1
|
Deblais L, Ranjit S, Vrisman C, Antony L, Scaria J, Miller SA, Rajashekara G. Role of Stress-Induced Proteins RpoS and YicC in the Persistence of Salmonella enterica subsp. enterica Serotype Typhimurium in Tomato Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:109-118. [PMID: 36394339 DOI: 10.1094/mpmi-07-22-0152-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the functional role of bacterial genes in the persistence of Salmonella in plant organs can facilitate the development of agricultural practices to mitigate food safety risks associated with the consumption of fresh produce contaminated with Salmonella spp. Our study showed that Salmonella enterica subsp. enterica serotype Typhimurium (strain MDD14) persisted less in inoculated tomato plants than other Salmonella Typhimurium strains tested (JSG210, JSG626, JSG634, JSG637, JSG3444, and EV030415; P < 0.01). In-vitro assays performed in limited-nutrient conditions (growth rate, biofilm production, and motility) were inconclusive in explaining the in-planta phenotype observed with MDD14. Whole-genome sequencing combined with non-synonymous single nucleotide variations analysis was performed to identify genomic differences between MDD14 and the other Salmonella Typhimurium strains. The genome of MDD14 contained a truncated version (123 bp N-terminal) of yicC and a mutated version of rpoS (two non-synonymous substitutions, i.e., G66E and R82C), which are two stress-induced proteins involved in iron acquisition, environmental sensing, and cell envelope integrity. The rpoS and yicC genes were deleted in Salmonella Typhimurium JSG210 with the Lambda Red recombining system. Both mutants had limited persistence in tomato plant organs, similar to that of MDD14. In conclusion, we demonstrated that YicC and RpoS are involved in the persistence of Salmonella in tomato plants in greenhouse conditions and, thus, could represent potential targets to mitigate persistence of Salmonella spp. in planta. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Loïc Deblais
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| | - Sochina Ranjit
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| | - Claudio Vrisman
- Department of Plant Pathology, The Ohio State University, Wooster, OH, U.S.A
| | - Linto Antony
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, U.S.A
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, U.S.A
| | - Sally A Miller
- Department of Plant Pathology, The Ohio State University, Wooster, OH, U.S.A
| | - Gireesh Rajashekara
- Department of Animal Sciences, The Ohio State University, Wooster, OH, U.S.A
| |
Collapse
|
2
|
Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology 2022; 20:262. [PMID: 35672712 PMCID: PMC9171489 DOI: 10.1186/s12951-022-01477-8] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/23/2022] [Indexed: 12/31/2022] Open
Abstract
Interest in nanomaterials and especially nanoparticles has exploded in the past decades primarily due to their novel or enhanced physical and chemical properties compared to bulk material. These extraordinary properties have created a multitude of innovative applications in the fields of medicine and pharma, electronics, agriculture, chemical catalysis, food industry, and many others. More recently, nanoparticles are also being synthesized ‘biologically’ through the use of plant- or microorganism-mediated processes, as an environmentally friendly alternative to the expensive, energy-intensive, and potentially toxic physical and chemical synthesis methods. This transdisciplinary approach to nanoparticle synthesis requires that biologists and biotechnologists understand and learn to use the complex methodology needed to properly characterize these processes. This review targets a bio-oriented audience and summarizes the physico–chemical properties of nanoparticles, and methods used for their characterization. It highlights why nanomaterials are different compared to micro- or bulk materials. We try to provide a comprehensive overview of the different classes of nanoparticles and their novel or enhanced physicochemical properties including mechanical, thermal, magnetic, electronic, optical, and catalytic properties. A comprehensive list of the common methods and techniques used for the characterization and analysis of these properties is presented together with a large list of examples for biogenic nanoparticles that have been previously synthesized and characterized, including their application in the fields of medicine, electronics, agriculture, and food production. We hope that this makes the many different methods more accessible to the readers, and to help with identifying the proper methodology for any given nanoscience problem.
