectively, are diminished with an increase in the methanol concentration. The methanol concentrations at which half of the respective spectral changes had occurred ([MeOH](1/2)) were 0.12 and 0.57%, respectively. By contrast, the "split S0" signal induced in the S0 state is broadened, and its amplitude is enhanced. [MeOH](1/2) for this change was found to be 0.54%. We discuss these observations with respect to the location and nature of the methanol binding site. Furthermore, by comparing this behavior with methanol effects reported for other EPR signals in the different S states, we propose that the observed methanol-dependent changes in the split S1 and split S0 EPR signals are caused by an increase in the extent of magnetic coupling within the cluster.
Collapse
Affiliation(s)
- Ji-Hu Su
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Angström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
12
|
Ioannidis N, Zahariou G, Petrouleas V. Trapping of the S2 to S3 state intermediate of the oxygen-evolving complex of photosystem II. Biochemistry 2006; 45:6252-9. [PMID: 16700536 DOI: 10.1021/bi060520s] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photosystem II preparations poised in the S(2)...Q(A) state produce no detectable intermediate during straightforward illumination at liquid helium temperatures. However, upon flash illumination in the range of 77-190 K, they produce a transient state which at -10 degrees C advances to S(3) or after rapid cooling to 10 K gives rise to a 116 G wide metalloradical EPR signal. The latter decays with half-times on the order of a few minutes, presumably by charge recombination, and can be regenerated repeatedly by illumination at 10 K. The constraints for Tyr Z oxidation are attributed to the presence of excess positive charge in S(2). Elevated temperatures are required presumably to overcome a thermal barrier in the deprotonation of Tyr Z(+) or most likely to allow secondary proton transfer away from the base partner of Tyr Z. Treatment with 5% (v/v) MeOH appears to remove the constraints for Tyr Z oxidation, and a 160 G wide metalloradical EPR signal is produced by illumination at 10 K, which decays with a half-time of ca. 80 s. Formation of the metalloradical signals is accompanied by reversible changes in the Mn multiline signal. The intermediates are assigned to Tyr Z(*) magnetically interacting with the Mn cluster in S(2), S(2)Y(Z)(*). A molecular model which extends an earlier suggestion and provides a plausible explanation of a number of observations, including the binding of small molecules to the Mn cluster, is presented.
Collapse
Affiliation(s)
- Nikolaos Ioannidis
- Institute of Materials Science, NCSR Demokritos, 153 10 Aghia Paraskevi Attikis, Greece
| | | | | |
Collapse
|
13
|
Havelius KGV, Su JH, Feyziyev Y, Mamedov F, Styring S. Spectral Resolution of the Split EPR Signals Induced by Illumination at 5 K from the S1, S3, and S0 States in Photosystem II. Biochemistry 2006; 45:9279-90. [PMID: 16866374 DOI: 10.1021/bi060698e] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
S-State-dependent split EPR signals that are induced by illumination at cryogenic temperatures (5 K) have been measured in spinach photosystem II without interference from the Y(D)* radical in the g approximately 2 region. This allows us to present the first decay-associated spectra for the split signals, which originate from the CaMn4 cluster in magnetic interaction with a nearby radical, presumably Y(Z)*. The three split EPR signals that were investigated, "Split S1", "Split S3", and Split S0", all exhibit spectral features at g approximately 2.0 together with surrounding characteristic peaks and troughs. From microwave relaxation studies we can reach conclusions about which parts of the complex spectra belong together. Our analysis strongly indicates that the wings and the middle part of the split spectrum are parts of the same signal, since their decay kinetics in the dark at 5 K and microwave relaxation behavior are indistinguishable. In addition, our decay-associated spectra indicate that the g approximately 2.0 part of the "Split S1" EPR spectrum contains a contribution from magnetically uncoupled Y(Z)* as judged from the g value and 22 G line width of the EPR signal. The g value, 2.0033-2.0040, suggests that the oxidation of Y(Z) at 5 K results in a partially protonated radical. Irrespective of the S state, a small amount of a carotenoid or chlorophyll radical was formed by the illumination. However, this had relaxation and decay characteristics that clearly distinguish this radical from the split signal spectra. In this paper, we present the "clean" spectra from the low-temperature illumination-induced split EPR signals from higher plants, which will provide the basis for further simulation studies.
Collapse
Affiliation(s)
- Kajsa G V Havelius
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Angström Laboratory, Uppsala University, P.O. Box 523, S-751 20 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
14
|
Giacometti GM, Giacometti G. Twenty years of biophysics of photosynthesis in Padova, Italy (1984-2005): a tale of two brothers. PHOTOSYNTHESIS RESEARCH 2006; 88:241-58. [PMID: 16763879 DOI: 10.1007/s11120-006-9057-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 03/07/2006] [Indexed: 05/10/2023]
Abstract
This paper tells the history of two brothers, almost a generation apart in age, who met again, after having followed different academic paths, to introduce biophysical research in photosynthesis at the University of Padova. The development of two research groups, one in the Chemistry Department, the other in the Biology Department led to a comprehensive interdisciplinary group across academic barriers. The group of Giovanni Giacometti developed in Physical Chemistry, during the years before his retirement, with some roots which can be traced to the famous Linus Pauling school of the mid 1950s, and made possible, by the work of many students (especially Donatella Carbonera and Marilena Di Valentin) and of an older associate (Giancarlo Agostini). The group participated quite actively with a number of European and American laboratories in the application of physical techniques, especially Electron Spin Resonance (EPR) associated with Optical Spectroscopy (Optically Detected Magnetic Resonance; ODMR), and contributed to the development of the understanding of the structure-function relationships in photosynthetic membrane complexes, stimulated by the determination of the X-ray structure of the purple photosynthetic reaction center in the mid 1980s ( J. Deisenhofer, H. Michel, R. Huber and others). The younger brother of Giovanni, Giorgio Mario Giacometti, came to Padova after obtaining biochemical knowledge from the Rossi-Fanelli school in Rome, where Jeffries Wyman, Eraldo Antonini and Maurizio Brunori were the world masters of hemoglobin research. In Padova, together with a group of young scientists (at first Roberto Bassi and Roberto Barbato, now leaders of their own groups in Verona and in Alessandria respectively, followed soon by brilliant coworkers such as Fernanda Rigoni, Elisabetta Bergantino and more recently Ildikò Szabò and Paola Costantini), Giorgio approached more biochemical themes of oxygenic photosynthesis, such as purification and characterization of antenna chlorophyll-protein complexes, Photosystem II (PS II) particles and subunits, having always in mind structural and molecular problems at the level of the largest integrated particles, which are more difficult to investigate in detail by the spectroscopic techniques.
Collapse
Affiliation(s)
- Giorgio M Giacometti
- Department of Biology, University of Padova, Via Giuseppe Colombo 3, 35121 Padua, Italy.
| | | |
Collapse
|
15
|
Petrouleas V, Koulougliotis D, Ioannidis N. Trapping of Metalloradical Intermediates of the S-States at Liquid Helium Temperatures. Overview of the Phenomenology and Mechanistic Implications. Biochemistry 2005; 44:6723-8. [PMID: 15865417 DOI: 10.1021/bi0503201] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxygen-evolving complex (OEC) of photosystem II (PSII) consists of a Mn cluster (believed to be tetranuclear) and a tyrosine (Tyr Z or Y(Z)). During the sequential absorption of four photons by PSII, the OEC undergoes four oxidative transitions, S(0) to S(1), ..., S(3) to (S(4))S(0). Oxygen evolves during the S(3) to S(0) transition (S(4) being a transient state). Trapping of intermediates of the S-state transitions, particularly those involving the tyrosyl radical, has been a goal of ultimate importance, as that can test critically models employing a role of Tyr Z in proton (in addition to electron) transfer, and also provide important clues about the mechanism of water oxidation. Until very recently, however, critical experimental information was lacking. We review and evaluate recent observations on the trapping of metalloradical intermediates of the S-state transitions, at liquid helium temperatures. These transients are assigned to Tyr Z(*) magnetically interacting with the Mn cluster. Besides the importance of trapping intermediates of this unique catalytic mechanism, liquid helium temperatures offer the additional advantage that proton motions (unlike electron transfer) are blocked except perhaps across strong hydrogen bonds. This paper summarizes the recent observations and discusses the constraints that the phenomenology imposes.
