1
|
Islam SI, Mahfuj S, Baqar Z, Asadujjaman M, Islam MJ, Alsiwiehri N, Almehmadi M, Sanjida S, Ahammad F. Bacterial diseases of Asian sea bass ( Lates calcarifer): A review for health management strategies and future aquaculture sustainability. Heliyon 2024; 10:e29793. [PMID: 38707314 PMCID: PMC11068540 DOI: 10.1016/j.heliyon.2024.e29793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
The advent of aquaculture has been one of the most significant shifts in world food supply during the last century. Aquaculture has rapidly expanded and become a global food industry, spurred by population expansion, increased seafood consumption, and decreased captured fisheries. Nonetheless, the exponential growth of aquaculture has emerged as a significant contributor to anthropogenic changes. Unexpectedly, the result has focused in the emergence and spread of new diseases. The Asian sea bass (Lates calcarifer) is an economically important species in aquaculture, contributing significantly to the global seafood market. However, bacterial diseases have emerged as a major concern, affecting both wild and cultured populations of this species. The most prevalent bacterial pathogens are streptococcus, vibriosis, nocardiosis, tenacibaculosis, and pot-belly disease. Therefore, this review aims to comprehensively analyze both emerging and non-emerging bacterial diseases affecting L. calcarifer and explore potential management approaches for their control. Through an extensive literature survey and critical evaluation of research findings, this review highlights the current understanding of bacterial diseases in L. calcarifer and proposes strategies for better disease management. In addition, this review looks at the rise and characteristics of aquaculture, the major bacterial pathogens of L. calcarifer and their effects, and the specific attributes of disease emergence in an aquatic rather than terrestrial context. It also considers the potential for future disease emergence in L. calcarifer due to aquaculture expansion and climate changes.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sarower Mahfuj
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zulqarnain Baqar
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Md Asadujjaman
- Department of Aquaculture, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Md Jakiul Islam
- Faculty of Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Naif Alsiwiehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Foysal Ahammad
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
2
|
Vasilieva EA, Kuznetsova DA, Valeeva FG, Kuznetsov DM, Zakharov AV, Amerhanova SK, Voloshina AD, Zueva IV, Petrov KA, Zakharova LY. Therapy of Organophosphate Poisoning via Intranasal Administration of 2-PAM-Loaded Chitosomes. Pharmaceutics 2022; 14:pharmaceutics14122846. [PMID: 36559339 PMCID: PMC9781263 DOI: 10.3390/pharmaceutics14122846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Chitosan-decorated liposomes were proposed for the first time for the intranasal delivery of acetylcholinesterase (AChE) reactivator pralidoxime chloride (2-PAM) to the brain as a therapy for organophosphorus compounds (OPs) poisoning. Firstly, the chitosome composition based on phospholipids, cholesterol, chitosans (Cs) of different molecular weights, and its arginine derivative was developed and optimized. The use of the polymer modification led to an increase in the encapsulation efficiency toward rhodamine B (RhB; ~85%) and 2-PAM (~60%) by 20% compared to conventional liposomes. The formation of monodispersed and stable nanosized particles with a hydrodynamic diameter of up to 130 nm was shown using dynamic light scattering. The addition of the polymers recharged the liposome surface (from -15 mV to +20 mV), which demonstrates the successful deposition of Cs on the vesicles. In vitro spectrophotometric analysis showed a slow release of substrates (RhB and 2-PAM) from the nanocontainers, while the concentration and Cs type did not significantly affect the chitosome permeability. Flow cytometry and fluorescence microscopy qualitatively and quantitatively demonstrated the penetration of the developed chitosomes into normal Chang liver and M-HeLa cervical cancer cells. At the final stage, the ability of the formulated 2-PAM to reactivate brain AChE was assessed in a model of paraoxon-induced poisoning in an in vivo test. Intranasal administration of 2-PAM-containing chitosomes allows it to reach the degree of enzyme reactivation up to 35 ± 4%.
Collapse
|
3
|
Hassan RH, Gad HA, El-Din SB, Shaker DS, Ishak RA. Chitosan nanoparticles for intranasal delivery of olmesartan medoxomil: Pharmacokinetic and pharmacodynamic perspectives. Int J Pharm 2022; 628:122278. [DOI: 10.1016/j.ijpharm.2022.122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 10/31/2022]
|
4
|
El-Kawy OA, Shweeta HA, Attallah KM. Radioiodination, nasal nanoformulation and preliminary evaluation of isovanillin: A new potential brain cancer-targeting agent. Appl Radiat Isot 2022; 189:110464. [PMID: 36150311 DOI: 10.1016/j.apradiso.2022.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
Brain cancer is a challenging disease to treat using conventional approaches. The present investigation aimed to develop a radiopharmaceutical targeting brain cancer based on natural isovanillin. Different parameters were optimized, resulting in high radiolabeling efficiency (97.3 ± 1.2%) and good stability (<48 h). The tracer was formulated for intranasal delivery in a chitosan nanoparticles system with a mean particle size of 141 ± 2 nm, a polydispersity index of 0.23 ± 0.02, and a zeta potential of -17.4 ± 0.3 mV to enhance nasal uptake and surmount the blood-brain barrier. The system was characterized and assessed in-vitro for suitability and specificity and evaluated in-vivo in normal and tumorized mice. The biodistribution profile in brain tumor showed 20.5 ± 0.4 %ID/g localization and cancer cell targeting within 60 min. Improvement in brain tumor uptake resulted from both the nanoformulation and nasal administration of iodoisovanillin. Overall, the reported results encourage the potential use of the nanoformulated labeled compound as an anticancer agent.
Collapse
Affiliation(s)
- O A El-Kawy
- Egyptian Atomic Energy Authority, Labelled Compounds Department, 13759, Cairo, Egypt.
| | - H A Shweeta
- Egyptian Atomic Energy Authority, Labelled Compounds Department, 13759, Cairo, Egypt
| | - K M Attallah
- Egyptian Atomic Energy Authority, Labelled Compounds Department, 13759, Cairo, Egypt
| |
Collapse
|
5
|
Formulation of Chitosan Microparticles for Enhanced Intranasal Macromolecular Compound Delivery: Factors That Influence Particle Size during Ionic Gelation. Gels 2022; 8:gels8110686. [PMID: 36354594 PMCID: PMC9689727 DOI: 10.3390/gels8110686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2022] Open
Abstract
Therapeutic macromolecules (e.g., protein and peptide drugs) present bioavailability challenges via extravascular administration. The nasal route presents an alternative non-invasive route for these drugs, although low bioavailability remains challenging. Co-administration of permeation enhancers is a promising formulation approach to improve the delivery of poorly bioavailable drugs. The aim of this study was to prepare and characterize chitosan microparticulate formulations containing a macromolecular model compound (fluorescein isothiocyanate dextran 4400, FD-4) and a bioenhancer (piperine). Ionic gelation was used to produce chitosan microparticle delivery systems with two distinct microparticle sizes, differing one order of magnitude in size (±20 µm and ±200 µm). These two microparticle delivery systems were formulated into thermosensitive gels and their drug delivery performance was evaluated across ovine nasal epithelial tissues. Dissolution studies revealed a biphasic release pattern. Rheometry results demonstrated a sol-to-gel transition of the thermosensitive gel formulation at a temperature of 34 °C. The microparticles incorporating piperine showed a 1.2-fold increase in FD-4 delivery across the excised ovine nasal epithelial tissues as compared to microparticles without piperine. This study therefore contributed to advancements in ionic gelation methods for the formulation of particulate systems to enhance macromolecular nasal drug delivery.
Collapse
|
6
|
Recent Advances of Chitosan Formulations in Biomedical Applications. Int J Mol Sci 2022; 23:ijms231810975. [PMID: 36142887 PMCID: PMC9504745 DOI: 10.3390/ijms231810975] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a naturally abundant cationic polymer, is chemically composed of cellulose-based biopolymers derived by deacetylating chitin. It offers several attractive characteristics such as renewability, hydrophilicity, biodegradability, biocompatibility, non-toxicity, and a broad spectrum of antimicrobial activity towards gram-positive and gram-negative bacteria as well as fungi, etc., because of which it is receiving immense attention as a biopolymer for a plethora of applications including drug delivery, protective coating materials, food packaging films, wastewater treatment, and so on. Additionally, its structure carries reactive functional groups that enable several reactions and electrochemical interactions at the biomolecular level and improves the chitosan’s physicochemical properties and functionality. This review article highlights the extensive research about the properties, extraction techniques, and recent developments of chitosan-based composites for drug, gene, protein, and vaccine delivery applications. Its versatile applications in tissue engineering and wound healing are also discussed. Finally, the challenges and future perspectives for chitosan in biomedical applications are elucidated.