Collapse
|
3
|
Stylianakis I, Shalev A, Scheiner S, Sigalas MP, Arkin IT, Glykos N, Kolocouris A. The balance between side-chain and backbone-driven association in folding of the α-helical influenza A transmembrane peptide. J Comput Chem 2020; 41:2177-2188. [PMID: 32735736 DOI: 10.1002/jcc.26381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
The correct balance between attractive, repulsive and peptide hydrogen bonding interactions must be attained for proteins to fold correctly. To investigate these important contributors, we sought a comparison of the folding between two 25-residues peptides, the influenza A M2 protein transmembrane domain (M2TM) and the 25-Ala (Ala25 ). M2TM forms a stable α-helix as is shown by circular dichroism (CD) experiments. Molecular dynamics (MD) simulations with adaptive tempering show that M2TM monomer is more dynamic in nature and quickly interconverts between an ensemble of various α-helical structures, and less frequently turns and coils, compared to one α-helix for Ala25 . DFT calculations suggest that folding from the extended structure to the α-helical structure is favored for M2TM compared with Ala25 . This is due to CH⋯O attractive interactions which favor folding to the M2TM α-helix, and cannot be described accurately with a force field. Using natural bond orbital (NBO) analysis and quantum theory atoms in molecules (QTAIM) calculations, 26 CH⋯O interactions and 22 NH⋯O hydrogen bonds are calculated for M2TM. The calculations show that CH⋯O hydrogen bonds, although individually weaker, have a cumulative effect that cannot be ignored and may contribute as much as half of the total hydrogen bonding energy, when compared to NH⋯O, to the stabilization of the α-helix in M2TM. Further, a strengthening of NH⋯O hydrogen bonding interactions is calculated for M2TM compared to Ala25 . Additionally, these weak CH⋯O interactions can dissociate and associate easily leading to the ensemble of folded structures for M2TM observed in folding MD simulations.
Collapse
Affiliation(s)
- Ioannis Stylianakis
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariella Shalev
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Michael P Sigalas
- Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Nikolas Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
First JT, Novelli ET, Webb LJ. Beyond pKa: Experiments and Simulations of Nitrile Vibrational Probes in Staphylococcal Nuclease Show the Importance of Local Interactions. J Phys Chem B 2020; 124:3387-3399. [DOI: 10.1021/acs.jpcb.0c00747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeremy T. First
- Department of Chemistry, Texas Materials Institute, and Institute for Cell and Molecular Biology The University of Texas at Austin 105 East 24th Street STOP A5300, Austin, Texas 78712-1224, United States
| | - Elisa T. Novelli
- Department of Chemistry, Texas Materials Institute, and Institute for Cell and Molecular Biology The University of Texas at Austin 105 East 24th Street STOP A5300, Austin, Texas 78712-1224, United States
| | - Lauren J. Webb
- Department of Chemistry, Texas Materials Institute, and Institute for Cell and Molecular Biology The University of Texas at Austin 105 East 24th Street STOP A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
5
|
Creon A, Josts I, Niebling S, Huse N, Tidow H. Conformation-specific detection of calmodulin binding using the unnatural amino acid p-azido-phenylalanine (AzF) as an IR-sensor. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2018; 5:064701. [PMID: 30474048 PMCID: PMC6224318 DOI: 10.1063/1.5053466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/22/2018] [Indexed: 05/13/2023]
Abstract
Calmodulin (CaM) is a very conserved, ubiquitous, eukaryotic protein that binds four Ca2+ ions with high affinity. It acts as a calcium sensor by translating Ca2+ signals into cellular processes such as metabolism, inflammation, immune response, memory, and muscle contraction. Calcium binding to CaM leads to conformational changes that enable Ca2+/CaM to recognize and bind various target proteins with high affinity. The binding mode and binding partners of CaM are very diverse, and a consensus binding sequence is lacking. Here, we describe an elegant system that allows conformation-specific detection of CaM-binding to its binding partners. We incorporate the unnatural amino acid p-azido-phenylalanine (AzF) in different positions of CaM and follow its unique spectral signature by infrared (IR)-spectroscopy of the azido stretching vibration. Our results suggest that the AzF vibrational probe is sensitive to the chemical environment in different CaM/CaM-binding domain (CaMBD) complexes, which allows differentiating between different binding motifs according to the spectral characteristics of the azido stretching mode. We corroborate our results with a crystal structure of AzF-labelled CaM (CaM108AzF) in complex with a binding peptide from calmodulin-dependent protein kinase IIα identifying the structural basis for the observed IR frequency shifts.
