1
|
Nallathamby PD, Mortensen NP, Palko HA, Malfatti M, Smith C, Sonnett J, Doktycz MJ, Gu B, Roeder RK, Wang W, Retterer ST. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies. NANOSCALE 2015; 7:6545-55. [PMID: 25790032 PMCID: PMC4847546 DOI: 10.1039/c4nr06441k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 ± 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with (14)C, with a final activity of 0.097 nCi mg(-1) of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.
Collapse
Affiliation(s)
- Prakash D. Nallathamby
- Battelle Center for Fundamental and Applied Systems Toxicology, Battelle Memorial Institute, Columbus, OH 43201, USA
- Biological and Environmental Sciences Divisions, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Aerospace and Mechanical Engineering; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ninell P. Mortensen
- Biological and Environmental Sciences Divisions, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Heather A. Palko
- Battelle Center for Fundamental and Applied Systems Toxicology, Battelle Memorial Institute, Columbus, OH 43201, USA
- Biosciences and Biotechnology Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Mike Malfatti
- Biosciences and Biotechnology Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Catherine Smith
- Battelle Center for Fundamental and Applied Systems Toxicology, Battelle Memorial Institute, Columbus, OH 43201, USA
| | - James Sonnett
- Battelle Center for Fundamental and Applied Systems Toxicology, Battelle Memorial Institute, Columbus, OH 43201, USA
| | - Mitchel J. Doktycz
- Biological and Environmental Sciences Divisions, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Baohua Gu
- Biological and Environmental Sciences Divisions, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ryan K. Roeder
- Department of Aerospace and Mechanical Engineering; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Wei Wang
- Biological and Environmental Sciences Divisions, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Scott T. Retterer
- Biological and Environmental Sciences Divisions, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
2
|
Nomura S, Nozaki S, Hamazaki T, Takeda T, Ninomiya E, Kudo S, Hayashinaka E, Wada Y, Hiroki T, Fujisawa C, Kodama H, Shintaku H, Watanabe Y. PET imaging analysis with 64Cu in disulfiram treatment for aberrant copper biodistribution in Menkes disease mouse model. J Nucl Med 2014; 55:845-51. [PMID: 24627433 DOI: 10.2967/jnumed.113.131797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Menkes disease (MD), an X-linked recessive disorder of copper metabolism caused by mutations in the copper-transporting ATP7A gene, results in growth failure and severe neurodegeneration in early childhood. Subcutaneous copper-histidine injection is the standard treatment for MD, but it has limited clinical efficacy. Furthermore, long-term copper injection causes excess copper accumulation in the kidneys, resulting in renal dysfunction. To attempt to resolve this issue, we used PET imaging with (64)Cu to investigate the effects of disulfiram on copper biodistribution in living mice serving as an animal model for MD (MD model mice). METHODS Macular mice were used as MD model mice, and C3H/He mice were used as wild-type mice. Mice were pretreated with 2 types of chelators (disulfiram, a lipophilic chelator, and d-penicillamine, a hydrophilic chelator) 30 min before (64)CuCl2 injection. After (64)CuCl2 injection, emission scans covering the whole body were performed for 4 h. After the PET scans, the brain and kidneys were analyzed for radioactivity with γ counting and autoradiography. RESULTS After copper injection alone, marked accumulation of radioactivity ((64)Cu) in the liver was demonstrated in wild-type mice, whereas in MD model mice, copper was preferentially accumulated in the kidneys (25.56 ± 3.01 percentage injected dose per gram [%ID/g]) and was detected to a lesser extent in the liver (13.83 ± 0.26 %ID/g) and brain (0.96 ± 0.08 %ID/g). Copper injection with disulfiram reduced excess copper accumulation in the kidneys (14.54 ± 2.68 %ID/g) and increased copper transport into the liver (29.42 ± 0.98 %ID/g) and brain (5.12 ± 0.95 %ID/g) of MD model mice. Copper injection with d-penicillamine enhanced urinary copper excretion and reduced copper accumulation in most organs in both mouse groups. Autoradiography demonstrated that disulfiram pretreatment induced copper transport into the brain parenchyma and reduced copper accumulation in the renal medulla. CONCLUSION PET studies with (64)Cu revealed that disulfiram had significant effects on the copper biodistribution of MD. Disulfiram increased copper transport into the brain and reduced copper uptake in the kidneys of MD model mice. The application of (64)Cu PET for the treatment of MD and other copper-related disorders may be useful in clinical settings.