Collapse
|
7
|
Spindler LM, Serpetsi S, Flamm J, Feuerhake A, Böhler L, Pravda M, Borchers K, Tovar GE, Schindowski K, Gruber-Traub C. Hyaluronate spreading validates mucin-agarose analogs as test systems to replace porcine nasal mucosa explants: An experimental and theoretical investigation. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Khan TA, Azad AK, Fuloria S, Nawaz A, Subramaniyan V, Akhlaq M, Safdar M, Sathasivam KV, Sekar M, Porwal O, Meenakshi DU, Malviya R, Miret MM, Mendiratta A, Fuloria NK. Chitosan-Coated 5-Fluorouracil Incorporated Emulsions as Transdermal Drug Delivery Matrices. Polymers (Basel) 2021; 13:3345. [PMID: 34641162 PMCID: PMC8512026 DOI: 10.3390/polym13193345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/24/2022] Open
Abstract
The purpose of the present study was to develop emulsions encapsulated by chitosan on the outer surface of a nano droplet containing 5-fluorouracil (5-FU) as a model drug. The emulsions were characterized in terms of size, pH and viscosity and were evaluated for their physicochemical properties such as drug release and skin permeation in vitro. The emulsions containing tween 80 (T80), sodium lauryl sulfate, span 20, and a combination of polyethylene glycol (PEG) and T20 exhibited a release of 88%, 86%, 90% and 92%, respectively. Chitosan-modified emulsions considerably controlled the release of 5-FU compared to a 5-FU solution (p < 0.05). All the formulations enabled transportation of 5-FU through a rat's skin. The combination (T80, PEG) formulation showed a good penetration profile. Different surfactants showed variable degrees of skin drug retention. The ATR-FTIR spectrograms revealed that the emulsions mainly affected the fluidization of lipids and proteins of the stratum corneum (SC) that lead to enhanced drug permeation and retention across the skin. The present study concludes that the emulsions containing a combination of surfactants (Tween) and a co-surfactant (PEG) exhibited the best penetration profile, prevented the premature release of drugs from the nano droplet, enhanced the permeation and the retention of the drug across the skin and had great potential for transdermal drug delivery. Therefore, chitosan-coated 5-FU emulsions represent an excellent possibility to deliver a model drug as a transdermal delivery system.
Collapse
Affiliation(s)
- Taif Ali Khan
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (T.A.K.); (A.N.); (M.A.); (M.S.)
| | - Abul Kalam Azad
- Advanced Drug Delivery Laboratory, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
- Centre of Excellence for Biomaterials and Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Asif Nawaz
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (T.A.K.); (A.N.); (M.A.); (M.S.)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia;
| | - Muhammad Akhlaq
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (T.A.K.); (A.N.); (M.A.); (M.S.)
| | - Muhammad Safdar
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (T.A.K.); (A.N.); (M.A.); (M.S.)
| | - Kathiresan V. Sathasivam
- Centre of Excellence for Biomaterials and Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
- Faculty of Applied Science, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Omji Porwal
- Department of Pharmacognosy, Tishk International University, Erbil 44001, KRG, Iraq;
| | | | - Rishabha Malviya
- Department of Pharmacy, SMAS, Galgotias University, Gautam Buddh Nagar, Greater Noida 201310, India; (R.M.); (A.M.)
| | - Mireia Mallandrich Miret
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Ajay Mendiratta
- Department of Pharmacy, SMAS, Galgotias University, Gautam Buddh Nagar, Greater Noida 201310, India; (R.M.); (A.M.)
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
- Centre of Excellence for Biomaterials and Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| |
Collapse
|
9
|
Spindler LM, Feuerhake A, Ladel S, Günday C, Flamm J, Günday-Türeli N, Türeli E, Tovar GEM, Schindowski K, Gruber-Traub C. Nano-in-Micro-Particles Consisting of PLGA Nanoparticles Embedded in Chitosan Microparticles via Spray-Drying Enhances Their Uptake in the Olfactory Mucosa. Front Pharmacol 2021; 12:732954. [PMID: 34539414 PMCID: PMC8440808 DOI: 10.3389/fphar.2021.732954] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Intranasal delivery has gained prominence since 1990, when the olfactory mucosa was recognized as the window to the brain and the central nervous system (CNS); this has enabled the direct site specific targeting of neurological diseases for the first time. Intranasal delivery is a promising route because general limitations, such as the blood-brain barrier (BBB) are circumvented. In the treatment of multiple sclerosis (MS) or Alzheimer’s disease, for example, future treatment prospects include specialized particles as delivery vehicles. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are well known as promising delivery systems, especially in the area of nose-to-brain (N2B) delivery. Chitosan is also broadly known as a functional additive due to its ability to open tight junctions. In this study, we produced PLGA nanoparticles of different sizes and revealed for the first time their size-time-dependent uptake mechanism into the lamina propria of porcine olfactory mucosa. The intracellular uptake was observed for 80 and 175 nm within only 5 min after application to the epithelium. After 15 min, even 520 nm particles were detected, associated with nuclei. Especially the presence of only 520 nm particles in neuronal fibers is remarkable, implying transcellular and intracellular transport via the olfactory or the trigeminal nerve to the brain and the CNS. Additionally, we developed successfully specialized Nano-in-Micro particles (NiMPs) for the first time via spray drying, consisting of PLGA nanoparticles embedded into chitosan microparticles, characterized by high encapsulation efficiencies up to 51%, reproducible and uniform size distribution, as well as smooth surface. Application of NiMPs accelerated the uptake compared to purely applied PLGA nanoparticles. NiMPs were spread over the whole transverse section of the olfactory mucosa within 15 min. Faster uptake is attributed to additional paracellular transport, which was examined via tight-junction-opening. Furthermore, a separate chitosan penetration gradient of ∼150 µm caused by dissociation from PLGA nanoparticles was observed within 15 min in the lamina propria, which was demonstrated to be proportional to an immunoreactivity gradient of CD14. Due to the beneficial properties of the utilized chitosan-derivative, regarding molecular weight (150–300 kDa), degree of deacetylation (80%), and particle size (0.1–10 µm) we concluded that M2-macrophages herein initiated an anti-inflammatory reaction, which seems to already take place within 15 min following chitosan particle application. In conclusion, we demonstrated the possibility for PLGA nanoparticles, as well as for chitosan NiMPs, to take all three prominent intranasal delivery pathways to the brain and the CNS; namely transcellular, intracellular via neuronal cells, and paracellular transport.