Collapse
Affiliation(s)
| | | | | | | | - Henning Tidow
- Authors to whom correspondence should be addressed: , Tel.: +49 40428381599 and , Tel.: +49 40428388984
| |
Collapse
|
6
|
Brielle ES, Arkin IT. Site-Specific Hydrogen Exchange in a Membrane Environment Analyzed by Infrared Spectroscopy. J Phys Chem Lett 2018; 9:4059-4065. [PMID: 29957958 DOI: 10.1021/acs.jpclett.8b01675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogen exchange is a powerful method to examine macromolecules. In membrane proteins, exchange can distinguish between solvent-accessible and -inaccessible residues due to shielding by the hydrophobic environment of the lipid bilayer. Herein, rather than examining which residues undergo hydrogen exchange, we employ a protocol that enables the full deuteration of all polar hydrogens in a membrane protein. We then measure the impact of hydrogen exchange on the shift of the amide I vibrational mode of individually labeled sites. The results enable us to correlate polarity with vibrational shifts, thereby providing a powerful tool to examine specific locations within a membrane protein in its native membrane environment.
Collapse
Affiliation(s)
- Esther S Brielle
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus , Jerusalem 91904 , Israel
| | - Isaiah T Arkin
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus , Jerusalem 91904 , Israel
| |
Collapse
|
7
|
Zhang B, Tan J, Li C, Zhang J, Ye S. Amide I SFG Spectral Line Width Probes the Lipid-Peptide and Peptide-Peptide Interactions at Cell Membrane In Situ and in Real Time. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7554-7560. [PMID: 29804455 DOI: 10.1021/acs.langmuir.8b00946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The balance of lipid-peptide and peptide-peptide interactions at cell membrane is essential to a large variety of cellular processes. In this study, we have experimentally demonstrated for the first time that sum frequency generation vibrational spectroscopy can be used to probe the peptide-peptide and lipid-peptide interactions in cell membrane in situ and in real time by determination of the line width of amide I band of protein backbone. Using a "benchmark" model of α-helical WALP23, it is found that the dominated lipid-peptide interaction causes a narrow line width of the amide I band, whereas the peptide-peptide interaction can markedly broaden the line width. When WALP23 molecules insert into the lipid bilayer, a quite narrow line width of the amide I band is observed because of the lipid-peptide interaction. In contrast, when the peptide lies down on the bilayer surface, the line width of amide I band becomes very broad owing to the peptide-peptide interaction. In terms of the real-time change in the line width, the transition from peptide-peptide interaction to lipid-peptide interaction is monitored during the insertion of WALP23 into 1,2-dipalmitoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DPPG) lipid bilayer. The dephasing time of a pure α-helical WALP23 in 1-palmitoyl-2-oleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) and DPPG bilayer is determined to be 2.2 and 0.64 ps, respectively. The peptide-peptide interaction can largely accelerate the dephasing time.
Collapse
|
8
|
Markiewicz BN, Lemmin T, Zhang W, Ahmed IA, Jo H, Fiorin G, Troxler T, DeGrado WF, Gai F. Infrared and fluorescence assessment of the hydration status of the tryptophan gate in the influenza A M2 proton channel. Phys Chem Chem Phys 2016; 18:28939-28950. [PMID: 27725984 PMCID: PMC5157935 DOI: 10.1039/c6cp03426h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The M2 proton channel of the influenza A virus has been the subject of extensive studies because of its critical role in viral replication. As such, we now know a great deal about its mechanism of action, especially how it selects and conducts protons in an asymmetric fashion. The conductance of this channel is tuned to conduct protons at a relatively low biologically useful rate, which allows acidification of the viral interior of a virus entrapped within an endosome, but not so great as to cause toxicity to the infected host cell prior to packaging of the virus. The dynamic, structural and chemical features that give rise to this tuning are not fully understood. Herein, we use a tryptophan (Trp) analog, 5-cyanotryptophan, and various methods, including linear and nonlinear infrared spectroscopies, static and time-resolved fluorescence techniques, and molecular dynamics simulations, to site-specifically interrogate the structure and hydration dynamics of the Trp41 gate in the transmembrane domain of the M2 proton channel. Our results suggest that the Trp41 sidechain adopts the t90 rotamer, the χ2 dihedral angle of which undergoes an increase of approximately 35° upon changing the pH from 7.4 to 5.0. Furthermore, we find that Trp41 is situated in an environment lacking bulk-like water, and somewhat surprisingly, the water density and dynamics do not show a measurable difference between the high (7.4) and low (5.0) pH states. Since previous studies have shown that upon channel opening water flows into the cavity above the histidine tetrad (His37), the present finding thus provides evidence indicating that the lack of sufficient water molecules near Trp41 needed to establish a continuous hydrogen bonding network poses an additional energetic bottleneck for proton conduction.
