1
|
Cichos F, Xia T, Yang H, Zijlstra P. The ever-expanding optics of single-molecules and nanoparticles. J Chem Phys 2024; 161:010401. [PMID: 38949895 DOI: 10.1063/5.0221680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Affiliation(s)
- F Cichos
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - T Xia
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - H Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - P Zijlstra
- Department of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
| |
Collapse
|
2
|
Warias JE, Petersdorf L, Hövelmann SC, Giri RP, Lemke C, Festersen S, Greve M, Mandin P, LeBideau D, Bertram F, Magnussen OM, Murphy BM. The laser pump X-ray probe system at LISA P08 PETRA III. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:779-790. [PMID: 38843001 PMCID: PMC11226150 DOI: 10.1107/s1600577524003400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/17/2024] [Indexed: 07/06/2024]
Abstract
Understanding and controlling the structure and function of liquid interfaces is a constant challenge in biology, nanoscience and nanotechnology, with applications ranging from molecular electronics to controlled drug release. X-ray reflectivity and grazing incidence diffraction provide invaluable probes for studying the atomic scale structure at liquid-air interfaces. The new time-resolved laser system at the LISA liquid diffractometer situated at beamline P08 at the PETRA III synchrotron radiation source in Hamburg provides a laser pump with X-ray probe. The femtosecond laser combined with the LISA diffractometer allows unique opportunities to investigate photo-induced structural changes at liquid interfaces on the pico- and nanosecond time scales with pump-probe techniques. A time resolution of 38 ps has been achieved and verified with Bi. First experiments include laser-induced effects on salt solutions and liquid mercury surfaces with static and varied time scales measurements showing the proof of concept for investigations at liquid surfaces.
Collapse
Affiliation(s)
- Jonas Erik Warias
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Lukas Petersdorf
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
| | - Svenja Carolin Hövelmann
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Rajendra Prasad Giri
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Christoph Lemke
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Sven Festersen
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Matthias Greve
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | | | | | - Florian Bertram
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Olaf Magnus Magnussen
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
| | - Bridget Mary Murphy
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
| |
Collapse
|
3
|
Adhikari S, Smit R, Orrit M. Future Paths in Cryogenic Single-Molecule Fluorescence Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:3-18. [PMID: 38229590 PMCID: PMC10788914 DOI: 10.1021/acs.jpcc.3c06564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
In the last three decades, cryogenic single-molecule fluorescence spectroscopy has provided average-free understanding of the photophysics and of fundamental interactions at molecular scales. Furthermore, they propose original pathways and applications in the treatment and storage of quantum information. The ultranarrow lifetime-limited zero-phonon line acts as an excellent sensor to local perturbations caused either by intrinsic dynamical degrees of freedom, or by external perturbations, such as those caused by electric fields, elastic and acoustic deformations, or light-induced dynamics. Single aromatic hydrocarbon molecules, being sensitive to nanoscale probing at nanometer scales, are potential miniaturized platforms for integrated quantum photonics. In this Perspective, we look back at some of the past advances in cryogenic optical microscopy and propose some perspectives for future development.
Collapse
Affiliation(s)
| | - Robert Smit
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Michel Orrit
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
4
|
Richter L, Szalai AM, Manzanares-Palenzuela CL, Kamińska I, Tinnefeld P. Exploring the Synergies of Single-Molecule Fluorescence and 2D Materials Coupled by DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303152. [PMID: 37670535 DOI: 10.1002/adma.202303152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Indexed: 09/07/2023]
Abstract
The world of 2D materials is steadily growing, with numerous researchers attempting to discover, elucidate, and exploit their properties. Approaches relying on the detection of single fluorescent molecules offer a set of advantages, for instance, high sensitivity and specificity, that allow the drawing of conclusions with unprecedented precision. Herein, it is argued how the study of 2D materials benefits from fluorescence-based single-molecule modalities, and vice versa. A special focus is placed on DNA, serving as a versatile adaptor when anchoring single dye molecules to 2D materials. The existing literature on the fruitful combination of the two fields is reviewed, and an outlook on the additional synergies that can be created between them provided.
Collapse
Affiliation(s)
- Lars Richter
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus E, 81377, München, Germany
| | - Alan M Szalai
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus E, 81377, München, Germany
| | - C Lorena Manzanares-Palenzuela
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus E, 81377, München, Germany
| | - Izabela Kamińska
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus E, 81377, München, Germany
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, Haus E, 81377, München, Germany
| |
Collapse
|
5
|
Orrit M. Dynamic Heterogeneity in the Optical Signals from Single Nano-Objects. J Phys Chem B 2023; 127:3982-3989. [PMID: 37115719 PMCID: PMC10184125 DOI: 10.1021/acs.jpcb.2c09055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/12/2023] [Indexed: 04/29/2023]
Abstract
In contrast to ensemble-averaged measurements, single-molecule experiments directly display the heterogeneity of molecular properties in space and time. In many complex systems, spatial heterogeneity is regularly accompanied by temporal or dynamic heterogeneity; if a property differs from molecule to molecule, it will often vary in time for one and the same molecule. In this short paper, we discuss a few examples of complex systems where dynamical heterogeneity was observed in single-molecule or single-particle optical signals. For single biomolecules, the first demonstration of dynamic heterogeneity in a single enzyme was provided by Xie and colleagues. Other examples are found in glassy systems, and very recently in the magnetic relaxation of single superparamagnetic nanoparticles. The ubiquity of this phenomenon suggests that, rather than an exception, dynamic heterogeneity is the rule in complex systems with multiple degrees of freedom.
Collapse
Affiliation(s)
- Michel Orrit
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, Netherlands
| |
Collapse
|
6
|
Singh D, Punia B, Chaudhury S. Theoretical Tools to Quantify Stochastic Fluctuations in Single-Molecule Catalysis by Enzymes and Nanoparticles. ACS OMEGA 2022; 7:47587-47600. [PMID: 36591158 PMCID: PMC9798497 DOI: 10.1021/acsomega.2c06316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/02/2022] [Indexed: 06/11/2023]
Abstract
Single-molecule microscopic techniques allow the counting of successive turnover events and the study of the time-dependent fluctuations of the catalytic activities of individual enzymes and different sites on a single heterogeneous nanocatalyst. It is important to establish theoretical methods to obtain the statistical measurements of such stochastic fluctuations that provide insight into the catalytic mechanism. In this review, we discuss a few theoretical frameworks for evaluating the first passage time distribution functions using a self-consistent pathway approach and chemical master equations, to establish a connection with experimental observables. The measurable probability distribution functions and their moments depend on the molecular details of the reaction and provide a way to quantify the molecular mechanisms of the reaction process. The statistical measurements of these fluctuations should provide insight into the enzymatic mechanism.