Collapse
Affiliation(s)
- Lena Marie Spindler
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Innovation Field Functional Surfaces and Materials, Fraunhofer-Gesellschaft, Stuttgart, Germany.,Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Andreas Feuerhake
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Innovation Field Functional Surfaces and Materials, Fraunhofer-Gesellschaft, Stuttgart, Germany
| | - Simone Ladel
- Institute for Applied Biotechnology, Biberach University of Applied Science, Biberach, Germany.,Faculty of Natural Science, University of Ulm, Ulm, Germany
| | | | - Johannes Flamm
- Institute for Applied Biotechnology, Biberach University of Applied Science, Biberach, Germany.,Faculty of Natural Science, University of Ulm, Ulm, Germany
| | | | | | - Günter E M Tovar
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Innovation Field Functional Surfaces and Materials, Fraunhofer-Gesellschaft, Stuttgart, Germany.,Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Katharina Schindowski
- Institute for Applied Biotechnology, Biberach University of Applied Science, Biberach, Germany
| | - Carmen Gruber-Traub
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Innovation Field Functional Surfaces and Materials, Fraunhofer-Gesellschaft, Stuttgart, Germany
| |
Collapse
|
10
|
González LF, Acuña E, Arellano G, Morales P, Sotomayor P, Oyarzun-Ampuero F, Naves R. Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: A promising simple, effective, non-invasive, and low-cost therapy. J Control Release 2020; 331:443-459. [PMID: 33220325 DOI: 10.1016/j.jconrel.2020.11.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system (CNS). Interferon (IFN)-β constitutes one of the first-line therapies to treat MS, but has limited efficacy due to the injectable systemic administration, short half-life, and limited CNS access. To address these limitations, we developed IFN-β-loaded chitosan/sulfobutylether-β-cyclodextrin nanoparticles (IFN-β-NPs) for delivery of IFN-β into the CNS via the intranasal (i.n.) route. The nanoparticles (NPs) (≈200 nm, polydispersity ≈0.1, and zeta potential ≈20 mV) were prepared by mixing two aqueous solutions and associated human or murine IFN-β with high efficiency (90%). Functional in vitro assays showed that IFN-β-NPs were safe and that IFN-β was steadily released while retaining biological activity. Biodistribution analysis showed an early and high fluorescence in the brain after nasal administration of fluorescent probe-loaded NPs. Remarkably, mice developing experimental autoimmune encephalomyelitis (EAE), an experimental model of MS, exhibited a significant improvement of clinical symptoms in response to intranasal IFN-β-NPs (inIFN-β-NPs), whereas a similar dose of intranasal or systemic free IFN-β had no effect. Importantly, inIFN-β-NPs treatment was equally effective despite a reduction of 78% in the total amount of weekly administered IFN-β. Spinal cords obtained from inIFN-β-NPs-treated EAE mice showed fewer inflammatory foci and demyelination, lower expression of antigen-presenting and costimulatory proteins on CD11b+ cells, and lower astrocyte and microglia activation than control mice. Therefore, IFN-β treatment at tested doses was effective in promoting clinical recovery and control of neuroinflammation in EAE only when associated with NPs. Overall, inIFN-β-NPs represent a potential, effective, non-invasive, and low-cost therapy for MS.
Collapse
Affiliation(s)
- Luis F González
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Eric Acuña
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gabriel Arellano
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula Sotomayor
- Center for Integrative Medicine and Innovative Science, Universidad Andrés Bello, Santiago, Chile
| | - Felipe Oyarzun-Ampuero
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
| | - Rodrigo Naves
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Abstract
Recent studies on vaccine delivery systems are exploring the possibility of replacing liquid vaccines with solid dose vaccines due to the many advantages that solid dose vaccines can offer. These include the prospect of a needle-free vaccine delivery system leading to better patient compliance, cold chain storage, less-trained vaccinators and fewer chances for needle stick injury hazards. Some studies also indicate that vaccines in a solid dosage form can result in a higher level of immunogenicity compared to the liquid form, thus providing a dose-sparing effect. This review outlines the different approaches in solid vaccine delivery using various routes of administration including, oral, pulmonary, intranasal, buccal, sublingual, and transdermal routes. The various techniques and their current advancements will provide a knowledge base for future work to be carried out in this arena.
Collapse
|
12
|
Muralidharan A, Russell MS, Larocque L, Gravel C, Sauvé S, Chen Z, Li C, Chen W, Cyr T, Rosu-Myles M, Wang L, Li X. Chitosan alters inactivated respiratory syncytial virus vaccine elicited immune responses without affecting lung histopathology in mice. Vaccine 2019; 37:4031-4039. [DOI: 10.1016/j.vaccine.2019.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
|
13
|
Schlachet I, Sosnik A. Mixed Mucoadhesive Amphiphilic Polymeric Nanoparticles Cross a Model of Nasal Septum Epithelium in Vitro. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21360-21371. [PMID: 31124655 DOI: 10.1021/acsami.9b04766] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Intranasal administration of nano-drug-delivery systems emerged as an appealing strategy to surpass the blood-brain barrier and thus increase drug bioavailability in the central nervous system. However, a systematic study of the effect of the structural properties of the nanoparticles on the nose-to-brain transport is missing. In this work, we synthesized and characterized mixed amphiphilic polymeric nanoparticles combining two mucoadhesive graft copolymers, namely, chitosan- g-poly(methyl methacrylate) and poly(vinyl alcohol)- g-poly(methyl methacrylate), for the first time. Chitosan enables the physical stabilization of the nanoparticles by ionotropic cross-linking with tripolyphosphate and confers mucoadhesiveness, while poly(vinyl alcohol) is also mucoadhesive and, owing to its nonionic nature, it improves nanoparticle compatibility in nasal epithelial cells by reducing the surface charge of the nanoparticles. After a thorough characterization of the mixed nanoparticles by dynamic light scattering and nanoparticle tracking analysis, we investigated the cell uptake by fluorescence light and confocal microscopy and imaging flow cytometry. Mixed nanoparticles were readily internalized at 37 °C, while the uptake was inhibited almost completely at 4 °C, indicating the involvement of energy-dependent mechanisms. Finally, we assessed the nanoparticle permeability across liquid-liquid and air-liquid monolayers of a nasal septum epithelial cell line and studied the effect of nanoparticle concentration and temperature on the apparent permeability. Overall, our findings demonstrate that these novel amphiphilic nanoparticles cross this in vitro model of intranasal epithelium mainly by a passive (paracellular) pathway involving the opening of epithelial tight junctions.
Collapse
Affiliation(s)
- Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering , Technion-Israel Institute of Technology , Technion City, Haifa 3200003 , Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering , Technion-Israel Institute of Technology , Technion City, Haifa 3200003 , Israel
| |
Collapse
|
14
|
Chen JC, Li LM, Gao JQ. Biomaterials for local drug delivery in central nervous system. Int J Pharm 2019; 560:92-100. [DOI: 10.1016/j.ijpharm.2019.01.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/20/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023]
|
15
|
Furlani F, Sacco P, Decleva E, Menegazzi R, Donati I, Paoletti S, Marsich E. Chitosan Acetylation Degree Influences the Physical Properties of Polysaccharide Nanoparticles: Implication for the Innate Immune Cells Response. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9794-9803. [PMID: 30768897 DOI: 10.1021/acsami.8b21791] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of the present contribution is twofold as it reports (i) on the role played by chitosan acetylation degree for the stability of nanoparticles (NPs) formed with hyaluronan and (ii) on the effect of the interaction of such NPs with immune cells. Chitosans with similar viscosity-average molecular weight, [Formula: see text], (i.e., 200 000) and different fractions of acetylated units ( FA) together with low-molecular-weight hyaluronan were chosen for developing a select library of formulations via electrostatic complex coacervation. The resulting NPs were analyzed in terms of size, polydispersity, surface charge, and stability in physiological-mimicked media by dynamic light scattering. Only medium acetylated chitosan ( FA = 0.16) guaranteed the stability of NPs. To explore the effect of NPs interaction with immune cells, the release of proinflammatory cytokines and the reactive oxygen species production by human macrophages and neutrophils, respectively, were evaluated. Strikingly, a structure-function relationship emerged, showing that NPs made of chitosans with FA = 0.02, 0.25, 0.46, and 0.63 manifested a proinflammatory activity, linked to the instability of the system. Conversely, NPs made of chitosan with FA = 0.16 neither modified the functional response of macrophages nor that of neutrophils. Of note, such NPs were found to possess additional properties potentially advantageous in applications such as delivery of therapeutics to target inflamed sites: (i) they are devoid of cytotoxic effects, (ii) they avoid engulfment during the early stage of interaction with macrophages, and (iii) they are muco-adhesive, thereby providing for site-specificity and long-residence effects.