Collapse
Affiliation(s)
- Beatrice N Markiewicz
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Thomas Lemmin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA.
| | - Wenkai Zhang
- Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ismail A Ahmed
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA.
| | - Giacomo Fiorin
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Thomas Troxler
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. and Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, USA.
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. and Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Zamotaiev OM, Shvadchak V, Sych TP, Melnychuk NA, Yushchenko D, Mely Y, Pivovarenko VG. Environment-sensitive quinolone demonstrating long-lived fluorescence and unusually slow excited-state intramolecular proton transfer kinetics. Methods Appl Fluoresc 2016; 4:034004. [PMID: 28355165 DOI: 10.1088/2050-6120/4/3/034004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new small fluorescent dye based on 3-hydroxybenzo[g]quinolone, a benzo-analogue of Pseudomonas quinolone signal species, has been synthesized. The dye demonstrates interesting optical properties, with absorption in the visible region, two band emission due to an excited-state intramolecular proton transfer (ESIPT) reaction and high fluorescence quantum yield in both protic and aprotic media. Time-resolved fluorescence spectroscopy shows that the ESIPT reaction time is unusually long (up to 8 ns), indicating that both forward and backward ESIPT reactions are very slow in comparison to other 3-hydroxyquinolones. In spite of these slow rate constants, the ESIPT reaction was found to show a reversible character as a result of the very long lifetimes of both N* and T* forms (up to 16 ns). The ESIPT reaction rate is mainly controlled by the hydrogen bond donor ability in protic solvents and the polarity in aprotic solvents. Using large unilamellar vesicles and giant unilamellar vesicles of different lipid compositions, the probe was shown to preferentially label liquid disordered phases.
Collapse
Affiliation(s)
- O M Zamotaiev
- Department of Chemistry, National Taras Shevchenko University of Kyiv, 01601 Kyiv, Ukraine
| | | | | | | | | | | | | |
Collapse
|
10
|
Ding B, Panahi A, Ho JJ, Laaser JE, Brooks CL, Zanni MT, Chen Z. Probing Site-Specific Structural Information of Peptides at Model Membrane Interface In Situ. J Am Chem Soc 2015; 137:10190-8. [PMID: 26241117 DOI: 10.1021/jacs.5b04024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isotope labeling is a powerful technique to probe detailed structures of biological molecules with a variety of analytical methods such as NMR and vibrational spectroscopies. It is important to obtain molecular structural information on biological molecules at interfaces such as cell membranes, but it is challenging to use the isotope labeling method to study interfacial biomolecules. Here, by individually (13)C═(16)O labeling ten residues of a peptide, Ovispirin-1, we have demonstrated for the first time that a site-specific environment of membrane associated peptide can be probed by the submonolayer surface sensitive sum frequency generation (SFG) vibrational spectroscopy in situ. With the peptide associated with a single lipid bilayer, the sinusoidal trend of the SFG line width and peak-center frequency suggests that the peptide is located at the interface beneath the lipid headgroup region. The constructive interferences between the isotope labeled peaks and the main peptide amide I peak contributed by the unlabeled components were used to determine the membrane orientation of the peptide. From the SFG spectral peak-center frequency, line width, and polarization dependence of the isotope labeled units, we deduced structural information on individual units of the peptide associated with a model cell membrane. We also performed molecular dynamics (MD) simulations to understand peptide-membrane interactions. The physical pictures described by simulation agree well with the SFG experimental result. This research demonstrates the feasibility and power of using isotope labeling SFG to probe molecular structures of interfacial biological molecules in situ in real time.