Collapse
Affiliation(s)
- Divya Singh
- School
of Chemistry, Tel Aviv University, Tel Aviv6997801, Israel
| | - Bhawakshi Punia
- Department
of Chemistry, Indian Institute of Science
Education and Research, Dr. Homi Bhabha Road, Pune411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department
of Chemistry, Indian Institute of Science
Education and Research, Dr. Homi Bhabha Road, Pune411008, Maharashtra, India
| |
Collapse
|
7
|
Adhikari S, Orrit M. Progress and perspectives in single-molecule optical spectroscopy. J Chem Phys 2022; 156:160903. [PMID: 35489995 DOI: 10.1063/5.0087003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We review some of the progress of single-molecule optical experiments in the past 20 years and propose some perspectives for the coming years. We particularly focus on methodological advances in fluorescence, super-resolution, photothermal contrast, and interferometric scattering and briefly discuss a few of the applications. These advances have enabled the exploration of new emitters and quantum optics; the chemistry and biology of complex heterogeneous systems, nanoparticles, and plasmonics; and the detection and study of non-fluorescing and non-absorbing nano-objects. We conclude by proposing some ideas for future experiments. The field will move toward more and better signals of a broader variety of objects and toward a sharper view of the surprising complexity of the nanoscale world of single (bio-)molecules, nanoparticles, and their nano-environments.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2333 CA Leiden, The Netherlands
| | - Michel Orrit
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2333 CA Leiden, The Netherlands
| |
Collapse
|
8
|
Barth A, Opanasyuk O, Peulen TO, Felekyan S, Kalinin S, Sanabria H, Seidel CAM. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. I. Theory of FRET-lines. J Chem Phys 2022; 156:141501. [PMID: 35428384 PMCID: PMC9014241 DOI: 10.1063/5.0089134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 01/31/2023] Open
Abstract
Conformational dynamics of biomolecules are of fundamental importance for their function. Single-molecule studies of Förster Resonance Energy Transfer (smFRET) between a tethered donor and acceptor dye pair are a powerful tool to investigate the structure and dynamics of labeled molecules. However, capturing and quantifying conformational dynamics in intensity-based smFRET experiments remains challenging when the dynamics occur on the sub-millisecond timescale. The method of multiparameter fluorescence detection addresses this challenge by simultaneously registering fluorescence intensities and lifetimes of the donor and acceptor. Together, two FRET observables, the donor fluorescence lifetime τD and the intensity-based FRET efficiency E, inform on the width of the FRET efficiency distribution as a characteristic fingerprint for conformational dynamics. We present a general framework for analyzing dynamics that relates average fluorescence lifetimes and intensities in two-dimensional burst frequency histograms. We present parametric relations of these observables for interpreting the location of FRET populations in E-τD diagrams, called FRET-lines. To facilitate the analysis of complex exchange equilibria, FRET-lines serve as reference curves for a graphical interpretation of experimental data to (i) identify conformational states, (ii) resolve their dynamic connectivity, (iii) compare different kinetic models, and (iv) infer polymer properties of unfolded or intrinsically disordered proteins. For a simplified graphical analysis of complex kinetic networks, we derive a moment-based representation of the experimental data that decouples the motion of the fluorescence labels from the conformational dynamics of the biomolecule. Importantly, FRET-lines facilitate exploring complex dynamic models via easily computed experimental observables. We provide extensive computational tools to facilitate applying FRET-lines.
Collapse
Affiliation(s)
- Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Oleg Opanasyuk
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Thomas-Otavio Peulen
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Suren Felekyan
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Stanislav Kalinin
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, USA
| | - Claus A. M. Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
9
|
Dodin A, Provazza J, Coker DF, Willard AP. Trajectory Ensemble Methods Provide Single-Molecule Statistics for Quantum Dynamical Systems. J Chem Theory Comput 2022; 18:2047-2061. [PMID: 35230105 DOI: 10.1021/acs.jctc.1c00477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emergence of experiments capable of probing quantum dynamics at the single-molecule level requires the development of new theoretical tools capable of simulating and analyzing these dynamics beyond an ensemble-averaged description. In this article, we present an efficient method for sampling and simulating the dynamics of the individual quantum systems that make up an ensemble and apply it to study the nonequilibrium dynamics of the ubiquitous spin-boson model. We generate an ensemble of single-system trajectories, and we analyze this trajectory ensemble using tools from classical statistical mechanics. Our results demonstrate that the dynamics of quantum coherence is highly heterogeneous at the single-system level due to variations in the initial bath configuration, which significantly affects the transient exchange of coherence between the system and its bath. We observe that single systems tend to retain coherence over time scales longer than that of the ensemble. We also compute a novel thermodynamic entanglement entropy that quantifies a thermodynamic driving force favoring system-bath entanglement.
Collapse
Affiliation(s)
- Amro Dodin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Justin Provazza
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - David F Coker
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Schofield RC, Burdekin P, Fasoulakis A, Devanz L, Bogusz DP, Hoggarth RA, Major KD, Clark AS. Narrow and Stable Single Photon Emission from Dibenzoterrylene in para-Terphenyl Nanocrystals. Chemphyschem 2022; 23:e202100809. [PMID: 34905640 PMCID: PMC9302619 DOI: 10.1002/cphc.202100809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Single organic molecules are promising photon sources for quantum technologies. In this work we show photon emission from dibenzoterrylene, a widely used organic emitter, in a new host matrix, para-terphenyl. We present a reprecipitation growth method that produces para-terphenyl nanocrystals which are ideal for integration into nanophotonic devices due to their small size. We characterise the optical properties of dibenzoterrylene in nanocrystals at room and cryogenic temperatures, showing bright, narrow emission from a single molecule. Spectral data on the vibrational energies is presented and a further 25 additional molecules are characterised. This emitter-host combination has potential for quantum technology purposes with wavelengths suitable for interfacing with quantum memories.
Collapse
Affiliation(s)
- Ross C. Schofield
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Paul Burdekin
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Anastasios Fasoulakis
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
- Quantum Engineering Technology LabsH. H. Wills Physics Laboratory and Department of Electrical and Electronic EngineeringUniversity of BristolBS8 1FDBristolUnited Kingdom
| | - Louise Devanz
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Dominika P. Bogusz
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Rowan A. Hoggarth
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Kyle D. Major
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Alex S. Clark
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
- Quantum Engineering Technology LabsH. H. Wills Physics Laboratory and Department of Electrical and Electronic EngineeringUniversity of BristolBS8 1FDBristolUnited Kingdom
| |
Collapse
|
11
|
Xu X, Chen Q, Narita A. Synthesis and Characterization of Dibenzo[<i>hi,st</i>]ovalene as a Highly Fluorescent Polycyclic Aromatic Hydrocarbon and Its π-Extension to Circumpyrene. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.1094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiushang Xu
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University
| | - Qiang Chen
- Max Planck Institute for Polymer Research
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University
- Max Planck Institute for Polymer Research
| |
Collapse
|
12
|
Kutrovskaya S, Osipov A, Baryshev S, Zasedatelev A, Samyshkin V, Demirchyan S, Pulci O, Grassano D, Gontrani L, Hartmann RR, Portnoi ME, Kucherik A, Lagoudakis PG, Kavokin A. Excitonic Fine Structure in Emission of Linear Carbon Chains. NANO LETTERS 2020; 20:6502-6509. [PMID: 32787174 DOI: 10.1021/acs.nanolett.0c02244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We studied monatomic linear carbon chains stabilized by gold nanoparticles attached to their ends and deposited on a solid substrate. We observe spectral features of straight chains containing from 8 to 24 atoms. Low-temperature PL spectra reveal characteristic triplet fine structures that repeat themselves for carbon chains of different lengths. The triplet is invariably composed of a sharp intense peak accompanied by two broader satellites situated 15 and 40 meV below the main peak. We interpret these resonances as an edge-state neutral exciton and positively and negatively charged trions, respectively. The time-resolved PL shows that the radiative lifetime of the observed quasiparticles is about 1 ns, and it increases with the increase of the length of the chain. At high temperatures a nonradiative exciton decay channel appears due to the thermal hopping of carriers between parallel carbon chains. Excitons in carbon chains possess large oscillator strengths and extremely low inhomogeneous broadenings.