Collapse
Affiliation(s)
- Shiho Nomura
- Department of Pediatrics, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kao HW, Chan CJ, Chang YC, Hsu YH, Lu M, Shian-Jy Wang J, Lin YY, Wang SJ, Wang HE. A pharmacokinetics study of radiolabeled micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in a colon carcinoma-bearing mouse model. Appl Radiat Isot 2013; 80:88-94. [DOI: 10.1016/j.apradiso.2013.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 05/08/2013] [Accepted: 05/30/2013] [Indexed: 12/22/2022]
|
4
|
Nishizaki C, Nishikawa M, Yata T, Yamada T, Takahashi Y, Oku M, Yurimoto H, Sakai Y, Nakanishi K, Takakura Y. Inhibition of surgical trauma-enhanced peritoneal dissemination of tumor cells by human catalase derivatives in mice. Free Radic Biol Med 2011; 51:773-9. [PMID: 21664457 DOI: 10.1016/j.freeradbiomed.2011.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 11/20/2022]
Abstract
Surgical trauma, which is inevitably associated with the surgical removal of cancer, has been reported to accelerate tumor metastasis. The close association of reactive oxygen species with the trauma and tumor metastasis supports the possibility of using antioxidants for the inhibition of metastasis. To inhibit surgical trauma-enhanced peritoneal dissemination, human catalase (hCAT) derivatives, i.e., hCAT-nona-arginine peptide (hCAT-R9) and hCAT-albumin-binding peptide (hCAT-ABP), were designed to increase the retention time of the antioxidant enzyme in the abdominal cavity after intraperitoneal administration. Both (125)I-labeled derivatives showed significantly prolonged retention in the cavity compared to (125)I-hCAT. Cauterization of the cecum of mice with a hot iron, an experimental model of surgical trauma, induced abdominal adhesions. In addition, cauterization followed by colon26 tumor cell inoculation increased lipid peroxidation in the cecum and mRNA expression of molecules associated with tissue repair/adhesion and inflammation in the peritoneum. hCAT derivatives significantly suppressed the increased mRNA expression. The cauterization also increased the number of tumor cells in the abdominal organs, and the number was significantly reduced by hCAT-R9 or hCAT-ABP. These results indicate that hCAT-R9 and hCAT-ABP, both of which have a long retention time in the peritoneal cavity, can be effective at inhibiting surgery-induced peritoneal metastasis.
Collapse
Affiliation(s)
- Chika Nishizaki
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
McCann TE, Kosaka N, Mitsunaga M, Choyke PL, Gildersleeve JC, Kobayashi H. Biodistribution and excretion of monosaccharide-albumin conjugates measured with in vivo near-infrared fluorescence imaging. Bioconjug Chem 2011; 21:1925-32. [PMID: 20853850 DOI: 10.1021/bc100313p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Target specific small molecules as modulators of drug delivery may play a significant role in the future development of therapeutics. Small molecules can alter the in vivo pharmacokinetics of therapeutic macromolecules leading to more efficient drug delivery with less systemic toxicity. The potential of creating a more effective drug delivery system through glycosylation has led, for instance, to the addition of galactose to increase drug delivery to the liver. However, there are many other monosaccharides with potentially useful targeting properties that require further characterization. Here, we investigate the potential of glycosylation to guide molecular therapies using five different monosaccharides conjugated to human serum albumin (HSA). Additionally, we investigate how the amount of glycosylation may alter the pharmacokinetic profile of HSA. We introduce the use of in vivo near-infrared optical imaging to characterize the effect of differential glycosylation on the pharmacokinetics of macromolecules.
