1
|
Comparative kinetic studies and pH-rate profiling of aniracetam degradation using validated stability-indicating RP-HPLC method. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Phillips H, McDowell A, Mielby BS, Tucker IG, Colombo M. Aniracetam does not improve working memory in neurologically healthy pigeons. PLoS One 2019; 14:e0215612. [PMID: 31002681 PMCID: PMC6474613 DOI: 10.1371/journal.pone.0215612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/04/2019] [Indexed: 01/08/2023] Open
Abstract
Understanding the effects of cognitive enhancing drugs is an important area of research. Much of the research, however, has focused on restoring memory following some sort of disruption to the brain, such as damage or injections of scopolamine. Aniracetam is a positive AMPA-receptor modulator that has shown promise for improving memory under conditions when the brain has been damaged, but its effectiveness in improving memory in neurologically healthy subjects is unclear. The aim of the present study was to examine the effects of aniracetam (100mg/kg and 200 mg/kg) on short-term memory in "neurologically healthy" pigeons. Pigeons were administered aniracetam via either intramuscular injection or orally, either 30 or 60 minutes prior to testing on a delayed matching-to-sample task. Aniracetam had no effect on the pigeons' memory performance, nor did it affect response latency. These findings add to the growing evidence that, while effective at improving memory function in models of impaired memory, aniracetam has no effect in improving memory in healthy organisms.
Collapse
Affiliation(s)
- Hannah Phillips
- Department of Psychology, University of Otago, Dunedin, Otago, New Zealand
- * E-mail: (HP); (MC)
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | | | - Ian G. Tucker
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Michael Colombo
- Department of Psychology, University of Otago, Dunedin, Otago, New Zealand
- * E-mail: (HP); (MC)
| |
Collapse
|
3
|
Designing a Formulation of the Nootropic Drug Aniracetam Using 2-Hydroxypropyl-β-Cyclodextrin Suitable for Parenteral Administration. Pharmaceutics 2018; 10:pharmaceutics10040240. [PMID: 30453664 PMCID: PMC6320825 DOI: 10.3390/pharmaceutics10040240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 11/16/2022] Open
Abstract
The nootropic drug aniracetam is greatly limited in its application by low aqueous solubility and a poor oral bioavailability. The primary aim of this study was to design a parenteral formulation of aniracetam that can be administered intravenously. Complexation of aniracetam with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was investigated as a strategy to enhance solubility. A phase solubility analysis was performed to quantify the extent of improvement. An 819% increase in the solubility of aniracetam was obtained, reaching 36.44 mg/mL. This marked increase enables aniracetam to exist in an aqueous solvent at levels sufficient for parenteral dosing. A stability test was then devised using a design of experiment approach. The aniracetam-HP-β-CD formulation was subjected to different relative humidity and temperature and cyclodextrin concentrations over a 12-week period. Key changes in FTIR vibrational frequencies suggest the benzene moiety of aniracetam was introduced into the hydrophobic cavity of HP-β-CD. These results are highly supportive of the formation of a predictable 1:1 molar stoichiometric inclusion complex, explaining the improvement seen in physiochemical properties of aniracetam following formulation with HP-β-CD. This novel formulation of aniracetam suitable for parenteral administration will have utility in future studies to further elucidate the pharmacokinetics of this drug.
Collapse
|
4
|
Campos ML, Cerqueira LB, Silva BCU, Franchin TB, Galdino-Pitta MR, Pitta IR, Peccinini RG, Pontarolo R. New Pioglitazone Metabolites and Absence of Opened-Ring Metabolites in New N-Substituted Thiazolidinedione. Drug Metab Dispos 2018; 46:879-887. [PMID: 29618574 DOI: 10.1124/dmd.117.079012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/30/2018] [Indexed: 12/21/2022] Open
Abstract
Thiazolidinediones (TZDs) are drugs used to treat type 2 diabetes mellitus; however, several safety concerns remain regarding the available drugs in this class. Therefore, the search for new TZD candidates is ongoing; metabolism studies play a crucial step in the development of new candidates. Pioglitazone, one of the most commonly used TZDs, and GQ-11, a new N-substituted TZD, were investigated in terms of their metabolic activity in rat and human liver microsomes to assess their metabolic stability and investigate their metabolites. Methods for preparation of samples were based on liquid-liquid extraction and protein precipitation. Quantitation was performed using liquid chromatography (LC)-tandem mass spectrometry, and the metabolite investigation was performed using ultraperformance LC coupled to a hybrid quadrupole-time of flight mass spectrometer. The predicted intrinsic clearance of GQ-11 was 70.3 and 46.1 ml/kg per minute for rats and humans, respectively. The predicted intrinsic clearance of pioglitazone was 24.1 and 15.9 ml/kg per minute for rats and humans, respectively. The pioglitazone metabolite investigation revealed two unpublished metabolites (M-D and M-A). M-A is a hydration product and may be related to the mechanism of ring opening and the toxicity of pioglitazone. The metabolites of GQ-11 are products of oxidation; no ring-opening metabolite was observed for GQ-11. In conclusion, under the same experimental conditions, a ring-opening metabolite was observed only for pioglitazone. The resistance of GQ-11 to the ring opening is probably related to N-substitution in the TZD ring.