Collapse
Affiliation(s)
- Vasili Petrouleas
- Institute of Materials Science, NCSR Demokritos, 15310 Aghia Paraskevi Attikis, Greece. vpetr@ ims.demokritos.gr
| | | | | |
Collapse
|
16
|
Marlin DS, Bill E, Weyhermüller T, Bothe E, Wieghardt K. Magnetic Interactions in Dinuclear MnIIIMnIV Complexes Covalently Tethered to Organic Radicals: Spectroscopic Models for the S2Yz• State of Photosystem II. J Am Chem Soc 2005; 127:6095-108. [PMID: 15839711 DOI: 10.1021/ja042655w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of isostructural dimeric manganese complexes of the type [(Me(4)dtne)Mn(2)(mu-O)(2)(mu-R)](2+)(X(-))(2) have been prepared and characterized. The dimanganese cores of these complexes are rigidly held together by the hexadentate ligand Me(4)dtne (Me(4)dtne = 1,2-bis(4,7-dimethyl-1,4,7-triazacyclonon-1-yl)ethane). Molecular structures for the entire series have been obtained by X-ray diffraction measurements, of which complexes 2 (R = (-)O(2)BPh), 3 (R = (-)O(2)C-PROXYL), 4 (R = (-)O(2)C-TEMPO), and 5 (R = (-)O(2)BPhNIT) are reported here (HO(2)C-PROXYL = 3-carboxy-2,2,5,5-tetramethylpyrrolidin-1-yloxy; HO(2)C-TEMPO = 4-carboxy-2,2,6,6-tetramethylpiperidin-1-yloxy; and HO(2)BPhNIT = 2-(4-(dihydroxyboranyl)-phenyl)-4,4,5,5-tetramethyl-3-oxyimidazolidin-1-oxide). The structures of 1 (R = (-)OAc) and 6 (R = (-)O(2)CPhNIT) have been reported previously (HO(2)CPhNIT = 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-3-oxyimidazolidin-1-oxide). All complexes exhibit several redox states, which have been investigated by electrochemistry. Complexes 1, 3, 4, and 6 contain a mixed-valent Mn(III)Mn(IV) core with an isolated magnetic ground state of S = 1/2. The exchange coupling between the manganese ions is strong throughout the series (J approximately -130 +/- 10 cm(-)(1), H = -2JS(1)S(2)). The radical complexes 3, 4, and 6 exhibit, in addition, long-range exchange interaction (6.9, 7.7, and 8.8 A, respectively) between the organic radical and the dimanganese core. The intramolecular anisotropic coupling was determined from cw-EPR line shape analyses at S-, X-, and Q-band frequencies and from the intensity of half-field signals detected in normal- and parallel-mode (J(d,)(z)() = -120 x 10(-)(4), -105 x 10(-)(4), and -140 x 10(-)(4) cm(-)(1), for 3, 4, and 6 respectively). Distance information was obtained for the dimanganese core and the organic radicals from these values by using a three-spin dipole model and local spin contributions for the manganese ions.
Collapse
Affiliation(s)
- Dana S Marlin
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | | | |
Collapse
|
17
|
Pan J, Xu Y, Benkö G, Feyziyev Y, Styring S, Sun L, Åkermark B, Polívka T, Sundström V. Stepwise Charge Separation from a Ruthenium−Tyrosine Complex to a Nanocrystalline TiO2 Film. J Phys Chem B 2004. [DOI: 10.1021/jp049449v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingxi Pan
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Organic Chemistry, Stockholm University, S-10691 Stockholm, Sweden, Department of Biochemistry, Lund University, Box 124, S-22100 Lund, Sweden, and Molecular Biomimetics, Uppsala University, Villavagen 6, S-75236 Uppsala, Sweden
| | - Yunhua Xu
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Organic Chemistry, Stockholm University, S-10691 Stockholm, Sweden, Department of Biochemistry, Lund University, Box 124, S-22100 Lund, Sweden, and Molecular Biomimetics, Uppsala University, Villavagen 6, S-75236 Uppsala, Sweden
| | - Gabor Benkö
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Organic Chemistry, Stockholm University, S-10691 Stockholm, Sweden, Department of Biochemistry, Lund University, Box 124, S-22100 Lund, Sweden, and Molecular Biomimetics, Uppsala University, Villavagen 6, S-75236 Uppsala, Sweden
| | - Yashar Feyziyev
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Organic Chemistry, Stockholm University, S-10691 Stockholm, Sweden, Department of Biochemistry, Lund University, Box 124, S-22100 Lund, Sweden, and Molecular Biomimetics, Uppsala University, Villavagen 6, S-75236 Uppsala, Sweden
| | - Stenbjörn Styring
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Organic Chemistry, Stockholm University, S-10691 Stockholm, Sweden, Department of Biochemistry, Lund University, Box 124, S-22100 Lund, Sweden, and Molecular Biomimetics, Uppsala University, Villavagen 6, S-75236 Uppsala, Sweden
| | - Licheng Sun
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Organic Chemistry, Stockholm University, S-10691 Stockholm, Sweden, Department of Biochemistry, Lund University, Box 124, S-22100 Lund, Sweden, and Molecular Biomimetics, Uppsala University, Villavagen 6, S-75236 Uppsala, Sweden
| | - Björn Åkermark
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Organic Chemistry, Stockholm University, S-10691 Stockholm, Sweden, Department of Biochemistry, Lund University, Box 124, S-22100 Lund, Sweden, and Molecular Biomimetics, Uppsala University, Villavagen 6, S-75236 Uppsala, Sweden
| | - Tomáš Polívka
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Organic Chemistry, Stockholm University, S-10691 Stockholm, Sweden, Department of Biochemistry, Lund University, Box 124, S-22100 Lund, Sweden, and Molecular Biomimetics, Uppsala University, Villavagen 6, S-75236 Uppsala, Sweden
| | - Villy Sundström
- Department of Chemical Physics, Lund University, Box 124, S-22100 Lund, Sweden, Department of Organic Chemistry, Stockholm University, S-10691 Stockholm, Sweden, Department of Biochemistry, Lund University, Box 124, S-22100 Lund, Sweden, and Molecular Biomimetics, Uppsala University, Villavagen 6, S-75236 Uppsala, Sweden
| |
Collapse
|
18
|
Konovalova TA, Kispert LD, van Tol J, Brunel LC. Multifrequency High-Field Electron Paramagnetic Resonance Characterization of the Peroxyl Radical Location in Horse Heart Myoglobin Oxidized by H2O2. J Phys Chem B 2004. [DOI: 10.1021/jp0313425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tatyana A. Konovalova
- Department of Chemistry, Box 870336, University of Alabama, Tuscaloosa, Alabama 35487, and Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Lowell D. Kispert
- Department of Chemistry, Box 870336, University of Alabama, Tuscaloosa, Alabama 35487, and Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Johan van Tol
- Department of Chemistry, Box 870336, University of Alabama, Tuscaloosa, Alabama 35487, and Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Louis-Claude Brunel
- Department of Chemistry, Box 870336, University of Alabama, Tuscaloosa, Alabama 35487, and Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| |
Collapse
|
19
|
Huang P, Högblom J, Anderlund MF, Sun L, Magnuson A, Styring S. Light-induced multistep oxidation of dinuclear manganese complexes for artificial photosynthesis. J Inorg Biochem 2004; 98:733-45. [PMID: 15134919 DOI: 10.1016/j.jinorgbio.2003.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 12/10/2003] [Accepted: 12/11/2003] [Indexed: 11/22/2022]
Abstract