Collapse
Affiliation(s)
- Thomas E McCann
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1088, USA
| | | | | | | | | | | |
Collapse
|
6
|
Yuki Y, Nochi T, Harada N, Katakai Y, Shibata H, Mejima M, Kohda T, Tokuhara D, Kurokawa S, Takahashi Y, Ono F, Kozaki S, Terao K, Tsukada H, Kiyono H. In vivo molecular imaging analysis of a nasal vaccine that induces protective immunity against botulism in nonhuman primates. THE JOURNAL OF IMMUNOLOGY 2010; 185:5436-43. [PMID: 20881188 DOI: 10.4049/jimmunol.1001789] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nasal administration is an effective route for a needle-free vaccine. However, nasally administered Ags have the potential to reach the CNS directly from the nasal cavity, thus raising safety concerns. In this study, we performed real-time quantitative tracking of a nasal vaccine candidate for botulism, which is a nontoxic subunit fragment of Clostridium botulinum type A neurotoxin (BoHc/A) effective in the induction of the toxin-neutralizing immune response, by using (18)F-labeled BoHc/A-positron-emission tomography, an in vivo molecular imaging method. This method provides results that are consistent with direct counting of [(18)F] radioactivity or the traditional [(111)In]-radiolabel method in dissected tissues of mice and nonhuman primates. We found no deposition of BoHc/A in the cerebrum or olfactory bulb after nasal administration of (18)F-labeled BoHc/A in both animals. We also established a real-time quantitative profile of elimination of this nasal vaccine candidate and demonstrated that it induces highly protective immunity against botulism in nonhuman primates. Our findings demonstrate the efficiency and safety of a nasal vaccine candidate against botulism in mice and nonhuman primates using in vivo molecular imaging.
Collapse
Affiliation(s)
- Yoshikazu Yuki
- Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Matsumoto K, Nishi K, Kikuchi M, Watanabe H, Nakajou K, Komori H, Kadowaki D, Suenaga A, Maruyama T, Otagiri M. Receptor-Mediated Uptake of Human α1-Acid Glycoprotein into Liver Parenchymal Cells in Mice. Drug Metab Pharmacokinet 2010; 25:101-7. [DOI: 10.2133/dmpk.25.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Hyoudou K, Nishikawa M, Ikemura M, Kobayashi Y, Mendelsohn A, Miyazaki N, Tabata Y, Yamashita F, Hashida M. Prevention of pulmonary metastasis from subcutaneous tumors by binary system-based sustained delivery of catalase. J Control Release 2009; 137:110-5. [PMID: 19361547 DOI: 10.1016/j.jconrel.2009.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/09/2009] [Accepted: 04/04/2009] [Indexed: 11/25/2022]
Abstract
Catalase delivery can be effective in inhibiting reactive oxygen species (ROS)-mediated acceleration of tumor metastasis. Our previous studies have demonstrated that increasing the plasma half-life of catalase by pegylation (PEG-catalase) significantly increases its potency of inhibiting experimental pulmonary metastasis in mice. In the present study, a biodegradable gelatin hydrogel formulation was used to further increase the circulation time of PEG-catalase. Implantation of (111)In-PEG-catalase/hydrogel into subcutaneous tissues maintained the radioactivity in plasma for more than 14 days. Then, the effect of the PEG-catalase/hydrogel on spontaneous pulmonary metastasis of tumor cells was evaluated in mice with subcutaneous tumor of B16-BL6/Luc cells, a murine melanoma cell line stably expressing luciferase. Measuring luciferase activity in the lung revealed that the PEG-catalase/hydrogel significantly (P<0.05) inhibited the pulmonary metastasis compared with PEG-catalase solution. These findings indicate that sustaining catalase activity in the blood circulation achieved by the use of pegylation and gelatin hydrogel can reduce the incidence of tumor cell metastasis.
Collapse
Affiliation(s)
- Kenji Hyoudou
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Iwao Y, Hiraike M, Kragh-Hansen U, Kawai K, Suenaga A, Maruyama T, Otagiri M. Altered chain-length and glycosylation modify the pharmacokinetics of human serum albumin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:634-41. [DOI: 10.1016/j.bbapap.2008.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 11/03/2008] [Indexed: 11/30/2022]
|
10
|
Akizawa H, Uehara T, Arano Y. Renal uptake and metabolism of radiopharmaceuticals derived from peptides and proteins. Adv Drug Deliv Rev 2008; 60:1319-28. [PMID: 18508156 DOI: 10.1016/j.addr.2008.04.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 04/16/2008] [Indexed: 11/16/2022]
Abstract
Radiolabeled anti-CD20 antibodies have demonstrated impressive efficacy in the treatment of relapsed non-Hodgkin lymphoma. This encourages the treatment of solid tumor with radiolabeled antibody fragments and peptides. However, both preclinical and clinical studies revealed that persistent localization of radioactivity in the kidney constitutes a major obstacle that compromises therapeutic efficacy. Recent extensive studies show that long residence times of radiolabeled end products from lysosomes are responsible for the renal radioactivity levels. Recent studies have also elucidated the involvement of megalin-cubilin in renal tubular reabsorption of radiolabeled antibody fragments and peptides. In light of these findings, efforts are being made to block tubular reabsorption of radiolabeled antibody fragments and peptides by competitive inhibitors, charge modification, and PEGylation. An interposition of an enzyme-cleavable linkage between antibody fragments and radiolabels would constitute an alternative approach to reduce renal radioactivity levels. Recent findings of these studies will be described.
