1
|
Berlinger SA, Küpers V, Dudenas PJ, Schinski D, Flagg L, Lamberty ZD, McCloskey BD, Winter M, Frechette J. Cation valency in water-in-salt electrolytes alters the short- and long-range structure of the electrical double layer. Proc Natl Acad Sci U S A 2024; 121:e2404669121. [PMID: 39047037 PMCID: PMC11295052 DOI: 10.1073/pnas.2404669121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Highly concentrated aqueous electrolytes (termed water-in-salt electrolytes, WiSEs) at solid-liquid interfaces are ubiquitous in myriad applications including biological signaling, electrosynthesis, and energy storage. This interface, known as the electrical double layer (EDL), has a different structure in WiSEs than in dilute electrolytes. Here, we investigate how divalent salts [zinc bis(trifluoromethylsulfonyl)imide, Zn(TFSI)2], as well as mixtures of mono- and divalent salts [lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) mixed with Zn(TFSI)2], affect the short- and long-range structure of the EDL under confinement using a multimodal combination of scattering, spectroscopy, and surface forces measurements. Raman spectroscopy of bulk electrolytes suggests that the cation is closely associated with the anion regardless of valency. Wide-angle X-ray scattering reveals that all bulk electrolytes form ion clusters; however, the clusters are suppressed with increasing concentration of the divalent ion. To probe the EDL under confinement, we use a Surface Forces Apparatus and demonstrate that the thickness of the adsorbed layer of ions at the interface grows with increasing divalent ion concentration. Multiple interfacial layers form following this adlayer; their thicknesses appear dependent on anion size, rather than cation. Importantly, all electrolytes exhibit very long electrostatic decay lengths that are insensitive to valency. It is likely that in the WiSE regime, electrostatic screening is mediated by the formation of ion clusters rather than individual well-solvated ions. This work contributes to understanding the structure and charge-neutralization mechanism in this class of electrolytes and the interfacial behavior of mixed-electrolyte systems encountered in electrochemistry and biology.
Collapse
Affiliation(s)
- Sarah A. Berlinger
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Verena Küpers
- Münster Electrochemical Energy Technology, University of Münster, Münster48149, Germany
| | - Peter J. Dudenas
- Polymer Processing Group, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD20899
| | - Devin Schinski
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Lucas Flagg
- Polymer Processing Group, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD20899
| | - Zachary D. Lamberty
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Bryan D. McCloskey
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Martin Winter
- Münster Electrochemical Energy Technology, University of Münster, Münster48149, Germany
- Helmholtz-Institute Münster Ionics in Energy Storage, Münster48149, Germany
| | - Joelle Frechette
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| |
Collapse
|
2
|
Philippi F, Middendorf M, Shigenobu K, Matsuyama Y, Palumbo O, Pugh D, Sudoh T, Dokko K, Watanabe M, Schönhoff M, Shinoda W, Ueno K. Evolving better solvate electrolytes for lithium secondary batteries. Chem Sci 2024; 15:7342-7358. [PMID: 38756793 PMCID: PMC11095511 DOI: 10.1039/d4sc01492h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
The overall performance of lithium batteries remains unmatched to this date. Decades of optimisation have resulted in long-lasting batteries with high energy density suitable for mobile applications. However, the electrolytes used at present suffer from low lithium transference numbers, which induces concentration polarisation and reduces efficiency of charging and discharging. Here we show how targeted modifications can be used to systematically evolve anion structural motifs which can yield electrolytes with high transference numbers. Using a multidisciplinary combination of theoretical and experimental approaches, we screened a large number of anions. Thus, we identified anions which reach lithium transference numbers around 0.9, surpassing conventional electrolytes. Specifically, we find that nitrile groups have a coordination tendency similar to SO2 and are capable of inducing the formation of Li+ rich clusters. In the bigger picture, we identified a balanced anion/solvent coordination tendency as one of the key design parameters.
