1
|
Lutovsky GA, Yoon TP. Cu(II) salts as terminal oxidants in visible-light photochemical oxidation reactions. Org Biomol Chem 2023; 22:25-36. [PMID: 38047405 PMCID: PMC10842929 DOI: 10.1039/d3ob01678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Photochemistry provides an important platform for the discovery of synthetically useful transformations. The development of new oxidative photoreactions, however, has proven to be relatively challenging. The importance of the identity of the terminal oxidant has been an underappreciated consideration in the design of these reactions. Many of the most common terminal oxidants used in ground-state catalytic methods are poorly compatible with the one-electron oxidation state changes characteristic of photoredox reactions and result in hard-to-control deleterious side reactions. As an alternative, Cu(II) salts have emerged as versatile terminal oxidants in photochemical oxidation reactions that are terrestrially abundant, cost-effective, and readily compatible with one-electron oxidation state changes. This review highlights recent reaction methods that leverage Cu(II) oxidation in combination with the photochemical activation of substrates or that use Cu(II) salts as both the active chromophore and terminal oxidant.
Collapse
Affiliation(s)
- Grace A Lutovsky
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Pan Y, Garg S, Ouyang Y, Yang X, Waite TD. Inhibition of photosensitized degradation of organic contaminants by copper under conditions typical of estuarine and coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131812. [PMID: 37331060 DOI: 10.1016/j.jhazmat.2023.131812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
Dissolved organic matter (DOM) driven-photochemical processes play an important role in the redox cycling of trace metals and attenuation of organic contaminants in estuarine and coastal ecosystems. In this study, we evaluate the effect of Cu on 4-carboxybenzophenone (CBBP) and Suwannee River natural organic matter (SRNOM)-photosensitized degradation of seven target contaminants (TCs) including phenols and amines under pH conditions and salt concentrations typical of those encountered in estuarine and coastal waters. Our results show that trace amounts of Cu(II) (25 -500 nM) induce strong inhibition of the photosensitized degradation of all TCs in solutions containing CBBP. The influence of TCs on the photo-formation of Cu(I) and the decrease in the lifetime of transformation intermediates of contaminants (TC•+/ TC•(-H)) in the presence of Cu(I) indicated that the inhibition effect of Cu was mainly due to the reduction of TC•+/ TC•(-H) by the photo-produced Cu(I). The inhibitory effect of Cu on the photodegradation of TCs decreased with the increase in Cl- concentration since less reactive Cu(I)-Cl complexes dominate at high Cl- concentrations. The impact of Cu on the SRNOM-sensitized degradation of TCs is less pronounced compared to that observed in CBBP solution since the redox active moieties present in SRNOM competes with Cu(I) to reduce TC•+/ TC•(-H). A detailed mathematical model is developed to describe the photodegradation of contaminants and Cu redox transformations in irradiated SRNOM and CBBP solutions.
Collapse
Affiliation(s)
- Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiming Ouyang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
3
|
Wu Y, Guo J, Zhang Y, Xu J, Pozdnyakov IP, Li J, Wu F. Aquatic photochemistry of Cu(II) in the presence of As(III): Mechanistic insights from Cu(III) production and As(III) oxidation under neutral pH conditions. WATER RESEARCH 2022; 227:119344. [PMID: 36402098 DOI: 10.1016/j.watres.2022.119344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Surface complexation between arsenite (As(III)) and colloidal metal hydroxides plays an important role not only in the immobilization and oxidation of As(III) but also in the cycle of the metal and the fate of their ligands. However, the photochemical processes between Cu(II) and As(III) are not sufficiently understood. In this work, the photooxidation of As(III) in the presence of Cu(II) under neutral pH conditions was investigated in water containing 200 μM Cu(II) and 5 μM As(III) under simulated solar irradiation consisting of UVB light. The results confirmed the complexation between As(III) and Cu(II) hydroxides, and the photooxidation of As(III) is attributed to the ligand-to-metal charge transfer (LMCT) process and Cu(III) oxidation. The light-induced LMCT process results in simultaneous As(III) oxidation and Cu(II) reduction, then produced Cu(I) undergoes autooxidation with O2 to produce O2•⁻ and H2O2, and further the Cu(I)-Fenton reaction produces Cu(III) that can oxidize As(III) efficiently (kCu(III)+As(III) = 1.02 × 109 M-1 s-1). The contributions from each pathway (ρrCu(II)-As(III)+hv = 0.62, ρrCu(III)+As(III) = 0.38) were obtained using kinetic analysis and simulation. Sunlight experiments showed that the pH range of As(III) oxidation could be extended to weak acidic conditions in downstream water from acid mine drainage (AMD). This work helps to understand the environmental chemistry of Cu(II) and As(III) regarding their interaction and photo-induced redox reactions.
