1
|
An R, Wu N, Gao Q, Dong Y, Laaksonen A, Shah FU, Ji X, Fuchs H. Integrative studies of ionic liquid interface layers: bridging experiments, theoretical models and simulations. NANOSCALE HORIZONS 2024; 9:506-535. [PMID: 38356335 DOI: 10.1039/d4nh00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Ionic liquids (ILs) are a class of salts existing in the liquid state below 100 °C, possessing low volatility, high thermal stability as well as many highly attractive solvent and electrochemical capabilities, etc., making them highly tunable for a great variety of applications, such as lubricants, electrolytes, and soft functional materials. In many applications, ILs are first either physi- or chemisorbed on a solid surface to successively create more functional materials. The functions of ILs at solid surfaces can differ considerably from those of bulk ILs, mainly due to distinct interfacial layers with tunable structures resulting in new ionic liquid interface layer properties and enhanced performance. Due to an almost infinite number of possible combinations among the cations and anions to form ILs, the diversity of various solid surfaces, as well as different external conditions and stimuli, a detailed molecular-level understanding of their structure-property relationship is of utmost significance for a judicious design of IL-solid interfaces with appropriate properties for task-specific applications. Many experimental techniques, such as atomic force microscopy, surface force apparatus, and so on, have been used for studying the ion structuring of the IL interface layer. Molecular Dynamics simulations have been widely used to investigate the microscopic behavior of the IL interface layer. To interpret and clarify the IL structure and dynamics as well as to predict their properties, it is always beneficial to combine both experiments and simulations as close as possible. In another theoretical model development to bridge the structure and properties of the IL interface layer with performance, thermodynamic prediction & property modeling has been demonstrated as an effective tool to add the properties and function of the studied nanomaterials. Herein, we present recent findings from applying the multiscale triangle "experiment-simulation-thermodynamic modeling" in the studies of ion structuring of ILs in the vicinity of solid surfaces, as well as how it qualitatively and quantitatively correlates to the overall ILs properties, performance, and function. We introduce the most common techniques behind "experiment-simulation-thermodynamic modeling" and how they are applied for studying the IL interface layer structuring, and we highlight the possibilities of the IL interface layer structuring in applications such as lubrication and energy storage.
Collapse
Affiliation(s)
- Rong An
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Nanhua Wu
- Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qingwei Gao
- College of Environmental and Chemical Engineering, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yihui Dong
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
- Center of Advanced Research in Bionanoconjugates and Biopolymers, ''Petru Poni" Institute of Macromolecular Chemistry, Iasi 700469, Romania
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
| | - Harald Fuchs
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
| |
Collapse
|
2
|
Zhou J, Jing G, Zhao T, Tian F, Xu X, Zhao S. Unraveling Flow Effect on Capacitive Energy Extraction from Salinity Gradients. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10052-10060. [PMID: 38367217 DOI: 10.1021/acsami.3c16738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
The harvesting of salinity gradient energy through a capacitive double-layer expansion (CDLE) technique is directly associated with ion adsorption and desorption in electrodes. Herein, we show that energy extraction can be modulated by regulating ion adsorption/desorption through water flow. The flow effects on the output energy, capacitance, and energy density under practical conditions are systematically investigated from a theoretical perspective, upon which the optimal operating condition is identified for energy extraction. We demonstrate that the net charge accumulation displays a negative correlation with the water flow velocity and so does the surface charge density, and this causes a nontrivial variation in the magnitude of output energy when water flows are introduced. When high water flows are introduced in both the charging and discharging processes, the energy extraction can be significantly reduced by 47.69-49.32%. However, when a high flow is solely exerted in the discharging process, the energy extraction can be enhanced by 12.94-14.49% even at low operation voltages. This study not only offers a comprehensive understanding of the microscopic mechanisms of surface-engineered energy extraction with water flows but also provides a novel direction for energy extraction enhancement.
Collapse
Affiliation(s)
- Jingmin Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Gang Jing
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Teng Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Institute of Natural Sciences, Shanghai National Center for Applied Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengrui Tian
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Zhang Z, Li C, Zhang J, Eikerling M, Huang J. Dynamic Response of Ion Transport in Nanoconfined Electrolytes. NANO LETTERS 2023; 23:10703-10709. [PMID: 37846923 PMCID: PMC10722536 DOI: 10.1021/acs.nanolett.3c02560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/05/2023] [Indexed: 10/18/2023]
Abstract
Ion transport in nanoconfined electrolytes exhibits nonlinear effects caused by large driving forces and pronounced boundary effects. An improved understanding of these impacts is urgently needed to guide the design of key components of the electrochemical energy systems. Herein, we employ a nonlinear Poisson-Nernst-Planck theory to describe ion transport in nanoconfined electrolytes coupled with two sets of boundary conditions to mimic different cell configurations in experiments. A peculiar nonmonotonic charging behavior is discovered when the electrolyte is placed between a blocking electrode and an electrolyte reservoir, while normal monotonic behaviors are seen when the electrolyte is placed between two blocking electrodes. We reveal that impedance shapes depend on the definition of surface charge and the electrode potential. Particularly, an additional arc can emerge in the intermediate-frequency range at potentials away from the potential of zero charge. The obtained insights are instrumental to experimental characterization of ion transport in nanoconfined electrolytes.