Collapse
Affiliation(s)
- Stella Kutrovskaya
- School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Department of Physics and Applied Mathematics, Stoletov Vladimir State University, Vladimir 600000, Russia
| | - Anton Osipov
- Department of Physics and Applied Mathematics, Stoletov Vladimir State University, Vladimir 600000, Russia
- ILIT RAS-Branch of FSRC "Crystallography and Photonics" RAS, Shatura 140700, Russia
| | - Stepan Baryshev
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | | | - Vladislav Samyshkin
- Department of Physics and Applied Mathematics, Stoletov Vladimir State University, Vladimir 600000, Russia
| | - Sevak Demirchyan
- School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Olivia Pulci
- Department of Physics, University of Rome Tor Vergata, I-00133 Rome, Italy
| | - Davide Grassano
- Department of Physics, University of Rome Tor Vergata, I-00133 Rome, Italy
| | - Lorenzo Gontrani
- Department of Physics, University of Rome Tor Vergata, I-00133 Rome, Italy
| | | | - Mikhail E Portnoi
- Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
- ITMO University, St. Petersburg 197101, Russia
| | - Alexey Kucherik
- Department of Physics and Applied Mathematics, Stoletov Vladimir State University, Vladimir 600000, Russia
| | | | - Alexey Kavokin
- School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Spin Optics Laboratory, St. Petersburg State University, St. Petersburg 198504, Russia
| |
Collapse
|
13
|
|
14
|
Clear C, Schofield RC, Major KD, Iles-Smith J, Clark AS, McCutcheon DPS. Phonon-Induced Optical Dephasing in Single Organic Molecules. PHYSICAL REVIEW LETTERS 2020; 124:153602. [PMID: 32357066 DOI: 10.1103/physrevlett.124.153602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/18/2020] [Indexed: 05/23/2023]
Abstract
We present a joint experiment-theory analysis of the temperature-dependent emission spectra, zero-phonon linewidth, and second-order correlation function of light emitted from a single organic molecule. We observe spectra with a zero-phonon line together with several additional sharp peaks, broad phonon sidebands, and a strongly temperature dependent homogeneous broadening. Our model includes both localized vibrational modes of the molecule and a thermal phonon bath, which we include nonperturbatively, and is able to capture all observed features. For resonant driving we measure Rabi oscillations that become increasingly damped with temperature, which our model naturally reproduces. Our results constitute an essential characterization of the photon coherence of molecules, paving the way to their use in future quantum information applications.
Collapse
Affiliation(s)
- Chloe Clear
- Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, BS8 1FD, United Kingdom
| | - Ross C Schofield
- Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| | - Kyle D Major
- Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| | - Jake Iles-Smith
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, United Kingdom
| | - Alex S Clark
- Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| | - Dara P S McCutcheon
- Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, BS8 1FD, United Kingdom
| |
Collapse
|
15
|
Trebbia JB, Baby R, Tamarat P, Lounis B. 3D optical nanoscopy with excited state saturation at liquid helium temperatures. OPTICS EXPRESS 2019; 27:23486-23496. [PMID: 31510625 DOI: 10.1364/oe.27.023486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
We present a 3D fluorescence nanoscopy method operating at cryogenic temperatures, based on optical saturation of the excited state of individual molecules. Using a focused laser beam structured with a zero-intensity central region surrounded by intensity gradients in the three space directions, we achieve a sub-30 nm 3D optical resolution. Moreover, the analysis of the fluorescence scanning images of single molecules reveals the 3D orientation of their transition dipole with an accuracy of a few degrees. This method provides a valuable tool for locating neighboring molecules with overlapping optical transitions in order to study their interactions.
Collapse
|
16
|
Ojambati OS, Chikkaraddy R, Deacon WD, Horton M, Kos D, Turek VA, Keyser UF, Baumberg JJ. Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity. Nat Commun 2019; 10:1049. [PMID: 30837456 PMCID: PMC6400948 DOI: 10.1038/s41467-019-08611-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/21/2019] [Indexed: 11/08/2022] Open
Abstract
Interactions between a single emitter and cavity provide the archetypical system for fundamental quantum electrodynamics. Here we show that a single molecule of Atto647 aligned using DNA origami interacts coherently with a sub-wavelength plasmonic nanocavity, approaching the cooperative regime even at room temperature. Power-dependent pulsed excitation reveals Rabi oscillations, arising from the coupling of the oscillating electric field between the ground and excited states. The observed single-molecule fluorescent emission is split into two modes resulting from anti-crossing with the plasmonic mode, indicating the molecule is strongly coupled to the cavity. The second-order correlation function of the photon emission statistics is found to be pump wavelength dependent, varying from g(2)(0) = 0.4 to 1.45, highlighting the influence of vibrational relaxation on the Jaynes-Cummings ladder. Our results show that cavity quantum electrodynamic effects can be observed in molecular systems at ambient conditions, opening significant potential for device applications.
Collapse
Affiliation(s)
- Oluwafemi S Ojambati
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Rohit Chikkaraddy
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - William D Deacon
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Matthew Horton
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Dean Kos
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Vladimir A Turek
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Ulrich F Keyser
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
17
|
Thyrhaug E, Krause S, Perri A, Cerullo G, Polli D, Vosch T, Hauer J. Single-molecule excitation-emission spectroscopy. Proc Natl Acad Sci U S A 2019; 116:4064-4069. [PMID: 30770446 PMCID: PMC6410781 DOI: 10.1073/pnas.1808290116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule spectroscopy (SMS) provides a detailed view of individual emitter properties and local environments without having to resort to ensemble averaging. While the last several decades have seen substantial refinement of SMS techniques, recording excitation spectra of single emitters still poses a significant challenge. Here we address this problem by demonstrating simultaneous collection of fluorescence emission and excitation spectra using a compact common-path interferometer and broadband excitation, which is implemented as an extension of a standard SMS microscope. We demonstrate the technique by simultaneously collecting room-temperature excitation and emission spectra of individual terrylene diimide molecules and donor-acceptor dyads embedded in polystyrene. We analyze the resulting spectral parameters in terms of optical lineshape theory to obtain detailed information on the interactions of the emitters with their nanoscopic environment. This analysis finally reveals that environmental fluctuations between the donor and acceptor in the dyads are not correlated.