Collapse
Affiliation(s)
- Michel Leandro Campos
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Letícia Bonancio Cerqueira
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Bruna Cristina Ulian Silva
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Taísa Busaranho Franchin
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Marina Rocha Galdino-Pitta
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Ivan Rocha Pitta
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Rosângela Gonçalves Peccinini
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| | - Roberto Pontarolo
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil (M.L.C., L.B.C., R.P.); Department of Natural Active Principles and Toxicology, Faculdade de Ciências Farmacêuticas, São Paulo University (UNESP), Araraquara, São Paulo, Brazil (B.C.U.S., T.B.F., R.G.P.); and Laboratory of Design and Drug Synthesis, Universidade Federal de Pernambuco, Pernambuco, Brazil (M.R.G.-P., I.R.P.)
| |
Collapse
|
5
|
Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice. PLoS One 2014; 9:e104443. [PMID: 25099639 PMCID: PMC4123976 DOI: 10.1371/journal.pone.0104443] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs.
Collapse
|
6
|
Sharan S, Iwuchukwu OF, Canney DJ, Zimmerman CL, Nagar S. In vivo-formed versus preformed metabolite kinetics of trans-resveratrol-3-sulfate and trans-resveratrol-3-glucuronide. Drug Metab Dispos 2012; 40:1993-2001. [PMID: 22807110 PMCID: PMC3463825 DOI: 10.1124/dmd.112.046417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/17/2012] [Indexed: 12/17/2022] Open
Abstract
Metabolites in safety testing have gained a lot of attention recently. Regulatory agencies have suggested that the kinetics of preformed and in vivo-formed metabolites are comparable. This subject has been a topic of debate. We have compared the kinetics of in vivo-formed with preformed metabolites. trans-3,5,4'-Trihydroxystilbene [trans-resveratrol (RES)] and its two major metabolites, resveratrol-3-sulfate (R3S) and resveratrol-3-glucuronide (R3G) were used as model substrates. The pharmacokinetics (PK) of R3S and R3G were characterized under two situations. First, the pharmacokinetics of R3S and R3G were characterized (in vivo-formed metabolite) after administration of RES. Then, synthetic R3S and R3G were administered (preformed metabolite) and their pharmacokinetics were characterized. PK models were developed to describe the data. A three-compartment model for RES, a two-compartment model for R3S (preformed), and an enterohepatic cycling model for R3G (preformed) was found to describe the data well. These three models were further combined to build a comprehensive PK model, which was used to perform simulations to predict in vivo-formed metabolite kinetics. Comparisons were made between in vivo-formed and preformed metabolite kinetics. Marked differences were observed in the kinetics of preformed and in vivo-formed metabolites.
Collapse
Affiliation(s)
- Satish Sharan
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
7
|
Papandreou G, Zorpas K, Archontaki H. Development and validation of a liquid chromatographic method for the simultaneous determination of aniracetam and its related substances in the bulk drug and a tablet formulation. J Pharm Biomed Anal 2011; 56:615-22. [PMID: 21742456 DOI: 10.1016/j.jpba.2011.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 06/05/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
Abstract
Simultaneous determination of aniracetam and its related impurities (2-pyrrolidinone, p-anisic acid, 4-p-anisamidobutyric acid and (p-anisoyl)-4-methyl-2-pyrrolidinone) was accomplished in the bulk drug and in a tablet formulation using a high performance liquid chromatographic method with UV detection. Separation was achieved on a Hypersil BDS-CN column (150 mm × 4.0 mm, 5 μm) using a gradient elution program with solvent A composed of phosphate buffer (pH 4.0; 0.010 M) and solvent B of acetonitrile-phosphate buffer (pH 4.0; 0.010 M) (90:10, v/v). The flow rate of the mobile phase was 1.0 mL min(-1) and the total elution time, including the column re-equilibration, was approximately 20 min. The UV detection wavelength was varied appropriately among 210, 250 and 280 nm. Injection volume was 20 μL and experiments were conducted at ambient temperature. The developed method was validated in terms of system suitability, selectivity, linearity, range, precision, accuracy, limits of detection and quantification for the impurities, short term and long term stability of the analytes in the prepared solutions and robustness, following the ICH guidelines. Therefore, the proposed method was suitable for the simultaneous determination of aniracetam and its studied related impurities.