Collapse
Affiliation(s)
- Zengming Zhang
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Chenkun Li
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jianbo Zhang
- School
of Vehicle and Mobility, State Key Laboratory of Automotive Safety
and Energy, Tsinghua University, Beijing 100084, China
| | - Michael Eikerling
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Jun Huang
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Theory
of Electrocatalytic Interfaces, Faculty of Georesources and Materials
Engineering, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
4
|
Su Y, Wang T, Zhang F, Huang J, Zhu Z, Shah FU, Xu F, An R. Effect of Electrode Surface Chemistry on Ion Structuring of Imidazolium Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37289976 DOI: 10.1021/acs.langmuir.3c00710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface chemistry plays a critical role in the ion structuring of ionic liquids (ILs) at the interfaces of electrodes and controls the overall energy storage performance of the system. Herein, we functionalized the gold (Au) colloid probe of an atomic force microscope with -COOH and -NH2 groups to explore the effect of different surface chemical properties on the ion structuring of an IL. Aided by colloid-probe atomic force microscopy (AFM), the ion structuring of an imidazolium IL, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6], abbreviated as BP hereafter), on the Au electrode surface and the ion response to the change in the surface chemistry are investigated. AFM morphologies, contact angles, and approaching force-distance curves of the BP IL on the functionalized Au surfaces exhibited that the IL forms a more obvious layering structure on the -COOH-terminated Au surface (Au-COOH), while it forms heterogeneous and aggregating droplets on the -NH2 surface (Au-NH2). The formed uniform and aggregation-free ion layers in the vicinity of the Au-COOH surface are due to the π-π+ stacking interaction between the delocalized π+ electrons from the imidazolium ring in the IL [BMIM]+ cation and the localized π electrons from the sp2 carbon on the -COOH group. The in situ observation of nano-friction and torsional resonance frequency at the IL-electrode interfaces further demonstrated the ion structuring of the IL at Au-COOH, which results in a more sensitive electrochemical response associated with a faster capacitive process.
Collapse
Affiliation(s)
- Yiqun Su
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tiantian Wang
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fan Zhang
- Department of Engineering and Design, School of Engineering and Information, University of Sussex, Brighton BN1 9RH, U.K
| | - Junsen Huang
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhehang Zhu
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Feng Xu
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rong An
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
5
|
Kondrat S, Feng G, Bresme F, Urbakh M, Kornyshev AA. Theory and Simulations of Ionic Liquids in Nanoconfinement. Chem Rev 2023; 123:6668-6715. [PMID: 37163447 PMCID: PMC10214387 DOI: 10.1021/acs.chemrev.2c00728] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 05/12/2023]
Abstract
Room-temperature ionic liquids (RTILs) have exciting properties such as nonvolatility, large electrochemical windows, and remarkable variety, drawing much interest in energy storage, gating, electrocatalysis, tunable lubrication, and other applications. Confined RTILs appear in various situations, for instance, in pores of nanostructured electrodes of supercapacitors and batteries, as such electrodes increase the contact area with RTILs and enhance the total capacitance and stored energy, between crossed cylinders in surface force balance experiments, between a tip and a sample in atomic force microscopy, and between sliding surfaces in tribology experiments, where RTILs act as lubricants. The properties and functioning of RTILs in confinement, especially nanoconfinement, result in fascinating structural and dynamic phenomena, including layering, overscreening and crowding, nanoscale capillary freezing, quantized and electrotunable friction, and superionic state. This review offers a comprehensive analysis of the fundamental physical phenomena controlling the properties of such systems and the current state-of-the-art theoretical and simulation approaches developed for their description. We discuss these approaches sequentially by increasing atomistic complexity, paying particular attention to new physical phenomena emerging in nanoscale confinement. This review covers theoretical models, most of which are based on mapping the problems on pertinent statistical mechanics models with exact analytical solutions, allowing systematic analysis and new physical insights to develop more easily. We also describe a classical density functional theory, which offers a reliable and computationally inexpensive tool to account for some microscopic details and correlations that simplified models often fail to consider. Molecular simulations play a vital role in studying confined ionic liquids, enabling deep microscopic insights otherwise unavailable to researchers. We describe the basics of various simulation approaches and discuss their challenges and applicability to specific problems, focusing on RTIL structure in cylindrical and slit confinement and how it relates to friction and capacitive and dynamic properties of confined ions.