Collapse
Affiliation(s)
- Erling Thyrhaug
- Dynamical Spectroscopy, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Stefan Krause
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Antonio Perri
- Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - Dario Polli
- Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Tom Vosch
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jürgen Hauer
- Dynamical Spectroscopy, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany;
- Photonics Institute, TU Wien, 1040 Vienna, Austria
| |
Collapse
|
18
|
Kröger J, Doppagne B, Scheurer F, Schull G. Fano Description of Single-Hydrocarbon Fluorescence Excited by a Scanning Tunneling Microscope. NANO LETTERS 2018; 18:3407-3413. [PMID: 29719154 DOI: 10.1021/acs.nanolett.8b00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The detection of fluorescence with submolecular resolution enables the exploration of spatially varying photon yields and vibronic properties at the single-molecule level. By placing individual polycyclic aromatic hydrocarbon molecules into the plasmon cavity formed by the tip of a scanning tunneling microscope and a NaCl-covered Ag(111) surface, molecular light emission spectra are obtained that unravel vibrational progression. In addition, light spectra unveil a signature of the molecule even when the tunneling current is injected well separated from the molecular emitter. This signature exhibits a distance-dependent Fano profile that reflects the subtle interplay between inelastic tunneling electrons, the molecular exciton and localized plasmons in at-distance as well as on-molecule fluorescence. The presented findings open the path to luminescence of a different class of molecules than investigated before and contribute to the understanding of single-molecule luminescence at surfaces in a unified picture.
Collapse
Affiliation(s)
- Jörg Kröger
- Institut de Physique et Chimie des Matériaux de Strasbourg , Université de Strasbourg, CNRS, IPCMS, UMR 7504 , F-67000 Strasbourg , France
| | - Benjamin Doppagne
- Institut de Physique et Chimie des Matériaux de Strasbourg , Université de Strasbourg, CNRS, IPCMS, UMR 7504 , F-67000 Strasbourg , France
| | - Fabrice Scheurer
- Institut de Physique et Chimie des Matériaux de Strasbourg , Université de Strasbourg, CNRS, IPCMS, UMR 7504 , F-67000 Strasbourg , France
| | - Guillaume Schull
- Institut de Physique et Chimie des Matériaux de Strasbourg , Université de Strasbourg, CNRS, IPCMS, UMR 7504 , F-67000 Strasbourg , France
| |
Collapse
|
19
|
Koh HR, Roy R, Sorokina M, Tang GQ, Nandakumar D, Patel SS, Ha T. Correlating Transcription Initiation and Conformational Changes by a Single-Subunit RNA Polymerase with Near Base-Pair Resolution. Mol Cell 2018; 70:695-706.e5. [PMID: 29775583 PMCID: PMC5983381 DOI: 10.1016/j.molcel.2018.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/23/2018] [Accepted: 04/19/2018] [Indexed: 11/20/2022]
Abstract
We provide a comprehensive analysis of transcription in real time by T7 RNA Polymerase (RNAP) using single-molecule fluorescence resonance energy transfer by monitoring the entire life history of transcription initiation, including stepwise RNA synthesis with near base-pair resolution, abortive cycling, and transition into elongation. Kinetically branching pathways were observed for abortive initiation with an RNAP either recycling on the same promoter or exchanging with another RNAP from solution. We detected fast and slow populations of RNAP in their transition into elongation, consistent with the efficient and delayed promoter release, respectively, observed in ensemble studies. Real-time monitoring of abortive cycling using three-probe analysis showed that the initiation events are stochastically branched into productive and failed transcription. The abortive products are generated primarily from initiation events that fail to progress to elongation, and a majority of the productive events transit to elongation without making abortive products.
Collapse
Affiliation(s)
- Hye Ran Koh
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Rahul Roy
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Maria Sorokina
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guo-Qing Tang
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Taekjip Ha
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA; Departments of Biophysics and Biophysical Chemistry, Biophysics, and Biomedical Engineering, Johns Hopkins University, MD 21205, USA.
| |
Collapse
|
20
|
Skandary S, Müh F, Ashraf I, Ibrahim M, Metzger M, Zouni A, Meixner AJ, Brecht M. Role of missing carotenoid in reducing the fluorescence of single monomeric photosystem II core complexes. Phys Chem Chem Phys 2018; 19:13189-13194. [PMID: 28489091 DOI: 10.1039/c6cp07748j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence of monomeric photosystem II core complexes (mPSIIcc) of the cyanobacterium Thermosynechococcus elongatus, originating from redissolved crystals, is investigated by using single-molecule spectroscopy (SMS) at 1.6 K. The emission spectra of individual mPSIIcc are dominated by sharp zero-phonon lines, showing the existence of different emitters compatible with the F685, F689, and F695 bands reported formerly. The intensity of F695 is reduced in single mPSIIcc as compared to single PSIIcc-dimers (dPSIIcc). Crystal structures show that one of the β-carotene (β-Car) cofactors located at the monomer-monomer interface in dPSIIcc is missing in mPSIIcc. This β-Car in dPSIIcc is in van der Waals distance to chlorophyll (Chl) 17 in the CP47 subunit. We suggest that this Chl contributes to the F695 emitter. A loss of β-Car cofactors in mPSIIcc preparations will lead to an increased lifetime of the triplet state of Chl 17, which can explain the reduced singlet emission of F695 as observed in SMS.
Collapse
Affiliation(s)
- Sepideh Skandary
- IPTC and LISA+ Center, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lukov VV, Shcherbakov IN, Levchenkov SI, Tupolova YP, Popov LD, Pankov IV, Posokhova SV. Molecular machines as a driving force of progress in modern post-industrial society. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Ashraf I, Konrad A, Lokstein H, Skandary S, Metzger M, Djouda JM, Maurer T, Adam PM, Meixner AJ, Brecht M. Temperature dependence of metal-enhanced fluorescence of photosystem I from Thermosynechococcus elongatus. NANOSCALE 2017; 9:4196-4204. [PMID: 28287218 DOI: 10.1039/c6nr08762k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the temperature dependence of metal-enhanced fluorescence (MEF) of individual photosystem I (PSI) complexes from Thermosynechococcus elongatus (T. elongatus) coupled to gold nanoparticles (AuNPs). A strong temperature dependence of shape and intensity of the emission spectra is observed when PSI is coupled to AuNPs. For each temperature, the enhancement factor (EF) is calculated by comparing the intensity of individual AuNP-coupled PSI to the mean intensity of 'uncoupled' PSI. At cryogenic temperature (1.6 K) the average EF was 4.3-fold. Upon increasing the temperature to 250 K the EF increases to 84-fold. Single complexes show even higher EFs up to 441.0-fold. At increasing temperatures the different spectral pools of PSI from T. elongatus become distinguishable. These pools are affected differently by the plasmonic interactions and show different enhancements. The remarkable increase of the EFs is explained by a rate model including the temperature dependence of the fluorescence yield of PSI and the spectral overlap between absorption and emission spectra of AuNPs and PSI, respectively.