Collapse
Affiliation(s)
- Georgios Papandreou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens 15771, Greece
| | | | | |
Collapse
|
8
|
Shin BS, Bulitta JB, Hong DK, Kim HY, Kim MK, Choi Y, Lee JB, Hwang SW, Lee MH, Yoo SD. Population Pharmacokinetics of a Novel Histone Deacetylase Inhibitor, Cyclo{(2S)-2-Amino-8-[(Aminocarbonyl)Hydrazono] Decanoyl-1- L-Tryptophyl- L-Isoleucyl-(2R)-2-Piperidinecarbonyl} (SD-2007), and Its Metabolic Conversion to Apicidin after Intravenous Injection and Oral Administration in Rats. Chemotherapy 2011; 57:259-67. [DOI: 10.1159/000328027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/13/2011] [Indexed: 11/19/2022]
|
9
|
|
10
|
Li Y, Hu D, Sun Y. Content determination of aniracetam in aniracetam inclusion complex by HPLC. ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 2009; 37:143-5. [PMID: 19412824 DOI: 10.1080/10731190902908387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We established a HPLC method for content determination of aniracetam in aniracetam inclusion complex. The chromato column was Agilent ODS (4.6mm x 150mm, 5 microm), the mobile phase was methanol-0.01 mol/L Potassium dihydrogen phosphate buffer solution (25:75, pH 3.0), with the flow rate of 1.0 ml/min, column temperature of 30 degrees and the detection wave at 280 nm, the sample size was 20microL. A good linear relationship was obtained between the peak areas and the concentrations of aniracetam in the range from 5- 80microg/ml (r=0.9998), the mean recovery was 100.1% (n=15), RSD=0.19%. This method is convenient, rapid, accurate, and brings about good recovery; it can be used for content determination of aniracetam in aniracetam inclusion complex.
Collapse
Affiliation(s)
- Yongjian Li
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong, China
| | | | | |
Collapse
|
11
|
Zhang J, Liang J, Tian Y, Zhang Z, Chen Y. Sensitive and selective liquid chromatography–tandem mass spectrometry method for the quantification of aniracetam in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 858:129-34. [PMID: 17826366 DOI: 10.1016/j.jchromb.2007.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 08/08/2007] [Accepted: 08/12/2007] [Indexed: 11/23/2022]
Abstract
A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | | | | | | | | |
Collapse
|
12
|
Carnerup MA, Spanne M, Jönsson BAG. Levels of N-methyl-2-pyrrolidone (NMP) and its metabolites in plasma and urine from volunteers after experimental exposure to NMP in dry and humid air. Toxicol Lett 2006; 162:139-45. [PMID: 16321482 DOI: 10.1016/j.toxlet.2005.09.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate if the uptake of N-methyl-2-pyrrolidone (NMP), a widely used industrial chemical, increases after exposure to NMP in humid air compared to dry air. NMP has been described to be an airway irritant and a developmentally toxic compound. Six male volunteers were exposed to NMP, three at the time, for 8h in an exposure chamber. They were each exposed on four different occasions to air levels of 0 and 20mg NMP/m(3) in dry and humid air. Blood and urine were sampled before, during and up to 5 days after the end of the 8-h exposure. Plasma and urine were analysed for NMP and its metabolites, using liquid chromatography-tandem mass spectrometry. There was no statistically significant increase in the total cumulated excretion of NMP and its metabolites in urine after exposure in humid air as compared to dry air. Furthermore, there were no differences in the levels of peak concentrations in either plasma or urine. Also, no differences were found in AUC between the exposures. However, there were large individual differences, especially for the exposure in humid air. A not previously identified metabolite in human, 2-pyrrolidone (2-P), was identified. The results do not support a significantly higher absorption of NMP at exposure in humid air as compared to dry air. However, the large individual differences support the use of biological monitoring for assessment of NMP exposure. In addition, 2-P was confirmed to be an NMP metabolite in humans. This may be of importance for the developmental toxicity of NMP since 2-P have been described to be a reproductively toxic substance.