Collapse
Affiliation(s)
- Svyatoslav Kondrat
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Institute
for Computational Physics, University of
Stuttgart, Stuttgart 70569, Germany
| | - Guang Feng
- State
Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Nano
Interface Centre for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fernando Bresme
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, London W12 0BZ,United Kingdom
- Thomas Young
Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- London
Centre for Nanotechnology, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Michael Urbakh
- School
of Chemistry and the Sackler Center for Computational Molecular and
Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexei A. Kornyshev
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, London W12 0BZ,United Kingdom
- Thomas Young
Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Pireddu G, Rotenberg B. Frequency-Dependent Impedance of Nanocapacitors from Electrode Charge Fluctuations as a Probe of Electrolyte Dynamics. PHYSICAL REVIEW LETTERS 2023; 130:098001. [PMID: 36930930 DOI: 10.1103/physrevlett.130.098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The frequency-dependent impedance is a fundamental property of electrical components. We show that it can be determined from the equilibrium dynamical fluctuations of the electrode charge in constant-potential molecular simulations, extending in particular a fluctuation-dissipation relation for the capacitance recovered in the low-frequency limit and provide an illustration on water-gold nanocapacitors. This Letter opens the way to the interpretation of electrochemical impedance measurements in terms of microscopic mechanisms, directly from the dynamics of the electrolyte, or indirectly via equivalent circuit models as in experiments.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
7
|
Jeong KJ, Jeong S, Lee S, Son CY. Predictive Molecular Models for Charged Materials Systems: From Energy Materials to Biomacromolecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204272. [PMID: 36373701 DOI: 10.1002/adma.202204272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Indexed: 06/16/2023]
Abstract
Electrostatic interactions play a dominant role in charged materials systems. Understanding the complex correlation between macroscopic properties with microscopic structures is of critical importance to develop rational design strategies for advanced materials. But the complexity of this challenging task is augmented by interfaces present in the charged materials systems, such as electrode-electrolyte interfaces or biological membranes. Over the last decades, predictive molecular simulations that are founded in fundamental physics and optimized for charged interfacial systems have proven their value in providing molecular understanding of physicochemical properties and functional mechanisms for diverse materials. Novel design strategies utilizing predictive models have been suggested as promising route for the rational design of materials with tailored properties. Here, an overview of recent advances in the understanding of charged interfacial systems aided by predictive molecular simulations is presented. Focusing on three types of charged interfaces found in energy materials and biomacromolecules, how the molecular models characterize ion structure, charge transport, morphology relation to the environment, and the thermodynamics/kinetics of molecular binding at the interfaces is discussed. The critical analysis brings two prominent field of energy materials and biological science under common perspective, to stimulate crossover in both research field that have been largely separated.
Collapse
Affiliation(s)
- Kyeong-Jun Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Seungwon Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Sangmin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Chang Yun Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
8
|
Jeanmairet G, Rotenberg B, Salanne M. Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chem Rev 2022; 122:10860-10898. [PMID: 35389636 PMCID: PMC9227719 DOI: 10.1021/acs.chemrev.1c00925] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Electrochemical double-layer capacitors (EDLCs) are devices allowing the storage or production of electricity. They function through the adsorption of ions from an electrolyte on high-surface-area electrodes and are characterized by short charging/discharging times and long cycle-life compared to batteries. Microscopic simulations are now widely used to characterize the structural, dynamical, and adsorption properties of these devices, complementing electrochemical experiments and in situ spectroscopic analyses. In this review, we discuss the main families of simulation methods that have been developed and their application to the main family of EDLCs, which include nanoporous carbon electrodes. We focus on the adsorption of organic ions for electricity storage applications as well as aqueous systems in the context of blue energy harvesting and desalination. We finally provide perspectives for further improvement of the predictive power of simulations, in particular for future devices with complex electrode compositions.
Collapse
Affiliation(s)
- Guillaume Jeanmairet
- Sorbonne
Université, CNRS, Physico-chimie
des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
| | - Benjamin Rotenberg
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Électrochimique de l’Énergie
(RS2E), FR CNRS 3459, 80039 Amiens, France
| | - Mathieu Salanne
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris Cedex 05, France
| |
Collapse
|
9
|
Wu J. Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chem Rev 2022; 122:10821-10859. [PMID: 35594506 DOI: 10.1021/acs.chemrev.2c00097] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significant progress has been made in recent years in theoretical modeling of the electric double layer (EDL), a key concept in electrochemistry important for energy storage, electrocatalysis, and multitudes of other technological applications. However, major challenges remain in understanding the microscopic details of the electrochemical interface and charging mechanisms under realistic conditions. This review delves into theoretical methods to describe the equilibrium and dynamic responses of the EDL structure and capacitance for electrochemical systems commonly deployed for capacitive energy storage. Special emphasis is given to recent advances that intend to capture the nonclassical EDL behavior such as oscillatory ion distributions, polarization of nonmetallic electrodes, charge transfer, and various forms of phase transitions in the micropores of electrodes interfacing with an organic electrolyte or ionic liquid. This comprehensive analysis highlights theoretical insights into predictable relationships between materials characteristics and electrochemical performance and offers a perspective on opportunities for further development toward rational design and optimization of electrochemical systems.
Collapse
Affiliation(s)
- Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
10
|
Cheng J, Tao H, Ma K, Yang J, Lian C, Liu H, Wu J. A Theoretical Model for the Charging Dynamics of Associating Ionic Liquids. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.852070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Association between cations and anions plays an important role in the interfacial structure of room-temperature ionic liquids (ILs) and their electrochemical performance. Whereas great efforts have been devoted to investigating the association effect on the equilibrium properties of ILs, a molecular-level understanding of the charging dynamics is yet to be established. Here, we propose a theoretical procedure combining reaction kinetics and the modified Poisson-Nernst-Planck (MPNP) equations to study the influences of ionic association on the dynamics of electrical double layer (EDL) in response to an applied voltage. The ionic association introduces a new decay length λS and relaxation time scale τRC=λSL/D, where L is the system size and D is ion diffusivity, that are distinctively different those corresponding to non-associative systems. Analytical expressions have been obtained to reveal the quantitative relations between the dynamic timescales and the association strength.