Two dinuclear manganese complexes, [Mn(2)BPMP(mu-OAc)(2)].ClO(4) (1, where BPMP is the anion of 2,6-bis([N,N-di(2-pyridinemethyl)amino]methyl)-4-methylphenol) and [Mn(2)L(mu-OAc)(2)].ClO(4) (2, where L is the trianion of 2,6-bis([N-(2-hydroxy-3,5-di-tert-butylbenzyl)-N-(2-pyridinemethyl)amino]methyl)-4-methylphenol), undergo several oxidations by laser flash photolysis, using ruthenium(II)-tris-bipyridine (tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate) as photo-sensitizer and penta-amminechlorocobalt(III) chloride as external electron acceptor. In both complexes stepwise electron transfer was observed. In 1, four Mn-valence states from the initial Mn(2)(II,II) to the Mn(2)(III,IV) state are available. In 2, three oxidation steps are possible from the initial Mn(2)(III,III)state. The last step is accomplished in the Mn(2)(IV,IV) state, which results in a phenolate radical. For the first time we provide firm spectral evidence for formation of the first intermediate state, Mn(2)(II,III), in 1 during the stepwise light-induced oxidation. Observation of Mn(2)(II,III) is dependent on conditions that sustain the mu-acetato bridges in the complex, i.e., by forming Mn(2)(II,III) in dry acetonitrile, or by addition of high concentrations of acetate in aqueous solutions. We maintain that the presence of water is necessary for the transition to higher oxidation states, e.g., Mn(2)(III,III) and Mn(2)(III,IV) in 1, due to a bridging ligand exchange reaction which takes place in the Mn(2)(II,III) state in water solution. Water is also found to be necessary for reaching the Mn(2)(IV,IV) state in 2, which explains why this state was not reached by electrolysis in our earlier work (Eur. J. Inorg. Chem (2002) 2965). In 2, the extra coordinating oxygen atoms facilitate the stabilization of higher Mn valence states than in 1, resulting in formation of a stable Mn(2)(IV,IV) without disintegration of 2. In addition, further oxidation of 2, led to the formation of a phenolate radical (g = 2.0046) due to ligand oxidation. Its spectral width (8 mT) and very fast relaxation at 15 K indicates that this radical is magnetically coupled to the Mn(2)(IV,IV) center.
Collapse
Affiliation(s)
- Ping Huang
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, Lund S-22100, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Barber J. Water, water everywhere, and its remarkable chemistry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:123-32. [PMID: 15100024 DOI: 10.1016/j.bbabio.2003.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Revised: 10/30/2003] [Accepted: 10/30/2003] [Indexed: 11/18/2022]
Abstract
Photosystem II (PSII), the multisubunit pigment-protein complex localised in the thylakoid membranes of oxygenic photosynthetic organisms, uses light energy to drive a series of remarkable reactions leading to the oxidation of water. The products of this oxidation are dioxygen, which is released to the atmosphere, and reducing equivalents destined to reduce carbon dioxide to organic molecules. The water oxidation occurs at catalytic sites composed of four manganese atoms (Mn(4)-cluster) and powered by the redox potential of an oxidised chlorophyll a molecule (P680(*+)). Gerald T (Jerry) Babcock and colleagues showed that electron/proton transfer processes from substrate water to P680(*+) involved a tyrosine residue (Y(Z)) and proposed an attractive reaction mechanism for the direct involvement of Y(Z) in the chemistry of water oxidation. The 'hydrogen-atom abstract/metalloradical' mechanism he formulated is an expression of his genius and a highlight of his many other outstanding contributions to photosynthesis research. A structural basis for Jerry's model is now being revealed by X-ray crystallography.
Collapse
Affiliation(s)
- Jim Barber
- Department of Biological Sciences, Wolfson Laboratories, Biochemistry Building, South Kensington Campus, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
21
|
Cukier RI. Theory and simulation of proton-coupled electron transfer, hydrogen-atom transfer, and proton translocation in proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:37-44. [PMID: 15100014 DOI: 10.1016/j.bbabio.2003.06.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Accepted: 06/25/2003] [Indexed: 11/17/2022]
Abstract
A theory of proton coupled electron transfer (PCET) is reviewed with application to charge transfer steps in the photosystem II oxygen-evolving complex (PSII/OEC). The relation between PCET when it is a concerted electron proton transfer (ETPT) process and hydrogen-atom transfer (HAT) reactions is discussed. Signatures expected for HAT reactions in terms of the size of the kinetic isotope effect and overall magnitude of the rate constant are discussed in the context of PSII/OEC. The formal similarity of ETPT to proton transfer and translocation is used to introduce a combined quantum mechanical (for the transferring protons) and molecular dynamics for the heavy-atom degrees of freedom approach. The method is used to examine double proton transfer in cytochrome c oxidase where two waters and a glutamate (Glu286) that is implicated in the proton translocation mechanism form a cyclic hydrogen bonded structure. Protonation of the glutamate is found to occur in agreement with experimental results.
Collapse
Affiliation(s)
- R I Cukier
- Department of Chemistry, Michigan State University, East Lansing, MI 48824-1322, USA.
| |
Collapse
|
22
|
Koulougliotis D, Teutloff C, Sanakis Y, Lubitz W, Petrouleas V. The S1YZ? metalloradical intermediate in photosystem II: an X- and W-band EPR study. Phys Chem Chem Phys 2004. [DOI: 10.1039/b407355j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Feyziyev Y, Rotterdam BJ, Bernát G, Styring S. Electron transfer from cytochrome b559 and tyrosineD to the S2 and S3 states of the water oxidizing complex in photosystem II. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00322-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Mino H, Ishii A, Ono TA. Nonlineal relationship between g=2 doublet and multiline signals in Ca(2+)-depleted Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:127-36. [PMID: 14507433 DOI: 10.1016/s0005-2728(03)00107-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Illuminating of the Ca(2+)-depleted PS II in the S(2) state for a short period induced the doublet signal at g=2 with concomitant diminution of the multiline signal, both in the presence and absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). In the absence of DCMU, the doublet signal decayed (t(1/2) approximately 7 min) during subsequent dark incubation at 273 K and the multiline signal was regenerated to the original amplitude with the same kinetics of the doublet decay. In the presence of DCMU, the doublet signal decayed much faster (t(1/2) approximately 1 min) by charge recombination with Q(A)(-), while the time course of the multiline recovery was inherently identical with that observed in the absence of DCMU. A simple theoretical consideration indicates the direct conversion from the doublet-signal state to the multiline state with no intermediate state between them. Lengthy dark storage at 77 K led to disappearance of the DCMU-affected doublet signal and a Fe(2+)/Q(A)(-) electron spin resonance (ESR) signal, but no recovery of the multiline signal. Notably, the multiline signal was restored by subsequent dark incubation at 273 K. The charge recombination between Q(A)(-) and the doublet signal species led to a thermoluminescence band at 7 degrees C in a medium at pH 5.5. The peak position shifted to 17 degrees C at pH 7.0, presumably due to a pH-dependent change in the redox property of a donor-side radical species responsible for the doublet signal. Based on these results, redox events in the Ca(2+)-depleted PS II are discussed in contradistinction with the normal processes in oxygen-evolving PS II.