Collapse
Affiliation(s)
- Martin A Carnerup
- Department of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University Hospital, S-221 85 Lund, Sweden
| | | | | |
Collapse
|
13
|
Komura H, Kawase A, Iwaki M. Application of substrate depletion assay for early prediction of nonlinear pharmacokinetics in drug discovery: Assessment of nonlinearity of metoprolol, timolol, and propranolol. J Pharm Sci 2005; 94:2656-66. [PMID: 16258981 DOI: 10.1002/jps.20490] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to investigate the advantages of the substrate depletion assay for evaluating linearity of pharmacokinetics compared with the metabolite formation assay. For propranolol, metoprolol, and nisoldipine with multiple and/or sequential metabolisms, the Michaelis constant (Km) and maximum metabolic intrinsic clearance obtained from the depletion assay using rat and human liver microsomes showed a good correlation with relevant parameters with the formation assay. In vitro kinetics and in vivo pharmacokinetic profiles after oral administration of timolol, metoprolol, and propranolol, were investigated in rats using the depletion assay. The same rank order was found between nonlinearities based on dose-normalized areas under the plasma concentration curve (AUC/Dose) and Km values. Using the kinetic parameters of these compounds, AUC was predicted based on a physiological based pharmacokinetic model incorporated saturable metabolism. The AUCs predicted for propranolol and metoprolol had a good relationship with those observed in the in vivo studies, implying that the depletion assay could be useful for assessing linearity of pharmacokinetics.
Collapse
Affiliation(s)
- Hiroshi Komura
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | | | | |
Collapse
|
14
|
Moriya T, Ikeda M, Teshima K, Hara R, Kuriyama K, Yoshioka T, Allen CN, Shibata S. Facilitation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor transmission in the suprachiasmatic nucleus by aniracetam enhances photic responses of the biological clock in rodents. J Neurochem 2003; 85:978-87. [PMID: 12716429 DOI: 10.1046/j.1471-4159.2003.01758.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study was designed to test whether the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-facilitating drug, aniracetam, could potentiate photic responses of the biological clock in the suprachiasmatic nucleus (SCN) of rodents. Using the whole-cell patch technique, we first demonstrated that AMPA currents elicited by either local AMPA application or optic chiasm stimulation were augmented by aniracetam in the neurons of the SCN. The AMPA application-elicited increase of intracellular Ca2+ concentration in SCN slices was also enhanced by aniracetam treatment. The systemic injection of aniracetam dose-dependently (10-100 mg/kg) potentiated the phase delay in behavioral rhythm induced by brief light exposure of low intensity (3 lux) but not high intensity (10 or 60 lux) during early subjective night. Under the blockade of NMDA receptors by (+) MK801, aniracetam failed to potentiate a light (3 lux)-induced phase delay in behavioral rhythm. Aniracetam increased the photic induction of c-Fos protein in the SCN that was elicited by low intensity light exposure (3 lux). These results suggest that AMPA receptor-mediated responses facilitated by aniracetam can explain enhanced photic responses of the biological clock in the SCN of rodents.
Collapse
Affiliation(s)
- Takahiro Moriya
- Departments of Pharmacology and Brain Science, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa-shi, Saitama 359-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Smith AM, Wehner JM. Aniracetam improves contextual fear conditioning and increases hippocampal gamma-PKC activation in DBA/2J mice. Hippocampus 2002; 12:76-85. [PMID: 11918291 DOI: 10.1002/hipo.10008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
DBA/2J (D2) mice display poor contextual learning and have less membrane-bound hippocampal protein kinase C (PKC) compared with C57BL/6 (B6) mice. Aniracetam and oxiracetam were previously shown to improve contextual learning in D2 mice and increase PKC activity. This study investigated a possible mechanism for learning enhancement by examining the effects of aniracetam on contextual fear conditioning and activation of the y isoform of PKC (gamma-PKC) in male D2 mice. In comparison to animals treated with vehicle only (10% 2-hydroxypropyl-beta-cyclodextrin), mice treated with aniracetam (100 mg/kg) 30 min prior to fear conditioning training demonstrated significantly improved contextual learning when tested 30 min and 24 h after training. This corresponded with a significant increase in activated, membrane-bound hippocampal gamma-PKC 30 min after training. No increase in learning or gamma-PKC was found 5 min after training. These results suggest an altered time course of activation of gamma-PKC in response to treatment with aniracetam, which improves learning in D2 mice.