Collapse
|
11
|
Ma K, Janssen M, Lian C, van Roij R. Dynamic density functional theory for the charging of electric double layer capacitors. J Chem Phys 2022; 156:084101. [DOI: 10.1063/5.0081827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ke Ma
- School of Materials Science and Engineering, Tianjin University of Technology, China
| | | | - Cheng Lian
- East China University of Science and Technology, China
| | - Rene van Roij
- Institute for Theoretical Physics, Utrecht University Institut for Theoretical Physics, Netherlands
| |
Collapse
|
12
|
Zhao T, Qiao C, Xu X, Zhao S. Self-consistent equations governing the dynamics of non-equilibrium binary colloidal systems. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Liu Y. A New Antiport Mechanism Using the Abnormal Adsorption of Ions. J Phys Chem Lett 2021; 12:7632-7635. [PMID: 34351159 DOI: 10.1021/acs.jpclett.1c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion pumps are crucial in many biological and nonbiological systems, but their mechanisms have not yet been completely elucidated. Generally, it is understood that ion pumps are implemented by functional proteins. In this investigation, we have proposed a new model for the antiport process, which does not involve a "lever molecule". In this model, abnormal adsorption of the ions occurs in charged nanopores, which can adsorb more transport ions in the lower concentration phase than the higher one. The classical density functional theory (CDFT) confirms the existence of this abnormal adsorption, and the density profiles indicate that it is due to the competition between the transport and background ions. This antiport mechanism thus provides new insights into the function and design of ion pumps.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
14
|
Qing L, Long T, Yu H, Li Y, Tang W, Bao B, Zhao S. Quantifying ion desolvation effects on capacitances of nanoporous electrodes with liquid electrolytes. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Tang W, Yu H, Zhao T, Qing L, Xu X, Zhao S. A dynamic reaction density functional theory for interfacial reaction-diffusion coupling at nanoscale. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Voroshylova IV, Ers H, Koverga V, Docampo-Álvarez B, Pikma P, Ivaništšev VB, Cordeiro M. Ionic liquid–metal interface: The origins of capacitance peaks. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Zhao T, Qing L, Long T, Xu X, Zhao S, Lu X. Dynamical coupling of ion adsorption with fluid flow in nanopores. AIChE J 2021. [DOI: 10.1002/aic.17266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Teng Zhao
- State Key laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Leying Qing
- State Key laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Ting Long
- State Key laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Xiaofei Xu
- State Key laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Shuangliang Zhao
- State Key laboratory of Chemical Engineering and School of Chemical Engineering East China University of Science and Technology Shanghai China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Xiaohua Lu
- College of Chemical Engineering, State Key Laboratory of Materials‐oriented Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
18
|
Qing L, Zhao S, Wang ZG. Surface Charge Density in Electrical Double Layer Capacitors with Nanoscale Cathode-Anode Separation. J Phys Chem B 2021; 125:625-636. [PMID: 33405923 DOI: 10.1021/acs.jpcb.0c09332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Using a dynamic density functional theory, we study the charging dynamics, the final equilibrium structure, and the energy storage in an electrical double layer capacitor with nanoscale cathode-anode separation in a slit geometry. We derive a simple expression for the surface charge density that naturally separates the effects of the charge polarization due to the ions from those due to the polarization of the dielectric medium and allows a more intuitive understanding of how the ion distribution within the cell affects the surface charge density. We find that charge neutrality in the half-cell does not hold during the dynamic charging process for any cathode-anode separation, and also does not hold at the final equilibrium state for small separations. Therefore, the charge accumulation in the half-cell in general does not equal the surface charge density. The relationships between the surface charge density and the charge accumulation within the half-cell are systematically investigated by tuning the electrolyte concentration, cathode-anode separation, and applied voltage. For high electrolyte concentrations, we observe charge inversion at which the charge accumulation exceeds the surface charge at special values of the separation. In addition, we find that the energy density has a maximum at intermediate electrolyte concentrations for a high applied voltage.
Collapse
Affiliation(s)
- Leying Qing
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
19
|
Voroshylova IV, Ers H, Docampo-Álvarez B, Pikma P, Ivaništšev VB, Cordeiro MNDS. Hysteresis in the MD Simulations of Differential Capacitance at the Ionic Liquid-Au Interface. J Phys Chem Lett 2020; 11:10408-10413. [PMID: 33253582 DOI: 10.1021/acs.jpclett.0c03212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this Letter, we report the first observation of the capacitance-potential hysteresis at the ionic liquid | electrode interface in atomistic molecular dynamics simulations. While modeling the differential capacitance dependence on the potential scan direction, we detected two long-living types of interfacial structure for the BMImPF6 ionic liquid at specific charge densities of the gold Au(111) surface. These structures differ in how counterions overscreen the surface charge. The high barrier for the transition from one structure to another slows down the interfacial restructuring process and leads to the marked capacitance-potential hysteresis.