Collapse
Affiliation(s)
- Franco Furlani
- Department of Life Sciences , University of Trieste , Via L. Giorgieri 5 , I-34127 Trieste , Italy
| | - Pasquale Sacco
- Department of Life Sciences , University of Trieste , Via L. Giorgieri 5 , I-34127 Trieste , Italy
| | - Eva Decleva
- Department of Life Sciences , University of Trieste , Via L. Giorgieri 5 , I-34127 Trieste , Italy
| | - Renzo Menegazzi
- Department of Life Sciences , University of Trieste , Via L. Giorgieri 5 , I-34127 Trieste , Italy
| | - Ivan Donati
- Department of Life Sciences , University of Trieste , Via L. Giorgieri 5 , I-34127 Trieste , Italy
| | - Sergio Paoletti
- Department of Life Sciences , University of Trieste , Via L. Giorgieri 5 , I-34127 Trieste , Italy
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences , University of Trieste , Piazza dell'Ospitale 1 , I-34129 Trieste , Italy
| |
Collapse
|
16
|
Sah AK, Dewangan M, Suresh PK. Potential of chitosan-based carrier for periodontal drug delivery. Colloids Surf B Biointerfaces 2019; 178:185-198. [PMID: 30856588 DOI: 10.1016/j.colsurfb.2019.02.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
Periodontal diseases are chronic infectious diseases and are a major oral health burden. With the progress in the understanding of etiology, epidemiology and pathogenesis of periodontal diseases coupled with the understanding of the polymicrobial synergy in the dysbiotic oral microbial flora, several new therapeutic targets have been identified. The strategies to curb bacterial growth and production of factors that gradually destroy the tissue surrounding and supporting the teeth have been the cornerstone for inhibiting periodontitis. Systemic administration of antibiotics for the treatment of periodontitis have shown several drawbacks including: inadequate antibiotic concentration at the site of the periodontal pocket, a rapid decline of the plasma antibiotic concentration to sub-therapeutic levels, the development of microbial resistance due to sub-therapeutic drug levels and peak-plasma antibiotic concentrations which may be associated with various side effects. These obvious disadvantages have evoked an interest in the development of localized drug delivery systems that can provide an effective concentration of antibiotic at the periodontal site for the duration of the treatment with minimal side effects. A targeted sustained release device which could be inserted in the periodontal pocket and prolong the therapeutic levels at the site of action at a much lower dose is the need of the hour. Chitosan, a deacetylated derivative of chitin has attracted considerable attention owing to its special properties including antimicrobial efficacy, biodegradability, biocompatibility and non-toxicity. It also has the propensity to act as hydrating agent and display tissue healing and osteoinducting effect. The aim of this review is to shine a spotlight on the chitosan based devices developed for drug delivery application in the effective treatment of various periodontal disorders. The chitosan based carriers like fibers, films, sponge, microparticles, nanoparticles, gels that have been designed for sustained release of drug into the periodontal pocket are highlighted.
Collapse
Affiliation(s)
- Abhishek K Sah
- Department of Pharmacy, Shri G. S. Institute of Technology & Science, 23-Park Road, Indore, 452003, MP, India
| | - Mahendra Dewangan
- Department of Pharmaceutics, University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India
| | - Preeti K Suresh
- Department of Pharmaceutics, University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India.
| |
Collapse
|
17
|
Yan C, Gu J, Lv Y, Shi W, Huang Z, Liao Y. 5β-Cholanic Acid/Glycol Chitosan Self-Assembled Nanoparticles (5β-CHA/GC-NPs) for Enhancing the Absorption of FDs and Insulin by Rat Intestinal Membranes. AAPS PharmSciTech 2019; 20:30. [PMID: 30603934 DOI: 10.1208/s12249-018-1242-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/08/2018] [Indexed: 01/31/2023] Open
Abstract
The absorption-enhancing effects of glycol chitosan modified by 5β-cholanic acid nanoparticles (5β-CHA/GC-NPs) on a drug with poor absorption in the intestine were studied by the method of in situ closed loop. We chose fluorescein isothiocyanate-labeled dextrans (FDs) and insulin as the model drugs. 5β-CHA/GC-NPs loaded to different drugs were prepared by the dialysis method, and the physicochemical characteristics and in vitro release profiles of nanoparticles were also estimated. The results showed that 5β-CHA/GC-NPs markedly increased the absorption of insulin and FDs in the jejunum, ileum, and colon. The ratios of absorption for all the drugs in the jejunum were higher than those in the ileum and colon. In addition, the enhancing effect of 5β-CHA/GC-NPs for the absorption of FDs from the jejunum was decreased with increasing molecular weights. In the toxicity test, 5β-CHA/GC-NPs did not significantly increase the release of protein and the activities of LDH, indicating that the nanoparticles did not cause any membrane damage to the intestine. These findings suggested that 5β-CHA/GC-NPs were safe and useful carriers for enhancing the absorption of the drug with poor absorption by intestinal membranes.
Collapse
|
18
|
Taghe S, Mirzaeei S. Preparation and characterization of novel, mucoadhesive ofloxacin nanoparticles for ocular drug delivery. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000117105] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Shiva Taghe
- Kermanshah University of Medical Sciences, Iran; Pharmaceutical Sciences Branch, Iran
| | - Shahla Mirzaeei
- Kermanshah University of Medical Sciences, Iran; Kermanshah University of Medical Sciences, Iran
| |
Collapse
|
19
|
Jiao J, Zhang L. Influence of Intranasal Drugs on Human Nasal Mucociliary Clearance and Ciliary Beat Frequency. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:306-319. [PMID: 30912321 PMCID: PMC6439188 DOI: 10.4168/aair.2019.11.3.306] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/16/2018] [Accepted: 10/28/2018] [Indexed: 01/01/2023]
Abstract
The nasal mucociliary clearance system, which comprises epithelial cilia and mucus from goblet cells, is an important intrinsic defense mechanism of the upper respiratory tract. Intranasal drugs and additives can have a detrimental effect on ciliary activity and mucociliary clearance, and thus impact the integrity of nasal defense mechanisms. This article discusses the current literature on the effects of different classes of intranasal drugs including intranasal corticosteroids, antihistamines, decongestants, antimicrobials and antivirals, as well as various drug excipients and nasal irrigation solutions on human nasal mucociliary clearance and ciliary beat frequency. Available data indicate that some intranasal formulations tend to hamper nasal ciliary function and mucociliary clearance. Therefore, it is of great importance to assess the effects of intranasal drugs and additives on mucociliary function before they are recommended as therapy for different nasal conditions.
Collapse
Affiliation(s)
- Jian Jiao
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.
| |
Collapse
|
20
|
Moradi S, Hosseini E, Abdoli M, Khani S, Shahlaei M. Comparative molecular dynamic simulation study on the use of chitosan for temperature stabilization of interferon αII. Carbohydr Polym 2019; 203:52-59. [DOI: 10.1016/j.carbpol.2018.09.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/08/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
|
21
|
Hamedi H, Moradi S, Hudson SM, Tonelli AE. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr Polym 2018; 199:445-460. [DOI: 10.1016/j.carbpol.2018.06.114] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023]
|
22
|
Zhang H, Bahamondez-Canas TF, Zhang Y, Leal J, Smyth HDC. PEGylated Chitosan for Nonviral Aerosol and Mucosal Delivery of the CRISPR/Cas9 System in Vitro. Mol Pharm 2018; 15:4814-4826. [PMID: 30222933 DOI: 10.1021/acs.molpharmaceut.8b00434] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chitosan has been widely employed to deliver nucleic acids such as siRNA and plasmids. However, chitosan-mediated delivery of a gene-editing system has not been reported yet. In this study, poly(ethylene glycol) monomethyl ether (mPEG) was conjugated to chitosan with different molecular weights (low molecular weight and medium molecular weight chitosan) achieving a high degree of substitution as identified by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR) spectra. PEGylated chitosan/pSpCas9-2A-GFP nanocomplexes were formed at different N/ P (amine group to phosphate group) ratios and characterized in terms of size and zeta potential. The nanocomplexes developed showed the capability to protect loaded nucleic acids from DNase I digestion and from the stresses of nebulization. In addition, we demonstrated that the PEG conjugation of chitosan improved the mucus-penetration capability of the formed nanocomplexes at N/ P ratios of 5, 10, 20, and 30. Finally, PEGylated low molecular weight chitosan nanocomplexes showed optimal transfection efficiency at an N/ P ratio of 20, while PEGylated medium molecular weight chitosan nanocomplexes showed an optimal transfection efficiency at an N/ P ratio of 5 at pH 6.5 and 6.8. This study established the basis for the delivery of a gene-editing system by PEGylated chitosan nanocomplexes.