Collapse
Affiliation(s)
- Frederik Philippi
- Department of Chemistry and Life Science, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | | | - Keisuke Shigenobu
- Research Institute for Interdisciplinary Science, Okayama University Okayama 700-8530 Japan
| | - Yuna Matsuyama
- Department of Chemistry and Life Science, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Oriele Palumbo
- Consiglio Nazionale delle Ricerche Istituto dei Sistemi Complessi, P.le Aldo Moro 5 00185 Rome Italy
| | - David Pugh
- Department of Chemistry, Britannia House, Kings College London 7 Trinity Street London SE1 1DB UK
| | - Taku Sudoh
- Department of Chemistry and Life Science, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Kaoru Dokko
- Department of Chemistry and Life Science, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
- Advanced Chemical Energy Research Centre, Advanced Institute of Sciences, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Masayoshi Watanabe
- Advanced Chemical Energy Research Centre, Advanced Institute of Sciences, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | | | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University Okayama 700-8530 Japan
| | - Kazuhide Ueno
- Department of Chemistry and Life Science, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
- Advanced Chemical Energy Research Centre, Advanced Institute of Sciences, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| |
Collapse
|
3
|
Zhang Z, Li C, Zhang J, Eikerling M, Huang J. Dynamic Response of Ion Transport in Nanoconfined Electrolytes. NANO LETTERS 2023; 23:10703-10709. [PMID: 37846923 PMCID: PMC10722536 DOI: 10.1021/acs.nanolett.3c02560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/05/2023] [Indexed: 10/18/2023]
Abstract
Ion transport in nanoconfined electrolytes exhibits nonlinear effects caused by large driving forces and pronounced boundary effects. An improved understanding of these impacts is urgently needed to guide the design of key components of the electrochemical energy systems. Herein, we employ a nonlinear Poisson-Nernst-Planck theory to describe ion transport in nanoconfined electrolytes coupled with two sets of boundary conditions to mimic different cell configurations in experiments. A peculiar nonmonotonic charging behavior is discovered when the electrolyte is placed between a blocking electrode and an electrolyte reservoir, while normal monotonic behaviors are seen when the electrolyte is placed between two blocking electrodes. We reveal that impedance shapes depend on the definition of surface charge and the electrode potential. Particularly, an additional arc can emerge in the intermediate-frequency range at potentials away from the potential of zero charge. The obtained insights are instrumental to experimental characterization of ion transport in nanoconfined electrolytes.
Collapse
Affiliation(s)
- Zengming Zhang
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Chenkun Li
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jianbo Zhang
- School
of Vehicle and Mobility, State Key Laboratory of Automotive Safety
and Energy, Tsinghua University, Beijing 100084, China
| | - Michael Eikerling
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Jun Huang
- IEK-13,
Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Theory
of Electrocatalytic Interfaces, Faculty of Georesources and Materials
Engineering, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
4
|
Jäger H, Schlaich A, Yang J, Lian C, Kondrat S, Holm C. A screening of results on the decay length in concentrated electrolytes. Faraday Discuss 2023; 246:520-539. [PMID: 37602784 DOI: 10.1039/d3fd00043e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Screening of electrostatic interactions in room-temperature ionic liquids and concentrated electrolytes has recently attracted much attention as surface force balance experiments have suggested the emergence of unanticipated anomalously large screening lengths at high ion concentrations. Termed underscreening, this effect was ascribed to the bulk properties of concentrated ionic systems. However, underscreening under experimentally relevant conditions is not predicted by classical theories and challenges our understanding of electrostatic correlations. Despite the enormous effort in performing large-scale simulations and new theoretical investigations, the origin of the anomalously long-range screening length remains elusive. This contribution briefly summarises the experimental, analytical and simulation results on ionic screening and the scaling behaviour of screening lengths. We then present an atomistic simulation approach that accounts for the solvent and ion exchange with a reservoir. We find that classical density functional theory (DFT) for concentrated electrolytes under confinement reproduces ion adsorption at charged interfaces surprisingly well. With DFT, we study confined electrolytes using implicit and explicit solvent models and the dependence on the solvent's dielectric properties. Our results demonstrate how the absence vs. presence of solvent particles and their discrete nature affect the short and long-range screening in concentrated ionic systems.
Collapse
Affiliation(s)
- Henrik Jäger
- Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Schlaich
- Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, 70569 Stuttgart, Germany
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany.
| | - Jie Yang
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany.
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Lian
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Svyatoslav Kondrat
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany.