Collapse
Affiliation(s)
- Iuliia V Voroshylova
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Heigo Ers
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | | | - Piret Pikma
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | | | - M Natália D S Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
20
|
Qing L, Lei J, Zhao T, Qiu G, Ma M, Xu Z, Zhao S. Effects of Kinetic Dielectric Decrement on Ion Diffusion and Capacitance in Electrochemical Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4055-4064. [PMID: 32233504 DOI: 10.1021/acs.langmuir.0c00353] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diffusion of ionic components in electrolytes not only eliminates the gradients of ionic concentrations but also alters the local dielectric environment, and the coupling effect between kinetic dielectric decrement and ionic concentration gradient on the diffusion dynamics is not well understood. Herein, taking the charging process in electrical double layer systems as a case study, we conduct a multiscale investigation of ion diffusions in aqueous electrolytes by combining the dynamic density functional theory and an ion-concentration-dependent dielectric constant model. By properly considering the time evolutions of local dielectric constant coupled with ion density, we report an interesting phenomenon on the suppression of surface charge density that is not captured by conventional models. In addition, we show that the usage of aqueous electrolyte with small dielectric decrement coefficients promotes the capacitance, in quantitative agreement with experimental measurements.
Collapse
Affiliation(s)
- Leying Qing
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Jun Lei
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Teng Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Genlong Qiu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Manman Ma
- School of Mathematical Sciences, Tongji University, 200092 Shanghai, China
| | - Zhenli Xu
- School of Mathematical Sciences, Institute of Natural Sciences, and MoE Key Lab of Scientific and Engineering Computing, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
21
|
Lian C, Janssen M, Liu H, van Roij R. Blessing and Curse: How a Supercapacitor's Large Capacitance Causes its Slow Charging. PHYSICAL REVIEW LETTERS 2020; 124:076001. [PMID: 32142339 DOI: 10.1103/physrevlett.124.076001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
The development of novel electrolytes and electrodes for supercapacitors is hindered by a gap of several orders of magnitude between experimentally measured and theoretically predicted charging time scales. Here, we propose an electrode model, containing many parallel stacked electrodes, that explains the slow charging dynamics of supercapacitors. At low applied potentials, the charging behavior of this model is described well by an equivalent circuit model. Conversely, at high potentials, charging dynamics slow down and evolve on two relaxation time scales: a generalized RC time and a diffusion time, which, interestingly, become similar for porous electrodes. The charging behavior of the stack-electrode model presented here helps to understand the charging dynamics of porous electrodes and qualitatively agrees with experimental time scales measured with porous electrodes.
Collapse
Affiliation(s)
- Cheng Lian
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Mathijs Janssen
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
- Institut für Theoretische Physik IV, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - René van Roij
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
22
|
Liu Y, Liu H. Development of reaction–diffusion DFT and its application to catalytic oxidation of NO in porous materials. AIChE J 2019. [DOI: 10.1002/aic.16824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yu Liu
- School of Chemical Engineering and Technology Sun Yat‐sen University Zhuhai China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
23
|
Niu Y, Liu Y, Liu H, Hu Y. Time‐dependent density functional study for nanodroplet coalescence. AIChE J 2019. [DOI: 10.1002/aic.16810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yapeng Niu
- State Key Laboratory of Advanced Materials and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| | - Yu Liu
- State Key Laboratory of Advanced Materials and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
- School of Chemical Engineering and Technology, Sun Yat‐Sen University Zhuhai China
| | - Honglai Liu
- State Key Laboratory of Advanced Materials and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| | - Ying Hu
- State Key Laboratory of Advanced Materials and School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
24
|
Liu N, Chen R, Wan Q. Recent Advances in Electric-Double-Layer Transistors for Bio-Chemical Sensing Applications. SENSORS 2019; 19:s19153425. [PMID: 31387221 PMCID: PMC6696065 DOI: 10.3390/s19153425] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
As promising biochemical sensors, ion-sensitive field-effect transistors (ISFETs) are used widely in the growing field of biochemical sensing applications. Recently, a new type of field-effect transistor gated by ionic electrolytes has attracted intense attention due to the extremely strong electric-double-layer (EDL) gating effect. In such devices, the carrier density of the semiconductor channel can be effectively modulated by an ion-induced EDL capacitance at the semiconductor/electrolyte interface. With advantages of large specific capacitance, low operating voltage and sensitive interfacial properties, various EDL-based transistor (EDLT) devices have been developed for ultrasensitive portable sensing applications. In this article, we will review the recent progress of EDLT-based biochemical sensors. Starting with a brief introduction of the concepts of EDL capacitance and EDLT, we describe the material compositions and the working principle of EDLT devices. Moreover, the biochemical sensing performances of several important EDLTs are discussed in detail, including organic-based EDLTs, oxide-based EDLTs, nanomaterial-based EDLTs and neuromorphic EDLTs. Finally, the main challenges and development prospects of EDLT-based biochemical sensors are listed.