Collapse
|
23
|
Léost L, Roques J, Van Der Meeren A, Vincent L, Sbirrazzuoli N, Hennig C, Rossberg A, Aupiais J, Pagnotta S, Den Auwer C, Di Giorgio C. Towards the development of chitosan nanoparticles for plutonium pulmonary decorporation. Dalton Trans 2018; 47:11605-11618. [PMID: 30090882 DOI: 10.1039/c8dt02419g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the 1940s, great amounts of Plutonium (Pu) have been produced for both military and civil purposes. Until now, the standard therapy for decorporation following inhalation has been the intravenous injection of diethylenetriaminepentaacetic acid ligand (Ca-DTPA form). This method offers a strong complexing constant for Pu(iv) but has poor chemical specificity, therefore its efficacy is limited to actinides present in the blood. Consequently, there is no decorporation treatment currently available which efficiently removes the intracellular Pu(iv) trapped in the pulmonary macrophages. Our research shows that a nanoparticle approach could be of particular interest due to large contact area and ability to target the retention compartments of the lungs. In this study, we have focused on the inhalation process involving forms of Pu(iv) with poor solubility. We explored the design of biocompatible nanoparticles able to target the macrophages in the lung alveoli and to chelate the forms of Pu(iv) with poor solubility. Nanoparticle formation was achieved through an ionic cross-linking concept using a polycationic polymer and an anionic chelate linker. We chose N-trimethyl chitosan, for its biocompatibility, as the polycationic polymer base of the nanoparticle and the phosphonic analogue of DTPA, diethylenetriamine-pentamethylenephosphonic acid (DTPMP) as the anionic chelating linker in forming NPs TMC-DTPMP. The synthesis and physico-chemical characterization of these NPs are presented. Secondly, the complexation mechanisms of TMC-DTPMP NPs with Thorium (Th(iv)) are discussed in terms of efficiency and structure. The Extended X-Ray Absorption Fine Structure (EXAFS) of the TMC-DTPMP complex with Th(iv) as well as Pu(iv) are defined and completed with DFT calculations to further delineate the plutonium coordination sphere after complexation. Finally, preliminary cytotoxicity tests onto macrophages were assayed.
Collapse
Affiliation(s)
- Laurane Léost
- Université Côte d'Azur, Institut de Chimie de Nice, UMR7272, 06108 Nice, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ho DK, Frisch S, Biehl A, Terriac E, De Rossi C, Schwarzkopf K, Lautenschläger F, Loretz B, Murgia X, Lehr CM. Farnesylated Glycol Chitosan as a Platform for Drug Delivery: Synthesis, Characterization, and Investigation of Mucus–Particle Interactions. Biomacromolecules 2018; 19:3489-3501. [DOI: 10.1021/acs.biomac.8b00795] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Duy-Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), ‡Department of Pharmacy, §INM−Leibniz Institute for New Materials, and ⊥Korea Institute of Science and Technology, KIST Europe, Saarland University, D-66123 Saarbrücken, Germany
| | - Sarah Frisch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), ‡Department of Pharmacy, §INM−Leibniz Institute for New Materials, and ⊥Korea Institute of Science and Technology, KIST Europe, Saarland University, D-66123 Saarbrücken, Germany
| | - Alexander Biehl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), ‡Department of Pharmacy, §INM−Leibniz Institute for New Materials, and ⊥Korea Institute of Science and Technology, KIST Europe, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), ‡Department of Pharmacy, §INM−Leibniz Institute for New Materials, and ⊥Korea Institute of Science and Technology, KIST Europe, Saarland University, D-66123 Saarbrücken, Germany
| | - Konrad Schwarzkopf
- Department of Anesthesia and Intensive Care, Klinikum Saarbrücken, 66119 Saarbrücken, Germany
| | | | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), ‡Department of Pharmacy, §INM−Leibniz Institute for New Materials, and ⊥Korea Institute of Science and Technology, KIST Europe, Saarland University, D-66123 Saarbrücken, Germany
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), ‡Department of Pharmacy, §INM−Leibniz Institute for New Materials, and ⊥Korea Institute of Science and Technology, KIST Europe, Saarland University, D-66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), ‡Department of Pharmacy, §INM−Leibniz Institute for New Materials, and ⊥Korea Institute of Science and Technology, KIST Europe, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
25
|
Yasar H, Ho DK, De Rossi C, Herrmann J, Gordon S, Loretz B, Lehr CM. Starch-Chitosan Polyplexes: A Versatile Carrier System for Anti-Infectives and Gene Delivery. Polymers (Basel) 2018; 10:E252. [PMID: 30966288 PMCID: PMC6415184 DOI: 10.3390/polym10030252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 12/31/2022] Open
Abstract
Despite the enormous potential of nanomedicine, the search for materials from renewable resources that balance bio-medical requirements and engineering aspects is still challenging. This study proposes an easy method to make nanoparticles composed of oxidized starch and chitosan, both isolated from natural biopolymers. The careful adjustment of C/N ratio, polymer concentration and molecular weight allowed for tuning of particle characteristics. The system's carrier capability was assessed both for anti-infectives and for nucleic acid. Higher starch content polyplexes were found to be suitable for high encapsulation efficiency of cationic anti-infectives and preserving their bactericidal function. A cationic carrier was obtained by coating the anionic polyplex with chitosan. Coating allowed for a minimal amount of cationic polymer to be employed and facilitated plasmid DNA loading both within the particle core and on the surface. Transfection studies showed encouraging result, approximately 5% of A549 cells with reporter gene expression. In summary, starch-chitosan complexes are suitable carriers with promising perspectives for pharmaceutical use.
Collapse
Affiliation(s)
- Hanzey Yasar
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, D-66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| | - Duy-Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, D-66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, D-66123 Saarbrücken, Germany.
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, D-66123 Saarbrücken, Germany.
| | - Sarah Gordon
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, D-66123 Saarbrücken, Germany.
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, D-66123 Saarbrücken, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, D-66123 Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
26
|
Ho DK, Costa A, De Rossi C, de Souza Carvalho-Wodarz C, Loretz B, Lehr CM. Polysaccharide Submicrocarrier for Improved Pulmonary Delivery of Poorly Soluble Anti-infective Ciprofloxacin: Preparation, Characterization, and Influence of Size on Cellular Uptake. Mol Pharm 2018; 15:1081-1096. [PMID: 29425049 DOI: 10.1021/acs.molpharmaceut.7b00967] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The majority of the currently used and developed anti-infectives are poorly water-soluble molecules. The poor solubility might lead to limited bioavailability and pharmacological action of the drug. Novel pharmaceutical materials have thus been designed to solve those problems and improve drug delivery. In this study, we propose a facile method to produce submicrocarriers (sMCs) by electrostatic gelation of anionic ß-cyclodextrin (aß-CD) and chitosan. The average hydrodynamic size ranged from 400 to 900 nm by carefully adjusting polymer concentrations and N/C ratio. The distinct host-guest reaction of cyclodextrin derivative is considered as a good approach to enhance solubility, and prevent drug recrystallization, and thus was used to develop sMC to improve the controlled release profile of a poorly soluble and clinically relevant anti-infective ciprofloxacin. The optimal molar ratio of ciprofloxacin to aß-CD was found to be 1:1, which helped maximize encapsulation efficiency (∼90%) and loading capacity (∼9%) of ciprofloxacin loaded sMCs. Furthermore, to recommend the future application of the developed sMCs, the dependence of cell uptake on sMCs size (500, 700, and 900 nm) was investigated in vitro on dTHP-1 by both flow cytometry and confocal microscopy. The results demonstrate that, regardless of their size, an only comparatively small fraction of the sMCs were taken up by the macrophage-like cells, while most of the carriers were merely adsorbed to the cell surface after 2 h incubation. After continuing the incubation to reach 24 h, the majority of the sMCs were found intracellularly. However, the sMCs had been designed to release sufficient amount of drug within 24 h, and the subsequent phagocytosis of the carrier may be considered as an efficient pathway for its safe degradation and elimination. In summary, the developed sMC is a suitable system with promising perspectives recommended for pulmonary extracellular infection therapeutics.