Collapse
Affiliation(s)
- Amy M Smith
- Institute for Behavioral Genetics and Department of Psychology, University of Colorado, Boulder 80309, USA
| | | |
Collapse
|
16
|
Nakamura K. Aniracetam: its novel therapeutic potential in cerebral dysfunctional disorders based on recent pharmacological discoveries. CNS DRUG REVIEWS 2002; 8:70-89. [PMID: 12070527 PMCID: PMC6741661 DOI: 10.1111/j.1527-3458.2002.tb00216.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aniracetam is a pyrrolidinone-type cognition enhancer that has been clinically used in the treatment of behavioral and psychological symptoms of dementia following stroke and in Alzheimer's disease. New discoveries in the behavioral pharmacology, biochemistry and pharmacokinetics of aniracetam provided new indications for this drug in the treatment of various CNS disorders or disease states. This article reviews these new findings and describes the effects of aniracetam in various rodent models of mental function impairment or cerebral dysfunction. Also, several metabolites of aniracetam have been reported to affect learning and memory in animals. It is, therefore, conceivable that major metabolites of aniracetam contribute to its pharmacological effects. The animal models, used in pharmacological evaluation of aniracetam included models of hypoattention, hypovigilance-arousal, impulsiveness, hyperactivity, fear and anxiety, depression, impaired rapid-eye movement sleep, disturbed temporal regulation, behavioral performance, and bladder hyperactivity. These are models of clinical disorders or symptoms that may include personality disorders, anxiety, depression, posttraumatic stress disorder, attention-deficit/hyperactivity disorder, autism, negative symptoms of schizophrenia, and sleep disorders. At present, there is no convincing evidence that promising effects of aniracetam in the animal models will guarantee its clinical efficacy. It is conceivable, however, that clinical trials will demonstrate beneficial effects of aniracetam in the above listed disease states. New findings regarding the mechanism of action of aniracetam, its central target sites, and its effects on signal transduction are also discussed in this review article.
Collapse
Affiliation(s)
- Kazuo Nakamura
- Department of Product Research, Nippon Roche Research Center, 200 Kajiwara, Kamakura, 247-8530, Japan.
| |
Collapse
|
17
|
Abstract
The pyrrolidone (2-oxopyrrolidine) family of chemicals has been the subject of research for more than three decades. Experimental and clinical work first focused on their so-called nootropic effects; later came the possibilities for neuroprotection after stroke and use as antiepileptic agents. Piracetam, the first of the class, was developed by pioneering research by C Giurgea in the late 1960s, and it was he who coined the term "nootropic", to mean enhancement of learning and memory. The term is sometimes extended to include other actions such as neuroprotection. These properties, together with the lack of other generally adverse psychopharmacological actions (eg, sedation, analgesia, or motor or behavioural changes), distinguish the pyrrolidones from other psychoactive drug classes. The mechanisms of action of these drugs are still not fully established; indeed, different compounds in this class may have different modes of action. Interest in this drug class has recently been reawakened by the licensing of levetiracetam as a potentially major new antiepileptic drug and of piracetam for its antimyoclonic action and effects after stroke and in mild cognitive impairment. Other drugs in this class are currently at an advanced stage of development, and the renewal of interest in this therapeutic area is likely to mean not only that more pyrrolidones will enter clinical practice in the next few years but also that the clinical indications of drugs already licensed will widen.
Collapse
Affiliation(s)
- S Shorvon
- Department of Clinical Neurology, Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London, WC1, London, UK.
| |
Collapse
|
18
|
Van den Hoven BG, Alper H. Innovative synthesis of 4-carbaldehydepyrrolin-2-ones by zwitterionic rhodium catalyzed chemo- and regioselective tandem cyclohydrocarbonylation/CO insertion of alpha-imino alkynes. J Am Chem Soc 2001; 123:10214-20. [PMID: 11603971 DOI: 10.1021/ja011710n] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tandem cyclohydrocarbonylative/CO insertion of alpha-imino alkynes employs CO, H(2), and catalytic quantities of zwitterionic rhodium complex (eta(6)-C(6)H(5)BPh(3))(-)Rh(+)(1,5-COD) and triphenyl phosphite affording aldehyde substituted pyrrolinones in 67-82% yields. This unique transformation is readily applied to imino alkynes containing alkyl, alkoxyl, vinyl, and aryl substituents. The ability to prepare highly functionalized pyrrolinones makes this an attractive route to these important and versatile pharmaceuticals.