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
5
|
Ma L, Zhong Z, Hu J, Qing L, Jiang J. Long-Lived Weak Ion Pairs in Ionic Liquids: An Insight from All-Atom Molecular Dynamics Simulations. J Phys Chem B 2023. [PMID: 37262343 DOI: 10.1021/acs.jpcb.3c01559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The microstructure and local dynamics of ions in room-temperature ionic liquids (RTILs) have drawn a lot of attention due to their extensive potential applications in numerous fields. It is well-known that the widely used definitions of ion pairs (IPs) cannot reflect the full picture of RTILs. In this study, we find a universal residence time (τMR), which is regardless of the number of counterions in the first solvation shell in RTILs. Inspired by this, we propose a weak IP (WIP) model from a spatiotemporal perspective and demonstrate that the WIPs are long-lived and that their lifetimes obey a log-normal distribution, which is different from the literature. In addition, the electrostatic interactions are the main factors in the formation of WIPs, and the reorientations of ions are vital to the ruptures of WIPs. This research provides a new perspective for understanding the microstructural and dynamical properties of RTILs.
Collapse
Affiliation(s)
- Linbo Ma
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhixuan Zhong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junbao Hu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Leying Qing
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jian Jiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Klapatiuk DO, Waugh SL, Mukadam AA, East ALL. Limited ionicity in poor protic ionic liquids: Association Gibbs energies. J Chem Phys 2023; 158:034507. [PMID: 36681640 DOI: 10.1063/5.0124900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Protic ionic liquids (PILs), made from anhydrous mixtures of Bronsted acids HA and bases B (HA + B → BH+ + A-), occasionally suffer from limited ionicity. In cases of "poor" PILs (<10% ionicity, e.g., using carboxylic acids), past simulations have hinted that ion-pair association, more than incomplete proton transfer, is at fault. To improve upon the Fuoss equation for predicting the degree of ion pairing, new electrostatic equations (including induced dipoles) are presented, for ion-pair and other associations that occur in anhydrous amine/carboxylic acid mixtures. The equations present the association Gibbs energies ΔGA (and thus the association constants KA) as functions of three fundamental properties: the acid/base mixing ratio (n = xA/xB), the HA-to-B proton-transfer strength (ΔpKa,ε=78), and the dielectric constant (relative permittivity) of the mixture (ε). Parameter values were obtained from fits to constant-dielectric quantum chemistry data (obtained and presented here). These ΔGA functions were then used to predict ΔGioniz values for the net ion-generating (autoionization) equilibrium in carboxylic acid/amine mixtures: 2B(HA)n⇄B(HA)n-dHB++A(HA)n+d-1 -, where n = xA/xB and d = degree of disproportionation. The agreement with experiment was excellent, demonstrating that these equations could have useful predictive power.
Collapse
Affiliation(s)
- Devin O Klapatiuk
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S0A2, Canada
| | - Shawn L Waugh
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S0A2, Canada
| | - Abdulrahman A Mukadam
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S0A2, Canada
| | - Allan L L East
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S0A2, Canada
| |
Collapse
|
7
|
Aetizaz M, Sarfaraz S, Ayub K. Interaction of Imidazolium based ionic liquid electrolytes with carbon nitride electrodes in supercapacitors; A step forward for understanding electrode-electrolyte interaction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Goodwin ZA, Kornyshev AA. Cracking Ion Pairs in the Electrical Double Layer of Ionic Liquids. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Goodwin ZAH, McEldrew MP, de Souza JP, Bazant MZ, Kornyshev AA. Gelation, Clustering and Crowding in the Electrical Double Layer of Ionic Liquids. J Chem Phys 2022; 157:094106. [DOI: 10.1063/5.0097055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Understanding the bulk and interfacial properties of super-concentrated electrolytes, such as ionic liquids (ILs), has attracted significant attention lately for their promising applications in supercapacitors and batteries. Recently, McEldrew et al. developed a theory for reversible ion associations in bulk ILs, which accounted for the formation of all possible Cayley tree clusters and a percolating ionic network (gel). Here we adopt and develop this approach to understand the associations of ILs in the electrical double layer at electrified interfaces. With increasing charge of the electrode, the theory predicts a transition from a regime dominated by a gelled or clustered state to a crowding regime dominated by free ions. This transition from gelation to crowding is conceptually similar to the overscreening to crowding transition.
