1
|
Bury G, Pushkar Y. Insights from Ca 2+→Sr 2+ substitution on the mechanism of O-O bond formation in photosystem II. PHOTOSYNTHESIS RESEARCH 2024:10.1007/s11120-024-01117-2. [PMID: 39186214 DOI: 10.1007/s11120-024-01117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
In recent years, there has been a steady interest in unraveling the intricate mechanistic details of water oxidation mechanism in photosynthesis. Despite the substantial progress made over several decades, a comprehensive understanding of the precise kinetics underlying O-O bond formation and subsequent evolution remains elusive. However, it is well-established that the oxygen evolving complex (OEC), specifically the CaMn4O5 cluster, plays a crucial role in O-O bond formation, undergoing a series of four oxidative events as it progresses through the S-states of the Kok cycle. To gain further insights into the OEC, researchers have explored the substitution of the Ca2+ cofactor with strontium (Sr), the sole atomic replacement capable of retaining oxygen-evolving activity. Empirical investigations utilizing spectroscopic techniques such as XAS, XRD, EPR, FTIR, and XANES have been conducted to probe the structural consequences of Ca2+→Sr2+ substitution. In parallel, the development of DFT and QM/MM computational models has explored different oxidation and protonation states, as well as variations in ligand coordination at the catalytic center involving amino acid residues. In this review, we critically evaluate and integrate these computational and spectroscopic approaches, focusing on the structural and mechanistic implications of Ca2+→Sr2+ substitution in PS II. We contribute DFT modelling and simulate EXAFS Fourier transforms of Sr-substituted OEC, analyzing promising structures of the S3 state. Through the combination of computational modeling and spectroscopic investigations, valuable insights have been gained, developing a deeper understanding of the photosynthetic process.
Collapse
Affiliation(s)
- Gabriel Bury
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Yano J, Kern J, Yachandra VK. Structure Function Studies of Photosystem II Using X-Ray Free Electron Lasers. Annu Rev Biophys 2024; 53:343-365. [PMID: 39013027 PMCID: PMC11321711 DOI: 10.1146/annurev-biophys-071723-102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The structure and mechanism of the water-oxidation chemistry that occurs in photosystem II have been subjects of great interest. The advent of X-ray free electron lasers allowed the determination of structures of the stable intermediate states and of steps in the transitions between these intermediate states, bringing a new perspective to this field. The room-temperature structures collected as the photosynthetic water oxidation reaction proceeds in real time have provided important novel insights into the structural changes and the mechanism of the water oxidation reaction. The time-resolved measurements have also given us a view of how this reaction-which involves multielectron, multiproton processes-is facilitated by the interaction of the ligands and the protein residues in the oxygen-evolving complex. These structures have also provided a picture of the dynamics occurring in the channels within photosystem II that are involved in the transport of the substrate water to the catalytic center and protons to the bulk.
Collapse
Affiliation(s)
- Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; , ,
| |
Collapse
|
3
|
Cheng X, Chen C, Hu Y, Guo X, Wang J. Photosynthesis and growth of Amaranthus tricolor under strontium stress. CHEMOSPHERE 2022; 308:136234. [PMID: 36041533 DOI: 10.1016/j.chemosphere.2022.136234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Amaranthaceae are effective plants for cleaning soil contaminated by heavy metals and radionuclides. In this paper, Amaranthus tricolor was used to investigate the response of the plant photosynthesis to various concentration of strontium ions (0.2, 0.6, 3 and 6 mM), in order to determine the possibility of A. tricolor to remediate strontium contamination. The results showed that strontium ions (0.2-6 mM) had effect on light energy conversion and utilization in A. tricolor. Low level of strontium (0.2 mM) promoted the energy utilization in A. tricolor, while higher Sr concentration (3 mM or higher) increased the excess light energy in the plants. Under strontium stress of 6 mM, the acceptor side of PSII in A. tricolor leaves was more vulnerable to strontium stress than the donor side. Furthermore, strontium stress led to accumulation of QA- and block in QB downstream of the electron transfer chain in PSII of A. tricolor leaves. The tolerance ability of A. tricolor to strontium and remediation is also reflected in its biomass and strontium content in plants. Strontium at 3 mM or below promoted the growth of A. tricolor, while higher concentration inhibited the plant growth, but without obvious wilting or curling of leaves. The maximal dry weight increased by 36.29% in shoots, and 60.14% in roots when the spiked-strontium concentration reached 0.2 mM. The maximal strontium content achieved 8.75 mg/g dry wt in shoots, and 1.71 mg/g dry wt in roots respectively, when strontium concentration was 6 mM. Transfer factors (TFs: ratio of Sr content in shoots to that in roots) of strontium in A. tricolor ranged from 2.85 to 5.93, while bio-concentration factors (BCFs: ratio of Sr content in shoots to that in solutions) ranged from 22.57 to 49.66. In summary, A. tricolor showed the excellent potential to remediate strontium contamination.
Collapse
Affiliation(s)
- Xuening Cheng
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Can Chen
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China
| | - Yuming Hu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Xiliang Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; China Institute for Radiation Protection, Taiyuan, 030006, Shanxi, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
4
|
Tanuhadi E, Cano J, Batool S, Cherevan A, Eder D, Rompel A. Ni 12 tetracubane cores with slow relaxation of magnetization and efficient charge utilization for photocatalytic hydrogen evolution. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:17048-17052. [PMID: 36561542 PMCID: PMC9686624 DOI: 10.1039/d2tc03508a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
We report two Ni12 multicubane topologies enclosed in the polyanions [Ni12(OH)9(WO4)3(PO4)(B-α-PW9O34)3]21-{Ni12W30} and [Ni12(OH)9(HPO4)3(PO4)(B-α-PW9O34)(A-α-PW9O34)2]21-{Ni12W27} that magnetically behave as Ni12 units clearly distinguishing them from typical Ni4 cubanes as shown by magnetic studies together with high field and frequency electron paramagnetic resonance (HFEPR). Beyond the unprecedented static properties, {Ni12W30} shows the unusual coexistence of slow relaxation of the magnetization and a diamagnetic ground state (S = 0), providing the unique opportunity of studying the essentially elusive magnetic relaxation behavior in excited states. The cubane-topology dependent activity of {Ni12W30} and {Ni12W27} as homogeneous HER photocatalysts unveils the structural key features significant for the design of photocatalysts with efficient charge utilization exemplified by high quantum yields (QY) of 10.42% and 8.36% for {Ni12W30} and {Ni12W27}, respectively.
Collapse
Affiliation(s)
- Elias Tanuhadi
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie Josef-Holaubek-Platz-2 Wien 1090 Austria https://www.bpc.univie.ac.at
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Facultat de Quimica, Universitat de València C/Catedrático Jose Beltrán 2 Paterna 46980, València Spain
| | - Samar Batool
- TU Wien, Institute of Materials Chemistry Getreidemarkt 9 Vienna 1060 Austria https://www.imc.tuwien.ac.at/division_molecular_materials_chemistry/
| | - Alexey Cherevan
- TU Wien, Institute of Materials Chemistry Getreidemarkt 9 Vienna 1060 Austria https://www.imc.tuwien.ac.at/division_molecular_materials_chemistry/
| | - Dominik Eder
- TU Wien, Institute of Materials Chemistry Getreidemarkt 9 Vienna 1060 Austria https://www.imc.tuwien.ac.at/division_molecular_materials_chemistry/
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie Josef-Holaubek-Platz-2 Wien 1090 Austria https://www.bpc.univie.ac.at
| |
Collapse
|
5
|
Al‐Sayed E, Nandan SP, Tanuhadi E, Giester G, Arrigoni M, Madsen GKH, Cherevan A, Eder D, Rompel A. Phosphate-Templated Encapsulation of a {Co II 4 O 4 } Cubane in Germanotungstates as Carbon-Free Homogeneous Water Oxidation Photocatalysts. CHEMSUSCHEM 2021; 14:2529-2536. [PMID: 33835713 PMCID: PMC8251812 DOI: 10.1002/cssc.202100506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The ever-growing interest in sustainable energy sources leads to a search for an efficient, stable, and inexpensive homogeneous water oxidation catalyst (WOC). Herein, the PO4 3- templated synthesis of three abundant-metal-based germanotungstate (GT) clusters Na15 [Ge4 PCo4 (H2 O)2 W24 O94 ] ⋅ 38H2 O (Co4 ), Na2.5 K17.5 [Ge3 PCo9 (OH)5 (H2 O)4 W30 O115 ] ⋅ 45H2 O (Co9 ), Na6 K16 [Ge4 P4 Co20 (OH)14 (H2 O)18 W36 O150 ] ⋅ 61H2 O (Co20 ) with non-, quasi-, or full cubane motifs structurally strongly reminiscent of the naturally occurring {Mn4 Ca} oxygen evolving complex (OEC) in photosystem II was achieved. Under the conditions tested, all three GT-scaffolds were active molecular WOCs, with Co9 and Co20 outperforming the well-known Na10 [Co4 (H2 O)2 (PW9 O34 )2 ] {Co4 P2 W18 } by a factor of 2 as shown by a direct comparison of their turnover numbers (TONs). With TONs up to 159.9 and a turnover frequency of 0.608 s-1 Co9 currently represents the fastest Co-GT-based WOC, and photoluminescence emission spectroscopy provided insights into its photocatalytic WOC mechanism. Cyclic voltammetry, dynamic light scattering, UV/Vis and IR spectroscopy showed recyclability and integrity of the catalysts under the applied conditions. The experimental results were supported by computational studies, which highlighted that the facilitated oxidation of Co9 was due to the higher energy of its highest occupied molecular orbital electrons as compared to Co4 .