Collapse
Affiliation(s)
- Hiromichi Akizawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | | | | |
Collapse
|
11
|
Changes of net charge and α-helical content affect the pharmacokinetic properties of human serum albumin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1582-90. [DOI: 10.1016/j.bbapap.2007.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/01/2007] [Accepted: 09/11/2007] [Indexed: 11/19/2022]
|
12
|
Okuda T, Kawakami S, Akimoto N, Niidome T, Yamashita F, Hashida M. PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. J Control Release 2006; 116:330-6. [PMID: 17118476 DOI: 10.1016/j.jconrel.2006.09.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 09/21/2006] [Accepted: 09/25/2006] [Indexed: 11/25/2022]
Abstract
In this study, we synthesized a sixth generation lysine dendrimer (KG6) and two PEGylated derivatives thereof and evaluated their biodistribution characteristics in both normal and tumor-bearing mice. The intact KG6 showed a rapid clearance from the blood stream and non-specific accumulation in the liver and kidney. In contrast, the PEGylated derivatives showed a better retention in blood and low accumulativeness in organs dependent of the rate of PEGylation. In addition, PEGylated KG6 with a high modification rate was accumulated effectively in tumor tissue via the enhanced permeability and retention (EPR) effect. Moreover, we clarified that multiple administrations did not affect the biodistribution characteristics of a second dose of PEGylated KG6. PEGylated lysine dendrimer would be a useful material for a clinically applicable tumor-targeting carrier.
Collapse
Affiliation(s)
- Tatsuya Okuda
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Okuda T, Kawakami S, Maeie T, Niidome T, Yamashita F, Hashida M. Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration. J Control Release 2006; 114:69-77. [PMID: 16814896 DOI: 10.1016/j.jconrel.2006.05.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/09/2006] [Accepted: 05/14/2006] [Indexed: 10/24/2022]
Abstract
In this study, we synthesized dendritic poly(L-lysine)s (DPKs), dendritic poly(L-ornithine)s (DPOs), which are constructed as novel amino acid dendrimers, and PEGylated KG6 (the sixth generation of DPKs), and evaluated the physicochemical properties and biodistribution characteristics of these dendrimers. The particle size of DPKs and DPOs was well controlled in the nanometer range. The zeta-potential of these dendrimers was slightly positive and this gradually increased in association with their generation. After intravenous administration to mice, all tested dendrimers cleared rapidly from blood flow and mainly accumulated in the liver and kidney. The hepatic and renal accumulation changed in a generation-dependent manner. In contrast, no significant distributional differences between same generation of DPK and DPO were observed, although the constituent amino acids, particle size, and zeta-potential were different. However, PEGylation of KG6 caused great changes in particle size, zeta-potential, blood retention and organ distribution in vivo, indicating that the PEGylation is applicable strategy to improve biodistribution characteristics of dendrimeric molecules. The information provided by this study will be helpful for the development of future drug delivery systems using amino acid dendrimers as safe drug carriers.