Collapse
Affiliation(s)
| | - Michael Patrick McEldrew
- Massachusetts Institute of Technology Department of Chemical Engineering, United States of America
| | - J. Pedro de Souza
- MIT, Massachusetts Institute of Technology Department of Chemical Engineering, United States of America
| | | | - Alexei A. Kornyshev
- Department of Chemistry, Imperial College London Faculty of Natural Sciences, United Kingdom
| |
Collapse
|
10
|
Frusawa H. Electric-field-induced oscillations in ionic fluids: a unified formulation of modified Poisson-Nernst-Planck models and its relevance to correlation function analysis. SOFT MATTER 2022; 18:4280-4304. [PMID: 35615919 DOI: 10.1039/d1sm01811f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We theoretically investigate an electric-field-driven system of charged spheres as a primitive model of concentrated electrolytes under an applied electric field. First, we provide a unified formulation for the stochastic charge and density dynamics of the electric-field-driven primitive model using the stochastic density functional theory (DFT). The stochastic DFT integrates the four frameworks (the equilibrium and dynamic DFTs, the liquid state theory and the field-theoretic approach), which allows us to justify in a unified manner various modifications previously made for the Poisson-Nernst-Planck model. Next, we consider stationary density-density and charge-charge correlation functions of the primitive model with a static electric field. We predict an electric-field-induced synchronization between emergences of density and charge oscillations. We are mainly concerned with the emergence of stripe states formed by segregation bands transverse to the external field, thereby demonstrating the following: (i) the electric-field-induced crossover occurs prior to the conventional Kirkwood crossover without an applied electric field, and (ii) the ion concentration dependence of the decay lengths at the onset of oscillations bears a similarity to the underscreening behavior found by recent simulation and theoretical studies on equilibrium electrolytes. Also, the 2D inverse Fourier transform of the correlation function illustrates the existence of stripe states beyond the electric-field-induced Kirkwood crossover.
Collapse
Affiliation(s)
- Hiroshi Frusawa
- Laboratory of Statistical Physics, Kochi University of Technology, Tosa-Yamada, Kochi 782-8502, Japan.
| |
Collapse
|
11
|
Miranda-Quintana RA, Smiatek J. Specific Ion Effects in Different Media: Current Status and Future Challenges. J Phys Chem B 2021; 125:13840-13849. [PMID: 34918938 DOI: 10.1021/acs.jpcb.1c07957] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We discuss the current state of research as well as the future challenges for a deeper understanding of specific ion effects in protic and aprotic solvents as well as various additional media. Despite recent interest in solute or interfacial effects, we focus exclusively on the specific properties of ions in bulk electrolyte solutions. Corresponding results show that many mechanisms remain unknown for these simple media, although theoretical, computational, and experimental studies have provided some insights into explaining individual observations. In particular, the importance of local interactions and electronic properties is emphasized, which enabled a more consistent interpretation of specific ion effects over the past years. Despite current insufficient knowledge, we also discuss future challenges in relation to dynamic properties as well as the influence of different concentrations, different solvents, and solute contributions to gain a deeper understanding of specific ion effects for technological applications.
Collapse
Affiliation(s)
- Ramón Alain Miranda-Quintana
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany.,Digitalization Development Biologicals CMC, Boehringer Ingelheim Pharma GmbH & Co. KG, D-88397 Biberach (Riss), Germany
| |
Collapse
|
12
|
McEldrew M, Goodwin ZAH, Molinari N, Kozinsky B, Kornyshev AA, Bazant MZ. Salt-in-Ionic-Liquid Electrolytes: Ion Network Formation and Negative Effective Charges of Alkali Metal Cations. J Phys Chem B 2021; 125:13752-13766. [PMID: 34902256 DOI: 10.1021/acs.jpcb.1c05546] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Salt-in-ionic liquid electrolytes have attracted significant attention as potential electrolytes for next generation batteries largely due to their safety enhancements over typical organic electrolytes. However, recent experimental and computational studies have shown that under certain conditions alkali cations can migrate in electric fields as if they carried a net negative effective charge. In particular, alkali cations were observed to have negative transference numbers at small mole fractions of alkali-metal salt that revert to the expected net positive transference numbers at large mole fractions. Simulations have provided some insights into these observations, where the formation of asymmetric ionic clusters, as well as a percolating ion network, could largely explain the anomalous transport of alkali cations. However, a thermodynamic theory that captures such phenomena has not been developed, as ionic associations were typically treated via the formation of ion pairs. The theory presented herein, based on the classical polymer theories, describes thermoreversible associations between alkali cations and anions, where the formation of large, asymmetric ionic clusters and a percolating ionic network are a natural result of the theory. Furthermore, we present several general methods to calculate the effective charge of alkali cations in ionic liquids. We note that the negative effective charge is a robust prediction with respect to the parameters of the theory and that the formation of a percolating ionic network leads to the restoration of net positive charges of the cations at large mole fractions of alkali metal salt. Overall, we find excellent qualitative agreement between our theory and molecular simulations in terms of ionic cluster statistics and the effective charges of the alkali cations.