Collapse
Affiliation(s)
- B G Van den Hoven
- Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada
| | | |
Collapse
|
19
|
Shirane M, Nakamura K. Group II metabotropic glutamate receptors are a common target of N-anisoyl-GABA and 1S,3R-ACPD in enhancing ACh release in the prefrontal cortex of freely moving SHRSP. Neuropharmacology 2000; 39:866-72. [PMID: 10699452 DOI: 10.1016/s0028-3908(99)00271-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aniracetam is a therapeutically useful cognition enhancer for treating various neuropsychiatric symptoms occurring after cerebral infarction. We recently reported that local perfusion of its major metabolites N-anisoyl-GABA and p-anisic acid, but not aniracetam itself, enhanced acetylcholine (ACh) release with a delayed onset in cerebral regions of stroke-prone spontaneously hypertensive rats (SHRSP). In this study, we examined the possible involvement of metabotropic and ionotropic glutamate (mGlu and AMPA) receptors in the N-anisoyl-GABA-induced ACh release using brain in vivo microdialysis. Basal ACh release in SHRSP was commonly lower in the nucleus reticularis thalami, dorsal hippocampus and prefrontal cortex than that in age-matched Wistar Kyoto rats. The delayed ACh release in the prefrontal cortex of SHRSP was completely blocked by MCPG, a group I and II mGlu receptor antagonist, and MCCG, a group II-selective mGlu receptor antagonist. In contrast, it was largely unaffected by AIDA, a group I-selective mGlu receptor antagonist, or by YM90K, an AMPA receptor antagonist. 1S,3R-ACPD, a preferential group II mGlu receptor agonist, enhanced ACh release with a similar latency and the effect was antagonized by MCCG, whereas AMPA induced a prompt ACh release. These results indicate that N-anisoyl-GABA and 1S,3R-ACPD share a common mechanism mediated by group II mGlu receptors in enhancing ACh release. The findings suggest a possible mechanism for aniracetam's clinical efficacy in stroke patients with cholinergic deficits.
Collapse
Affiliation(s)
- M Shirane
- CNS Supporting Laboratory, Nippon Roche Research Center, 200 Kajiwara, Kamakura, Japan
| | | |
Collapse
|
20
|
Nakamura K, Shirane M. Activation of the reticulothalamic cholinergic pathway by the major metabolites of aniracetam. Eur J Pharmacol 1999; 380:81-9. [PMID: 10513566 DOI: 10.1016/s0014-2999(99)00534-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of the study was to further investigate the effects of aniracetam, a cognition enhancer, and its metabolites on the brain cholinergic system. We measured choline acetyltransferase activity and acetylcholine release using in vivo brain microdialysis in stroke-prone spontaneously hypertensive rats (SHRSP). The enzyme activity in the pons-midbrain and hippocampus, and basal acetylcholine release in the nucleus reticularis thalami were lower in SHRSP than in age-matched Wistar Kyoto rats, indicating central cholinergic deficits in SHRSP. Repeated treatment of aniracetam (50 mg/kg p.o. x 11 for 6 days) preferentially increased the enzyme activity in the thalamus, whereas decreased it in the striatum. Among the metabolites of aniracetam, local perfusion of N-anisoyl-gamma-aminobutyric acid (GABA, 0.1 and/or 1 microM) and p-anisic acid (1 microM) into the nucleus reticularis thalami, dorsal hippocampus and prefrontal cortex of SHRSP produced a significant but delayed increase of acetylcholine release. We failed, however, to find any effect of aniracetam itself. A direct injection of N-anisoyl-GABA (1 nmol) into the pedunculopontine tegmental nucleus of SHRSP enhanced the release in the nucleus reticularis thalami. Thus, these data prove that aniracetam can facilitate central cholinergic neurotransmission via both metabolites. Based on its pharmacokinetic profile, N-anisoyl-GABA may contribute to the clinical effects of aniracetam, mainly by acting on the reticulothalamic cholinergic pathway.
Collapse
Affiliation(s)
- K Nakamura
- CNS Supporting Laboratory, Nippon Roche Research Center, Kanagawa, Japan.
| | | |
Collapse
|