Collapse
Affiliation(s)
- Tatsuya Okuda
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Iwao Y, Anraku M, Hiraike M, Kawai K, Nakajou K, Kai T, Suenaga A, Otagiri M. The structural and pharmacokinetic properties of oxidized human serum albumin, advanced oxidation protein products (AOPP). Drug Metab Pharmacokinet 2006; 21:140-6. [PMID: 16702734 DOI: 10.2133/dmpk.21.140] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To determine the pharmacokinetic properties of advanced oxidation protein products (AOPP), we prepared oxidized human serum albumin (oxi-HSA) using chloramine-T (a hypochlorite analogue) in vitro. The AOPP and dityrosine content of oxi-HSA (AOPP content, 244.3+/-12.3 microM; dityrosine content, 0.7+/-0.11 nmol of dityrosine/mg protein) were similar to those of uremic patients. In structural analysis, the increases in AOPP and dityrosine content of HSA induced slight decreases in its alpha-helical content. In pharmacokinetic analysis, oxi-HSA left the circulation rapidly, and organ distribution of oxi-HSA 30 min after intravenous injection was 51% for the liver, 23% for the spleen, and 9% for the kidney, suggesting that the liver and spleen were the main routes of plasma clearance of oxi-HSA. The liver and spleen uptake clearance of oxi-HSA were significantly greater than those of normal HSA (CLliver, 5058+/-341.6 vs 24+/-4.2 microL/hr [p<0.01]; CLspleen, 2118+/-322.1 vs 32+/-2.7 microL/hr [p<0.01]). However, uptake by other organs was not significantly affected by oxidation. These results suggest that the liver and spleen play important roles in elimination of AOPP.
Collapse
Affiliation(s)
- Yasunori Iwao
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Iwao Y, Anraku M, Yamasaki K, Kragh-Hansen U, Kawai K, Maruyama T, Otagiri M. Oxidation of Arg-410 promotes the elimination of human serum albumin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:743-9. [PMID: 16497569 DOI: 10.1016/j.bbapap.2006.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 12/26/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
The effect of the oxidation of amino acid residues on albumin on its in vivo elimination was investigated using mutants and oxidized HSAs. The single-residue mutants (H146A, K199A, W214A, R218H, R410A, Y411A) and oxidized HSAs were produced by the recombinant DNA techniques and incubation with a metal ion-catalyzed oxidation (MCO) system for 12, 24, 48 or 72 h. Pharmacokinetics were evaluated in mice after labeling with 111In. Structural and functional properties were examined by several spectroscopic techniques. Time-dependent increase in carbonyl group content resulted in increase in the liver clearance of oxidized HSAs. Slight decreases in alpha-helical content as the result of oxidation was induced by the increases in accessible hydrophobic areas and the net negative charge on the HSA molecule. No significant change in the pharmacokinetics and structural properties was observed for the W214A, R218H and Y411A mutants, but the properties for the H146A, K199A and R410A mutants were affected (extent of effect: R410A > K199A > H146A). The liver clearance of these proteins is closely correlated to hydrophobicity (r = 0.929, P < 0.01) and the net charge of the proteins (r=0.930, P < 0.01). The rate of elimination of HSA is closely related to the hydrophobicity and net charge of the molecule. Further, the R410A mutants had a short half-life and structure similar to oxidized HSA after oxidation. Therefore, the modification of Arg-410 via oxidative stress may promote the elimination of HSA.
Collapse
Affiliation(s)
- Yasunori Iwao
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Hoffend J, Mier W, Schuhmacher J, Schmidt K, Dimitrakopoulou-Strauss A, Strauss LG, Eisenhut M, Kinscherf R, Haberkorn U. Gallium-68-DOTA-albumin as a PET blood-pool marker: experimental evaluation in vivo. Nucl Med Biol 2005; 32:287-92. [PMID: 15820764 DOI: 10.1016/j.nucmedbio.2005.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 01/05/2005] [Accepted: 01/09/2005] [Indexed: 01/13/2023]
Abstract
Investigations into tumor angiogenesis and antiangiogenic treatment have renewed interest in tumor perfusion. To image tumor blood-pool by PET, suitable tracers are not generally available. In this experimental study, we characterized a 68Ga-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugate of rat serum albumin (68Ga-DOTA-RSA) in vivo using a generator-produced isotope. Biodistribution was determined in ACI rats after intravenous administration of 3-6 MBq of 68Ga-DOTA-RSA. Three ACI rats were imaged over 1 h by dynamic PET after intravenous administration of 15-25 MBq of 68Ga-DOTA-RSA while the blood-pool activity was recorded simultaneously in a closed extracorporeal loop (ECL) between the carotid artery and the jugular vein. Time-activity curves (TACs) were obtained from volume of interest (VOI) analysis and from the ECL data. Stability and metabolites in plasma and urine were analyzed by size exclusion HPLC (SE-HPLC) 1 h after intravenous injection of 67Ga-DOTA-RSA. Blood radioactivity decreased by 10% and 18% from 10 to 60 min p.i. by biodistribution and PET or ECL, respectively. Tissue sampling between 10 and 60 min p.i. showed slight increases in the uptake of spleen, myocardium, kidney and skeletal muscle while hepatic accretion remained unchanged. Total urinary excretion after 60 min amounted to 9% of the injected dose. HPLC demonstrated a single urinary metabolite corresponding in size to gallium-labeled DOTA. 68Ga-DOTA-RSA is a blood-pool tracer whose physical and biological half-life is well suited for PET. Our findings support clinical imaging using 68Ga-DOTA-labeled human serum albumin (HSA). The generator-produced label makes 68Ga-DOTA-labeled albumin continuously available even to centers lacking an in-house cyclotron.