Collapse
Affiliation(s)
- Michael McEldrew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zachary A H Goodwin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College of London, White City Campus, Wood Lane, London W12 0BZ, U.K.,Thomas Young Centre for Theory and Simulation of Materials, Imperial College of London, South Kensington Campus, London SW7 2AZ, U.K
| | - Nicola Molinari
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alexei A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College of London, White City Campus, Wood Lane, London W12 0BZ, U.K.,Thomas Young Centre for Theory and Simulation of Materials, Imperial College of London, South Kensington Campus, London SW7 2AZ, U.K.,Institute of Molecular Science and Engineering, Imperial College of London, South Kensington Campus, London SW7 2AZ, U.K
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Krucker-Velasquez E, Swan JW. Underscreening and hidden ion structures in large scale simulations of concentrated electrolytes. J Chem Phys 2021; 155:134903. [PMID: 34624965 DOI: 10.1063/5.0061230] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The electrostatic screening length predicted by Debye-Hückel theory decreases with increasing ionic strength, but recent experiments have found that the screening length can instead increase in concentrated electrolytes. This phenomenon, referred to as underscreening, is believed to result from ion-ion correlations and short-range forces such as excluded volume interactions among ions. We use Brownian Dynamics to simulate a version of the Restrictive Primitive Model for electrolytes over a wide range of ion concentrations, ionic strengths, and ion excluded volume radii for binary electrolytes. We measure the decay of the charge-charge correlation among ions in the bulk and compare it against scaling trends found experimentally and determined in certain weak coupling theories of ion-ion correlation. Moreover, we find that additional large scale ion structures emerge at high concentrations. In this regime, the frequency of oscillations computed from the charge-charge correlation function is not dominated by electrostatic interactions but rather by excluded volume interactions and with oscillation periods on the order of the ion diameter. We also find the nearest neighbor correlation of ions sharing the same charge transitions from negative at small concentrations to positive at high concentrations, representing the formation of small, like-charge ion clusters. We conclude that the increase in local charge density due to the formation of these clusters and the topological constraints of macroscopic charged surfaces can help explain the degree of underscreening observed experimentally.
Collapse
Affiliation(s)
- Emily Krucker-Velasquez
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James W Swan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
14
|
Rauber D, Philippi F, Kuttich B, Becker J, Kraus T, Hunt P, Welton T, Hempelmann R, Kay CWM. Curled cation structures accelerate the dynamics of ionic liquids. Phys Chem Chem Phys 2021; 23:21042-21064. [PMID: 34522943 DOI: 10.1039/d1cp02889h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquids are modern liquid materials with potential and actual implementation in many advanced technologies. They combine many favourable and modifiable properties but have a major inherent drawback compared to molecular liquids - slower dynamics. In previous studies we found that the dynamics of ionic liquids are significantly accelerated by the introduction of multiple ether side chains into the cations. However, the origin of the improved transport properties, whether as a result of the altered cation conformation or due to the absence of nanostructuring within the liquid as a result of the higher polarity of the ether chains, remained to be clarified. Therefore, we prepared two novel sets of methylammonium based ionic liquids; one set with three ether substituents and another set with three butyl side chains, in order to compare their dynamic properties and liquid structures. Using a range of anions, we show that the dynamics of the ether-substituted cations are systematically and distinctly accelerated. Liquefaction temperatures are lowered and fragilities increased, while at the same time cation-anion distances are slightly larger for the alkylated samples. Furthermore, pronounced liquid nanostructures were not observed. Molecular dynamics simulations demonstrate that the origin of the altered properties of the ether substituted ionic liquids is primarily due to a curled ether chain conformation, in contrast to the alkylated cations where the alkyl chains retain a linear conformation. Thus, the observed structure-property relations can be explained by changes in the geometric shape of the cations, rather than by the absence of a liquid nanostructure. Application of quantum chemical calculations to a simplified model system revealed that intramolecular hydrogen-bonding is responsible for approximately half of the stabilisation of the curled ether-cations, whereas the other half stems from non-specific long-range interactions. These findings give more detailed insights into the structure-property relations of ionic liquids and will guide the development of ionic liquids that do not suffer from slow dynamics.