Collapse
Affiliation(s)
- Duy-Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany.,Department of Pharmacy , Saarland University , D-66123 Saarbrücken , Germany
| | - Ana Costa
- I3S, Instituto de Investigação e Inovação em Saúde Universidade do Porto , 4200-135 Porto , Portugal.,Instituto Nacional de Engenharia Biomédica (INEB), Universidade do Porto , 4200-135 Porto , Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , 4050-313 Porto , Portugal
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany
| | - Cristiane de Souza Carvalho-Wodarz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany.,Department of Pharmacy , Saarland University , D-66123 Saarbrücken , Germany
| |
Collapse
|
27
|
Huang T, Song X, Jing J, Zhao K, Shen Y, Zhang X, Yue B. Chitosan-DNA nanoparticles enhanced the immunogenicity of multivalent DNA vaccination on mice against Trueperella pyogenes infection. J Nanobiotechnology 2018; 16:8. [PMID: 29378591 PMCID: PMC5787914 DOI: 10.1186/s12951-018-0337-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trueperella pyogenes is a commensal and opportunistic pathogen that normally causes mastitis, liver abscesses and pneumonia of economically important livestock. To develop efficacious and potent vaccine against T. pyogenes, chimeric gene DNA vaccines were constructed and encapsulated in chitosan nanoparticles (pPCFN-CpG-CS-NPs). RESULTS The pPCFN-CpG-CS-NPs consists of the plo, cbpA, fimA, and nanH gene of T. pyogenes and CpG ODN1826. It was produced with good morphology, high stability, a mean diameter of 93.58 nm, and a zeta potential of + 5.27 mV. Additionally, chitosan encapsulation was confirmed to protect the DNA plasmid from DNase I digestion. The immunofluorescence assay indicated that the four-chimeric gene could synchronously express in HEK293T cells and maintain good bioactivity. Compared to the mice immunized with the control plasmid, in vivo immunization showed that mice immunized with the pPCFN-CpG-CS-NPs had better immune responses, and release of the plasmid DNA was prolonged. Importantly, immunization with pPCFN-CpG-CS-NPs could significantly protect mice from highly virulent T. pyogenes TP7 infection. CONCLUSIONS This study indicates that chitosan-DNA nanoparticles are potent immunization candidates against T. pyogenes infection and provides strategies for the further development of novel vaccines encapsulated in chitosan nanoparticles.
Collapse
Affiliation(s)
- Ting Huang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuhao Song
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jie Jing
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Kelei Zhao
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongmei Shen
- Sichuan Engineering Technology Research Center of Medical Animal, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
28
|
Li K, Liang N, Yang H, Liu H, Li S. Temozolomide encapsulated and folic acid decorated chitosan nanoparticles for lung tumor targeting: improving therapeutic efficacy both in vitro and in vivo. Oncotarget 2017; 8:111318-111332. [PMID: 29340056 PMCID: PMC5762324 DOI: 10.18632/oncotarget.22791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
Folic acid-conjugated temozolomide (TMZ)-loaded chitosan nanoparticles (CS-TMZ-FLA-NP) were developed to target lung cancer in the anticipation that folic acid would increase the affinity of nanoparticles for cancer cells. CS-TMZ-FLA-NP showed the highest anti-proliferative effect on the lung cancer cells in comparison to free TMZ and CS-TMZ-NP (nanoparticles without folic acid). A cellular uptake assay was performed on two different cell lines, L132 and A549. Cellular uptake efficiencies of CS-TMZ-NP and CS-TMZ-FLA-NP were found to be concentration-dependent in both cell lines. CS-TMZ-FLA-NP produced a 2.5 fold greater accumulation of TMZ than CS-TMZ-NP in both cell lines. CS-TMZ-FLA-NP maintained a significantly higher deposition of TMZ in lung tissue (approximately 7.5 μg/g of lung tissue) when compared to free TMZ and CS-TMZ-NP. Mice treated with CS-TMZ-FLA-NP had a 100% survival rate with significant suppression of tumor growth. Histopathological and immunohistochemical studies also demonstrated that CS-TMZ-FLA-NP had superior anticancer activity compared to the other two treatments. Our results indicate that CS-TMZ-FLA-NP can effectively facilitate targeting to human lung cancer cell lines in vitro and to lung tumors in vivo in a sustained manner and so improve the therapeutic efficacy of TMZ.
Collapse
Affiliation(s)
- Kaidi Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huaxia Yang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
29
|
Abdou EM, Kandil SM, Miniawy HMFE. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int J Pharm 2017; 529:667-677. [PMID: 28729175 DOI: 10.1016/j.ijpharm.2017.07.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/06/2017] [Accepted: 07/08/2017] [Indexed: 12/28/2022]
Abstract
Zolmitriptan (ZT) is a well-tolerated drug in migraine treatment suffering from low bioavailability due to low amount of the drug that reaches the brain after oral and nasal delivery. Development of new nasal mucoadhesive nanoemulsion formulation for zolmitriptan may success in delivering the drug directly from the nose to the brain to achieve rapid onset of action and high drug concentration in the brain which is required for treatment of acute migraine. ZT mucoadhesive nanoemulsion were prepared and characterized for drug content, zeta potential, particle size, morphology, residence time and permeation through the nasal mucosa. The selected formula was tested in-vivo in mice for its pharmacokinetics in comparison with intravenous and nasal solution of zolmitriptan. Results showed that addition of chitosan as mucoadhesive agent in 0.3% concentration to the nanoemulsion enhanced its residence time and zetapotential with no significant effect on the globule size. All tested formulations showed higher permeability coefficients than the zolmitriptan solution through the nasal mucosa. In-vivo studies showed that the mucoadhesive nanoemulsion formulation of zolmitriptan has higher AUC0-8 and shorter Tmax in the brain than the intravenous or the nasal solution. This was related to the small globule size and higher permeability of the formulation.
Collapse
Affiliation(s)
- Ebtsam M Abdou
- Department of pharmaceutics, National Organization of Drug Control and Research (NODCAR), Cairo, Egypt.
| | - Soha M Kandil
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology & Information(MTI), Cairo, Egypt
| | - Hala M F El Miniawy
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
30
|
Tripathi P, Jaiswal AK, Dube A, Mishra PR. Hexadecylphosphocholine (Miltefosine) stabilized chitosan modified Ampholipospheres as prototype co-delivery vehicle for enhanced killing of L. donovani. Int J Biol Macromol 2017; 105:625-637. [PMID: 28716750 DOI: 10.1016/j.ijbiomac.2017.07.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/25/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
Lipid nanoparticles are stable, biodegradable and biocompatible carriers offering excellent therapeutic efficacy. Here, a novel effort has been made to develop Miltefosine (HePC- hexadecylphosphocholine) stabilized chitosan anchored nanostructured lipid carriers (NLC) of Amphotericin B (AmB) as co-delivery vehicle to enhance killing of L. donovani. The entrapment efficiency of AmB was achieved upto 85.3% for HePC-AmB-CNLCs with mean particle size of 150.8±8.4nm, and zeta potential value of +28.2±1.1mV, respectively. The cumulative amount of AmB released at even after the 24h was less than 65% from HePC-AmB-CNLCs and Tween-80-AmB-CNLCs. Intravenous administration of HePC-AmB-CNLCs revealed the significantly increased localization of AmB in both liver and spleen when estimated. FACS study represented enhanced uptake of FITC-HePC-CNLCs over FITC-HePC-NLCs in J774A.1 cell lines. Highly significant in vitro and in vivo anti-leishmanial activity (p<0.05 compared with Tween 80-AmB-CNLCs) was observed with HePC-AmB-CNLCs when tested against VL in Leishmania donovani-infected hamsters. The haemolysis and cytotoxicity studies showed the safety of HePC-AmB-CNLCs and Tween 80-AmB-CNLCs. The findings suggested that it would be preferable to deliver AmB through HePC stabilized chitosan anchored nanostructured lipid carriers for rapid and effective treatment with decreased adverse effects.
Collapse
Affiliation(s)
- Priyanka Tripathi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Anil Kumar Jaiswal
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anuradha Dube
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Prabhat Ranjan Mishra
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| |
Collapse
|
31
|
Bernocchi B, Carpentier R, Betbeder D. Nasal nanovaccines. Int J Pharm 2017; 530:128-138. [PMID: 28698066 DOI: 10.1016/j.ijpharm.2017.07.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 01/08/2023]
Abstract
Nasal administration of vaccines is convenient for the potential stimulation of mucosal and systemic immune protection. Moreover the easy accessibility of the intranasal route renders it optimal for pandemic vaccination. Nanoparticles have been identified as ideal delivery systems and adjuvants for vaccine application. Heterogeneous protocols have been used for animal studies. This complicates the understanding of the formulation influence on the immune response and the comparison of the different nanoparticles approaches developed. Moreover anatomical and immunological differences between rodents and humans provide an additional hurdle in the rational development of nasal nanovaccines. This review will give a comprehensive expertise of the state of the art in nasal nanovaccines in animals and humans focusing on the nanomaterial used.