Collapse
Affiliation(s)
- Imran Ashraf
- IPTC and LISA+ Center, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Alexander Konrad
- IPTC and LISA+ Center, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
| | - Sepideh Skandary
- IPTC and LISA+ Center, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Michael Metzger
- IPTC and LISA+ Center, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Joseph M Djouda
- Laboratory of Nanotechnology, Instrumentation and Optics, University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes, France
| | - Thomas Maurer
- Laboratory of Nanotechnology, Instrumentation and Optics, University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes, France
| | - Pierre M Adam
- Laboratory of Nanotechnology, Instrumentation and Optics, University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes, France
| | - Alfred J Meixner
- IPTC and LISA+ Center, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | - Marc Brecht
- IPTC and LISA+ Center, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| |
Collapse
|
23
|
Gao S, Cui M, Li R, Liang L, Liu Y, Xie L. Quantitative deconvolution of autocorrelations and cross correlations from two-dimensional lifetime decay maps in fluorescence lifetime correlation spectroscopy. Sci Bull (Beijing) 2017; 62:9-15. [PMID: 36718073 DOI: 10.1016/j.scib.2016.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/05/2016] [Accepted: 11/11/2016] [Indexed: 02/01/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) is a widely used method for measuring molecular diffusion and chemical kinetics. However, when a mixture of fluorescent species is taken into account, the conventional FCS method has limitations in extracting autocorrelations for different species and cross correlations between different species. Recently developed fluorescence lifetime correlation spectroscopy (FLCS) based on time-tagged time-resolved (TTTR) photon recording, which can record the global and micro arrival time for each individual photon, has been used to discriminate different species according to fluorescence lifetime. Here, based on two-dimensional lifetime decay maps constructed from TTTR photon stream, we have developed a quantitative lifetime-deconvolution FCS model (LDFCS) to extract precise chemical rates for chemical conversions in multi-species systems. The key point of LDFCS model is separation of different species according to the global distribution of fluorescence lifetime and then deconvolution of autocorrelations and cross-correlations from the two-dimensional lifetime decay maps constructed by the micro arrival times of photon pairs at each delay time.
Collapse
Affiliation(s)
- Shanshan Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Menghua Cui
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Ruiru Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Ling Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ying Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
24
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
25
|
Palacino-González E, Gelin MF, Domcke W. Theoretical aspects of femtosecond double-pump single-molecule spectroscopy. I. Weak-field regime. Phys Chem Chem Phys 2017; 19:32296-32306. [DOI: 10.1039/c7cp04809b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a theoretical description of double-pump femtosecond single-molecule signals with fluorescence detection.
Collapse
Affiliation(s)
| | - Maxim F. Gelin
- Department of Chemistry
- Technische Universität München
- Garching
- Germany
| | - Wolfgang Domcke
- Department of Chemistry
- Technische Universität München
- Garching
- Germany
| |
Collapse
|
26
|
Raithel D, Baderschneider S, de Queiroz TB, Lohwasser R, Köhler J, Thelakkat M, Kümmel S, Hildner R. Emitting Species of Poly(3-hexylthiophene): From Single, Isolated Chains to Bulk. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02077] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | - Thiago B. de Queiroz
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, 09510-580, Santo André-SP, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
Chen Y, Shen K, Shan SO, Kou SC. Analyzing Single-Molecule Protein Transportation Experiments via Hierarchical Hidden Markov Models. J Am Stat Assoc 2016; 111:951-966. [PMID: 28943680 PMCID: PMC5606165 DOI: 10.1080/01621459.2016.1140050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/01/2015] [Indexed: 01/10/2023]
Abstract
To maintain proper cellular functions, over 50% of proteins encoded in the genome need to be transported to cellular membranes. The molecular mechanism behind such a process, often referred to as protein targeting, is not well understood. Single-molecule experiments are designed to unveil the detailed mechanisms and reveal the functions of different molecular machineries involved in the process. The experimental data consist of hundreds of stochastic time traces from the fluorescence recordings of the experimental system. We introduce a Bayesian hierarchical model on top of hidden Markov models (HMMs) to analyze these data and use the statistical results to answer the biological questions. In addition to resolving the biological puzzles and delineating the regulating roles of different molecular complexes, our statistical results enable us to propose a more detailed mechanism for the late stages of the protein targeting process.
Collapse
Affiliation(s)
- Yang Chen
- Ph.D. candidate, Department of Statistics, Harvard University, Cambridge, MA 02138
| | - Kuang Shen
- Pfizer fellow of the Life Sciences Research Foundation, Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Shu-Ou Shan
- Professor, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - S C Kou
- Professor, Department of Statistics, Harvard University, Cambridge, MA 02138
| |
Collapse
|
28
|
Polisseni C, Major KD, Boissier S, Grandi S, Clark AS, Hinds EA. Stable, single-photon emitter in a thin organic crystal for application to quantum-photonic devices. OPTICS EXPRESS 2016; 24:5615-5627. [PMID: 29092383 DOI: 10.1364/oe.24.005615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Single dibenzoterrylene (DBT) molecules offer great promise as bright, reliable sources of single photons on demand, capable of integration into solid-state devices. It has been proposed that DBT in anthracene might be placed close to an optical waveguide for this purpose, but so far there have been no demonstrations of sufficiently thin crystals, with a controlled concentration of the dopant molecules. Here we present a method for growing very thin anthracene crystals from super-saturated vapour, which produces crystals of extreme flatness and controlled thickness. We show how this crystal can be doped with an adjustable concentration of dibenzoterrylene (DBT) molecules and we examine the optical properties of these molecules to demonstrate their suitability as quantum emitters in nanophotonic devices. Our measurements show that the molecules are available in the crystal as single quantum emitters, with a well-defined polarisation relative to the crystal axes, making them amenable to alignment with optical nanostructures. We find that the radiative lifetime and saturation intensity vary little within the crystal and are not in any way compromised by the unusual matrix environment. We show that a large fraction of these emitters can be excited more than 1012 times without photo-bleaching, making them suitable for real applications.
Collapse
|
29
|
Sigle DO, Kasera S, Herrmann LO, Palma A, de Nijs B, Benz F, Mahajan S, Baumberg JJ, Scherman OA. Observing Single Molecules Complexing with Cucurbit[7]uril through Nanogap Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett 2016; 7:704-10. [PMID: 26766205 DOI: 10.1021/acs.jpclett.5b02535] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In recent years, single-molecule sensitivity achievable by surface-enhanced Raman spectroscopy (SERS) has been widely reported. We use this to investigate supramolecular host-guest chemistry with the macrocyclic host cucurbit[7]uril, on a few-to-single-molecule level. A nanogap geometry, comprising individual gold nanoparticles on a planar gold surface spaced by a single layer of molecules, gives intense SERS signals. Plasmonic coupling between the particle and the surface leads to strongly enhanced optical fields in the gap between them, with single-molecule sensitivity established using a modification of the well-known bianalyte method. Changes in the Raman modes of the host molecule are observed when single guests included inside its cavity internally stretch it. Anisotropic intermolecular interactions with the guest are found which show additional distinct features in the Raman modes of the host molecule.