Collapse
Affiliation(s)
- Hiroyuki Mino
- Laboratory for Photo-Biology(1), The Institute of Physical and Chemical Research, RIKEN Photodynamics Research Center, 519-1399 Aoba, Aramaki, Aoba, Sendai 980-0845, Japan.
| | | | | |
Collapse
|
25
|
Hureau C, Blondin G, Cesario M, Un S. Direct measurement of the hyperfine and g-tensors of a Mn(III)-Mn(IV) complex in polycrystalline and frozen solution samples by high-field EPR. J Am Chem Soc 2003; 125:11637-45. [PMID: 13129368 DOI: 10.1021/ja035153b] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The g-tensors and hyperfine tensors of the S = (1)/(2) ground state of the mixed valence [LMn(IIImu-O)(2)Mn(IV)L](3+) complex (L = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine) was deter-mined in the solid-state and frozen acetonitrile solution by high-field EPR. Both samples exhibited complex anisotropic temperature behaviors that precluded the use of routine spectrum simulation procedures to extract the spin parameters. To circumvent this problem, the parameters were measured directly by using multifrequency techniques. In the case of the frozen solution, this approach yielded seven of the nine spin parameters with varying uncertainty, the two extreme principal g-values, the four hyperfine couplings associated with each of these two g-values, and the middle g-value. This latter parameter was obtained from a first moment analysis. Unlike simulations, the statistical errors associated with each value could be assigned in a straightforward and rigorous manner. The directly measured g-values were different in frozen solution and polycrystalline powder. The temperature dependence of the high-field EPR spectra of the polycrystalline powder revealed a spin-spin interaction between the neighboring binuclear complexes.
Collapse
Affiliation(s)
- Christelle Hureau
- Laboratoire de Chimie Inorganique, UMR 8613, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris XI, F-91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
26
|
Zhang C, Styring S. Formation of split electron paramagnetic resonance signals in photosystem II suggests that tyrosine(Z) can be photooxidized at 5 K in the S0 and S1 states of the oxygen-evolving complex. Biochemistry 2003; 42:8066-76. [PMID: 12834358 DOI: 10.1021/bi0269299] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of illumination at 5 K of photosystem II in different S-states was investigated with EPR spectroscopy. Two split radical EPR signals around g approximately 2.0 were observed from samples given 0 and 3 flashes, respectively. The signal from the 0-flash sample was narrow, with a width of approximately 80 G, in which the low-field peak can be distinguished. This signal oscillated with the S(1) state in the sample. The signal from the 3-flash sample was broad, with a symmetric shape of approximately 160 G width from peak to trough. This signal varied with the concentration of the S(0) state in the sample. Both signals are assigned to arise from the donor side of PSII. Both signals relaxed fast, were formed within 10 ms after a flash, and decayed with half-times at 5 K of 3-4 min. The signal in the S(0) state closely resembles split radical signals, originating from magnetic interaction between Y(Z)(*) and the S(2) state, that were first observed in Ca(2+)-depleted photosystem II samples. Therefore, we assign this signal to Y(Z)(*) in magnetic interaction with the S(0) state, Y(Z)(*)S(0). The other signal is assigned to the magnetic interaction between Y(Z)(*) and the S(1) state, Y(Z)(*)S(1). An important implication is that Y(Z) can be oxidized at 5 K in the S(0) and S(1) states. Oxidation of Y(Z) involves deprotonation of the tyrosine. This is restricted at 5 K, and we therefore suggest that the phenolic proton of Y(Z) is involved in a low-barrier hydrogen bond. This is an unusually short hydrogen bond in which proton movement at very low temperatures can occur.
Collapse
Affiliation(s)
- Chunxi Zhang
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, P.O. Box 124, Lund University, S-221 00 Lund, Sweden
| | | |
Collapse
|
27
|
Styring S, Feyziyev Y, Mamedov F, Hillier W, Babcock GT. pH dependence of the donor side reactions in Ca2+-depleted photosystem II. Biochemistry 2003; 42:6185-92. [PMID: 12755621 DOI: 10.1021/bi027035r] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied how low pH affects the water-oxidizing complex in Photosystem II when depleted of the essential Ca(2+) ion cofactor. For these samples, it was found that the EPR signal from the Y(Z)(*) radical decays faster at low pH than at high pH. At 20 degrees C, Y(Z)(*) decays with biphasic kinetics. At pH 6.5, the fast phase encompasses about 65% of the amplitude and has a lifetime of approximately 0.8 s, while the slow phase has a lifetime of approximately 22 s. At pH 3.9, the kinetics become totally dominated by the fast phase, with more than 90% of the signal intensity operating with a lifetime of approximately 0.3 s. The kinetic changes occurred with an approximate pK(a) of 4.5. Low pH also affected the induction of the so-called split radical EPR signal from the S(2)Y(Z)(*) state that is induced in Ca(2+)-depleted PSII membranes because of an inability of Y(Z)(*) to oxidize the S(2) state. At pH 4.5, about 50% of the split signal was induced, as compared to the amplitude of the signal that was induced at pH 6.5-7, using similar illumination conditions. Thus, the split-signal induction decreased with an apparent pK(a) of 4.5. In the same samples, the stable multiline signal from the S(2) state, which is modified by the removal of Ca(2+), was decreased by the illumination to the same extent at all pHs. It is proposed that decreased induction of the S(2)Y(Z)(*) state at lower pH was not due to inability to oxidize the modified S(2) state induced by the Ca(2+) depletion. Instead, we propose that the low pH makes Y(Z)(*) able to oxidize the S(2) state, making the S(2) --> S(3) transition available in Ca(2+)-depleted PSII. Implications of these results for the catalytic role of Ca(2+) and the role of proton transfer between the Mn cluster and Y(Z) during oxygen evolution is discussed.
Collapse
Affiliation(s)
- Stenbjörn Styring
- Department of Biochemistry, Centre for Chemistry and Chemical Engineering P.O. Box 124, Lund University, Sweden
| | | | | | | | | |
Collapse
|
28
|
Koulougliotis D, Shen JR, Ioannidis N, Petrouleas V. Near-IR irradiation of the S2 state of the water oxidizing complex of photosystem II at liquid helium temperatures produces the metalloradical intermediate attributed to S1Y(Z*). Biochemistry 2003; 42:3045-53. [PMID: 12627971 DOI: 10.1021/bi027051o] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Near-IR (NIR) excitation at liquid He temperatures of photosystem II (PSII) membranes from the cyanobacterium Synechococcus vulcanus or from spinach poised in the S2 state results in the production of a g = 2.035 EPR resonance, reminiscent of metalloradical signals. The signal is smaller in the spinach preparations, but it is significantly enhanced by the addition of exogenous quinones. Ethanol (2-3%, v/v) eliminates the ability to trap the signal. The g = 2.035 signal is identical to the one recently obtained by Nugent et al. by visible-light illumination of the S1 state, and preferably assigned to S1Y(Z*) [Nugent, J. H. A., Muhiuddin, I. P., and Evans, M. C. W. (2002) Biochemistry 41, 4117-4126]. The production of the g = 2.035 signal by liquid He temperature NIR excitation of the S2 state is paralleled by a significant reduction (typically 40-45% in S. vulcanus) of the S2 state multiline signal. This is in part due to the conversion of the Mn cluster to higher spin states, an effect documented by Boussac et al. [Boussac, A., Un, S., Horner, O., and Rutherford, A. W. (1998) Biochemistry 37, 4001-4007], and in part due to the conversion to the g = 2.035 configuration. Following the decay of the g = 2.035 signal at liquid helium temperatures (decay halftimes in the time range of a few to tens of minutes depending on the preparation), annealing at elevated temperatures (-80 degrees C) results in only partial restoration of the S2 state multiline signal. The full size of the signal can be restored by visible-light illumination at -80 degrees C, implying that during the near-IR excitation and subsequent storage at liquid helium temperatures recombination with Q(A-) (and therefore decay of the S2 state to the S1 state) occurred in a fraction of centers. In support of this conclusion, the g = 2.035 signal remains stable for several hours (at 11 K) in centers poised in the S2...Q(A) configuration before the NIR excitation. The extended stability of the signal under these conditions has allowed the measurement of the microwave power saturation and the temperature dependence in the temperature range of 3.8-11 K. The signal intensity follows Curie law temperature dependence, which suggests that it arises from a ground spin state, or a very low-lying excited spin state. The P1/2 (microwave power at half-saturation) value is 1.7 mW at 3.8 K and increases to 96 mW at 11 K. The large width of the g = 2.035 signal and its relatively fast relaxation support the assignment to a radical species in the proximity of the Mn cluster. The whole phenomenology of the g = 2.035 signal production is analogous to the effects of NIR excitation on the S3 state [Ioannidis, N., Nugent, J. H. A., and Petrouleas, V. (2002) Biochemistry 41, 9589-9600] producing an S2'Y(Z*) intermediate. In the present case, the intermediate is assigned to S1Y(Z*). The NIR-induced increase in the oxidative capability of the Mn cluster is discussed in relation to the photochemical properties of a Mn(III) ion that exists in both S2 and S3 states. The EPR properties of the S1Y(Z*) intermediate cannot be reconciled easily with our current understanding of the magnetic properties of the S1 state. It is suggested that oxidation of tyr Z alters the magnetic properties of the Mn cluster via exchange of a proton.