Collapse
Affiliation(s)
- Bei Ding
- †Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Afra Panahi
- †Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jia-Jung Ho
- ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | - Jennifer E Laaser
- ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | - Charles L Brooks
- †Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Martin T Zanni
- ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | - Zhan Chen
- †Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Manor J, Arbely E, Beerlink A, Akkawi M, Arkin IT. Use of Isotope-Edited FTIR to Derive a Backbone Structure of a Transmembrane Protein. J Phys Chem Lett 2014; 5:2573-2579. [PMID: 26277945 DOI: 10.1021/jz501055d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Solving structures of membrane proteins has always been a formidable challenge, yet even upon success, the results are normally obtained in a mimetic environment that can be substantially different from a biological membrane. Herein, we use noninvasive isotope-edited FTIR spectroscopy to derive a structural model for the SARS coronavirus E protein transmembrane domain in lipid bilayers. Molecular-dynamics-based structural refinement, incorporating the IR-derived orientational restraints points to the formation of a helical hairpin structure. Disulfide cross-linking and X-ray reflectivity depth profiling provide independent support of the results. The unusually short helical hairpin structure of the protein might explain its ability to deform bilayers and is reminiscent of other peptides with membrane disrupting functionalities. Taken together, we show that isotope-edited FTIR is a powerful tool to analyze small membrane proteins in their native environment, enabling us to relate the unusual structure of the SARS E protein to its function.
Collapse
Affiliation(s)
- Joshua Manor
- †Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Eyal Arbely
- †Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| | - Andrè Beerlink
- ‡Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077 Germany
| | - Mutaz Akkawi
- §Faculty of Science and Technology, Al-Quds University, Abu Dis, Palestinian National Authority
| | - Isaiah T Arkin
- †Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
12
|
Abstract
Macromolecules are characterized by their particular arrangement of H bonds. Many of these interactions involve a single donor and acceptor pair, such as the regular H-bonding pattern between carbonyl oxygens and amide H(+)s four residues apart in α-helices. The H-bonding potential of some acceptors, however, leads to the phenomenon of overcoordination between two donors and one acceptor. Herein, using isotope-edited Fourier transform infrared measurements and density functional theory (DFT) calculations, we measured the strength of such bifurcated H bonds in a transmembrane α-helix. Frequency shifts of the (13)C=(18)O amide I mode were used as a reporter of the strength of the bifurcated H bond from a thiol and hydroxyl H(+) at residue i + 4. DFT calculations yielded very similar frequency shifts and an energy of -2.6 and -3.4 kcal/mol for the thiol and hydroxyl bifurcated H bonds, respectively. The strength of the intrahelical bifurcated H bond is consistent with its prevalence in hydrophobic environments and is shown to significantly impact side-chain rotamer distribution.
Collapse
|
13
|
Laaser JE, Skoff DR, Ho JJ, Joo Y, Serrano AL, Steinkruger JD, Gopalan P, Gellman SH, Zanni MT. Two-dimensional sum-frequency generation reveals structure and dynamics of a surface-bound peptide. J Am Chem Soc 2014; 136:956-62. [PMID: 24372101 PMCID: PMC3956615 DOI: 10.1021/ja408682s] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Surface-bound polypeptides and proteins are increasingly used to functionalize inorganic interfaces such as electrodes, but their structural characterization is exceedingly difficult with standard technologies. In this paper, we report the first two-dimensional sum-frequency generation (2D SFG) spectra of a peptide monolayer, which are collected by adding a mid-IR pulse shaper to a standard femtosecond SFG spectrometer. On a gold surface, standard FTIR spectroscopy is inconclusive about the peptide structure because of solvation-induced frequency shifts, but the 2D line shapes, anharmonic shifts, and lifetimes obtained from 2D SFG reveal that the peptide is largely α-helical and upright. Random coil residues are also observed, which do not themselves appear in SFG spectra due to their isotropic structural distribution, but which still absorb infrared light and so can be detected by cross-peaks in 2D SFG spectra. We discuss these results in the context of peptide design. Because of the similar way in which the spectra are collected, these 2D SFG spectra can be directly compared to 2D IR spectra, thereby enabling structural interpretations of surface-bound peptides and biomolecules based on the well-studied structure/2D IR spectra relationships established from soluble proteins.