Collapse
Affiliation(s)
- Daniel O Sigle
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, U.K
| | - Setu Kasera
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K
| | - Lars O Herrmann
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, U.K
| | - Aniello Palma
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K
| | - Bart de Nijs
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, U.K
| | - Felix Benz
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, U.K
| | - Sumeet Mahajan
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, U.K
| | - Jeremy J Baumberg
- Nanophotonics Centre, Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, U.K
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K
| |
Collapse
|
30
|
Baderschneider S, Scherf U, Köhler J, Hildner R. Influence of the Conjugation Length on the Optical Spectra of Single Ladder-Type (p-Phenylene) Dimers and Polymers. J Phys Chem A 2016; 120:233-40. [PMID: 26696134 DOI: 10.1021/acs.jpca.5b10879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ low-temperature single-molecule photoluminescence spectroscopy on a π-conjugated ladder-type (p-phenylene) dimer and the corresponding polymer methyl-substituted ladder-type poly(p-phenylene), MeLPPP, to study the impact of the conjugation length (π-electron delocalization) on their optical properties on a molecular scale. Our data show that the linear electron-phonon coupling to intramolecular vibrational modes is very sensitive to the conjugation length, a well-known behavior of organic (macro-) molecules. In particular, the photoluminescence spectra of single dimers feature a rather strong low-energy (150 cm(-1)) skeletal mode of the backbone, which does not appear in the spectra of individual chromophores on single MeLPPP chains. We attribute this finding to a strongly reduced electron-phonon coupling strength and/or vibrational energy of this mode for MeLPPP with its more delocalized π-electron system as compared to the dimer. In contrast, the line widths of the purely electronic zero-phonon lines (ZPL) in single-molecule spectra do not show differences between the dimer and MeLPPP; for both systems the ZPLs are apparently broadened by fast unresolved spectral diffusion. Finally, we demonstrate that the low-temperature ensemble photoluminescence spectrum of the dimer cannot be reproduced by the distribution of spectral positions of the ZPLs. The dimer's bulk spectrum is rather apparently broadened by electron-phonon coupling to the low-energy skeletal mode, whereas for MeLPPP the inhomogeneous bulk line shape resembles the distribution of spectral positions of the ZPLs of single chromophores.
Collapse
Affiliation(s)
- Sebastian Baderschneider
- Experimentalphysik IV and Bayreuth Institute for Macromolecular Research (BIMF), Universität Bayreuth , 95440 Bayreuth, Germany
| | - Uli Scherf
- Fachbereich C - Mathematik und Naturwissenschaften and Institut für Polymertechnologie, Universität Wuppertal , Gauss-Strasse 20, 42097 Wuppertal, Germany
| | - Jürgen Köhler
- Experimentalphysik IV and Bayreuth Institute for Macromolecular Research (BIMF), Universität Bayreuth , 95440 Bayreuth, Germany
| | - Richard Hildner
- Experimentalphysik IV and Bayreuth Institute for Macromolecular Research (BIMF), Universität Bayreuth , 95440 Bayreuth, Germany
| |
Collapse
|
31
|
Steinbach G, Schubert F, Kaňa R. Cryo-imaging of photosystems and phycobilisomes in Anabaena sp. PCC 7120 cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:395-9. [DOI: 10.1016/j.jphotobiol.2015.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 01/03/2023]
|
32
|
Faez S, Verhart NR, Markoulides M, Buda F, Gourdon A, Orrit M. Design and synthesis of aromatic molecules for probing electric fields at the nanoscale. Faraday Discuss 2015; 184:251-62. [PMID: 26416615 DOI: 10.1039/c5fd00065c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose using halogenated organic dyes as nanoprobes for electric fields and show their greatly enhanced Stark coefficients using density functional theory (DFT) calculations. We analyse halogenated variants of three molecules that have been of interest for cryogenic single molecule spectroscopy: perylene, terrylene, and dibenzoterrylene, with the zero-phonon optical transitions at blue, red, and near-infrared. Out of all the combinations of halides and binding sites that are calculated, we have found that fluorination of the optimum binding site induces a dipole difference between the ground and excited states larger than 0.5 D for all three molecules with the highest value of 0.69 D for fluoroperylene. We also report on the synthesis of 3-fluoroterrylene and the bulk spectroscopy of this compound in liquid and solid organic environments.
Collapse
Affiliation(s)
- Sanli Faez
- Huygens-Kamerlingh Onnes Laboratorium, Leiden University, PO Box 9504, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Skandary S, Konrad A, Hussels M, Meixner AJ, Brecht M. Orientations between Red Antenna States of Photosystem I Monomers from Thermosynechococcus elongatus Revealed by Single-Molecule Spectroscopy. J Phys Chem B 2015. [DOI: 10.1021/acs.jpcb.5b04483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sepideh Skandary
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Alexander Konrad
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Martin Hussels
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Alfred J. Meixner
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
| | - Marc Brecht
- IPTC
and Lisa+ Center, University of Tübingen, D-72076 Tübingen, Germany
- Zurich University of Applied Science (ZHAW), CH-8401 Winterthur, Switzerland
| |
Collapse
|
34
|
Skandary S, Hussels M, Konrad A, Renger T, Müh F, Bommer M, Zouni A, Meixner A, Brecht M. Variation of exciton-vibrational coupling in photosystem II core complexes from Thermosynechococcus elongatus as revealed by single-molecule spectroscopy. J Phys Chem B 2015; 119:4203-10. [PMID: 25708355 PMCID: PMC4368080 DOI: 10.1021/jp510631x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/20/2015] [Indexed: 01/01/2023]
Abstract
The spectral properties and dynamics of the fluorescence emission of photosystem II core complexes are investigated by single-molecule spectroscopy at 1.6 K. The emission spectra are dominated by sharp zero-phonon lines (ZPLs). The sharp ZPLs are the result of weak to intermediate exciton-vibrational coupling and slow spectral diffusion. For several data sets, it is possible to surpass the effect of spectral diffusion by applying a shifting algorithm. The increased signal-to-noise ratio enables us to determine the exciton-vibrational coupling strength (Huang-Rhys factor) with high precision. The Huang-Rhys factors vary between 0.03 and 0.8. The values of the Huang-Rhys factors show no obvious correlation between coupling strength and wavelength position. From this result, we conclude that electrostatic rather than exchange or dispersive interactions are the main contributors to the exciton-vibrational coupling in this system.
Collapse
Affiliation(s)
| | - Martin Hussels
- IPTC
and Lisa+ Center, Universität Tübingen, Tübingen, Germany
| | | | - Thomas Renger
- Institut
für Theoretische Physik, Johannes
Kepler Universität, Linz, Austria
| | - Frank Müh
- Institut
für Theoretische Physik, Johannes
Kepler Universität, Linz, Austria
| | - Martin Bommer
- Institut
für Biologie, Humboldt Universität
zu Berlin, Berlin, Germany
| | - Athina Zouni
- Institut
für Biologie, Humboldt Universität
zu Berlin, Berlin, Germany
| | | | - Marc Brecht
- IPTC
and Lisa+ Center, Universität Tübingen, Tübingen, Germany
- Zurich University
of Applied Science Winterthur (ZHAW), Winterthur, Switzerland
| |
Collapse
|
35
|
Du C, Kao CLM, Kou SC. Stepwise Signal Extraction via Marginal Likelihood. J Am Stat Assoc 2015; 111:314-330. [PMID: 27212739 PMCID: PMC4874345 DOI: 10.1080/01621459.2015.1006365] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/01/2014] [Indexed: 10/24/2022]
Abstract
This paper studies the estimation of stepwise signal. To determine the number and locations of change-points of the stepwise signal, we formulate a maximum marginal likelihood estimator, which can be computed with a quadratic cost using dynamic programming. We carry out extensive investigation on the choice of the prior distribution and study the asymptotic properties of the maximum marginal likelihood estimator. We propose to treat each possible set of change-points equally and adopt an empirical Bayes approach to specify the prior distribution of segment parameters. Detailed simulation study is performed to compare the effectiveness of this method with other existing methods. We demonstrate our method on single-molecule enzyme reaction data and on DNA array CGH data. Our study shows that this method is applicable to a wide range of models and offers appealing results in practice.