Collapse
Affiliation(s)
- Emir Al‐Sayed
- Fakultät für ChemieInstitut für Biophysikalische ChemieUniversität WienAlthanstraße 141090WienAustria
| | | | - Elias Tanuhadi
- Fakultät für ChemieInstitut für Biophysikalische ChemieUniversität WienAlthanstraße 141090WienAustria
| | - Gerald Giester
- Fakultät für GeowissenschaftenGeographie und AstronomieInstitut für Mineralogie und KristallographieUniversität WienAlthanstraße 141090WienAustria
| | - Marco Arrigoni
- Institute of Materials ChemistryTU WienGetreidemarkt 9Vienna1060Austria
| | | | - Alexey Cherevan
- Institute of Materials ChemistryTU WienGetreidemarkt 9Vienna1060Austria
| | - Dominik Eder
- Institute of Materials ChemistryTU WienGetreidemarkt 9Vienna1060Austria
| | - Annette Rompel
- Fakultät für ChemieInstitut für Biophysikalische ChemieUniversität WienAlthanstraße 141090WienAustria
| |
Collapse
|
6
|
Abstract
The oxygen-evolving center (OEC) in photosystem II (PSII) of plants, algae and cyanobacteria is a unique natural catalyst that splits water into electrons, protons and dioxygen. The crystallographic studies of PSII have revealed that the OEC is an asymmetric Mn4CaO5-cluster. The understanding of the structure-function relationship of this natural Mn4CaO5-cluster is impeded mainly due to the complexity of the protein environment and lack of a rational chemical model as a reference. Although it has been a great challenge for chemists to synthesize the OEC in the laboratory, significant advances have been achieved recently. Different artificial complexes have been reported, especially a series of artificial Mn4CaO4-clusters that closely mimic both the geometric and electronic structures of the OEC in PSII, which provides a structurally well-defined chemical model to investigate the structure-function relationship of the natural Mn4CaO5-cluster. The deep investigations on this artificial Mn4CaO4-cluster could provide new insights into the mechanism of the water-splitting reaction in natural photosynthesis and may help the development of efficient catalysts for the water-splitting reaction in artificial photosynthesis.
Collapse
|
7
|
|
8
|
Burger A, Lichtscheidl I. Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1458-1512. [PMID: 30759584 DOI: 10.1016/j.scitotenv.2018.10.312] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Radiostrontium is released to the environment from routine and accidental discharge and acts on living organisms either from external sources or after absorption. When incorporated by plants, it enters the food chain and causes primary threat to human health and the environment. Understanding the mechanisms of plants for strontium uptake and retention is therefore essential for decision making concerning agriculture: are uptake rates low enough so that plants can serve as food? Or is radiostrontium accumulated so that plants should not be eaten but could be probably used for extracting strontium from water and soil in hot spots of pollution? The review presents a summary of studies about the origin of stable and radioactive strontium in the environment and effects coming from both internal and external exposure of plants. Mobility and availability of strontium to plant roots in soil are controlled by external factors such as chemical composition of the soil and pH, temperature and agricultural soil cultivation as well as soil biological networks built by microbial communities. Plant surfaces may receive input of strontium from deposition induced by atmospheric pollution or by acquisition from water through the whole immersed surface. Cells have entry mechanisms for strontium such as plasma membrane transporters for calcium and potassium. Part of absorbed strontium can be lost via processes discussed in this review. We give examples on strontium transfer factors for 149 plants to estimate plant absorption capacity for strontium from soil, water and air. Uptake efficiency of terrestrial and aquatic plants is deciding about their remediation potential to either remove radiostrontium by accumulation and rhizofiltration or to retain it in roots or aerial parts. Data of strontium content in soils after fallout and edible plants from long-term monitoring support the evaluation of the potential hazards posed by strontium input to the food chain.
Collapse
Affiliation(s)
- Anna Burger
- University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Irene Lichtscheidl
- University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
9
|
Abstract
AbstractCyanobacteria and plants carry out oxygenic photosynthesis. They use water to generate the atmospheric oxygen we breathe and carbon dioxide to produce the biomass serving as food, feed, fibre and fuel. This paper scans the emergence of structural and mechanistic understanding of oxygen evolution over the past 50 years. It reviews speculative concepts and the stepped insight provided by novel experimental and theoretical techniques. Driven by sunlight photosystem II oxidizes the catalyst of water oxidation, a hetero-metallic Mn4CaO5(H2O)4 cluster. Mn3Ca are arranged in cubanoid and one Mn dangles out. By accumulation of four oxidizing equivalents before initiating dioxygen formation it matches the four-electron chemistry from water to dioxygen to the one-electron chemistry of the photo-sensitizer. Potentially harmful intermediates are thereby occluded in space and time. Kinetic signatures of the catalytic cluster and its partners in the photo-reaction centre have been resolved, in the frequency domain ranging from acoustic waves via infra-red to X-ray radiation, and in the time domain from nano- to milli-seconds. X-ray structures to a resolution of 1.9 Å are available. Even time resolved X-ray structures have been obtained by clocking the reaction cycle by flashes of light and diffraction with femtosecond X-ray pulses. The terminal reaction cascade from two molecules of water to dioxygen involves the transfer of four electrons, two protons, one dioxygen and one water. A rigorous mechanistic analysis is challenging because of the kinetic enslaving at millisecond duration of six partial reactions (4e−, 1H+, 1O2). For the time being a peroxide-intermediate in the reaction cascade to dioxygen has been in focus, both experimentally and by quantum chemistry. Homo sapiens has relied on burning the products of oxygenic photosynthesis, recent and fossil. Mankind's total energy consumption amounts to almost one-fourth of the global photosynthetic productivity. If the average power consumption equalled one of those nations with the highest consumption per capita it was four times greater and matched the total productivity. It is obvious that biomass should be harvested for food, feed, fibre and platform chemicals rather than for fuel.
Collapse
|
10
|
Shamsipur M, Pashabadi A. Latest advances in PSII features and mechanism of water oxidation. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Chen C, Li Y, Zhao G, Yao R, Zhang C. Natural and Artificial Mn 4 Ca Cluster for the Water Splitting Reaction. CHEMSUSCHEM 2017; 10:4403-4408. [PMID: 28921879 DOI: 10.1002/cssc.201701371] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/10/2017] [Indexed: 06/07/2023]
Abstract
The oxygen-evolving center (OEC) in photosystem II (PSII) is a unique biological catalyst that splits water into electrons, protons, and O2 by using solar energy. Recent crystallographic studies have revealed that the structure of the OEC is an asymmetric Mn4 Ca cluster, which provides a blueprint to develop man-made water-splitting catalysts for artificial photosynthesis. Although it is a great challenge to mimic the whole structure and function of the OEC in the laboratory, significant advances have recently been achieved. In this Minireview, recent progress on mimicking the natural OEC is discussed. New strategies are suggested to construct more stable and efficient new generation of catalytic materials for the water splitting reaction based on the artificial Mn4 Ca cluster in the future.