Collapse
Affiliation(s)
- Jennifer E. Laaser
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - David R. Skoff
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jia-Jung Ho
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Yongho Joo
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Arnaldo L. Serrano
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jay D. Steinkruger
- School of Environmental, Physical, and Applied Sciences, University of Central Missouri, Warrensburg, Missouri 64093
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
14
|
Fried SD, Wang LP, Boxer SG, Ren P, Pande VS. Calculations of the electric fields in liquid solutions. J Phys Chem B 2013; 117:16236-48. [PMID: 24304155 DOI: 10.1021/jp410720y] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electric field created by a condensed-phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution-phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe nonpolar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and to identify for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins.
Collapse
Affiliation(s)
- Stephen D Fried
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | | | |
Collapse
|
15
|
Moran SD, Zhang TO, Decatur SM, Zanni MT. Amyloid fiber formation in human γD-Crystallin induced by UV-B photodamage. Biochemistry 2013; 52:6169-81. [PMID: 23957864 DOI: 10.1021/bi4008353] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
γD-Crystallin is an abundant structural protein of the lens that is found in native and modified forms in cataractous aggregates. We establish that UV-B irradiation of γD-Crystallin leads to structurally specific modifications and precipitation via two mechanisms: amorphous aggregates and amyloid fibers. UV-B radiation causes cleavage of the backbone, in large measure near the interdomain interface, where side chain oxidations are also concentrated. 2D IR spectroscopy and expressed protein ligation localize fiber formation exclusively to the C-terminal domain of γD-Crystallin. The native β-sandwich domains are not retained upon precipitation by either mechanism. The similarities between the amyloid forming pathways when induced by either UV-B radiation or low pH suggest that the propensity for the C-terminal β-sandwich domain to form amyloid β-sheets determines the misfolding pathway independent of the mechanism of denaturation.
Collapse
Affiliation(s)
- Sean D Moran
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, WI, United States 53706
| | | | | | | |
Collapse
|
16
|
Fleming S, Frederix PWJM, Ramos Sasselli I, Hunt NT, Ulijn RV, Tuttle T. Assessing the utility of infrared spectroscopy as a structural diagnostic tool for β-sheets in self-assembling aromatic peptide amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9510-5. [PMID: 23805919 DOI: 10.1021/la400994v] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
β-Sheets are a commonly found structural motif in self-assembling aromatic peptide amphiphiles, and their characteristic "amide I" infrared (IR) absorption bands are routinely used to support the formation of supramolecular structure. In this paper, we assess the utility of IR spectroscopy as a structural diagnostic tool for this class of self-assembling systems. Using 9-fluorene-methyloxycarbonyl dialanine (Fmoc-AA) and the analogous 9-fluorene-methylcarbonyl dialanine (Fmc-AA) as examples, we show that the origin of the band around 1680-1695 cm(-1) in Fourier transform infrared (FTIR) spectra, which was previously assigned to an antiparallel β-sheet conformation, is in fact absorption of the stacked carbamate group in Fmoc-peptides. IR spectra from (13)C-labeled samples support our conclusions. In addition, DFT frequency calculations on small stacks of aromatic peptides help to rationalize these results in terms of the individual vibrational modes.