Collapse
Affiliation(s)
- Chao Du
- Statistics, University of Virginia, Charlottesville, VA 22904 ( )
| | - Chu-Lan Michael Kao
- Research Center of Adaptive Data Analysis, National Central University, Taoyuan County 32001, Taiwan ( )
| | - S C Kou
- Statistics, Harvard University, Cambridge, MA, 02138 ( )
| |
Collapse
|
36
|
Affiliation(s)
- Lydia Kisley
- Department of Chemistry and Department of Electrical and Computer
Engineering,
Rice Quantum Institute, Rice University, 6100 Main Street, MS-60, Houston, Texas 77005, United States
| | - Christy F. Landes
- Department of Chemistry and Department of Electrical and Computer
Engineering,
Rice Quantum Institute, Rice University, 6100 Main Street, MS-60, Houston, Texas 77005, United States
| |
Collapse
|
37
|
Anikushina TA, Gladush MG, Gorshelev AA, Naumov AV. Single-molecule spectromicroscopy: a route towards sub-wavelength refractometry. Faraday Discuss 2015; 184:263-74. [DOI: 10.1039/c5fd00086f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We suggest a novel approach for spatially resolved probing of local fluctuations of the refractive index n in solids by means of single-molecule (SM) spectroscopy. It is based on the dependence T1(n) of the effective radiative lifetime T1 of dye centres in solids on n due to the local-field effects. Detection of SM zero-phonon lines at low temperatures gives the values of the SM natural spectral linewidth (which is inversely proportional to T1) and makes it possible to reveal the distribution of the local n values in solids. Here we demonstrate this possibility on the example of amorphous polyethylene and polycrystalline naphthalene doped with terrylene. In particular, we show that the obtained distributions of lifetime limited spectral linewidths of terrylene molecules embedded into these matrices are due to the spatial fluctuations of the refractive index local values.
Collapse
Affiliation(s)
- T. A. Anikushina
- Molecular Spectroscopy Dept
- Institute for Spectroscopy of the Russian Academy of Sciences
- Moscow
- 142190 Russia
- Chair of the Theoretical Physics
| | - M. G. Gladush
- Molecular Spectroscopy Dept
- Institute for Spectroscopy of the Russian Academy of Sciences
- Moscow
- 142190 Russia
| | - A. A. Gorshelev
- Molecular Spectroscopy Dept
- Institute for Spectroscopy of the Russian Academy of Sciences
- Moscow
- 142190 Russia
| | - A. V. Naumov
- Molecular Spectroscopy Dept
- Institute for Spectroscopy of the Russian Academy of Sciences
- Moscow
- 142190 Russia
- Chair of the Theoretical Physics
| |
Collapse
|
38
|
Zheng D, Lu HP. Single-molecule enzymatic conformational dynamics: spilling out the product molecules. J Phys Chem B 2014; 118:9128-40. [PMID: 25025461 PMCID: PMC4126733 DOI: 10.1021/jp5014434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Product releasing is an essential step of an enzymatic reaction, and a mechanistic understanding primarily depends on the active-site conformational changes and molecular interactions that are involved in this step of the enzymatic reaction. Here we report our work on the enzymatic product releasing dynamics and mechanism of an enzyme, horseradish peroxidase (HRP), using combined single-molecule time-resolved fluorescence intensity, anisotropy, and lifetime measurements. Our results have shown a wide distribution of the multiple conformational states involved in active-site interacting with the product molecules during the product releasing. We have identified that there is a significant pathway in which the product molecules are spilled out from the enzymatic active site, driven by a squeezing effect from a tight active-site conformational state, although the conventional pathway of releasing a product molecule from an open active-site conformational state is still a primary pathway. Our study provides new insight into the enzymatic reaction dynamics and mechanism, and the information is uniquely obtainable from our combined time-resolved single-molecule spectroscopic measurements and analyses.
Collapse
Affiliation(s)
- Desheng Zheng
- Center for Photochemical
Sciences, Department of Chemistry, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| | - H. Peter Lu
- Center for Photochemical
Sciences, Department of Chemistry, Bowling
Green State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|
39
|
Spectroscopic properties of photosystem II core complexes from Thermosynechococcus elongatus revealed by single-molecule experiments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:773-81. [DOI: 10.1016/j.bbabio.2014.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 11/20/2022]
|
40
|
Shibata Y, Katoh W, Chiba T, Namie K, Ohnishi N, Minagawa J, Nakanishi H, Noguchi T, Fukumura H. Development of a novel cryogenic microscope with numerical aperture of 0.9 and its application to photosynthesis research. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:880-7. [PMID: 24650629 DOI: 10.1016/j.bbabio.2014.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 01/15/2023]
Abstract
A novel cryogenic optical-microscope system was developed in which the objective lens is set inside of the cryostat adiabatic vacuum space. Being isolated from the sample when it was cooled, the objective lens was maintained at room temperature during the cryogenic measurement. Therefore, the authors were able to use a color-aberration corrected objective lens with a numerical aperture of 0.9. The lens is equipped with an air vent for compatibility to the vacuum. The theoretically expected spatial resolutions of 0.39μm along the lateral direction and 1.3μm along the axial direction were achieved by the developed system. The system was applied to the observations of non-uniform distributions of the photosystems in the cells of a green alga, Chlamydomonas reinhardtii, at 94K. Gaussian decomposition analysis of the fluorescence spectra at all the pixels clearly demonstrated a non-uniform distribution of the two photosystems, as reflected in the variable ratios of the fluorescence intensities assigned to photosystem II and to those assigned to photosystem I. The system was also applied to the fluorescence spectroscopy of single isolated photosystem I complexes at 90K. The fluorescence, assigned to be emitted from a single photosystem I trimer, showed an intermittent fluctuation called blinking, which is typical for a fluorescence signal from a single molecule. The vibronic fluorescence bands at around 790nm were observed for single photosystem I trimers, suggesting that the color aberration is not serious up to the 800nm spectral region.
Collapse
Affiliation(s)
- Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | - Wataru Katoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tomofumi Chiba
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Keisuke Namie
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Norikazu Ohnishi
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Hanayo Nakanishi
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroshi Fukumura
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
41
|
Kozankiewicz B, Orrit M. Single-molecule photophysics, from cryogenic to ambient conditions. Chem Soc Rev 2014; 43:1029-43. [DOI: 10.1039/c3cs60165j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Brinks D, Hildner R, van Dijk EMHP, Stefani FD, Nieder JB, Hernando J, van Hulst NF. Ultrafast dynamics of single molecules. Chem Soc Rev 2014; 43:2476-91. [DOI: 10.1039/c3cs60269a] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Room-temperature studies of single molecules at femtosecond timescales provide detailed observation and control of ultrafast electronic and vibrational dynamics of organic dyes and photosynthetic complexes, probing quantum dynamics at ambient conditions and elucidating its role in chemistry and biology.