Collapse
Affiliation(s)
- Johannes Hoffend
- Division of Nuclear Medicine, Department of Radiology, University of Heidelberg, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nakajou K, Horiuchi S, Sakai M, Hirata K, Tanaka M, Takeya M, Kai T, Otagiri M. CD36 Is Not Involved in Scavenger Receptor–Mediated Endocytic Uptake of Glycolaldehyde- and Methylglyoxal-Modified Proteins by Liver Endothelial Cells. ACTA ACUST UNITED AC 2005; 137:607-16. [PMID: 15944414 DOI: 10.1093/jb/mvi071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Circulating proteins modified by advanced glycation end-products (AGE) are mainly taken up by liver endothelial cells (LECs) via scavenger receptor-mediated endocytosis. Endocytic uptake of chemically modified proteins by macrophages and macrophage-derived cells is mediated by class A scavenger receptor (SR-A) and CD36. In a previous study using SR-A knockout mice, we demonstrated that SR-A is not involved in endocytic uptake of AGE proteins by LECs [Matsumoto et al. (2000) Biochem. J. 352, 233-240]. The present study was conducted to determine the contribution of CD36 to this process. Glycolaldehyde-modified BSA (GA-BSA) and methylglyoxal-modified BSA (MG-BSA) were used as AGE proteins. 125I-GA-BSA and 125I-MG-BSA underwent endocytic degradation by these cells at 37 degrees C, and this process was inhibited by several ligands for the scavenger receptors. However, this endocytic uptake of 125I-GA-BSA by LECs was not inhibited by a neutralizing anti-CD36 antibody. Similarly, hepatic uptake of (111)In-GA-BSA after its intravenous injection was not significantly attenuated by co-administration of the anti-CD36 antibody. These results clarify that CD36 does not play a significant role in elimination of GA-BSA and MG-BSA from the circulation, suggesting that the receptor involved in endocytic uptake of circulating AGE proteins by LEC is not SR-A or CD36.
Collapse
Affiliation(s)
- Keisuke Nakajou
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Cell-specific targeting systems for drugs and genes have been developed by using glycosylated macromolecule as a vehicle that can be selectively recognized by carbohydrate receptors. Pharmacokinetic analyses of the tissue distribution of glycosylated proteins came to the conclusion that the surface density of the sugar moiety on the protein derivative largely determines the binding affinity for the receptors and plasma lectin. Many glycosylated delivery systems have been developed and their usefulness investigated in various settings. Galactosylated polymers, when properly designed, were found to be effective in delivering prostaglandin E1 and other low-molecular-weight drugs selectively to hepatocytes. In addition, glycosylated superoxide dismutase and catalase were successfully developed with minimal loss of enzymatic activity. A simultaneous targeting of these two enzymes to liver nonparenchymal cells significantly prevented hepatic ischemia/reperfusion injury. On the other hand, galactosylated catalase, a derivative selectively delivered to hepatocytes, effectively inhibited hepatic metastasis of colon carcinoma cells in mice. Finally, hepatocyte-targeted in vivo gene transfer was achieved by synthesizing a multi-functional carrier molecule, which condenses plasmid DNA, delivering DNA to hepatocytes through recognition by asialoglycoprotein receptors, and releasing DNA from endosomes/lysosomes into cytoplasm.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501. Japan.