Collapse
Affiliation(s)
- B Bernocchi
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France
| | - R Carpentier
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France.
| | - D Betbeder
- Inserm, LIRIC-UMR 995, F-59000 Lille, France; Université de Lille, LIRIC-UMR 995, F-59000 Lille, France; CHRU de Lille, LIRIC-UMR 995, F-59000 Lille, France; University of Artois, 62000 Arras, France
| |
Collapse
|
32
|
Kumar S, Kumar D, Dilbaghi N. Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:926-937. [PMID: 27761863 DOI: 10.1007/s11356-016-7774-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/22/2016] [Indexed: 05/28/2023]
Abstract
Synthesis and controlled release study of polymeric nanoformulation of carbendazim (2-benzimidazole carbamic acid methyl ester) using chitosan and pectin is reported in this article. The formulation was subjected to morphological, physiological, in vitro fungicide release and bio-efficacy evaluation studies. The average size of nanoparticles was found to be in the range of 70-90 nm as confirmed by transmission electron microscopy. The in vitro fungicide release of nanoformulated carbendazim was compared with pure carbendazim at different pH values. The results confirmed sustained release of nanoformulated carbendazim. The bio-efficacy evaluation of the carbendazim nanoformulation was carried out against Fusarium oxysporum and Aspergillus parasiticus. The nanoformulation showed 100 % inhibition of test fungi at both concentrations (0.5 and 1.0 ppm) while pure carbendazim showed 80 ± 0 % and 97.2 ± 1.1 % inhibition at 0.5 and 1.0 ppm concentration respectively against Fusarium oxysporum and 86.0 ± 0.6 % inhibition and 100.0 % inhibition at 0.5 and 1.0 ppm concentration respectively against Aspergillus parasiticus. The commercial formulation (WP 50) showed 42 % and 58.0 ± 0.1 % inhibition at 0.5 and 1 ppm concentration respectively against Aspergillus parasiticus and 50.5 ± 0.7 % and 70.0 ± 0 % inhibition at 0.5 and 1.0 ppm concentrations respectively against Fusarium oxysporum. Phytotoxicity evaluation of nanoformulated fungicide confirmed that the nanoformulated carbendazim is safer for germination and root growth of the seeds of Cucumis sativa, Zea mays, and Lycopersicum esculantum.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio & NanoTechnology, Guru Jambheshwar University of Science and Technology, Hisar, 250001, India
| | - Dinesh Kumar
- Department of Electronic Science, Kurukshetra University, Kurukshetra, 136119, India
- Vice Chancellor, YMCA University of Science &Technology, Faridabad, India
| | - Neeraj Dilbaghi
- Department of Bio & NanoTechnology, Guru Jambheshwar University of Science and Technology, Hisar, 250001, India.
| |
Collapse
|
33
|
Chavan C, Bala P, Pal K, Kale S. Cross-linked chitosan-dextran sulphate vehicle system for controlled release of ciprofloxaxin drug: An ophthalmic application. OPENNANO 2017. [DOI: 10.1016/j.onano.2017.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Abstract
The use of gene delivery systems for the expression of antigenic proteins is an established means for activating a patient’s own immune system against the cancer they carry. Since tumor cells are poor antigen-presenting cells, cross-presentation of tumor antigens by dendritic cells (DCs) is essential for the generation of tumor-specific cytotoxic T-lymphocyte responses. A number of polymer-based nanomedicines have been developed to deliver genes into DCs, primarily by incorporating tumor-specific, antigen-encoding plasmid DNA with polycationic molecules to facilitate DNA loading and intracellular trafficking. Direct in vivo targeting of plasmid DNA to DC surface receptors can induce high transfection efficiency and long-term gene expression, essential for antigen loading onto major histocompatibility complex molecules and stimulation of T-cell responses. This chapter summarizes the physicochemical properties and biological information on polymer-based non-viral vectors used for targeting DCs, and discusses the main challenges for successful in vivo gene transfer into DCs.
Collapse
Affiliation(s)
- Kenneth A. Howard
- Department of Molecular Biology and Gen, Interdisciplinary Nanoscience Center (i, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Biophysical I, Aarhus University, Aarhus, Denmark
| | - Dan Peer
- Britannia Bldg, 2nd Fl, Rm 226, Tel-Aviv Univ, Dept Cell Research, Tel-Aviv, Israel
| |
Collapse
|
35
|
Badhe RV, Nanda RK, Chejara DR, Choonara YE, Kumar P, du Toit LC, Pillay V. Microwave-assisted facile synthesis of a new tri-block chitosan conjugate with improved mucoadhesion. Carbohydr Polym 2015; 130:213-21. [DOI: 10.1016/j.carbpol.2015.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
|
36
|
Bouhenna M, Salah R, Bakour R, Drouiche N, Abdi N, Grib H, Lounici H, Mameri N. Effects of chitin and its derivatives on human cancer cells lines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15579-15586. [PMID: 26013739 DOI: 10.1007/s11356-015-4712-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
The present study is focused on the effect of chitin derivatives against human cancer cell lines RD and Hep2. As an outcome from this research, chitin was cytotoxic at IC50 = 400 μg/ml and 200 μg/ml against Hep2 cells and RD cells lines, respectively. Irradiated chitin had an IC50 value of 450 μg/ml for Hep2 and an IC50 of 200 μg/ml for RD. The lowest IC50 is attributed to chitosan, 300 μg/ml in Hep2 and 190 μg/ml in RD.
Collapse
Affiliation(s)
- M Bouhenna
- Unité de Recherche URIE, Ecole Nationale Polytechnique, 10 Avenue Pasteur El Harrach, Alger, Algeria
| | - R Salah
- Unité de Recherche URIE, Ecole Nationale Polytechnique, 10 Avenue Pasteur El Harrach, Alger, Algeria
| | - R Bakour
- Université USTHB Bab El Zouar Alger, Bab Ezzouar, Algeria
| | - N Drouiche
- Unité de Recherche URIE, Ecole Nationale Polytechnique, 10 Avenue Pasteur El Harrach, Alger, Algeria.
- Centre de Recherche en technologie des Semi-conducteurs pour l'Energétique (CRTSE). 2, Bd Frantz Fanon BP140, Alger - 7 merveilles, 16038, Alger, Algeria.
| | - N Abdi
- Unité de Recherche URIE, Ecole Nationale Polytechnique, 10 Avenue Pasteur El Harrach, Alger, Algeria
| | - H Grib
- Unité de Recherche URIE, Ecole Nationale Polytechnique, 10 Avenue Pasteur El Harrach, Alger, Algeria
| | - H Lounici
- Unité de Recherche URIE, Ecole Nationale Polytechnique, 10 Avenue Pasteur El Harrach, Alger, Algeria
- Pôle Technologique, Université de BOUIRA, 10000, Bouira, Algeria
| | - N Mameri
- Unité de Recherche URIE, Ecole Nationale Polytechnique, 10 Avenue Pasteur El Harrach, Alger, Algeria
| |
Collapse
|
37
|
Chitosan coated vancomycin hydrochloride liposomes: Characterizations and evaluation. Int J Pharm 2015; 495:508-515. [PMID: 26325316 DOI: 10.1016/j.ijpharm.2015.08.085] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 11/21/2022]
Abstract
The present work evaluated the feasibility of chitosan coated liposomes (c-Lips) for the intravenous delivery of vancomycin hydrochloride (VANH), a water-soluble antibiotic for the treatment of gram-positive bacterial infections like osteomyelitis, arthritis, endocarditis, pneumonia, etc. The objective of this research was to develop a suitable drug delivery system in vivo which could improve therapeutic efficacy and decrease side effects especially nephrotoxicity. Firstly, the vancomycin hydrochloride liposomes (VANH-Lips) were prepared by modified reverse phase evaporation method, then the chitosan wrapped vancomycin hydrochloride liposomes (c-VANH-Lips) nanosuspension was formulated by the method of electrostatic deposition. Based on the optimized results of single-factor screening experiment, the c-VANH-Lips were found to be relatively uniform in size (220.40 ± 3.56 nm) with a narrow polydispersity index (PI) (0.21 ± 0.03) and a positive zeta potential (25.7 ± 1.12 mV). The average drug entrapment efficiency (EE) and drug loading (DL) were 32.65 ± 0.59% and 2.18 ± 0.04%, respectively. The in vitro release profile of c-VANH-Lips possessed a sustained release Characterization and the release behavior was in accordance with the Weibull equation. Hemolysis experiments showed that its intravenous injection had preliminary safety. In vivo, after intravenous injection to mice, c-VANH-Lips showed a longer retention time and higher AUC values compared with the VANH injection (VANH-Inj) and VANH-Lips. In addition, biodistribution results clearly demonstrated that c-VANH-Lips preferentially decreased the drug distribution in kidney of mice after intravenous injection. These results revealed that injectable c-VANH-Lips may serve as a promising carrier for VANH to increase therapeutic efficacy on gram-positive bacterial infections and reduce nephrotoxicity, which provides significantly clinical value for long-term use of VANH.