Collapse
Affiliation(s)
- Daan Brinks
- ICFO - Institut de Ciencies Fotoniques
- Mediterranean Technology Park
- 08860 Castelldefels, Spain
- Department of Chemistry and Chemical Biology
- Harvard University
| | - Richard Hildner
- ICFO - Institut de Ciencies Fotoniques
- Mediterranean Technology Park
- 08860 Castelldefels, Spain
- Experimentalphysik IV
- Universität Bayreuth
| | | | - Fernando D. Stefani
- ICFO - Institut de Ciencies Fotoniques
- Mediterranean Technology Park
- 08860 Castelldefels, Spain
- CIBION - Center for Bionanoscience Research
- CONICET
| | - Jana B. Nieder
- ICFO - Institut de Ciencies Fotoniques
- Mediterranean Technology Park
- 08860 Castelldefels, Spain
| | - Jordi Hernando
- Dept. de Química
- Universitat Autònoma de Barcelona
- 08193 Cerdanyola del Vallès, Spain
| | - Niek F. van Hulst
- ICFO - Institut de Ciencies Fotoniques
- Mediterranean Technology Park
- 08860 Castelldefels, Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats
- , Spain
| |
Collapse
|
43
|
Abstract
Single-molecule spectroscopy has developed into a widely used method for probing the structure, dynamics, and mechanisms of biomolecular systems, especially in combination with Förster resonance energy transfer (FRET). In this introductory tutorial, essential concepts and methods will be outlined, from the FRET process and the basic considerations for sample preparation and instrumentation to some key elements of data analysis and photon statistics. Different approaches for obtaining dynamic information over a wide range of timescales will be explained and illustrated with examples, including the quantitative analysis of FRET efficiency histograms, correlation spectroscopy, fluorescence trajectories, and microfluidic mixing.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057
Zurich, Switzerland
| |
Collapse
|
44
|
Shenai PM, Chernyak V, Zhao Y. Disorder influenced absorption line shapes of a chromophore coupled to two-level systems. J Phys Chem A 2013; 117:12320-31. [PMID: 24168012 DOI: 10.1021/jp4080042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have carried out a theoretical and numerical study of disorder-induced changes in the absorption line shape of a chromophore embedded in a host matrix. The stochastic sudden jump model is employed wherein the host matrix molecules are treated as noninteracting two-level systems (TLSs) occupying points on a three-dimensional lattice with randomly oriented dipole moments. By systematically controlling the degree of positional disorder (α) attributed to them, a perfectly crystalline (α = 0) or a glassy environment (α = 1) or a combination of the two is obtained. The interaction between the chromophore and the TLSs is assumed to be of the dipole-dipole form. With an increase in α, the broadening of the absorption line shape was found to follow a power-law behavior. More importantly, it is revealed in the long-time limit that the resultant line shape is Gaussian in the absence of disorder but transforms to Lorentzian for a completely disordered environment. For an arbitrarily intermediate value of α, the resultant line shape can be approximately fitted by a linear combination of Gaussian and Lorentzian components. The Lorentzian profile for the disordered medium is attributed to the chomophore-TLS pairs with vanishingly small separation between them.
Collapse
Affiliation(s)
- Prathamesh M Shenai
- Division of Materials Science, Nanyang Technological University , Singapore 639798
| | | | | |
Collapse
|
45
|
Nieder JB, Stojković EA, Moffat K, Forest KT, Lamparter T, Bittl R, Kennis JTM. Pigment–Protein Interactions in Phytochromes Probed by Fluorescence Line Narrowing Spectroscopy. J Phys Chem B 2013; 117:14940-50. [DOI: 10.1021/jp409110q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jana B. Nieder
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Emina A. Stojković
- Department of Biochemistry and Molecular Biology, Center for Advanced
Radiation Sources, and Institute for Biophysical Dynamics, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, United States
| | - Keith Moffat
- Department of Biochemistry and Molecular Biology, Center for Advanced
Radiation Sources, and Institute for Biophysical Dynamics, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, United States
| | - Katrina T. Forest
- Department of Bacteriology, University of Wisconsin—Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Tilman Lamparter
- Botany
1, KIT - Karlsruhe Institute of Technology, Kaiserstrasse 2, D 76131 Karlsruhe, Germany
| | - Robert Bittl
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - John T. M. Kennis
- Department of Physics and Astronomy, Biophysics Section, VU University Amsterdam, De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
46
|
Puller V, Lounis B, Pistolesi F. Single molecule detection of nanomechanical motion. PHYSICAL REVIEW LETTERS 2013; 110:125501. [PMID: 25166818 DOI: 10.1103/physrevlett.110.125501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Indexed: 06/03/2023]
Abstract
We investigate theoretically how single molecule spectroscopy techniques can be used to perform fast and high resolution displacement detection and manipulation of nanomechanical oscillators, such as singly clamped carbon nanotubes. We analyze the possibility of real time displacement detection by the luminescence signal and of displacement fluctuations by the degree of second order coherence. Estimates of the electromechanical coupling constant indicate that intriguing regimes of strong backaction between the two-level system of a molecule and the oscillator can be realized.
Collapse
Affiliation(s)
- Vadim Puller
- Université Bordeaux, LOMA, UMR 5798, F-33400 Talence, France and CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Brahim Lounis
- LP2N, Université Bordeaux, Institut d'Optique & CNRS, UMR 5298, F-33405 Talence, France
| | - Fabio Pistolesi
- Université Bordeaux, LOMA, UMR 5798, F-33400 Talence, France and CNRS, LOMA, UMR 5798, F-33400 Talence, France
| |
Collapse
|
47
|
Hussels M, Konrad A, Brecht M. Confocal sample-scanning microscope for single-molecule spectroscopy and microscopy with fast sample exchange at cryogenic temperatures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:123706. [PMID: 23277995 DOI: 10.1063/1.4769996] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The construction of a microscope with fast sample transfer system for single-molecule spectroscopy and microscopy at low temperatures using 2D/3D sample-scanning is reported. The presented construction enables the insertion of a sample from the outside (room temperature) into the cooled (4.2 K) cryostat within seconds. We describe the mechanical and optical design and present data from individual Photosystem I complexes. With the described setup numerous samples can be investigated within one cooling cycle. It opens the possibility to investigate biological samples (i) without artifacts introduced by prolonged cooling procedures and (ii) samples that require preparation steps like plunge-freezing or specific illumination procedures prior to the insertion into the cryostat.
Collapse
Affiliation(s)
- Martin Hussels
- Universität Tübingen, Institut für Physikalische und Theoretische Chemie and LISA+ Center, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | | | | |
Collapse
|
48
|
Orlov SV, Naumov AV, Vainer YG, Kador L. Spectrally resolved analysis of fluorescence blinking of single dye molecules in polymers at low temperatures. J Chem Phys 2012. [DOI: 10.1063/1.4766321] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
|
50
|
Abstract
New advances in nano sciences open the door for scientists to study biological processes on a microscopic molecule-by-molecule basis. Recent single-molecule biophysical experiments on enzyme systems, in particular, reveal that enzyme molecules behave fundamentally differently from what classical model predicts. A stochastic network model was previously proposed to explain the experimental discovery. This paper conducts detailed theoretical and data analyses of the stochastic network model, focusing on the correlation structure of the successive reaction times of a single enzyme molecule. We investigate the correlation of experimental fluorescence intensity and the correlation of enzymatic reaction times, and examine the role of substrate concentration in enzymatic reactions. Our study shows that the stochastic network model is capable of explaining the experimental data in depth.
Collapse
Affiliation(s)
- Chao Du
- Department of Statistics, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|