Collapse
Affiliation(s)
- Yi Wu
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Juntao Guo
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Yihui Zhang
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Jing Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, PR China.
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| | - Jinjun Li
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Feng Wu
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
4
|
Li QY, Gockel SN, Lutovsky GA, DeGlopper KS, Baldwin NJ, Bundesmann MW, Tucker JW, Bagley SW, Yoon TP. Decarboxylative cross-nucleophile coupling via ligand-to-metal charge transfer photoexcitation of Cu(II) carboxylates. Nat Chem 2022; 14:94-99. [PMID: 34987174 PMCID: PMC8820273 DOI: 10.1038/s41557-021-00834-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/05/2021] [Indexed: 11/08/2022]
Abstract
Reactions that enable carbon-nitrogen, carbon-oxygen and carbon-carbon bond formation lie at the heart of synthetic chemistry. However, substrate prefunctionalization is often needed to effect such transformations without forcing reaction conditions. The development of direct coupling methods for abundant feedstock chemicals is therefore highly desirable for the rapid construction of complex molecular scaffolds. Here we report a copper-mediated, net-oxidative decarboxylative coupling of carboxylic acids with diverse nucleophiles under visible-light irradiation. Preliminary mechanistic studies suggest that the relevant chromophore in this reaction is a Cu(II) carboxylate species assembled in situ. We propose that visible-light excitation to a ligand-to-metal charge transfer (LMCT) state results in a radical decarboxylation process that initiates the oxidative cross-coupling. The reaction is applicable to a wide variety of coupling partners, including complex drug molecules, suggesting that this strategy for cross-nucleophile coupling would facilitate rapid compound library synthesis for the discovery of new pharmaceutical agents.
Collapse
Affiliation(s)
- Qi Yukki Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel N Gockel
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Grace A Lutovsky
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Yang Z, Qian J, Shan C, Li H, Yin Y, Pan B. Toward Selective Oxidation of Contaminants in Aqueous Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14494-14514. [PMID: 34669394 DOI: 10.1021/acs.est.1c05862] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The presence of diverse pollutants in water has been threating human health and aquatic ecosystems on a global scale. For more than a century, chemical oxidation using strongly oxidizing species was one of the most effective technologies to destruct pollutants and to ensure a safe and clean water supply. However, the removal of increasing amount of pollutants with higher structural complexity, especially the emerging micropollutants with trace concentrations in the complicated water matrix, requires excessive dosage of oxidant and/or energy input, resulting in a low cost-effectiveness and possible secondary pollution. Consequently, it is of practical significance but scientifically challenging to achieve selective oxidation of pollutants of interest for water decontamination. Currently, there are a variety of examples concerning selective oxidation of pollutants in aqueous systems. However, a systematic understanding of the relationship between the origin of selectivity and its applicable water treatment scenarios, as well as the rational design of catalyst for selective catalytic oxidation, is still lacking. In this critical review, we summarize the state-of-the-art selective oxidation strategies in water decontamination and probe the origins of selectivity, that is, the selectivity resulting from the reactivity of either oxidants or target pollutants, the selectivity arising from the accessibility of pollutants to oxidants via adsorption and size exclusion, as well as the selectivity due to the interfacial electron transfer process and enzymatic oxidation. Finally, the challenges and perspectives are briefly outlined to stimulate future discussion and interest on selective oxidation for water decontamination, particularly toward application in real scenarios.