Collapse
Affiliation(s)
- Changhui Chen
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanxi Li
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoqing Zhao
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruoqing Yao
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chunxi Zhang
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
12
|
Krewald V, Neese F, Pantazis DA. Redox potential tuning by redox-inactive cations in nature's water oxidizing catalyst and synthetic analogues. Phys Chem Chem Phys 2016; 18:10739-50. [DOI: 10.1039/c5cp07213a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fundamental differences between synthetic manganese clusters and the biological water oxidizing catalyst are demonstrated in the modulation of their redox potential by redox-inactive cations.
Collapse
Affiliation(s)
- Vera Krewald
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | | |
Collapse
|
13
|
Krewald V, Neese F, Pantazis DA. Resolving the Manganese Oxidation States in the Oxygen-evolving Catalyst of Natural Photosynthesis. Isr J Chem 2015. [DOI: 10.1002/ijch.201500051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Lohmiller T, Shelby ML, Long X, Yachandra VK, Yano J. Removal of Ca(2+) from the Oxygen-Evolving Complex in Photosystem II Has Minimal Effect on the Mn4O5 Core Structure: A Polarized Mn X-ray Absorption Spectroscopy Study. J Phys Chem B 2015; 119:13742-54. [PMID: 25989608 DOI: 10.1021/acs.jpcb.5b03559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ca(2+)-depleted and Ca(2+)-reconstituted spinach photosystem II was studied using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca(2+) ion in the Mn4O5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca(2+)-depleted S1 (S1') and S2 (S2') states, the S2'YZ(•) state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca(2+)-reconstituted S1 state. Polarized Mn K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca(2+)-depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca(2+)-containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca(2+) ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca(2+) ion in the OEC is not critical for structural maintenance of the cluster, at least in the S1 and S2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca(2+) removal are discussed, attributing to the Ca(2+) ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to YZ(•) (D1-Tyr161).
Collapse
Affiliation(s)
- Thomas Lohmiller
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-5230, United States
| | - Megan L Shelby
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-5230, United States
| | - Xi Long
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-5230, United States
| | - Vittal K Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-5230, United States
| | - Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-5230, United States
| |
Collapse
|
15
|
Vogt L, Ertem MZ, Pal R, Brudvig GW, Batista VS. Computational Insights on Crystal Structures of the Oxygen-Evolving Complex of Photosystem II with Either Ca2+ or Ca2+ Substituted by Sr2+. Biochemistry 2015; 54:820-5. [DOI: 10.1021/bi5011706] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Leslie Vogt
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mehmed Z. Ertem
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rhitankar Pal
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Gary W. Brudvig
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Victor S. Batista
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
16
|
Krewald V, Retegan M, Cox N, Messinger J, Lubitz W, DeBeer S, Neese F, Pantazis DA. Metal oxidation states in biological water splitting. Chem Sci 2015; 6:1676-1695. [PMID: 29308133 PMCID: PMC5639794 DOI: 10.1039/c4sc03720k] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/31/2014] [Indexed: 12/20/2022] Open
Abstract
A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II.
A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II. Understanding the nature and order of oxidation events that occur during the catalytic cycle of five Si states (i = 0–4) is of fundamental importance both for the natural system and for artificial water oxidation catalysts. Despite the widespread adoption of the so-called “high-valent scheme”—where, for example, the Mn oxidation states in the S2 state are assigned as III, IV, IV, IV—the competing “low-valent scheme” that differs by a total of two metal unpaired electrons (i.e. III, III, III, IV in the S2 state) is favored by several recent studies for the biological catalyst. The question of the correct oxidation state assignment is addressed here by a detailed computational comparison of the two schemes using a common structural platform and theoretical approach. Models based on crystallographic constraints were constructed for all conceivable oxidation state assignments in the four (semi)stable S states of the oxygen evolving complex, sampling various protonation levels and patterns to ensure comprehensive coverage. The models are evaluated with respect to their geometric, energetic, electronic, and spectroscopic properties against available experimental EXAFS, XFEL-XRD, EPR, ENDOR and Mn K pre-edge XANES data. New 2.5 K 55Mn ENDOR data of the S2 state are also reported. Our results conclusively show that the entire S state phenomenology can only be accommodated within the high-valent scheme by adopting a single motif and protonation pattern that progresses smoothly from S0 (III, III, III, IV) to S3 (IV, IV, IV, IV), satisfying all experimental constraints and reproducing all observables. By contrast, it was impossible to construct a consistent cycle based on the low-valent scheme for all S states. Instead, the low-valent models developed here may provide new insight into the over-reduced S states and the states involved in the assembly of the catalytically active water oxidizing cluster.
Collapse
Affiliation(s)
- Vera Krewald
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Marius Retegan
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Johannes Messinger
- Department of Chemistry , Chemical Biological Center (KBC) , Umeå University , 90187 Umeå , Sweden
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| |
Collapse
|
17
|
Yano J, Kern J, Yachandra VK, Nilsson H, Koroidov S, Messinger J. Light-dependent production of dioxygen in photosynthesis. Met Ions Life Sci 2015; 15:13-43. [PMID: 25707465 PMCID: PMC4688042 DOI: 10.1007/978-3-319-12415-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxygen, that supports all aerobic life, is abundant in the atmosphere because of its constant regeneration by photosynthetic water oxidation, which is catalyzed by a Mn₄CaO₅ cluster in photosystem II (PS II), a multi subunit membrane protein complex. X-ray and other spectroscopy studies of the electronic and geometric structure of the Mn₄CaO₅ cluster as it advances through the intermediate states have been important for understanding the mechanism of water oxidation. The results and interpretations, especially from X-ray spectroscopy studies, regarding the geometric and electronic structure and the changes as the system proceeds through the catalytic cycle will be summarized in this review. This review will also include newer methodologies in time-resolved X-ray diffraction and spectroscopy that have become available since the commissioning of the X-ray free electron laser (XFEL) and are being applied to study the oxygen-evolving complex (OEC). The femtosecond X-ray pulses of the XFEL allows us to outrun X-ray damage at room temperature, and the time-evolution of the photo-induced reaction can be probed using a visible laser-pump followed by the X-ray-probe pulse. XFELs can be used to simultaneously determine the light-induced protein dynamics using crystallography and the local chemistry that occurs at the catalytic center using X-ray spectroscopy under functional conditions. Membrane inlet mass spectrometry has been important for providing direct information about the exchange of substrate water molecules, which has a direct bearing on the mechanism of water oxidation. Moreover, it has been indispensable for the time-resolved X-ray diffraction and spectroscopy studies and will be briefly reviewed in this chapter. Given the role of PS II in maintaining life in the biosphere and the future vision of a renewable energy economy, understanding the structure and mechanism of the photosynthetic water oxidation catalyst is an important goal for the future.