Collapse
Affiliation(s)
- Scott Fleming
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
| | | | | | | | | | | |
Collapse
|
17
|
Grechko M, Zanni MT. Quantification of transition dipole strengths using 1D and 2D spectroscopy for the identification of molecular structures via exciton delocalization: application to α-helices. J Chem Phys 2013; 137:184202. [PMID: 23163364 DOI: 10.1063/1.4764861] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Vibrational and electronic transition dipole strengths are often good probes of molecular structures, especially in excitonically coupled systems of chromophores. One cannot determine transition dipole strengths using linear spectroscopy unless the concentration is known, which in many cases it is not. In this paper, we report a simple method for measuring transition dipole moments from linear absorption and 2D IR spectra that does not require knowledge of concentrations. Our method is tested on several model compounds and applied to the amide I(') band of a polypeptide in its random coil and α-helical conformation as modulated by the solution temperature. It is often difficult to confidently assign polypeptide and protein secondary structures to random coil or α-helix by linear spectroscopy alone, because they absorb in the same frequency range. We find that the transition dipole strength of the random coil state is 0.12 ± 0.013 D(2), which is similar to a single peptide unit, indicating that the vibrational mode of random coil is localized on a single peptide unit. In an α-helix, the lower bound of transition dipole strength is 0.26 ± 0.03 D(2). When taking into account the angle of the amide I(') transition dipole vector with respect to the helix axis, our measurements indicate that the amide I(') vibrational mode is delocalized across a minimum of 3.5 residues in an α-helix. Thus, one can confidently assign secondary structure based on exciton delocalization through its effect on the transition dipole strength. Our method will be especially useful for kinetically evolving systems, systems with overlapping molecular conformations, and other situations in which concentrations are difficult to determine.
Collapse
Affiliation(s)
- Maksim Grechko
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
18
|
Shai Y. ATR-FTIR studies in pore forming and membrane induced fusion peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012. [PMID: 23201348 DOI: 10.1016/j.bbamem.2012.11.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infrared (IR) spectroscopy has been shown to be very reliable for the characterization, identification and quantification of structural data. Particularly, the Attenuated Total Reflectance (ATR) technique which became one of the best choices to study the structure and organization of membrane proteins and membrane-bound peptides in biologically relevant membranes. An important advantage of IR spectroscopy is its ability to analyze material under a very wide range of conditions including solids, liquids and gases. This method allows elucidation of component secondary structure elements of a peptide or protein in a global manner, and by using site specific isotope labeling allows determination of specific regions. A few advantages in using ATR-FTIR spectroscopy include; a relatively simple technique, allow the determination of peptide orientation in the membrane, allow the determination of secondary structures of very small peptides, and importantly, the method is sensitive to isotopic labeling on the scale of single amino acids. Many studies were reported on the use of ATR-FTIR spectroscopy in order to study the structure and orientation of membrane bound hydrophobic peptides and proteins. The list includes native and de-novo designed peptides, as well as those derived from trans-membrane domains of various receptors (TMDs). The present review will focus on several examples that demonstrate the potential and the simplicity in using the ATR-FTIR approach to determine secondary structures of proteins and peptides when bound, inserted, and oligomerized within membranes. The list includes (i) a channel forming protein/peptide: the Ca(2+) channel phospholamban, (ii) a cell penetrating peptide, (iii) changes in the structure of a transmembrane domain located within ordered and non-ordered domains, and (iv) isotope edited FTIR to directly assign structure to the membrane associated fusion peptide in context of a Key gp41 Structural Motif. Importantly, a unique advantage of infrared spectroscopy is that it allows a simultaneous study of the structure of lipids and proteins in intact biological membranes without an introduction of foreign perturbing probes. Because of the long IR wavelength, light scattering problems are virtually non-existent. This allows the investigation of highly aggregated materials or large membrane fragments. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel.
| |
Collapse
|
19
|
Manor J, Arkin IT. Gaining insight into membrane protein structure using isotope-edited FTIR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012. [PMID: 23196348 DOI: 10.1016/j.bbamem.2012.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
FTIR spectroscopy has long been used as a tool used to gain average structural information on proteins. With the advent of stable isotope editing, FTIR can be used to derive accurate information on isolated amino acids. In particular, in an anisotropic sample such as membrane layers, it is possible to measure the orientation of the peptidic carbonyl groups. Herein, we review the theory that enables one to obtain accurate restraints from FTIR spectroscopy, alongside considerations for sample suitability and general applicability. We also propose approaches that may be used to generate structural models of simple membrane proteins based on FTIR orientational restraints. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Joshua Manor
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem, 91904, Israel
| | | |
Collapse
|