Collapse
|
29
|
Marlin DS, Bill E, Weyhermüller T, Rentschler E, Wieghardt K. Long-Distance Magnetic Interaction between a MnIIIMnIV (S=1/2) Core and an Organic Radical: A Spectroscopic Model for the S2Yz. State of Photosystem II. Angew Chem Int Ed Engl 2002. [DOI: 10.1002/ange.200290044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Marlin DS, Bill E, Weyhermüller T, Rentschler E, Wieghardt K. Long-distance magnetic interaction between a Mn(III)Mn(IV) (S=1/2) core and an organic radical: a spectroscopic model for the S(2)Y(Z). state of photosystem II. Angew Chem Int Ed Engl 2002; 41:4775-9. [PMID: 12481355 DOI: 10.1002/anie.200290045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dana S Marlin
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | |
Collapse
|
31
|
Vrettos JS, Brudvig GW. Water oxidation chemistry of photosystem II. Philos Trans R Soc Lond B Biol Sci 2002; 357:1395-404; discussion 1404-5, 1419-20. [PMID: 12437878 PMCID: PMC1693042 DOI: 10.1098/rstb.2002.1136] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The O(2)-evolving complex of photosystem II catalyses the light-driven four-electron oxidation of water to dioxygen in photosynthesis. In this article, the steps leading to photosynthetic O(2) evolution are discussed. Emphasis is given to the proton-coupled electron-transfer steps involved in oxidation of the manganese cluster by oxidized tyrosine Z (Y(*)(Z)), the function of Ca(2+) and the mechanism by which water is activated for formation of an O-O bond. Based on a consideration of the biophysical studies of photosystem II and inorganic manganese model chemistry, a mechanism for photosynthetic O(2) evolution is presented in which the O-O bond-forming step occurs via nucleophilic attack on an electron-deficient Mn(V)=O species by a calcium-bound water molecule. The proposed mechanism includes specific roles for the tetranuclear manganese cluster, calcium, chloride, Y(Z) and His190 of the D1 polypeptide. Recent studies of the ion selectivity of the calcium site in the O(2)-evolving complex and of a functional inorganic manganese model system that test key aspects of this mechanism are also discussed.
Collapse
Affiliation(s)
- John S Vrettos
- Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, USA
| | | |
Collapse
|
32
|
Clemens KL, Force DA, Britt RD. Acetate binding at the photosystem II oxygen evolving complex: an S(2)-state multiline signal ESEEM study. J Am Chem Soc 2002; 124:10921-33. [PMID: 12207548 DOI: 10.1021/ja012036c] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, using acetate deuterated in the methyl hydrogen positions, we showed that acetate binds in close proximity to the Mn cluster/Y(.)(z) tyrosine dual spin complex in acetate-inhibited photosystem II (PSII) preparations exhibiting the "split" EPR signal arising from the S(2)-Y(.)(z) interaction [Force, D. A.; Randall, D. W.; Britt, R. D. Biochemistry 1997, 36, 12062-12070]. By using paramagnetic NO to quench the paramagnetism of Y(.)(z), we are able to observe the ESEEM spectrum of deuterated acetate interacting with only the Mn cluster. A good fit of the ESEEM data indicates two (2)H dipolar hyperfine couplings of 0.097 MHz and one of 0.190 MHz. Modeling of these dipolar interactions, using our "dangler" 3 + 1 model for the S(2)-state of the Mn cluster, reveals distances consistent with direct ligation of acetate to the Mn cluster. As acetate inhibition is competitive with the essential cofactor Cl(-), this suggests that Cl(-) ligates directly to the Mn cluster. The effect of acetate binding on the structure of the Mn cluster is investigated by comparing the Mn-histidine coupling in NO/acetate-treated PSII and untreated PSII using ESEEM. We find that the addition of acetate and NO does not affect the histidine ligation to the Mn cluster. We also investigate the ability of acetate to access Y(.)(z) in Mn-depleted PSII, a PSII preparation expected to be more solvent accessible than intact PSII. We detect no coupling between Y(.)(z) and acetate. We have previously shown that small alcohols such as methanol can ligate to the Mn cluster with ease, while larger alcohols such as 2-propanol, as well as DMSO, are excluded [Force, D. A.; Randall, D. W.; Lorigan, G. A.; Clemens, K. L.; Britt, R. D. J. Am. Chem. Soc. 1998, 120, 13321-13333]. We probe the effect of acetate binding on the ability of methanol and DMSO to bind to the Mn cluster. We find that methanol is able to bind to the Mn cluster in the presence of acetate. We detect no DMSO binding in the presence of acetate. Thus, acetate binding does not increase the affinity or accessibility for DMSO binding at the Mn cluster. We also explore the possibility that the acetate binding site is also a binding site for substrate water. By comparing the ratioed three-pulse ESEEM spectra of a control, untreated PSII sample in 50% D(2)O to an NO/acetate-treated PSII sample in 50% D(2)O, we find that the binding of acetate to the oxygen evolving complex of photosystem II displaces deuterons bound very closely to the Mn cluster.
Collapse
Affiliation(s)
- Keri L Clemens
- Department of Chemistry, University of California, Davis, CA 95616-0935, USA
| | | | | |
Collapse
|
33
|
Ioannidis N, Nugent JHA, Petrouleas V. Intermediates of the S(3) state of the oxygen-evolving complex of photosystem II. Biochemistry 2002; 41:9589-600. [PMID: 12135381 DOI: 10.1021/bi0159940] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The S(3) state of the water-oxidizing complex (WOC) of photosystem II (PSII) is the last state that can be trapped before oxygen evolution occurs at the transient S(4) state. A number of EPR-detectable intermediates are associated with this critical state. The preceding paper examined mainly the decay of S(3) at cryogenic temperatures leading to the formation of a proton-deficient configuration of S(2) termed S(2)'. This second paper examines all intermediates formed by the near-IR light (NIR) excitation of the S(3) state and compares these with the light-excitation products of the S(2)' state. The rather complex set of observations is organized in a comprehensive flowchart, the central part of which is the S(3)...Q(A)(-) state. This state can be converted to various intermediates via two main pathways: (A) Excitation of S(3) by NIR light at temperatures below 77 K results presumably in the formation of an excited S(3) state, S(3), which decays via either of two pathways. Slowly at liquid helium temperatures but much faster at 77 K, S(3) decays to an EPR-silent state, denoted S(3)' ', which by raising the temperature to ca. 190 K converts to a spin configuration of the Mn cluster, characterized by g = 21, 3.7 in perpendicular and g = 23 in parallel mode EPR, denoted S(3)'. Upon further warming to 220 K, S(3)' relaxes to the untreated S(3) state. Below about 77 K and more favorably at liquid helium temperatures, an alternative pathway of S(3) decay via the metallo-radical intermediate S(2)'Z*...Q(A)(-) can be traced. This leads to the metastable state S(2)'Z...Q(A) via charge recombination. S(2)'Z* is characterized by a split-radical signal at g = 2, while all S(2)' transients are characterized by the same g = 5/2.9 (S = (7)/(2)) configuration of the Mn cluster with small modifications, reflecting an influence of the tyr Z oxidation state on the crystal-field symmetry at the Mn cluster. (B) S(2)'...Q(A) can be reached alternatively by the slow charge recombination of S(3) and Q(A)(-) at 77 K. White-light illumination of S(2)'.Q(A) below about 20 K results in charge separation, reforming the intermediate S(2)'Z*...Q(A)(-). Thermally activated branches to the main pathways are also described, e.g., at elevated temperatures tyr Z* reoxidizes S(2)' to the S(3) state. The above observations are discussed in terms of a molecular model of the S(3) state of the OEC. Main aspects of the model are the following. Intermediates, isoelectronic to S(3), are attributed to the NIR-induced translocation of the positive hole to different Mn ligands, or to tyr Z. On the basis of a comparison of the electron-donating efficiency of tyr Z and tyr D at cryogenic temperatures, it is inferred that the Mn cluster acts as the main proton acceptor from tyr Z. Water associated with the Mn cluster is assumed to be in hydrogen-bonding equilibrium with tyr Z, and an array comprising this water and adjacent water (or OH or O) ligands to Mn followed by a sequence of proton acceptors is proposed to act as an efficient proton translocation pathway. Oxidation of the tyrosine by P(680)(+) repels protons to and out from the Mn cluster. This proposed role of tyr Z in the water-splitting process is described as a proton repeller/electron abstractor.