Collapse
Affiliation(s)
- Ning Liu
- Nanchang Institute of Technology, Nanchang 330099, China
- School of Electronic Science & Engineering, Nanjing University, Nanjing 210093, China
| | - Ru Chen
- Nanchang Institute of Technology, Nanchang 330099, China
| | - Qing Wan
- School of Electronic Science & Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
25
|
Qing L, Li Y, Tang W, Zhang D, Han Y, Zhao S. Dynamic Adsorption of Ions into Like-Charged Nanospace: A Dynamic Density Functional Theory Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4254-4262. [PMID: 30839219 DOI: 10.1021/acs.langmuir.9b00088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The adsorption processes of ions into charged nanospace are associated with many practical applications. Whereas a large number of microporous materials have been prepared toward efficient adsorption of ions from solutions, theoretical models that allow for capturing the characteristics of ion dynamic adsorption into like-charged nanopores are still few. The difficulty originates from the overlapping of electric potentials inside the pores. Herein, a theoretical model is proposed by incorporating dynamic density functional theory with modified Poisson equation for investigating the dynamic adsorption of ions into like-charged nanoslits. This model is rationalized by comparing the theoretical predictions with corresponding simulation results. Afterward, by analyzing the adsorption dynamics, we show that the overlapping effect is associated with the pore size, ion bulk concentration, and surface charge density, and it plays a dominant role in the coupling between the total adsorption amount of ions and total adsorption time. Specifically, with weak overlapping effect, the total adsorption amount is intuitively proportional to the total adsorption time; however, when the overlapping effect is strong, the total adsorption amount may be inversely proportional to the total adsorption time, indicating that both high adsorption amount and short adsorption time can be achieved simultaneously. This work provides a meaningful insight toward the rational design and optimization of microporous materials for efficient ion adsorption.
Collapse
Affiliation(s)
- Leying Qing
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Yu Li
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Weiqiang Tang
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Duo Zhang
- Ecole Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques de Toulouse , Toulouse 31030 , France
| | - Yongsheng Han
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering , Chinese Academy of Sciences , 100190 Beijing , China
- School of Chemical Engineering , University of Chinese Academy of Sciences , 100049 Beijing , China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
26
|
Ali BA, Allam NK. A first-principles roadmap and limits to design efficient supercapacitor electrode materials. Phys Chem Chem Phys 2019; 21:17494-17511. [DOI: 10.1039/c9cp02614b] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A road map to guide researchers to predict the desired properties is presented based on the DFT calculations to allow researchers decide which property of the material they wish to predict or develop and how to choose the proper DFT route to do so.
Collapse
Affiliation(s)
- Basant A. Ali
- Energy Materials Laboratory
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| | - Nageh K. Allam
- Energy Materials Laboratory
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| |
Collapse
|
27
|
Liu H, Liu Y, Shang Y, Liu H. Toxicant Deposition and Transport in Alveolus: A Classical Density Functional Prediction. Chem Res Toxicol 2018; 31:1398-1404. [PMID: 30479130 DOI: 10.1021/acs.chemrestox.8b00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The deposition and transport of toxicants on pulmonary surfactant are important processes in human health and medical care. We have introduced classical density functional theory (CDFT) to provide insight into this process. Nine typical toxicants in PM2.5 were considered, and their free energy and structural information have been examined. The free energy profile indicates that PbO, As2O3, and CdO are the three toxicants most easily deposited in the pulmonary alveolus, which is consistent with survey data. CuO appears to be the easiest toxicant to transport through the surfactant. Structural analysis indicates that the toxicants tend to pass through the surfactant with rotation. The configuration of the pulmonary surfactant was examined by extending our previous work to polymer systems, and it appears that both the configurational entropy and the direct interaction between the surfactant and the toxicant dominate the configuration of the pulmonary surfactant.
Collapse
|
28
|
Guo F, Liu Y, Hu J, Liu H, Hu Y. Fast screening of porous materials for noble gas adsorption and separation: a classical density functional approach. Phys Chem Chem Phys 2018; 20:28193-28204. [PMID: 30395136 DOI: 10.1039/c8cp03777a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The design and screening of porous materials for noble gas adsorption and separation are an important issue in the production and utilization of gases. The conventional method to do this is via molecular simulation. In this work, we introduced a classical density functional theory (CDFT) to replace molecular simulation because CDFT is more efficient. A molecular dynamics (MD)/CDFT combined method was proposed to consider the flexibility of the adsorbent. The theory was first examined by comparing it to reported experiments and simulations. Then, the theory was applied to determine the most favorable adsorbents for noble gas adsorption/separation from 4764 real adsorbents and 1200 hypothetical adsorbents. A series of favorable adsorbents was identified, and some of them seemed promising. The macroscopic adsorption isotherms and microscopic density profiles of the most favorable adsorbents were examined, and the adsorption mechanisms were revealed. The specific separation of Kr/Xe was examined, and two of the adsorbents showed higher adsorption efficiency than shown in previously reported data.
Collapse
Affiliation(s)
- Fangyuan Guo
- State Key Laboratory of Chemical Engineering and School of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | |
Collapse
|
29
|
Liu Y, Liu H. Time-dependent density functional theory for fluid diffusion in graphene oxide membranes/graphene membranes. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Lucio AJ, Shaw SK. Capacitive hysteresis at the 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate-polycrystalline gold interface. Anal Bioanal Chem 2018; 410:4575-4586. [PMID: 29492622 DOI: 10.1007/s00216-018-0962-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 11/24/2022]
Abstract
We report potential-dependent capacitance curves over a 2-V potential range for the 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate (Emim FAP)-polycrystalline gold interface, and examine the effect of potential scan direction on results. We find very small levels of capacitive hysteresis in the Emim FAP-polycrystalline Au electrochemical system, where capacitance curves show minor dependence on the potential scan direction employed. This is a considerably different response than that reported for the Emim FAP-Au(111) interface where significant hysteresis is observed based on the potential scan direction (Drüschler et al. in J Phys Chem C 115 (14):6802-6808, 2011). Hysteresis effects have previously been suggested to be a general feature of an ionic liquid (IL) at electrified interfaces due to slow interfacial processes and has been demonstrated for numerous electrochemical systems. We provide new evidence that the experimental procedure used to acquire capacitance data and data workup could also have implications on capacitance-potential relationships in ILs. This work serves to progress our understanding of the nature of capacitive hysteresis at the IL-electrode interface. Graphical abstract Subtle changes in experimental methods can lead to significantly different capacitance measurements in ionic liquids. Which is the best approach?