Collapse
|
38
|
Tripathi P, Dwivedi P, Khatik R, Jaiswal AK, Dube A, Shukla P, Mishra PR. Development of 4-sulfated N-acetyl galactosamine anchored chitosan nanoparticles: A dual strategy for effective management of Leishmaniasis. Colloids Surf B Biointerfaces 2015; 136:150-9. [PMID: 26381698 DOI: 10.1016/j.colsurfb.2015.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/14/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022]
Abstract
The present investigation reports the modification of chitosan nanoparticles with a ligand 4-sulfated N-acetyl galactosamine (4-SO4GalNAc) for efficient chemotherapy in leishmaniasis (SCNPs) by using dual strategy of targeting. These (SCNPs) were loaded with amphotericin B (AmB) for specific delivery to infected macrophages. Developed AmB loaded SCNPs (AmB-SCNPs) had mean particle size of 333 ± 7 nm, and showed negative zeta potential (-13.9 ± 0.016 mV). Flow cytometric analysis revealed enhanced uptake of AmB-SCNPs in J774A.1, when compared to AmB loaded unmodified chitosan NPs (AmB-CNPs). AmB-SCNPs provide significantly higher localization of AmB in liver and spleen as compared to AmB-CNPs after i.v. administration. The study stipulates that 4-SO4GalNAc assures of targeting, resident macrophages. Highly significant anti-leishmanial activity (P<0.05 compared with AmB-CNPs) was observed with AmB-SCNPs, causing 75.30 ± 3.76% inhibition of splenic parasitic burdens. AmB-CNPs and plain AmB caused only 63.89 ± 3.44% and 47.56 ± 2.37% parasite inhibition, respectively, in Leishmania-infected hamsters (P<0.01 for AmB-SCNPs versus plain AmB and AmB-CNPs versus plain AmB).
Collapse
Affiliation(s)
- Priyanka Tripathi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pankaj Dwivedi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Renuka Khatik
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Kumar Jaiswal
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anuradha Dube
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Poonam Shukla
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Prabhat Ranjan Mishra
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
39
|
Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer's disease. J Control Release 2015; 206:187-205. [DOI: 10.1016/j.jconrel.2015.03.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/03/2023]
|
40
|
Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles. J Colloid Interface Sci 2015; 445:31-39. [DOI: 10.1016/j.jcis.2014.12.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022]
|
41
|
Ionic cross‐linking of water‐soluble polyurethane improves protein encapsulation and release. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
42
|
Xu JH, Dai WJ, Chen B, Fan XY. Mucosal Immunization with PsaA Protein, Using Chitosan as a Delivery System, Increases Protection Against Acute Otitis Media and Invasive Infection byStreptococcus pneumoniae. Scand J Immunol 2015; 81:177-85. [PMID: 25565478 DOI: 10.1111/sji.12267] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/11/2014] [Indexed: 11/27/2022]
Affiliation(s)
- J.-H. Xu
- Department of Otology and Skull Base Surgery; Eye Ear Nose & Throat Hospital of Fudan University; Key Laboratory of Health Ministry for Hearing Medicine; Shanghai China
| | - W.-J. Dai
- Department of Otology and Skull Base Surgery; Eye Ear Nose & Throat Hospital of Fudan University; Key Laboratory of Health Ministry for Hearing Medicine; Shanghai China
| | - B. Chen
- Department of Otology and Skull Base Surgery; Eye Ear Nose & Throat Hospital of Fudan University; Key Laboratory of Health Ministry for Hearing Medicine; Shanghai China
| | - X.-Y. Fan
- Shanghai Public Health Clinical Center Affiliated to Fudan University; Shanghai China
| |
Collapse
|
43
|
|
44
|
Effect of Accelerated Stability Test on Characteristics of Emulsion Systems with Chitosan as a Stabilizer. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proche.2015.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Physicochemical properties and cell permeation efficiency of l-ascorbic acid loaded nanoparticles prepared with N-trimethyl chitosan and N-triethyl chitosan. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0255-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Liu AB, Pu Y, Zheng YQ, Cai H, Ye B. Therapeutic efficacies of chitosan against Pneumocystis pneumonia of immunosuppressed rat. Parasite Immunol 2014; 36:292-302. [PMID: 24702055 DOI: 10.1111/pim.12117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 03/21/2014] [Indexed: 01/15/2023]
Abstract
This study was designed to investigate the therapeutic efficacy of chitosan on Pneumocystis pneumonia (PCP) in immunosuppressed rats. The PCP rat model was established using intramuscular injections of dexamethasone sodium phosphate. To estimate treatment effects of chitosan on rat PCP, weight gain, lung weight, lung weight/body weight (LW/BW) ratio and per cent survival were measured and the HSP70 mRNA expression of Pneumocystis carinii was detected using real-time PCR analysis. Rat lung tissues were stained with HE, and their pathological changes, inflammatory cells and alveolar macrophages were observed by light microscopy. Rat lymphocyte numbers and the concentrations of IL-10, IFN-γ and TNF-α were measured by flow cytometry and ELISA analysis. Additionally, the ultrastructure of P. carinii was examined by electron microscopy to evaluate the effects of chitosan on the protist. Our results demonstrated that chitosan has some apparent treatment effects on rat PCP by reducing HSP70 mRNA expression and lung inflammation, increasing the concentrations of IL-10 and IFN-γ as well as CD4(+) T-lymphocyte numbers, reducing the CD8(+) T-lymphocyte numbers and the concentration of TNF-α and inducing significant ultrastructural damage to P. carinii. Although its precise therapeutic mechanism has yet to be determined, these results lay a theoretical foundation for PCP chitosan therapy.
Collapse
Affiliation(s)
- A-B Liu
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
47
|
Tarahomjoo S. Recent Approaches in Vaccine Development against Streptococcus pneumoniae. J Mol Microbiol Biotechnol 2014; 24:215-27. [DOI: 10.1159/000365052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
48
|
Gao S, Hein S, Dagnæs-Hansen F, Weyer K, Yang C, Nielsen R, Christensen EI, Fenton RA, Kjems J. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing. Am J Cancer Res 2014; 4:1039-51. [PMID: 25157280 PMCID: PMC4142293 DOI: 10.7150/thno.7866] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/28/2014] [Indexed: 12/05/2022] Open
Abstract
RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulated siRNA is retained in the kidney for more than 48 hours where it accumulates in proximal tubule epithelial cells (PTECs), a process that was strongly dependent on the molecular weight of chitosan. Chitosan/siRNA nanoparticles, administered to chimeric mice with conditional knockout of the megalin gene, distributed almost exclusively in cells that expressed megalin, implying that the chitosan/siRNA particle uptake was mediated by a megalin-dependent endocytotic pathway. Knockdown of the water channel aquaporin 1 (AQP1) by up to 50% in PTECs was achieved utilizing the systemic i.v. delivery of chitosan/AQP1 siRNA in mice. In conclusion, specific targeting PTECs with the chitosan nanoparticle system may prove to be a useful strategy for knockdown of specific genes in PTECs, and provides a potential therapeutic strategy for treating various kidney diseases.
Collapse
|
49
|
Xu Y, Yuen PW, Lam JKW. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives. Pharmaceutics 2014; 6:378-415. [PMID: 25014738 PMCID: PMC4190526 DOI: 10.3390/pharmaceutics6030378] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
Abstract
Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT). Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV) etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Pak-Wai Yuen
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Jenny Ka-Wing Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
50
|
Abstract
Gene therapy is a widespread and promising treatment of many diseases resulting from genetic disorders, infections and cancer. The feasibility of the gene therapy is mainly depends on the development of appropriate method and suitable vectors. For an efficient gene delivery, it is very important to use a carrier that is easy to produce, stable, non-oncogenic and non-immunogenic. Currently most of the vectors actually suffer from many problems. Therefore, the ideal gene therapy delivery system should be developed that can be easily used for highly efficient delivery and able to maintain long-term gene expression, and can be applicable to basic research as well as clinical settings. This article provides a brief over view on the concept and aim of gene delivery, the different gene delivery systems and use of different materials as a carrier in the area of gene therapy.
Collapse
|