Collapse
Affiliation(s)
- Nikolaos Ioannidis
- Institute of Materials Science, NCSR Demokritos, 15310 Aghia Paraskevi Attikis, Greece.
| | | | | |
Collapse
|
34
|
Semin BK, Ghirardi ML, Seibert M. Blocking of electron donation by Mn(II) to Y(Z*) following incubation of Mn-depleted photosystem II membranes with Fe(II) in the light. Biochemistry 2002; 41:5854-64. [PMID: 11980489 DOI: 10.1021/bi0200054] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The donation of electrons by Mn(II) and Fe(II) to Y(Z*) through the high-affinity (HA(Z)) site in Mn-depleted photosystem II (PSII) membranes has been studied by flash-probe fluorescence yield measurements. Mn(II) and Fe(II) donate electrons to Y(Z*) with about the same efficiency, saturating this reaction at the same concentration (ca. 5 microM). However, following a short incubation of the membranes with 5 microM Fe(II), but not with Mn(II) in room light, added Mn(II) or Fe(II) can no longer be photooxidized by Y(Z)(*). This blocking effect is caused by specifically bound, photooxidized Fe [> or =Fe(III)] and is accompanied by a delay in the fluorescence yield decay kinetics attributed to the slowing down of the charge recombination rate between Q(a-) and Y(Z*). Exogenously added Fe(III), on the other hand, does not donate electrons to Y(Z*), does not block the donation of electrons by added Mn(II) and Fe(II), and does not change the kinetics of the decay of the fluorescence yield. These results demonstrate that the light-dependent oxidation of Fe(II) by Y(Z*) creates an Fe species that binds at the HA(Z) site and causes the blocking effect. The pH dependence of Mn(II) electron donation to Y(Z*) via the HA(Z) site and of the Fe-blocking effect is different. These results, together with sequence homologies between the C-terminal ends of the D1 and D2 polypeptides of the PSII reaction center and several diiron-oxo enzymes, suggest the involvement of two or perhaps more (to an upper limit of four to five) bound iron cations per reaction center of PSII in the blocking effect. Similarities in the interaction of Fe(II) and Mn(II) with the HA(Z) Mn site of PSII during the initial steps of the photoactivation process are discussed. The Fe-blocking effect was also used to investigate the relationship between the HA(Z) Mn site and the HA sites on PSII for diphenylcarbazide (DPC) and NH2OH oxidation. Blocking of the HA(Z) site with specifically bound Fe leads to the total inhibition of electron donation to Y(Z*) by DPC. Since DPC and Mn(II) donation to PSII is noncompetitive [Preston, C., and Seibert, M. (1991) Biochemistry 30, 9615-9624], the Fe bound to the HA(Z) site can also block the DPC donation site. On the other hand, electron donation by NH2OH to PSII still occurs in Fe-blocked membranes. Since hydroxylamine does not reduce the Fe [> or =Fe(III)] specifically bound to the HA(Z) site, NH2OH must donate to Y(Z*) through its own site or directly to P680+.
Collapse
Affiliation(s)
- Boris K Semin
- Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | | | | |
Collapse
|
35
|
Nugent JHA, Muhiuddin IP, Evans MCW. Electron transfer from the water oxidizing complex at cryogenic temperatures: the S1 to S2 step. Biochemistry 2002; 41:4117-26. [PMID: 11900555 DOI: 10.1021/bi011320d] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the detection of a "split" electron paramagnetic resonance (EPR) signal during illumination of dark-adapted (S(1) state) oxygen-evolving photosystem II (PSII) membranes at <20 K. The characteristics of this signal indicate that it arises from an interaction between an organic radical and the Mn cluster of PSII. The broad radical signal decays in the dark following illumination either by back-reaction with Qa*- or by forward electron transfer from the Mn cluster. The forward electron transfer (either from illumination at 11 K followed by incubation in the dark at 77 K or by illumination at 77 K) results in the formation of a multiline signal similar to, but distinct from, other well-characterized multiline forms found in the S0 and S2 states. The relative yield of the "S1 split signal", which we provisionally assign to S1X*, where X could be YZ* or Car*+, and that of the 77 K multiline signal indicate a relationship between the two states. An approximate quantitation of the yield of these signals indicates that up to 40-50% of PSII centers can form the S1 split signal. Ethanol addition removes the ability to observe the S1 split signal, but the multiline signal is still formed at 77 K. The multiline forms with <700 nm light and is not affected by near-infrared (IR) light, showing that we are detecting electron transfer in centers not responsive to IR illumination. The results provide important new information about the mechanism of electron abstraction from the water oxidizing complex (WOC).
Collapse
Affiliation(s)
- Jonathan H A Nugent
- Department of Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
36
|
Affiliation(s)
- R P Pesavento
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
37
|
Lakshmi KV, Brudvig GW. Electron Paramagnetic Resonance Distance Measurements in Photosystems. DISTANCE MEASUREMENTS IN BIOLOGICAL SYSTEMS BY EPR 2002. [DOI: 10.1007/0-306-47109-4_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
Geijer P, Morvaridi F, Styring S. The S(3) state of the oxygen-evolving complex in photosystem II is converted to the S(2)Y(Z)* state at alkaline pH. Biochemistry 2001; 40:10881-91. [PMID: 11535065 DOI: 10.1021/bi010040v] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report an EPR signal that is induced by a pH jump to alkaline pH in the S(3) state of the oxygen-evolving complex in photosystem II. The S(3) state is first formed with two flashes at pH 6. Thereafter, the pH is changed in the dark prior to freezing of the sample. The EPR signal is 90-100 G wide and centered around g = 2. The signal is reversibly induced with a pK = 8.5 +/- 0.3 and is very stable with a decay half-time of 5-6 min. If the pH is changed in the dark from pH 8.6 to 6.0, the signal disappears although the S(3) state remains. We propose that the signal arises from the interaction between the Mn cluster and Y(Z), resulting in the spin-coupled S(2)Y(Z)(*) signal. Our data suggest that the potential of the Y(Z)(*)/Y(Z) redox couple is sensitive to the ambient pH in the S(3) state. The alkaline pH decreases the potential of the Y(Z)(*)/Y(Z) couple so that Y(Z) can give back an electron to the S(3) state, thereby obtaining the S(2)Y(Z)(*) EPR signal. The tyrosine oxidation also involves proton release from Y(Z), and the results support a mechanism where this proton is released to the bulk medium presumably via a close-lying base. Thus, the equilibrium is changed from S(3)Y(Z) to S(2)Y(Z)(*) by the alkaline pH. At normal pH (pH 5.5-7), this equilibrium is set strongly to the S(3)Y(Z) state. The results are discussed in relation to the present models of water oxidation. Consequences for the relative redox potentials of Y(Z)(*)/Y(Z) and S(3)/S(2) at different pH values are discussed. We also compare the pH-induced S(2)Y(Z)(*) signal with the S(2)Y(Z)(*) signal from Ca(2+)-depleted photosystem II.