Collapse
Affiliation(s)
- Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jan Kern
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vittal K. Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Håkan Nilsson
- Department of Chemistry, Chemistry Biology Centre (KBC), Umeå University, S-90187 Umeå, Sweden
| | - Sergey Koroidov
- Department of Chemistry, Chemistry Biology Centre (KBC), Umeå University, S-90187 Umeå, Sweden
| | - Johannes Messinger
- Department of Chemistry, Chemistry Biology Centre (KBC), Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
18
|
Najafpour MM, Ghobadi MZ, Haghighi B, Tomo T, Carpentier R, Shen JR, Allakhverdiev SI. A nano-sized manganese oxide in a protein matrix as a natural water-oxidizing site. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:3-15. [PMID: 24560883 DOI: 10.1016/j.plaphy.2014.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/26/2014] [Indexed: 06/03/2023]
Abstract
The purpose of this review is to present recent advances in the structural and functional studies of water-oxidizing center of Photosystem II and its surrounding protein matrix in order to synthesize artificial catalysts for production of clean and efficient hydrogen fuel.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Mohadeseh Zarei Ghobadi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Behzad Haghighi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Robert Carpentier
- Departement de Chimie Biochimie et Physique, Université du Québec à Trois Rivières, C.P. 500, Québec G9A 5H7, Canada
| | - Jian-Ren Shen
- Graduate School of Natural Science and Technology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
19
|
Yano J, Yachandra V. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem Rev 2014; 114:4175-205. [PMID: 24684576 PMCID: PMC4002066 DOI: 10.1021/cr4004874] [Citation(s) in RCA: 482] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Vittal Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
20
|
Glöckner C, Kern J, Broser M, Zouni A, Yachandra V, Yano J. Structural changes of the oxygen-evolving complex in photosystem II during the catalytic cycle. J Biol Chem 2013; 288:22607-20. [PMID: 23766513 DOI: 10.1074/jbc.m113.476622] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oxygen-evolving complex (OEC) in the membrane-bound protein complex photosystem II (PSII) catalyzes the water oxidation reaction that takes place in oxygenic photosynthetic organisms. We investigated the structural changes of the Mn4CaO5 cluster in the OEC during the S state transitions using x-ray absorption spectroscopy (XAS). Overall structural changes of the Mn4CaO5 cluster, based on the manganese ligand and Mn-Mn distances obtained from this study, were incorporated into the geometry of the Mn4CaO5 cluster in the OEC obtained from a polarized XAS model and the 1.9-Å high resolution crystal structure. Additionally, we compared the S1 state XAS of the dimeric and monomeric form of PSII from Thermosynechococcus elongatus and spinach PSII. Although the basic structures of the OEC are the same for T. elongatus PSII and spinach PSII, minor electronic structural differences that affect the manganese K-edge XAS between T. elongatus PSII and spinach PSII are found and may originate from differences in the second sphere ligand atom geometry.
Collapse
Affiliation(s)
- Carina Glöckner
- Institut für Chemie/Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Lohmiller T, Cox N, Su JH, Messinger J, Lubitz W. The basic properties of the electronic structure of the oxygen-evolving complex of photosystem II are not perturbed by Ca2+ removal. J Biol Chem 2012; 287:24721-33. [PMID: 22549771 PMCID: PMC3397899 DOI: 10.1074/jbc.m112.365288] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/25/2012] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S(2)' state in spinach PS II is very similar to the native S(2) state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca(2+) a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between Y(Z) and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel (55)Mn(2+) signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca(2+)-depleted PS II. Mn(2+) titration, monitored by (55)Mn ENDOR, revealed a specific Mn(2+) binding site with a submicromolar K(D). Ca(2+) titration of Mn(2+)-loaded, Ca(2+)-depleted PS II demonstrated that the site is reversibly made accessible to Mn(2+) by Ca(2+) depletion and reconstitution. Mn(2+) is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn(4)O(5)Ca cluster during photoassembly and/or D1 repair.
Collapse
Affiliation(s)
- Thomas Lohmiller
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Nicholas Cox
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Ji-Hu Su
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Johannes Messinger
- the Department of Chemistry, Chemical
Biological Centre (KBC), Umeå University, S-90187 Umeå,
Sweden
| | - Wolfgang Lubitz
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| |
Collapse
|
22
|
Wiśniewska J, Rześnicki P, Topolski A. A mechanistic study on the disproportionation and oxidative degradation of phenothiazine derivatives by manganese(III) complexes in phosphate acidic media. TRANSIT METAL CHEM 2011. [DOI: 10.1007/s11243-011-9531-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Yachandra VK, Yano J. Calcium in the oxygen-evolving complex: structural and mechanistic role determined by X-ray spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:51-9. [PMID: 21524917 DOI: 10.1016/j.jphotobiol.2011.02.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 11/25/2022]
Abstract
This review describes the results from X-ray Absorption Spectroscopy studies that have contributed to an understanding of the role of Ca in the photosynthetic water-oxidation reaction. The results include the first Mn, Ca and Sr X-ray spectroscopy studies using Ca or Sr-substituted PS II samples that established the presence of a MnCa heteronuclear structure and its orientation, and the most recent Sr X-ray spectroscopy study using biosynthetically prepared Sr-containing PS II in the various S-states that provide important insights into the requirement for Ca in the mechanism of the Mn(4)Ca catalytic center.
Collapse
Affiliation(s)
- Vittal K Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | |
Collapse
|
24
|
Cox N, Rapatskiy L, Su JH, Pantazis DA, Sugiura M, Kulik L, Dorlet P, Rutherford AW, Neese F, Boussac A, Lubitz W, Messinger J. Effect of Ca2+/Sr2+ substitution on the electronic structure of the oxygen-evolving complex of photosystem II: a combined multifrequency EPR, 55Mn-ENDOR, and DFT study of the S2 state. J Am Chem Soc 2011; 133:3635-48. [PMID: 21341708 DOI: 10.1021/ja110145v] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structures of the native Mn(4)O(x)Ca cluster and the biosynthetically substituted Mn(4)O(x)Sr cluster of the oxygen evolving complex (OEC) of photosystem II (PSII) core complexes isolated from Thermosynechococcus elongatus, poised in the S(2) state, were studied by X- and Q-band CW-EPR and by pulsed Q-band (55)Mn-ENDOR spectroscopy. Both wild type and tyrosine D less mutants grown photoautotrophically in either CaCl(2) or SrCl(2) containing media were measured. The obtained CW-EPR spectra of the S(2) state displayed the characteristic, clearly noticeable differences in the hyperfine pattern of the multiline EPR signal [Boussac et al. J. Biol. Chem.2004, 279, 22809-22819]. In sharp contrast, the manganese ((55)Mn) ENDOR spectra of the Ca and Sr forms of the OEC were remarkably similar. Multifrequency simulations of the X- and Q-band CW-EPR and (55)Mn-pulsed ENDOR spectra using the Spin Hamiltonian formalism were performed to investigate this surprising result. It is shown that (i) all four manganese ions contribute to the (55)Mn-ENDOR spectra; (ii) only small changes are seen in the fitted isotropic hyperfine values for the Ca(2+) and Sr(2+) containing OEC, suggesting that there is no change in the overall spin distribution (electronic coupling scheme) upon Ca(2+)/Sr(2+) substitution; (iii) the changes in the CW-EPR hyperfine pattern can be explained by a small decrease in the anisotropy of at least two hyperfine tensors. It is proposed that modifications at the Ca(2+) site may modulate the fine structure tensor of the Mn(III) ion. DFT calculations support the above conclusions. Our data analysis also provides strong support for the notion that in the S(2) state the coordination of the Mn(III) ion is square-pyramidal (5-coordinate) or octahedral (6-coordinate) with tetragonal elongation. In addition, it is shown that only one of the currently published OEC models, the Siegbahn structure [Siegbahn, P. E. M. Acc. Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al. Phys. Chem. Chem. Phys.2009, 11, 6788-6798], is consistent with all data presented here. These results provide important information for the structure of the OEC and the water-splitting mechanism. In particular, the 5-coordinate Mn(III) is a potential site for substrate 'water' (H(2)O, OH(-)) binding. Its location within the cuboidal structural unit, as opposed to the external 'dangler' position, may have important consequences for the mechanism of O-O bond formation.