Collapse
Affiliation(s)
- Anthony J Lucio
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Scott K Shaw
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
31
|
Lucio AJ, Shaw SK. Effects and controls of capacitive hysteresis in ionic liquid electrochemical measurements. Analyst 2018; 143:4887-4900. [DOI: 10.1039/c8an01085d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Capacitance vs. potential relationships help electrochemists better understand electrode–liquid interfacial behaviors.
Collapse
Affiliation(s)
| | - Scott K. Shaw
- Department of Chemistry
- University of Iowa
- Iowa City
- USA
| |
Collapse
|
32
|
Affiliation(s)
- Haixia Gao
- Department of Physics, Hunan Normal University, Changsha 410081, P. R. China
| | - Yanmei Chang
- Department of Physics, Hunan Normal University, Changsha 410081, P. R. China
| | - Changming Xiao
- Department of Physics, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
33
|
Zhan C, Lian C, Zhang Y, Thompson MW, Xie Y, Wu J, Kent PRC, Cummings PT, Jiang D, Wesolowski DJ. Computational Insights into Materials and Interfaces for Capacitive Energy Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700059. [PMID: 28725531 PMCID: PMC5515120 DOI: 10.1002/advs.201700059] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/25/2017] [Indexed: 05/02/2023]
Abstract
Supercapacitors such as electric double-layer capacitors (EDLCs) and pseudocapacitors are becoming increasingly important in the field of electrical energy storage. Theoretical study of energy storage in EDLCs focuses on solving for the electric double-layer structure in different electrode geometries and electrolyte components, which can be achieved by molecular simulations such as classical molecular dynamics (MD), classical density functional theory (classical DFT), and Monte-Carlo (MC) methods. In recent years, combining first-principles and classical simulations to investigate the carbon-based EDLCs has shed light on the importance of quantum capacitance in graphene-like 2D systems. More recently, the development of joint density functional theory (JDFT) enables self-consistent electronic-structure calculation for an electrode being solvated by an electrolyte. In contrast with the large amount of theoretical and computational effort on EDLCs, theoretical understanding of pseudocapacitance is very limited. In this review, we first introduce popular modeling methods and then focus on several important aspects of EDLCs including nanoconfinement, quantum capacitance, dielectric screening, and novel 2D electrode design; we also briefly touch upon pseudocapactive mechanism in RuO2. We summarize and conclude with an outlook for the future of materials simulation and design for capacitive energy storage.
Collapse
Affiliation(s)
- Cheng Zhan
- Department of ChemistryUniversity of CaliforniaRiversideCA92521United States
| | - Cheng Lian
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCalifornia92521United States
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Yu Zhang
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennessee37235United States
| | - Matthew W. Thompson
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennessee37235United States
| | - Yu Xie
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTennessee37831United States
| | - Jianzhong Wu
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCalifornia92521United States
| | - Paul R. C. Kent
- Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeTennessee37831United States
- Computer Science and Mathematics DivisionOak Ridge National LaboratoryOak RidgeTennessee37831United States
| | - Peter T. Cummings
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennessee37235United States
| | - De‐en Jiang
- Department of ChemistryUniversity of CaliforniaRiversideCA92521United States
| | - David J. Wesolowski
- Chemcial Sciences DivisionOak Ridge National LaboratoryOak RidgeTennessee37831United States
| |
Collapse
|
34
|
Liu Y, Guo F, Hu J, Liu H, Hu Y. Molecular transport through mixed matrix membranes: A time-dependent density functional approach. AIChE J 2017. [DOI: 10.1002/aic.15805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Fangyuan Guo
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Jun Hu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Ying Hu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
35
|
Lian C, Zhao S, Liu H, Wu J. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids. J Chem Phys 2016; 145:204707. [DOI: 10.1063/1.4968037] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Cheng Lian
- State Key Laboratory of Chemical Engineering, and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering, and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering, and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
36
|
Lian C, Kong X, Liu H, Wu J. On the hydrophilicity of electrodes for capacitive energy extraction. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:464008. [PMID: 27624786 DOI: 10.1088/0953-8984/28/46/464008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The so-called Capmix technique for energy extraction is based on the cyclic expansion of electrical double layers to harvest dissipative energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the electrical potentials for the charging and discharging processes, which must be matched with the pore characteristics of the electrode materials. While a number of recent studies have examined the effects of the electrode pore size and geometry on the capacitive energy extraction processes, there is little knowledge on how the surface properties of the electrodes affect the thermodynamic efficiency. In this work, we investigate the Capmix processes using the classical density functional theory for a realistic model of electrolyte solutions. The theoretical predictions allow us to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different surface hydrophobicity. In agreement with recent experiments, we find that the thermodynamic efficiency can be much improved by using most hydrophilic electrodes.