Collapse
Affiliation(s)
- P Geijer
- Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | | | | |
Collapse
|
39
|
Ahlbrink R, Semin BK, Mulkidjanian AY, Junge W. Photosystem II of peas: effects of added divalent cations of Mn, Fe, Mg, and Ca on two kinetic components of P(+)(680) reduction in Mn-depleted core particles. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:117-26. [PMID: 11522253 DOI: 10.1016/s0005-2728(01)00188-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The catalytic Mn cluster of the photosynthetic oxygen-evolving system is oxidized via a tyrosine, Y(Z), by a photooxidized chlorophyll a moiety, P(+)(680). The rapid reduction of P(+)(680) by Y(Z) in nanoseconds requires the intactness of an acid/base cluster around Y(Z) with an apparent functional pK of <5. The removal of Mn (together with bound Ca) shifts the pK of the acid/base cluster from the acid into the neutral pH range. At alkaline pH the electron transfer (ET) from Y(Z) to P(+)(680) is still rapid (<1 micros), whereas at acid pH the ET is much slower (10-100 micros) and steered by proton release. In the intermediate pH domain one observes a mix of these kinetic components (see R. Ahlbrink, M. Haumann, D. Cherepanov, O. Bögershausen, A. Mulkidjanian, W. Junge, Biochemistry 37 (1998)). The overall kinetics of P(680)(+) reduction by Y(Z) in Mn-depleted photosystem II (PS II) has been previously shown to be slowed down by divalent cations (added at >10 microM), namely: Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) (C.W. Hoganson, P.A. Casey, O. Hansson, Biochim. Biophys. Acta 1057 (1991)). Using Mn-depleted PS II core particles from pea as starting material, we re-investigated this phenomenon at nanosecond resolution, aiming at the effect of divalent cations on the particular kinetic components of P(+)(680) reduction. To our surprise we found only the slower, proton steered component retarded by some added cations (namely Co(2+)/Zn(2+)>Fe(2+)>Mn(2+)). Neither the fast component nor the apparent pK of the acid/base cluster around Y(Z) was affected. Apparently, the divalent cations acted (electrostatically) on the proton release channel that connects the oxygen-evolving complex with the bulk water, but not on the ET between Y(Z) and P(+)(680), proper. Contrastingly, Ca(2+) and Mg(2+), when added at >5 mM, accelerated the slow component of P(+)(680) reduction by Y(Z) and shifted the apparent pK of Y(Z) from 7.4 to 6.6 and 6.7, respectively. It was evident that the binding site(s) for added Ca(2+) and Mg(2+) were close to Y(Z) proper. The data obtained are discussed in relation to the nature of the metal-binding sites in photosystem II.
Collapse
Affiliation(s)
- R Ahlbrink
- Division of Biophysics, Department of Biology, University of Osnabrück, 49069 Osnabrück, Germany
| | | | | | | |
Collapse
|
40
|
Abstract
Pulsed electron paramagnetic resonance (EPR) methods such as ESEEM, PELDOR, relaxation time measurements, transient EPR, high-field/high-frequency EPR, and pulsed ENDOR, have been used successfully to investigate the local structure and dynamics of paramagnetic centers in biological samples. These methods allow different contributions to the EPR spectra to be distinguished and can help unravel complicated EPR spectra consisting of overlapping resonance lines, as are often found in disordered protein samples. The basic principles, specific potentials, technical requirements, and limitations of these advanced EPR techniques will be reviewed together with recent applications to metal centers, organic radicals, and spin labels in proteins.
Collapse
Affiliation(s)
- T Prisner
- Institute for Physical and Theoretical Chemistry, J. W. Goethe-University Frankfurt, Marie-Curie-Strasse 11, Frankfurt am Main, D-60439 Germany.
| | | | | |
Collapse
|
41
|
Debus RJ, Campbell KA, Gregor W, Li ZL, Burnap RL, Britt RD. Does histidine 332 of the D1 polypeptide ligate the manganese cluster in photosystem II? An electron spin echo envelope modulation study. Biochemistry 2001; 40:3690-9. [PMID: 11297437 DOI: 10.1021/bi002394c] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tetranuclear manganese cluster in photosystem II is ligated by one or more histidine residues, as shown by an electron spin echo envelope modulation (ESEEM) study conducted with [(15)N]histidine-labeled photosystem II particles isolated from the cyanobacterium Synechocystis sp. strain PCC 6803 [Tang, X.-S., Diner, B. A., Larsen, B. S., Gilchrist, M. L., Jr., Lorigan, G. A., and Britt, R. D. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 704-708]. One of these residues may be His332 of the D1 polypeptide. Photosystem II particles isolated from the Synechocystis mutant D1-H332E exhibit an altered S(2) state multiline EPR signal that has more hyperfine lines and narrower splittings than the corresponding signal in wild-type PSII particles [Debus, R. J., Campbell, K. A., Peloquin, J. M., Pham, D. P., and Britt, R. D. (2000) Biochemistry 39, 470-478]. These D1-H332E PSII particles are also unable to advance beyond an altered S(2)Y(Z)(*) state, and the quantum yield for forming the S(2) state is very low, corresponding to an 8000-fold slowing of the rate of Mn oxidation by Y(Z)(*). These observations are consistent with His332 being close to the Mn cluster and modulating the redox properties of both the Mn cluster and tyrosine Y(Z). To determine if D1-His332 ligates the Mn cluster, we have conducted an ESEEM study of D1-H332E PSII particles. The histidyl nitrogen modulation observed near 5 MHz in ESEEM spectra of the S(2) state multiline EPR signal of wild-type PSII particles is substantially diminished in D1-H332E PSII particles. This result is consistent with ligation of the Mn cluster by D1-His332. However, alternate explanations are possible. These are presented and discussed.
Collapse
Affiliation(s)
- R J Debus
- Department of Biochemistry, University of California, Riverside, California 92521-0129, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Britt RD, Peloquin JM, Campbell KA. Pulsed and parallel-polarization EPR characterization of the photosystem II oxygen-evolving complex. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:463-95. [PMID: 10940256 DOI: 10.1146/annurev.biophys.29.1.463] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photosystem II uses visible light to drive the oxidation of water, resulting in bioactivated electrons and protons, with the production of molecular oxygen as a byproduct. This water-splitting reaction is carried out by a manganese cluster/tyrosine radial ensemble, the oxygen -evolving complex. Although conventional continuous-wave, perpendicular -polarization electron paramagnetic resonance (EPR) spectroscopy has significantly advanced our knowledge of the structure and function of the oxygen-evolving complex, significant additional information can be obtained with the application of additional EPR methodologies. Specifically, parallel-polarization EPR spectroscopy can be use to obtain highly resolved EPR spectra of integer spin Mn species, and pulsed EPR spectroscopy with electron spin echo-based sequences, such as electron spin echo envelope modulation and electron spin echo-electron nuclear double resonance, can be used to measure weak interactions obscured in continuous-wave spectroscopy by inhomogeneous broadening.