Collapse
Affiliation(s)
- Nicholas Cox
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yano J, Walker LM, Strickler MA, Service RJ, Yachandra VK, Debus RJ. Altered structure of the Mn4Ca cluster in the oxygen-evolving complex of photosystem II by a histidine ligand mutation. J Biol Chem 2011; 286:9257-67. [PMID: 21233216 DOI: 10.1074/jbc.m110.205740] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of replacing a histidine ligand on the properties of the oxygen-evolving complex (OEC) and the structure of the Mn(4)Ca cluster in Photosystem II (PSII) is studied by x-ray absorption spectroscopy using PSII core complexes from the Synechocystis sp. PCC 6803 D1 polypeptide mutant H332E. In the x-ray crystallographic structures of PSII, D1-His(332) has been assigned as a direct ligand of a manganese ion, and the mutation of this histidine ligand to glutamate has been reported to prevent the advancement of the OEC beyond the S(2)Yz(•) intermediate state. The manganese K-edge (1s core electron to 4p) absorption spectrum of D1-H332E shifts to a lower energy compared with that of the native WT samples, suggesting that the electronic structure of the manganese cluster is affected by the presence of the additional negative charge on the OEC of the mutant. The extended x-ray absorption spectrum shows that the geometric structure of the cluster is altered substantially from that of the native WT state, resulting in an elongation of manganese-ligand and manganese-manganese interactions in the mutant. The strontium-H332E mutant, in which calcium is substituted by strontium, confirms that strontium (calcium) is a part of the altered cluster. The structural perturbations caused by the D1-H332E mutation are much larger than those produced by any biochemical treatment or mutation examined previously with x-ray absorption spectroscopy. The substantial structural changes provide an explanation not only for the altered properties of the D1-H332E mutant but also the importance of the histidine ligand for proper assembly of the Mn(4)Ca cluster.
Collapse
Affiliation(s)
- Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
26
|
Busch M, Ahlberg E, Panas I. Electrocatalytic oxygen evolution from water on a Mn(iii–v) dimer model catalyst—A DFT perspective. Phys Chem Chem Phys 2011; 13:15069-76. [DOI: 10.1039/c0cp02132f] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem 2010. [DOI: 10.1002/cctc.201000126] [Citation(s) in RCA: 1320] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Liebisch P, Dau H. Linear Dichroism in the XANES of Partially Oriented Samples: Theory and Application to the Photosynthetic Manganese Complex. Chemphyschem 2010; 11:1236-47. [DOI: 10.1002/cphc.200900954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Yano J, Yachandra VK. X-ray absorption spectroscopy. PHOTOSYNTHESIS RESEARCH 2009; 102:241-54. [PMID: 19653117 PMCID: PMC2777224 DOI: 10.1007/s11120-009-9473-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 07/09/2009] [Indexed: 05/20/2023]
Abstract
This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn(4)Ca cluster in Photosystem II is presented.
Collapse
Affiliation(s)
- Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 USA
| | - Vittal K. Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
30
|
Yano J, Kern J, Pushkar Y, Sauer K, Glatzel P, Bergmann U, Messinger J, Zouni A, Yachandra VK. High-resolution structure of the photosynthetic Mn4Ca catalyst from X-ray spectroscopy. Philos Trans R Soc Lond B Biol Sci 2008; 363:1139-47; discussion 1147. [PMID: 17954437 DOI: 10.1098/rstb.2007.2209] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, is described. Issues of X-ray damage, especially at the metal sites in the Mn4Ca cluster, are discussed. The structure of the Mn4Ca catalyst at high resolution, which has so far eluded attempts of determination by X-ray diffraction, X-ray absorption fine structure (EXAFS) and other spectroscopic techniques, has been addressed using polarized EXAFS techniques applied to oriented photosystem II (PSII) membrane preparations and PSII single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS, is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and Kbeta emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.
Collapse
Affiliation(s)
- Junko Yano
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Meelich K, Zaleski CM, Pecoraro VL. Using small molecule complexes to elucidate features of photosynthetic water oxidation. Philos Trans R Soc Lond B Biol Sci 2008; 363:1271-9; discussion 1279-81. [PMID: 17954438 DOI: 10.1098/rstb.2007.2224] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular oxygen produced in photosynthesis is generated via water oxidation at a manganese-calcium cluster called the oxygen-evolving complex (OEC). While studies in biophysics, biochemistry, and structural and molecular biology are well known to provide deeper insight into the structure and workings of this system, it is often less appreciated that biomimetic modelling provides the foundation for interpreting photosynthetic reactions. The synthesis and characterization of small model complexes, which either mimic structural features of the OEC or are capable of providing insight into the mechanism of O2 evolution, have become a vital contributor to this scientific field. Our group has contributed to these findings in recent years through synthesis of model complexes, spectroscopic characterization of these systems and probing the reactivity in the context of water oxidation. In this article we describe how models have made significant contributions ranging from understanding the structure of the water-oxidation centre (e.g. contributions to defining a tetrameric Mn3Ca-cluster with a dangler Mn) to the ability to discriminate between different mechanistic proposals (e.g. showing that the Babcock scheme for water oxidation is unlikely).
Collapse
Affiliation(s)
- Kristof Meelich
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
32
|
Zein S, Kulik LV, Yano J, Kern J, Pushkar Y, Zouni A, Yachandra VK, Lubitz W, Neese F, Messinger J. Focusing the view on nature's water-splitting catalyst. Philos Trans R Soc Lond B Biol Sci 2008; 363:1167-77; discussion 1177. [PMID: 17989003 DOI: 10.1098/rstb.2007.2212] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nature invented a catalyst about 3Gyr ago, which splits water with high efficiency into molecular oxygen and hydrogen equivalents (protons and electrons). This reaction is energetically driven by sunlight and the active centre contains relatively cheap and abundant metals: manganese and calcium. This biological system therefore forms the paradigm for all man-made attempts for direct solar fuel production, and several studies are underway to determine the electronic and geometric structures of this catalyst. In this report we briefly summarize the problems and the current status of these efforts and propose a density functional theory-based strategy for obtaining a reliable high-resolution structure of this unique catalyst that includes both the inorganic core and the first ligand sphere.
Collapse
Affiliation(s)
- Samir Zein
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yano J, Yachandra VK. Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster from X-ray spectroscopy. Inorg Chem 2008; 47:1711-26. [PMID: 18330965 PMCID: PMC3947645 DOI: 10.1021/ic7016837] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Light-driven oxidation of water to dioxygen in plants, algae, and cyanobacteria is catalyzed within photosystem II (PS II) by a Mn 4Ca cluster. Although the cluster has been studied by many different methods, its structure and mechanism have remained elusive. X-ray absorption and emission spectroscopy and extended X-ray absorption fine structure studies have been particularly useful in probing the electronic and geometric structures and the mechanism of the water oxidation reaction. Recent progress, reviewed here, includes polarized X-ray absorption spectroscopy measurements of PS II single crystals. Analysis of those results has constrained the Mn 4Ca cluster geometry to a set of three similar high-resolution structures. The structure of the cluster from the present study is unlike either the 3.0- or 3.5-A-resolution X-ray structures or other previously proposed models. The differences between the models derived from X-ray spectroscopy and crystallography are predominantly because of damage to the Mn 4Ca cluster by X-rays under conditions used for the structure determination by X-ray crystallography. X-ray spectroscopy studies are also used for studying the changes in the structure of the Mn 4Ca catalytic center as it cycles through the five intermediate states known as the S i states ( i = 0-4). The electronic structure of the Mn 4Ca cluster has been studied more recently using resonant inelastic X-ray scattering spectroscopy (RIXS), in addition to the earlier X-ray absorption and emission spectroscopy methods. These studies are revealing that the assignment of formal oxidation states is overly simplistic. A more accurate description should consider the charge density on the Mn atoms, which includes the covalency of the bonds and delocalization of the charge over the cluster. The geometric and electronic structures of the Mn 4Ca cluster in the S states derived from X-ray spectroscopy are leading to a detailed understanding of the mechanism of O-O bond formation during the photosynthetic water-splitting process.