| |
Collapse
|
19
|
Nakajou K, Horiuchi S, Sakai M, Haraguchi N, Tanaka M, Takeya M, Otagiri M. Renal clearance of glycolaldehyde- and methylglyoxal-modified proteins in mice is mediated by mesangial cells through a class A scavenger receptor (SR-A). Diabetologia 2005; 48:317-27. [PMID: 15654600 DOI: 10.1007/s00125-004-1646-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 10/22/2004] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS Glomerular mesangial expansion is a characteristic feature of diabetic nephropathy, and the accumulation of AGE in the mesangial lesion has been implicated as one of its potential causes. However, the route for the AGE accumulation in mesangial lesions in diabetic patients is poorly established. METHODS Glycolaldehyde-modified BSA (GA-BSA) and methylglyoxal-modified BSA (MG-BSA) were prepared as model AGE proteins, and their in vivo plasma clearance was examined in mice, and renal uptake by in vitro studies with isolated renal mesangial cells. RESULTS Both (111)In-GA-BSA and (111)In-MG-BSA were rapidly cleared from the circulation mainly by both the liver and kidney. Immunohistochemical studies with an anti-GA-BSA antibody demonstrated that intravenously injected GA-BSA accumulated in mesangial cells, suggesting that such cells play an important role in the renal clearance of circulating AGE proteins. Binding experiments at 4 degrees C using mesangial cells isolated from mice showed that (125)I-GA-BSA and (125)I-MG-BSA exhibited specific and saturable binding. Upon incubation at 37 degrees C, (125)I-GA-BSA and (125)I-MG-BSA underwent endocytic degradation by these cells. The binding of the ligands to these cells was inhibited by several ligands for scavenger receptors. The endocytic degradation of GA-BSA by mesangial cells from class A scavenger receptor (SR-A) knock-out mice was reduced by 80% when compared with that of wild-type cells. The glomerular accumulation of GA-BSA after its intravenous administration was attenuated in SR-A knock-out mice, as evidenced by immunohistochemical observations. CONCLUSIONS/INTERPRETATION These results raise the possibility that circulating AGE-modified proteins are subjected to renal clearance by mesangial cells, mainly via SR-A. This pathway may contribute to the pathogenesis of AGE-induced diabetic nephropathy.
Collapse
Affiliation(s)
- K Nakajou
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Mier W, Hoffend J, Krämer S, Schuhmacher J, Hull WE, Eisenhut M, Haberkorn U. Conjugation of DOTA Using Isolated Phenolic Active Esters: The Labeling and Biodistribution of Albumin as Blood Pool Marker. Bioconjug Chem 2004; 16:237-40. [PMID: 15656597 DOI: 10.1021/bc034216c] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A convenient method for the functionalization of proteins with DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) has been developed. For this purpose DOTA was converted into a series of different monoreactive activated phenolic esters. The esters were prepared in a single step from commercially available DOTA, using 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide or 1,3-dicyclohexylcarbodiimide as coupling agent. The resulting activated esters were isolated by HPLC, lyophilized, and stored for future applications. In solid form the compounds exhibit high hydrolytic stability. The reactions with proteins proceeded in good yields. The conjugation and subsequent radiolabeling of the 4-nitrophenol ester of DOTA with 67Ga was investigated with rat serum albumin. A time-dependent biodistribution study in tumor bearing rats was conducted to demonstrate the integrity of the albumin conjugate. These results suggest that phenolic esters of DOTA represent versatile reagents to conjugate DOTA with proteins and other biomolecules in high yields.
Collapse
Affiliation(s)
- Walter Mier
- Department of Nuclear Medicine, Universitätsklinikum Heidelberg, INF 400, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Medina LA, Klipper R, Phillips WT, Goins B. Pharmacokinetics and biodistribution of [111In]-avidin and [99mTc]-biotin-liposomes injected in the pleural space for the targeting of mediastinal nodes. Nucl Med Biol 2004; 31:41-51. [PMID: 14741569 DOI: 10.1016/s0969-8051(03)00122-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pharmacokinetics and mediastinal node uptake of [111In]-avidin and [99mTc]-biotin-liposomes following either intrapleural (pleural) or intraperitoneal (ip) injection were determined using scintigraphic imaging. Biodistribution results of [111In]-avidin at 44 h showed 3.3% uptake in mediastinal nodes by pleural injection vs 1.3% with ip injection. Mediastinal node accumulation with [99mTc]-biotin-liposomes was not different between injections (0.6% ip vs 0.5% pleural). This study demonstrates the potential of the pleural route as a technique for mediastinal node targeting using the avidin/biotin-liposome system.