Collapse
Affiliation(s)
- Zhichao Yang
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chao Shan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuyang Yin
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Lin CJ, Wang PY, Lin YL, Chang ST, Hsu CS, Wu SP, Wu CH. Nonpolar Side Chains Affect the Photochemical Redox Reactions of Copper(II)-Amino Acid Complexes in Aqueous Solutions. ACS OMEGA 2021; 6:28194-28202. [PMID: 34723017 PMCID: PMC8552463 DOI: 10.1021/acsomega.1c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Photochemical redox reactions of Cu(II) complexes of eight amino acid ligands (L) with nonpolar side chains have been systematically investigated in deaerated aqueous solutions. Under irradiation at 313 nm, the intramolecular carboxylate-to-Cu(II) charge transfer within Cu(II)-amino acid complexes leads to Cu(I) formation and the concomitant decomposition of amino acids. All amino acid systems studied here can produce ammonia and aldehydes except proline. For the 1:1 Cu(II) complex species (CuL), the Cu(I) quantum yields at 313 nm (ΦCu(I),CuL) vary by fivefold and in the sequence (0.10 M ionic strength at 25 °C) alanine (0.094) > valine (0.059), leucine (0.059), isoleucine (0.056), phenylalanine (0.057) > glycine (0.052) > methionine (0.032) > proline (0.019). This trend can be rationalized by considering the stability of the carbon-centered radicals and the efficient depopulation of the photoexcited state, both of which are dependent on the side-chain structure. For the 1:2 Cu(II) complex species (CuL2), the Cu(I) quantum yields exhibit a similar trend and are always less than those for CuL. The photoformation rates of ammonia, Cu(I), and aldehydes are in the ratio of 1:2.0 ± 0.2:0.7 ± 0.2, which supports the proposed mechanism. This study suggests that the direct phototransformation of Cu(II)-amino acid complexes may contribute to the bioavailable nitrogen for aquatic microorganisms and cause biological damage on cell surfaces in sunlit waters.
Collapse
Affiliation(s)
- Chen-Jui Lin
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Yen Wang
- Department
of Civil Engineering, Widener University, Chester, Pennsylvania 19013, United States
| | - Yi-Liang Lin
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sheng-Te Chang
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chao-Sheng Hsu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shu-Pao Wu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chien-Hou Wu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute
of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
7
|
Pan Y, Ruan X, Garg S, Waite TD, Lei Y, Yang X. Copper Inhibition of Triplet-Sensitized Phototransformation of Phenolic and Amine Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9980-9989. [PMID: 32687340 DOI: 10.1021/acs.est.0c01693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Excited triplet states of natural organic matter (3NOM*) are important reactive intermediates in phototransformation of organic contaminants in sunlit waters. The main goal of this study was to explore the influence of Cu on triplet-sensitized transformation rates of 20 selected phenolic and amine contaminants. Fourteen of the compounds examined exhibited a marked decrease in their 4-carboxybenzophenone (CBBP)-mediated phototransformation rate in the presence of trace amounts of Cu(II) (25-500 nM). Both mathematical modeling of these rate data and transient absorption spectroscopy measurements support the hypothesis that the decrease in the rate and extent of phototransformation of organic contaminants is due to the reduction of radical intermediates of the contaminants by photochemically formed Cu(I). The Cu-induced inhibition of oxidation of organic contaminants photosensitized by Suwannee River NOM (SRNOM) could also take place in the presence of nanomolar concentrations of Cu. The inhibitory effect of Cu on the oxidation rates of amine contaminants in SRNOM solutions was found to be significantly weaker compared to that in CBBP solutions, but little difference was observed on depletion of phenols. This behavior was attributed to the intrinsic inhibitory effect of the antioxidant moieties present in NOM on phototransformation of amine compounds, partially neutralizing the potential for further Cu inhibition.