Collapse
Affiliation(s)
- Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Vittal K. Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
34
|
Mishra A, Pushkar Y, Yano J, Yachandra VK, Wernsdorfer W, Abboud KA, Christou G. Single-molecule magnetism properties of the first strontium-manganese cluster [SrMn14O11(OMe)3(O2CPh)18(MeCN)2]. Inorg Chem 2008; 47:1940-8. [PMID: 18281933 DOI: 10.1021/ic701339p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation and properties of the first strontium-manganese molecular complex are described. The reaction of (NBu(n)4)[Mn4O2(O2CPh)9(H 2O)] (4Mn(III)) with Sr(ClO4)2 in MeCN/MeOH led to the isolation of [SrMn14O11(OMe)3(O2CPh)18(MeCN)2] ( 1; 13Mn(III), Mn(II)). The structure of 1 consists of two [Mn4O3(OMe)] cubane units attached to a central, near-planar, trinuclear [Mn3O4] unit, to which are also attached a Mn and a Sr above the plane and a [Mn2O(OMe)] rhomb below the plane. Peripheral ligation is provided by 18 bridging benzoate and two terminal MeCN groups. Variable-temperature and -field dc magnetization (M) data were collected in the 1.8-10 K and 0.1-4.0 T ranges and fit by matrix diagonalization methods to give S = 9/2, D = -0.50(5) cm(-1), and g = 1.88(10), where S is the ground-state spin and D is the axial zero-field splitting parameter. Magnetization versus dc field sweeps at various temperatures and scan rates exhibited hysteresis loops, confirming 1 to be a new single-molecule magnet. Because complex 1 is the initial molecular example of intimately associated Mn and Sr atoms, Sr EXAFS studies have been performed for the first time on a synthetic Sr-containing molecule. This has also allowed comparisons with the EXAFS data on the Sr-substituted water oxidizing complex (WOC) of Photosystem II (PS II), which contains a SrMn4 complex.
Collapse
Affiliation(s)
- Abhudaya Mishra
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Structural changes in the Mn4Ca cluster and the mechanism of photosynthetic water splitting. Proc Natl Acad Sci U S A 2008; 105:1879-84. [PMID: 18250316 DOI: 10.1073/pnas.0707092105] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic water oxidation, where water is oxidized to dioxygen, is a fundamental chemical reaction that sustains the biosphere. This reaction is catalyzed by a Mn4Ca complex in the photosystem II (PS II) oxygen-evolving complex (OEC): a multiprotein assembly embedded in the thylakoid membranes of green plants, cyanobacteria, and algae. The mechanism of photosynthetic water oxidation by the Mn4Ca cluster in photosystem II is the subject of much debate, although lacking structural characterization of the catalytic intermediates. Biosynthetically exchanged Ca/Sr-PS II preparations and x-ray spectroscopy, including extended x-ray absorption fine structure (EXAFS), allowed us to monitor Mn-Mn and Ca(Sr)-Mn distances in the four intermediate S states, S0 through S3, of the catalytic cycle that couples the one-electron photochemistry occurring at the PS II reaction center with the four-electron water-oxidation chemistry taking place at the Mn4Ca(Sr) cluster. We have detected significant changes in the structure of the complex, especially in the Mn-Mn and Ca(Sr)-Mn distances, on the S2-to-S3 and S3-to-S0 transitions. These results implicate the involvement of at least one common bridging oxygen atom between the Mn-Mn and Mn-Ca(Sr) atoms in the O-O bond formation. Because PS II cannot advance beyond the S2 state in preparations that lack Ca(Sr), these results show that Ca(Sr) is one of the critical components in the mechanism of the enzyme. The results also show that Ca is not just a spectator atom involved in providing a structural framework, but is actively involved in the mechanism of water oxidation and represents a rare example of a catalytically active Ca cofactor.
Collapse
|
36
|
Sauer K, Yano J, Yachandra VK. X-Ray spectroscopy of the photosynthetic oxygen-evolving complex. Coord Chem Rev 2008; 252:318-335. [PMID: 19190720 PMCID: PMC2387253 DOI: 10.1016/j.ccr.2007.08.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water oxidation to dioxygen in photosynthesis is catalyzed by a Mn(4)Ca cluster with O bridging in Photosystem II (PS II) of plants, algae and cyanobacteria. A variety of spectroscopic methods have been applied to analyzing the participation of the complex. X-ray spectroscopy is particularly useful because it is element-specific, and because it can reveal important structural features of the complex with high accuracy and identify the participation of Mn in the redox chemistry. Following a brief history of the application of X-ray spectroscopy to PS II, an overview of newer results will be presented and a description of the present state of our knowledge based on this approach.
Collapse
Affiliation(s)
- Kenneth Sauer
- Department of Chemistry, University of California, Berkeley, CA 94707-5230
| | | | | |
Collapse
|
37
|
Boisvert S, Joly D, Leclerc S, Govindachary S, Harnois J, Carpentier R. Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel. Biometals 2007; 20:879-89. [PMID: 17588196 DOI: 10.1007/s10534-007-9081-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 01/10/2007] [Indexed: 10/23/2022]
Abstract
The toxic effect of Ni(2+) on photosynthetic electron transport was studied in a photosystem II submembrane fraction. It was shown that Ni(2+) strongly inhibits oxygen evolution in the millimolar range of concentration. The inhibition was insensitive to NaCl but significantly decreased in the presence of CaCl(2). Maximal chlorophyll fluorescence, together with variable fluorescence, maximal quantum yield of photosystem II, and flash-induced fluorescence decays were all significantly declined by Ni(2+). Further, the extrinsic polypeptides of 16 and 24 kDa associated with the oxygen-evolving complex of photosystem II were depleted following Ni(2+) treatment. It was deduced that interaction of Ni(2+) with these polypeptides caused a conformational change that induced their release together with Ca(2+) from the oxygen-evolving complex of photosystem II with consequent inhibition of the electron transport activity.
Collapse
Affiliation(s)
- Steve Boisvert
- Groupe de recherche en Biologie Végétale, Université du Québec à Trois-Rivières, CP 500, Trois-Rivières, Québec, Canada G9A 5H7
| | | | | | | | | | | |
Collapse
|
38
|
Kern J, Biesiadka J, Loll B, Saenger W, Zouni A. Structure of the Mn4-Ca cluster as derived from X-ray diffraction. PHOTOSYNTHESIS RESEARCH 2007; 92:389-405. [PMID: 17492491 DOI: 10.1007/s11120-007-9173-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 04/10/2007] [Indexed: 05/15/2023]
Abstract
The catalytic centre for light-induced water oxidation in photosystem II (PSII) is a multinuclear metal cluster containing four manganese and one calcium cations. Knowing the structure of this biological catalyst is of utmost importance for unravelling the mechanism of water oxidation in photosynthesis. In this review we describe the current state of the X-ray structure determination at 3.0 A resolution of the water oxidation complex (WOC) of PSII. The arrangement of metal cations in the cluster, their coordination and protein surroundings are discussed with regard to spectroscopic and mutagenesis studies. Limitations of the presently available structural data are pointed out and possible perspectives for the future are outlined, including the combination of X-ray diffraction and X-ray spectroscopy on single crystals.
Collapse
Affiliation(s)
- Jan Kern
- Institut für Chemie, Max Volmer Laboratorium für Biophysikalische Chemie, Sekr. PC 14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | | | | | | | | |
Collapse
|
39
|
Mishra A, Yano J, Pushkar Y, Yachandra VK, Abboud KA, Christou G. Heteronuclear Mn-Ca/Sr complexes, and Ca/Sr EXAFS spectral comparisons with the oxygen-evolving complex of photosystem II. Chem Commun (Camb) 2007:1538-40. [PMID: 17406700 PMCID: PMC3962498 DOI: 10.1039/b701355h] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heterometallic Mn-Ca and Mn-Sr complexes have been prepared and employed as model complexes for Ca and Sr EXAFS spectral comparisons with the Oxygen-Evolving Complex (OEC) of Photosystem II (PS II); these have revealed similarities that support the presence of at least one O atom bridge between the Mn and Ca/Sr in the OEC.