Collapse
Affiliation(s)
- Luis A Medina
- Department of Radiology, Mail Code 7800, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|
22
|
Nakajou K, Watanabe H, Kragh-Hansen U, Maruyama T, Otagiri M. The effect of glycation on the structure, function and biological fate of human serum albumin as revealed by recombinant mutants. Biochim Biophys Acta Gen Subj 2003; 1623:88-97. [PMID: 14572906 DOI: 10.1016/j.bbagen.2003.08.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recombinant wild-type human serum albumin (rHSA), the single-residue mutants K199A, K439A and K525A and the triple-residue mutant K199A/K439A/K525A were produced using a yeast expression system. Portions of the rHSA were glycated to different degrees (2.5-250 mM D-glucose). As detected by far-UV and near-UV CD, intrinsic tryptophan-fluorescence and probed by 1,1'-bis(4-anilino)naphthalene-5,5-disulfonic acid, the single-residue mutations had no effect on albumin conformation, whereas the triple-residue mutation and glycation caused conformational changes. The triple-residue mutation and glycation had comparable increased effects on high-affinity binding of warfarin (site I), but decreased effects on high-affinity binding of dansylsarcosine (site II) and the esterase-like activity of albumin. The relation between plasma half-lives in rats were found to be glycated rHSA (50 mM glucose)<triple-residue mutated rHSA<rHSA. The opposite trend was found for liver and kidney uptakes in mice. Even though the functional and the in vivo properties of rHSA could be effected differently by the minor conformational changes caused by the triple-residue mutation and glycation, the present findings indicate that the effect of glycation can be partly explained by blockage of the positive charges of lysine at positions 199, 439 and 525.
Collapse
Affiliation(s)
- Keisuke Nakajou
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, 862-0973 Kumamoto, Japan
| | | | | | | | | |
Collapse
|
23
|
Akizawa H, Arano Y, Mifune M, Iwado A, Saito Y, Uehara T, Ono M, Fujioka Y, Ogawa K, Kiso Y, Saji H. Significance of (111)In-DTPA chelate in renal radioactivity levels of (111)In-DTPA-conjugated peptides. Nucl Med Biol 2001; 28:459-68. [PMID: 11395320 DOI: 10.1016/s0969-8051(01)00207-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Metabolic studies of (111)In-DTPA-labeled polypeptides and peptides showed that the radiolabeled (poly)peptides generated (111)In-DTPA-adducts of amino acid that possess long residence times in the lysosomal compartment of the tissues where (poly)peptides accumulated. However, a recent study suggested that metal-chelate-methionine (Met) might possess in vivo behaviors different from metal-chelate adducts of other amino acids. In this study, to elucidate whether some biological characteristics of Met may accelerate the renal elimination rate of (111)In-DTPA-adduct of Met into urine, (111)In-DTPA-Met(1)-octreotide was synthesized and the renal handling of (111)In-DTPA-Met was investigated using (111)In-DTPA-L-Phe(1)-octreotide (Phe represents phenylalanine), which was reported previously, as a reference. Both (111)In-DTPA-conjugated octreotide analogs were stable against 3-h incubation in murine serum at 37 degrees C. Both (111)In-DTPA-octreotide analogs also showed rapid clearance of the radioactivity from the blood and similar accumulation of the radioactivity in the kidney. No significant differences were observed in the renal radioactivity levels from 10 min to 24 h postinjection between the two. Metabolic studies indicated that (111)In-DTPA-Met(1)-octreotide and (111)In-DTPA-L-Phe(1)-octreotide generated (111)In-DTPA-adducts of Met and Phe, respectively, as the final radiometabolites at similar rates. These findings suggested that the long residence times of the radioactivity in tissues after administration of (111)In-DTPA-labeled peptides and polypeptides would be attributed to inherent characteristics of (111)In-DTPA chelate.
Collapse
Affiliation(s)
- H Akizawa
- Faculty of Pharmaceutical Sciences, Okayama University, 700-8530, Tsushima-naka, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|