Collapse
Affiliation(s)
- Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoxue Ruan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Synthesis of (Ni,Mg,Cu)Fe2O4 from nickel sulfide ore: A novel heterogeneous photo-Fenton-like catalyst with enhanced activity in the presence of oxalic acid. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Kochemirovsky VA, Skripkin MY, Tveryanovich YS, Mereshchenko AS, Gorbunov AO, Panov MS, Tumkin II, Safonov SV. Laser-induced copper deposition from aqueous and aqueous–organic solutions: state of the art and prospects of research. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4535] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Guan X, Zhang J, Wang Y. An Efficient Photocatalyst for the Azide–Alkyne Click Reaction Based on Direct Photolysis of a Copper(II)/Carboxylate Complex. CHEM LETT 2014. [DOI: 10.1246/cl.140240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xin Guan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University
| | - Jing Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University
| | - Yuechuan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University
| |
Collapse
|
11
|
Lin CJ, Hsu CS, Wang PY, Lin YL, Lo YS, Wu CH. Photochemical Redox Reactions of Copper(II)–Alanine Complexes in Aqueous Solutions. Inorg Chem 2014; 53:4934-43. [DOI: 10.1021/ic4031238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chen-Jui Lin
- Department of Biomedical Engineering and Environmental
Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chao-Sheng Hsu
- Department of Biomedical Engineering and Environmental
Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Yen Wang
- Department of Biomedical Engineering and Environmental
Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Liang Lin
- Department of Biomedical Engineering and Environmental
Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Shiu Lo
- Department of Biomedical Engineering and Environmental
Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Hou Wu
- Department of Biomedical Engineering and Environmental
Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
12
|
Weller C, Horn S, Herrmann H. Photolysis of Fe(III) carboxylato complexes: Fe(II) quantum yields and reaction mechanisms. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.06.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
George C, D’Anna B, Herrmann H, Weller C, Vaida V, Donaldson DJ, Bartels-Rausch T, Ammann M. Emerging Areas in Atmospheric Photochemistry. Top Curr Chem (Cham) 2012; 339:1-53. [DOI: 10.1007/128_2012_393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Ciesienski KL, Haas KL, Franz KJ. Development of next-generation photolabile copper cages with improved copper binding properties. Dalton Trans 2010; 39:9538-46. [PMID: 20740238 DOI: 10.1039/c0dt00770f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Seven new nitrogen-donor ligands that contain a photoactive nitrophenyl group within the ligand backbone have been prepared and evaluated for their binding affinity for copper(ii) and zinc(ii). Among this series, the ligand 3Gcage (pyridine-2-carboxylic acid {1-(2-nitro-phenyl)-3-[(pyridin-2-ylmethyl)-amino]-propyl}-amide) has the best affinity for copper(ii), with an apparent dissociation constant at pH 7.4 of 0.18 fM. Exposure of buffered aqueous solutions of 3Gcage or Cu(ii)-bound 3Gcage to UV light induces bond cleavage in the ligand backbone, which reduces the denticity of the ligands. The quantum yields of photolysis for 3Gcage in the absence and presence of Cu(ii) are 0.66 and 0.43, respectively. Prior to photolysis, the 3Gcage ligand inhibits copper from generating hydroxyl radicals in the presence of hydrogen peroxide and ascorbic acid; however, hydroxyl radical formation increases by more than 300% following light activation, showing that the reactivity of the copper center can be triggered by light.