Collapse
Affiliation(s)
- Abhudaya Mishra
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA. Fax: +1 352-392-8757; Tel: +1 352-392-6737
| | - Junko Yano
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Yulia Pushkar
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Vittal K. Yachandra
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Khalil A. Abboud
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA. Fax: +1 352-392-8757; Tel: +1 352-392-6737
| | - George Christou
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA. Fax: +1 352-392-8757; Tel: +1 352-392-6737
| |
Collapse
|
40
|
Lee CI, Lakshmi KV, Brudvig GW. Probing the Functional Role of Ca2+ in the Oxygen-Evolving Complex of Photosystem II by Metal Ion Inhibition. Biochemistry 2007; 46:3211-23. [PMID: 17309233 DOI: 10.1021/bi062033i] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photosynthetic oxygen evolution in photosystem II (PSII) takes place in the oxygen-evolving complex (OEC) that is comprised of a tetranuclear manganese cluster (Mn4), a redox-active tyrosine residue (YZ), and Ca2+ and Cl- cofactors. The OEC is successively oxidized by the absorption of 4 quanta of light that results in the oxidation of water and the release of O2. Ca2+ is an essential cofactor in the water-oxidation reaction, as its depletion causes the loss of the oxygen-evolution activity in PSII. In recent X-ray crystal structures, Ca2+ has been revealed to be associated with the Mn4 cluster of PSII. Although several mechanisms have been proposed for the water-oxidation reaction of PSII, the role of Ca2+ in oxygen evolution remains unclear. In this study, we probe the role of Ca2+ in oxygen evolution by monitoring the S1 to S2 state transition in PSII membranes and PSII core complexes upon inhibition of oxygen evolution by Dy3+, Cu2+, and Cd2+ ions. By using a cation-exchange procedure in which Ca2+ is not removed prior to addition of the studied cations, we achieve a high degree of reversible inhibition of PSII membranes and PSII core complexes by Dy3+, Cu2+, and Cd2+ ions. EPR spectroscopy is used to quantitate the number of bound Dy3+ and Cu2+ ions per PSII center and to determine the proximity of Dy3+ to other paramagnetic centers in PSII. We observe, for the first time, the S2 state multiline electron paramagnetic resonance (EPR) signal in Dy3+- and Cd2+-inhibited PSII and conclude that the Ca2+ cofactor is not specifically required for the S1 to S2 state transition of PSII. This observation provides direct support for the proposal that Ca2+ plays a structural role in the early S-state transitions, which can be fulfilled by other cations of similar ionic radius, and that the functional role of Ca2+ to activate water in the O-O bond-forming reaction that occurs in the final step of the S state cycle can only be fulfilled by Ca2+ and Sr2+, which have similar Lewis acidities.
Collapse
Affiliation(s)
- Cheng-I Lee
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | | | | |
Collapse
|
41
|
Affiliation(s)
- James P McEvoy
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
42
|
Kargul J, Maghlaoui K, Murray JW, Deak Z, Boussac A, Rutherford AW, Vass I, Barber J. Purification, crystallization and X-ray diffraction analyses of the T. elongatus PSII core dimer with strontium replacing calcium in the oxygen-evolving complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:404-13. [PMID: 17321490 DOI: 10.1016/j.bbabio.2007.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 01/05/2007] [Accepted: 01/09/2007] [Indexed: 11/17/2022]
Abstract
The core complex of photosystem II (PSII) was purified from thermophilic cyanobacterium Thermosynechococcus elongatus grown in Sr(2+)-containing and Ca(2+)-free medium. Functional in vivo incorporation of Sr(2+) into the oxygen-evolving complex (OEC) was confirmed by EPR analysis of the isolated and highly purified SrPSII complex in agreement with the previous study of Boussac et al. [J. Biol. Chem. 279 (2004) 22809-22819]. Three-dimensional crystals of SrPSII complex were obtained which diffracted to 3.9 A and belonged to the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions of a=133.6 A, b=236.6 A, c=307.8 A. Anomalous diffraction data collected at the Sr K-X-ray absorption edge identified a novel Sr(2+)-binding site which, within the resolution of these data (6.5 A), is consistent with the positioning of Ca(2+) in the recent crystallographic models of PSII [Ferreira et al. Science 303 (2004) 1831-1838, Loll et al. Nature 438 (2005) 1040-1044]. Fluorescence measurements on SrPSII crystals confirmed that crystallized SrPSII was active in transferring electrons from the OEC to the acceptor site of the reaction centre. However, SrPSII showed altered functional properties of its modified OEC in comparison with that of the CaPSII counterpart: slowdown of the Q(A)-to-Q(B) electron transfer and stabilized S(2)Q(A)(-) charge recombination.
Collapse
Affiliation(s)
- Joanna Kargul
- Wolfson Laboratories, Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tyryshkin AM, Watt RK, Baranov SV, Dasgupta J, Hendrich MP, Dismukes GC. Spectroscopic Evidence for Ca2+ Involvement in the Assembly of the Mn4Ca Cluster in the Photosynthetic Water-Oxidizing Complex. Biochemistry 2006; 45:12876-89. [PMID: 17042506 DOI: 10.1021/bi061495t] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biogenesis and repair of the inorganic core (Mn4CaO(x)Cl(y)), in the water-oxidizing complex of photosystem II (WOC-PSII), occurs through the light-induced (re)assembly of its free elementary ions and the apo-WOC-PSII protein, a reaction known as photoactivation. Herein, we use electron paramagnetic resonance (EPR) spectroscopy to characterize changes in the ligand coordination environment of the first photoactivation intermediate, the photo-oxidized Mn3+ bound to apo-WOC-PSII. On the basis of the observed changes in electron Zeeman (g(eff)), 55Mn hyperfine (A(Z)) interaction, and the EPR transition probabilities, the photogenerated Mn3+ is shown to exist in two pH-dependent forms, differing in terms of strength and symmetry of their ligand fields. The transition from an EPR-invisible low-pH form to an EPR-active high-pH form occurs by deprotonation of an ionizable ligand bound to Mn3+, implicated to be a water molecule: [Mn3+ (OH2)] <--> [Mn3+ (OH-)]. In the absence of Ca2+, the EPR-active Mn3+ exhibits a strong pH dependence (pH approximately 6.5-9) of its ligand-field symmetry (rhombicity Delta delta = 10%, derived from g(eff)) and A(Z) (DeltaA(Z) = 22%), attributable to a protein conformational change. Binding of Ca2+ to its effector site eliminates this pH dependence and locks both g(eff) and A(Z) at values observed in the absence of Ca2+ at alkaline pH. Thus, Ca2+ directly controls the coordination environment and binds close to the high-affinity Mn3+, probably sharing a bridging ligand. This Ca2+ effect and the pH-induced changes are consistent with the ionization of the bridging water molecule, predicting that [Mn3+-(mu-O(-2))-Ca2+] or [Mn3+-(mu-OH(-))2-Ca2+] is the first light intermediate in the presence of Ca2+. The formation of this intermediate templates the apo-WOC-PSII for the subsequent rapid cooperative binding and photo-oxidation of three additional Mn2+ ions, forming the active water oxidase.
Collapse
Affiliation(s)
- Alexei M Tyryshkin
- Department of Chemistry and the Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW, Batista VS. Characterization of synthetic oxomanganese complexes and the inorganic core of the O2-evolving complex in photosystem II: Evaluation of the DFT/B3LYP level of theory. J Inorg Biochem 2006; 100:786-800. [PMID: 16510187 DOI: 10.1016/j.jinorgbio.2006.01.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/08/2006] [Accepted: 01/09/2006] [Indexed: 11/21/2022]
Abstract
The capabilities and limitations of the Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional are investigated as applied to studies of mixed-valent multinuclear oxomanganese complexes. Benchmark calculations involve the analysis of structural, electronic and magnetic properties of di-, tri- and tetra-nuclear Mn complexes, previously characterized both chemically and spectroscopically, including the di-mu-oxo bridged dimers [Mn(III)Mn(IV)(mu-O)(2)(H(2)O)(2)(terpy)(2)](3+) (terpy=2,2':6,2''-terpyridine) and [Mn(III)Mn(IV)(mu-O)(2)(phen)(4)](3+) (phen=1,10-phenanthroline), the Mn trimer [Mn(3)O(4)(bpy)(4)(H(2)O)(2)](4+) (bpy=2,2'-bipyridine), and the tetramer [Mn(4)O(4)L(6)](+) with L=Ph(2)PO(2)(-). Furthermore, the density functional theory (DFT) B3LYP level is applied to analyze the hydrated Mn(3)O(4)CaMn cluster completely ligated by water, OH(-), Cl(-), carboxylate and imidazole ligands, analogous to the '3+1 Mn tetramer' of the oxygen-evolving complex of photosystem II. It is found that DFT/B3LYP predicts structural and electronic properties of oxomanganese complexes in pre-selected spin-electronic states in very good agreement with X-ray and magnetic experimental data, even when applied in conjunction with rather modest basis sets. However, it is conjectured that the energetics of low-lying spin-states is beyond the capabilities of the DFT/B3LYP level, constituting a limitation to mechanistic studies of multinuclear oxomanganese complexes where until now the performance of DFT/B3LYP has raised little concern.