Collapse
Affiliation(s)
- R D Britt
- Department of Chemistry, University of California, Davis 95616, USA.
| | | | | |
Collapse
|
43
|
Mino H, Kawamori A. EPR studies of the water oxidizing complex in the S1 and the higher S states: the manganese cluster and Y(Z) radical. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:112-22. [PMID: 11115628 DOI: 10.1016/s0005-2728(00)00229-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The parallel polarization electron paramagnetic resonance (EPR) method has been applied to investigate manganese EPR signals of native S1 and S3 states of the water oxidizing complex (WOC) in photosystem (PS) II. The EPR signals in both states were assigned to thermally excited states with S=1, from which zero-field interaction parameters D and E were derived. Three kinds of signals, the doublet signal, the singlet-like signal and g=11-15 signal, were detected in Ca2+-depleted PS II. The g=11-15 signal was observed by parallel and perpendicular modes and assigned to a higher oxidation state beyond S2 in Ca2+-depleted PS II. The singlet-like signal was associated with the g=11-15 signal but not with the Y(Z) (the tyrosine residue 161 of the D1 polypeptide in PS II) radical. The doublet signal was associated with the Y(Z) radical as proved by pulsed electron nuclear double resonance (ENDOR) and ENDOR-induced EPR. The electron transfer mechanism relevant to the role of Y(Z) radical was discussed.
Collapse
Affiliation(s)
- H Mino
- Laboratory for Photo-Biology, RIKEN Photodynamics Research Center, The Institute of Physical and Chemical Research, 519-1399 Aoba, Aramaki, Sendai 980-0845, Aoba, Japan
| | | |
Collapse
|
44
|
Diner BA. Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:147-63. [PMID: 11115631 DOI: 10.1016/s0005-2728(00)00220-6] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The combination of site-directed mutagenesis, isotopic labeling, new magnetic resonance techniques and optical spectroscopic methods have provided new insights into cofactor coordination and into the mechanism of electron transport and proton-coupled electron transport in photosystem II. Site-directed mutations in the D1 polypeptide of this photosystem have implicated a number of histidine and carboxylate residues in the coordination and assembly of the manganese cluster, responsible for photosynthetic water oxidation. Many of these are located in the carboxy-terminal region of this polypeptide close to the processing site involved in its maturation. This maturation is a required precondition for cluster assembly. Recent proposals for the mechanism of water oxidation have directly implicated redox-active tyrosine Y(Z) in this mechanism and have emphasized the importance of the coupling of proton and electron transfer in the reduction of Y(Z)(radical) by the Mn cluster. The interaction of both homologous redox-active tyrosines Y(Z) and Y(D) with their respective homologous proton acceptors is discussed in an effort to better understand the significance of such coupling.
Collapse
Affiliation(s)
- B A Diner
- CR&D, Experimental Station, E.I. du Pont de Nemours and Co., Wilmington DE 19880-0173, USA.
| |
Collapse
|
45
|
Renger G. Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:210-28. [PMID: 11115635 DOI: 10.1016/s0005-2728(00)00227-9] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G Renger
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623, Berlin, Germany.
| |
Collapse
|
46
|
Chu HA, Hillier W, Law NA, Babcock GT. Vibrational spectroscopy of the oxygen-evolving complex and of manganese model compounds. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:69-82. [PMID: 11115625 DOI: 10.1016/s0005-2728(00)00216-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A number of molecularly specific models for the oxygen-evolving complex in photosystem II (PSII) and of manganese-substrate water intermediates that may occur in this process have been proposed recently. We summarize this work briefly. Fourier transform infrared techniques have emerged as fruitful tools to study the molecular structures of Y(Z) and the manganese complex. We discuss recent work in which mid-IR (1000-2000 cm(-1)) methods have been used in this effort. The low-frequency IR region (<1000 cm(-1)) has been more difficult to access for technical reasons, but good progress has been made in overcoming these obstacles. We update recent low-frequency work on PSII and then present a detailed summary of relevant manganese model compounds that will be of importance in understanding the emerging biological data.
Collapse
Affiliation(s)
- H A Chu
- Department of Chemistry, Michigan State University, 48824-1322, East Lansing, MI 48824-1322, USA
| | | | | | | |
Collapse
|
47
|
Peloquin JM, Britt RD. EPR/ENDOR characterization of the physical and electronic structure of the OEC Mn cluster. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:96-111. [PMID: 11115627 DOI: 10.1016/s0005-2728(00)00219-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has often played a crucial role in characterizing the various cofactors and processes of photosynthesis, and photosystem II and its oxygen evolving chemistry is no exception. Until recently, the application of EPR spectroscopy to the characterization of the oxygen evolving complex (OEC) has been limited to the S2-state of the Kok cycle. However, in the past few years, continuous wave-EPR signals have been obtained for both the S0- and S1-state as well as for the S2 (radical)(Z)-state of a number of inhibited systems. Furthermore, the pulsed EPR technique of electron spin echo electron nuclear double resonance spectroscopy has been used to directly probe the 55Mn nuclei of the manganese cluster. In this review, we discuss how the EPR data obtained from each of these states of the OEC Kok cycle are being used to provide insight into the physical and electronic structure of the manganese cluster and its interaction with the key tyrosine, Y(Z).
Collapse
Affiliation(s)
- J M Peloquin
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
48
|
Debus RJ. Amino acid residues that modulate the properties of tyrosine Y(Z) and the manganese cluster in the water oxidizing complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:164-86. [PMID: 11115632 DOI: 10.1016/s0005-2728(00)00221-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic site for photosynthetic water oxidation is embedded in a protein matrix consisting of nearly 30 different polypeptides. Residues from several of these polypeptides modulate the properties of the tetrameric Mn cluster and the redox-active tyrosine residue, Y(Z), that are located at the catalytic site. However, most or all of the residues that interact directly with Y(Z) and the Mn cluster appear to be contributed by the D1 polypeptide. This review summarizes our knowledge of the environments of Y(Z) and the Mn cluster as obtained from the introduction of site-directed, deletion, and other mutations into the photosystem II polypeptides of the cyanobacterium Synechocystis sp. PCC 6803 and the green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- R J Debus
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| |
Collapse
|
49
|
Vrettos JS, Limburg J, Brudvig GW. Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:229-45. [PMID: 11115636 DOI: 10.1016/s0005-2728(00)00214-0] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A mechanism for photosynthetic water oxidation is proposed based on a structural model of the oxygen-evolving complex (OEC) and its placement into the modeled structure of the D1/D2 core of photosystem II. The structural model of the OEC satisfies many of the geometrical constraints imposed by spectroscopic and biophysical results. The model includes the tetranuclear manganese cluster, calcium, chloride, tyrosine Z, H190, D170, H332 and H337 of the D1 polypeptide and is patterned after the reversible O2-binding diferric site in oxyhemerythrin. The mechanism for water oxidation readily follows from the structural model. Concerted proton-coupled electron transfer in the S2-->S3 and S3-->S4 transitions forms a terminal Mn(V)=O moiety. Nucleophilic attack on this electron-deficient Mn(V)=O by a calcium-bound water molecule results in a Mn(III)-OOH species, similar to the ferric hydroperoxide in oxyhemerythrin. Dioxygen is released in a manner analogous to that in oxyhemerythrin, concomitant with reduction of manganese and protonation of a mu-oxo bridge.
Collapse
Affiliation(s)
- J S Vrettos
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|
50
|
Nugent JH, Rich AM, Evans MC. Photosynthetic water oxidation: towards a mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:138-46. [PMID: 11115630 DOI: 10.1016/s0005-2728(00)00223-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This mini-review outlines the current theories on the mechanism of electron transfer from water to P680, the location and structure of the water oxidising complex and the role of the manganese cluster. We discuss how our data fit in with current theories and put forward our ideas on the location and mechanism of water oxidation.
Collapse
Affiliation(s)
- J H Nugent
- Department of Biology, Darwin Building, University College London, Gower Street, WC1E 6BT, London, UK.
| | | | | |
Collapse
|