Collapse
Affiliation(s)
- Cheng Lian
- Department of Chemical and Environmental Engineering and Department of Mathematics, University of California, Riverside, CA 92521, USA. State Key laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Liu Y, Guo F, Hu J, Zhao S, Liu H, Hu Y. Entropy prediction for H2 adsorption in metal-organic frameworks. Phys Chem Chem Phys 2016; 18:23998-4005. [PMID: 27523720 DOI: 10.1039/c6cp04645b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Entropy is an important thermodynamic property and serves as a bridge connecting equilibrium and non-equilibrium systems, which provides a basic understanding of various practical phenomena. In this study, classical density functional theory was introduced to efficiently predict entropy. The theory was applied to a high-throughput prediction of entropy and excess entropy for H2 adsorption in metal-organic frameworks. It seems that the entropy screening and uptake screening are generally equivalent at high temperature. Based on the entropy screening, the best hydrogen storage materials have been identified. The correlations between entropy and thermodynamic properties, such as uptake, isosteric heat and adsorption degree, were examined and are explained. The results imply that among the tested thermodynamic properties, the correlation between entropy and isosteric heat is the strongest.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemical Engineering and Department of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | |
Collapse
|
38
|
Schmidt E, Shi S, Ruden PP, Frisbie CD. Characterization of the Electric Double Layer Formation Dynamics of a Metal/Ionic Liquid/Metal Structure. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14879-14884. [PMID: 27213215 DOI: 10.1021/acsami.6b04065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Although ionic liquids (ILs) have been used extensively in recent years as a high-capacitance "dielectric" in electric double layer transistors, the dynamics of the double layer formation have remained relatively unexplored. Better understanding of the dynamics and relaxation processes involved in electric double layer formation will guide device optimization, particularly with regard to switching speed. In this paper, we explore the dynamical characteristics of an IL in a metal/ionic liquid/metal (M/IL/M) capacitor. In particular, we examine a Au/IL/Au structure where the IL is 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. The experiments consist of frequency-dependent impedance measurements and time-dependent current vs voltage measurements for applied linear voltage ramps and abrupt voltage steps. The parameters of an equivalent circuit model are determined by fits to the impedance vs frequency data and subsequently verified by calculating the current vs voltage characteristics for the applied potential profiles. The data analysis indicates that the dynamics of the structure are characterized by a wide distribution of relaxation times spanning the range of less than microseconds to longer than seconds. Possible causes for these time scales are discussed.
Collapse
Affiliation(s)
- Elliot Schmidt
- Department of Chemical Engineering and Materials Science and ‡Department of Electrical and Computer Engineering, University of Minnesota , Minneapolis 55455, United States
| | - Sha Shi
- Department of Chemical Engineering and Materials Science and ‡Department of Electrical and Computer Engineering, University of Minnesota , Minneapolis 55455, United States
| | - P Paul Ruden
- Department of Chemical Engineering and Materials Science and ‡Department of Electrical and Computer Engineering, University of Minnesota , Minneapolis 55455, United States
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science and ‡Department of Electrical and Computer Engineering, University of Minnesota , Minneapolis 55455, United States
| |
Collapse
|
39
|
Liu Y. Development of 3-dimensional time-dependent density functional theory and its application to gas diffusion in nanoporous materials. Phys Chem Chem Phys 2016; 18:13158-63. [DOI: 10.1039/c6cp01610c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An entropy scaling based TDDFT has been proposed and applied to diffusion in a nanoporous material.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemical Engineering and Department of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
40
|
Lee AA, Kondrat S, Vella D, Goriely A. Dynamics of Ion Transport in Ionic Liquids. PHYSICAL REVIEW LETTERS 2015; 115:106101. [PMID: 26382685 DOI: 10.1103/physrevlett.115.106101] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Indexed: 05/17/2023]
Abstract
A gap in understanding the link between continuum theories of ion transport in ionic liquids and the underlying microscopic dynamics has hindered the development of frameworks for transport phenomena in these concentrated electrolytes. Here, we construct a continuum theory for ion transport in ionic liquids by coarse graining a simple exclusion process of interacting particles on a lattice. The resulting dynamical equations can be written as a gradient flow with a mobility matrix that vanishes at high densities. This form of the mobility matrix gives rise to a charging behavior that is different to the one known for electrolytic solutions, but which agrees qualitatively with the phenomenology observed in experiments and simulations.
Collapse
Affiliation(s)
- Alpha A Lee
- Mathematical Institute, Andrew Wiles Building, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Svyatoslav Kondrat
- IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dominic Vella
- Mathematical Institute, Andrew Wiles Building, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Alain Goriely
- Mathematical Institute, Andrew Wiles Building, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
| |
Collapse
|
41
|
Affiliation(s)
- Robert Hayes
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| | - Gregory G. Warr
- School
of Chemistry, The University of Sydney, NSW 2006, Sydney, Australia
| | - Rob Atkin
- Discipline
of Chemistry, The University of Newcastle, NSW 2308, Callaghan, Australia
| |
Collapse
|
42
|
Uysal A, Zhou H, Feng G, Lee SS, Li S, Cummings PT, Fulvio PF, Dai S, McDonough JK, Gogotsi Y, Fenter P. Interfacial ionic 'liquids': connecting static and dynamic structures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:032101. [PMID: 25475119 DOI: 10.1088/0953-8984/27/3/032101] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (∼0.15 eV).
Collapse
Affiliation(s)
- Ahmet Uysal
- Chemical Science and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|