Collapse
Affiliation(s)
- Eduardo M Sproviero
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, CT 06520-8107, USA
| | | | | | | | | |
Collapse
|
45
|
Yu H, Aznar CP, Xu X, Britt RD. Evidence That Azide Occupies the Chloride Binding Site near the Manganese Cluster in Photosystem II. Biochemistry 2005; 44:12022-9. [PMID: 16142899 DOI: 10.1021/bi0505767] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of adding azide to photosystem II (PS II) membrane samples (BBY preparation), with or without chloride, has been investigated using continuous wave (CW) and pulsed EPR spectroscopy. In the BBY samples with 25 mM chloride, we observed that the inhibition induced by azide is partly recovered by the addition of bicarbonate. Electron spin-echo envelope modulation (ESEEM) was used to search for spin transitions of 15N nuclei magnetically coupled to the S2 state Mn cluster (multiline EPR signal form) in 15N (single terminal label) azide-treated samples with negative results. However, an 15N ESEEM peak was observed in parallel chloride-depleted PS II samples when the 15N-labeled azide is added. However, this peak is absent in chloride-depleted samples incubated in buffer containing both chloride and [15N]azide. Thus these results demonstrate an azide binding site in the immediate vicinity of the Mn cluster, and since this site appears to be competitive with chloride, these results provide further evidence that chloride is bound proximal to the Mn cluster as well. Discussion on the possible interplay between azide, chloride, and bicarbonate is provided.
Collapse
Affiliation(s)
- Hui Yu
- Department of Chemistry, University of California, Davis, California 95616-0935, USA
| | | | | | | |
Collapse
|
46
|
Mukhopadhyay S, Mandal SK, Bhaduri S, Armstrong WH. Manganese clusters with relevance to photosystem II. Chem Rev 2005; 104:3981-4026. [PMID: 15352784 DOI: 10.1021/cr0206014] [Citation(s) in RCA: 481] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sumitra Mukhopadhyay
- Department of Chemistry, Eugene F Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467-3860, USA
| | | | | | | |
Collapse
|
47
|
van Gorkom HJ, Yocum CF. The Calcium and Chloride Cofactors. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2005. [DOI: 10.1007/1-4020-4254-x_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Sauer K, Yano J, Yachandra VK. X-ray spectroscopy of the Mn4Ca cluster in the water-oxidation complex of Photosystem II. PHOTOSYNTHESIS RESEARCH 2005; 85:73-86. [PMID: 15977060 PMCID: PMC3962501 DOI: 10.1007/s11120-005-0638-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 01/13/2005] [Indexed: 05/03/2023]
Abstract
The water-oxidation complex of Photosystem II (PS II) contains a heteronuclear cluster of 4 Mn atoms and a Ca atom. Ligands to the metal cluster involve bridging O atoms, and O and N atoms from amino acid side-chains of the D1 polypeptide of PS II, with likely additional contributions from water and CP43. Although moderate resolution X-ray diffraction-based structures of PS II have been reported recently, and the location of the Mn4Ca cluster has been identified, the structures are not resolved at the atomic level. X-ray absorption (XAS), emission (XES), resonant inelastic X-ray scattering (RIXS) and extended X-ray absorption fine structure (EXAFS) provide independent and potentially highly accurate sources of structural and oxidation-state information. When combined with polarized X-ray studies of oriented membranes or single-crystals of PS II, a more detailed picture of the cluster and its disposition in PS II is obtained.
Collapse
Affiliation(s)
- Kenneth Sauer
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Authors for correspondence (; ; ; fax: +1-510-486-6059)
| | - Junko Yano
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Authors for correspondence (; ; ; fax: +1-510-486-6059)
| | - Vittal K. Yachandra
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Authors for correspondence (; ; ; fax: +1-510-486-6059)
| |
Collapse
|
49
|
Cinco RM, Robblee JH, Messinger J, Fernandez C, Holman KLM, Sauer K, Yachandra VK. Orientation of calcium in the Mn4Ca cluster of the oxygen-evolving complex determined using polarized strontium EXAFS of photosystem II membranes. Biochemistry 2004; 43:13271-82. [PMID: 15491134 PMCID: PMC3962026 DOI: 10.1021/bi036308v] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxygen-evolving complex of photosystem II (PS II) in green plants and algae contains a cluster of four Mn atoms in the active site, which catalyzes the photoinduced oxidation of water to dioxygen. Along with Mn, calcium and chloride ions are necessary cofactors for proper functioning of the complex. The current study using polarized Sr EXAFS on oriented Sr-reactivated samples shows that Fourier peak II, which fits best to Mn at 3.5 A rather than lighter atoms (C, N, O, or Cl), is dichroic, with a larger magnitude at 10 degrees (angle between the PS II membrane normal and the X-ray electric field vector) and a smaller magnitude at 80 degrees . Analysis of the dichroism of the Sr EXAFS yields a lower and upper limit of 0 degrees and 23 degrees for the average angle between the Sr-Mn vectors and the membrane normal and an isotropic coordination number (number of Mn neighbors to Sr) of 1 or 2 for these layered PS II samples. The results confirm the contention that Ca (Sr) is proximal to the Mn cluster and lead to refined working models of the heteronuclear Mn(4)Ca cluster of the oxygen-evolving complex in PS II.
Collapse
Affiliation(s)
- Roehl M. Cinco
- Department of Chemistry, University of California, Berkeley, California 94720-5230
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-5230
| | - John H. Robblee
- Department of Chemistry, University of California, Berkeley, California 94720-5230
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-5230
| | - Johannes Messinger
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-5230
| | - Carmen Fernandez
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-5230
| | - Karen L. McFarlane Holman
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-5230
| | - Kenneth Sauer
- Department of Chemistry, University of California, Berkeley, California 94720-5230
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-5230
| | - Vittal K. Yachandra
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-5230
- To whom correspondence should be addressed. Tel: 510 486 4330. Fax: 510 486 6059.
| |
Collapse
|
50
|
Sigfridsson KGV, Bernát G, Mamedov F, Styring S. Molecular interference of Cd2+ with Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1659:19-31. [PMID: 15511524 DOI: 10.1016/j.bbabio.2004.07.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 06/23/2004] [Accepted: 07/07/2004] [Indexed: 12/31/2022]
Abstract
Many heavy metals inhibit electron transfer reactions in Photosystem II (PSII). Cd(2+) is known to exchange, with high affinity in a slow reaction, for the Ca(2+) cofactor in the Ca/Mn cluster that constitutes the oxygen-evolving center. This results in inhibition of photosynthetic oxygen evolution. There are also indications that Cd(2+) binds to other sites in PSII, potentially to proton channels in analogy to heavy metal binding in photosynthetic reaction centers from purple bacteria. In search for the effects of Cd(2+)-binding to those sites, we have studied how Cd(2+) affects electron transfer reactions in PSII after short incubation times and in sites, which interact with Cd(2+) with low affinity. Overall electron transfer and partial electron transfer were studied by a combination of EPR spectroscopy of individual redox components, flash-induced variable fluorescence and steady state oxygen evolution measurements. Several effects of Cd(2+) were observed: (i) the amplitude of the flash-induced variable fluorescence was lost indicating that electron transfer from Y(Z) to P(680)(+) was inhibited; (ii) Q(A)(-) to Q(B) electron transfer was slowed down; (iii) the S(2) state multiline EPR signal was not observable; (iv) steady state oxygen evolution was inhibited in both a high-affinity and a low-affinity site; (v) the spectral shape of the EPR signal from Q(A)(-)Fe(2+) was modified but its amplitude was not sensitive to the presence of Cd(2+). In addition, the presence of both Ca(2+) and DCMU abolished Cd(2+)-induced effects partially and in different sites. The number of sites for Cd(2+) binding and the possible nature of these sites are discussed.
Collapse
Affiliation(s)
- Kajsa G V Sigfridsson
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | | | | | | |
Collapse
|