Collapse
Affiliation(s)
- Katie L Ciesienski
- Department of Chemistry, Duke University, P.O. Box 90346, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
15
|
Peralta RA, Bortoluzzi AJ, Szpoganicz B, Brandão TAS, Castellano EE, de Oliveira MB, Severino PC, Terenzi H, Neves A. Catecholase and DNase activities of copper(II) complexes containing phenolate-type ligands. J PHYS ORG CHEM 2010. [DOI: 10.1002/poc.1779] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Wang Z, Chen X, Ji H, Ma W, Chen C, Zhao J. Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:263-268. [PMID: 20000366 DOI: 10.1021/es901956x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photochemical redox cycling of iron coupled with oxidation of malonate (Mal) ligand has been investigated under conditions that are representative of atmospheric waters. Malonate exhibited significantly different characteristics from oxalate and other dicarboxylates (or monocarboxylates). Both strong chelating ability with Fe(III) and strong molar absorptivities, but much low efficiency of Fe(II) formation (Phi(Fe(II)) = 0.0022 +/- 0.0009, 300-366 nm) were observed for Fe(III)-Mal complexes (FMCs). Fe(III) speciation calculation indicated that Mal is capable of mediating the proportion between two photoactive species of Fe(III)-OH complexes and FMCs by changing the Mal concentration. Spin-trapping electron spin resonance (ESR) experiments proved the formation of both the (.)CH(2)COOH and (.)OH radicals at lower total Mal concentration ([Mal](T)), but only (.)CH(2)COOH at higher concentrations of malonate, providing strong evidence for competition between malonate and OH(-) and subsequent different photoreaction pathways. Once FMCs dominate the Fe(III) speciation, both photoproduction and photocatalyzed oxidation of Fe(II) will be greatly decelerated. There exists an induction period for both formation and decay of Fe(II) until Fe(III)(OH)(2+) species become the prevailing Fe(III) forms over FMCs as Mal ligand is depleted. A quenching mechanism of Mal in the Fe(II) photoproduction is proposed. The present study is meaningful to advance our understanding of iron cycling in acidified carbon-rich atmospheric waters.
Collapse
Affiliation(s)
- Zhaohui Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
17
|
Lin YL, Wang PY, Hsieh LL, Ku KH, Yeh YT, Wu CH. Determination of linear aliphatic aldehydes in heavy metal containing waters by high-performance liquid chromatography using 2,4-dinitrophenylhydrazine derivatization. J Chromatogr A 2009; 1216:6377-81. [DOI: 10.1016/j.chroma.2009.07.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 06/18/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
|
18
|
Kuo CT, Wang PY, Wu CH. Fluorometric determination of ammonium ion by ion chromatography using postcolumn derivatization with o-phthaldialdehyde. J Chromatogr A 2005; 1085:91-7. [PMID: 16106853 DOI: 10.1016/j.chroma.2005.05.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A postcolumn fluorometric derivatization method for the determination of trace amounts of ammonium ion (microg/L level) under matrices with high concentrations of sodium and amino acids has been developed. In this method, ammonium ion was determined by ion chromatography combined with fluorometric detection (IC-FL) in less than 16 min. IC was performed in a high-capacity cation-exchange Dionex IonPac CS16 analytical column (250 mm x 5 mm) under isocratic conditions with 30 mM methanesulfonic acid (MSA) as mobile phase at flow-rate 1.0 mL/min. To remove amino acid interference, the postcolumn derivatization based on the reaction of ammonia with o-phthaldialdehyde (OPA) and sulfite was applied. The excitation and emission wavelengths were 364 and 425 nm, respectively. The effects of pH, reaction temperature and time, OPA-reagent composition and concentration, and sample matrix were studied. The linear range and detection limit of this method were similar to the standard method. The IC-FL method with a postcolumn fluorometric derivatization allows the routine determination of ammonium ion in extreme matrices where the ratios of sodium and amino acids to ammonium are up to 2,800,000:1 and 28,000:1, respectively.
Collapse
Affiliation(s)
- Chun-Ting Kuo
- Environmental Chemistry Laboratory, Department of Atomic Science, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | | | | |
Collapse
|