Collapse
Affiliation(s)
- Daniel Rauber
- Department of Chemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany.
| | - Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Björn Kuttich
- INM-Leibniz Institute for New Materials, Campus D2.2, 66123, Saarbrücken, Germany
| | - Julian Becker
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Tobias Kraus
- Department of Chemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany. .,INM-Leibniz Institute for New Materials, Campus D2.2, 66123, Saarbrücken, Germany
| | - Patricia Hunt
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.,School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand
| | - Tom Welton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Rolf Hempelmann
- Department of Chemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany.
| | - Christopher W M Kay
- Department of Chemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany. .,London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK.
| |
Collapse
|
15
|
Dean JM, Coles SW, Saunders WR, McCluskey AR, Wolf MJ, Walker AB, Morgan BJ. Overscreening and Underscreening in Solid-Electrolyte Grain Boundary Space-Charge Layers. PHYSICAL REVIEW LETTERS 2021; 127:135502. [PMID: 34623837 DOI: 10.1103/physrevlett.127.135502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Polycrystalline solids can exhibit material properties that differ significantly from those of equivalent single-crystal samples, in part, because of a spontaneous redistribution of mobile point defects into so-called space-charge regions adjacent to grain boundaries. The general analytical form of these space-charge regions is known only in the dilute limit, where defect-defect correlations can be neglected. Using kinetic Monte Carlo simulations of a three-dimensional Coulomb lattice gas, we show that grain boundary space-charge regions in nondilute solid electrolytes exhibit overscreening-damped oscillatory space-charge profiles-and underscreening-decay lengths that are longer than the corresponding Debye length and that increase with increasing defect-defect interaction strength. Overscreening and underscreening are known phenomena in concentrated liquid electrolytes, and the observation of functionally analogous behavior in solid electrolyte space-charge regions suggests that the same underlying physics drives behavior in both classes of systems. We therefore expect theoretical approaches developed to study nondilute liquid electrolytes to be equally applicable to future studies of solid electrolytes.
Collapse
Affiliation(s)
- Jacob M Dean
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, United Kingdom
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - Samuel W Coles
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, United Kingdom
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - William R Saunders
- Department of Physics, University of Bath, Claverton Down BA2 7AY, United Kingdom
| | - Andrew R McCluskey
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, United Kingdom
- European Spallation Source ERIC, P.O. Box 176, SE-221 00, Lund, Sweden
| | - Matthew J Wolf
- Department of Physics, University of Bath, Claverton Down BA2 7AY, United Kingdom
| | - Alison B Walker
- Department of Physics, University of Bath, Claverton Down BA2 7AY, United Kingdom
| | - Benjamin J Morgan
- Department of Chemistry, University of Bath, Claverton Down BA2 7AY, United Kingdom
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| |
Collapse
|
16
|
Wang M, Wang Y, Wang C, Gan Z, Huo F, He H, Zhang S. Abnormal Enhanced Free Ions of Ionic Liquids Confined in Carbon Nanochannels. J Phys Chem Lett 2021; 12:6078-6084. [PMID: 34170702 DOI: 10.1021/acs.jpclett.1c01114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Revealing the structure and behavior of confined ionic liquids (ILs) is essential for their applications in green chemical processes. Here, we explore the electroconductivity (σ) and ionic correlation of imidazole ILs confined in graphene nanochannels via joint molecular dynamics simulation and theoretical analysis. The ideal and actual σ of ILs are first calculated, showing a growing tendency and up to the bulk value as the nanochannel size ranges from 1 to 10 nm. To account for the ionic correlation, the ionicity was determined by the ratio of the actual to ideal σ, reflecting the average fraction of free ions in the confined ILs. Amazingly, the ionicity of all three ILs shows an abnormal changing tendency, which first increases and reaches the maximum at 2 nm and then decreases to the bulk value. The conformational analysis, pair dissociating energy, and residence time are further obtained, proving that the abnormal enhanced ionicity should be attributed to the structure reconstruction of ILs near the graphene wall. The analytical model of ionicity herein can guide the rational design of efficient IL-based nanoporous electrodes and solid catalysts.
Collapse
Affiliation(s)
- Mi Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenlu Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongdong Gan
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Basouli H, Mozaffari F, Eslami H. Atomistic insights into structure, ion-pairing and ionic conductivity of 1-ethyl-3-methylimidazolium methylsulfate [Emim][MeSO4] ionic liquid from molecular dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Marion S, Vučemilović-Alagić N, Špadina M, Radenović A, Smith AS. From Water Solutions to Ionic Liquids with Solid State Nanopores as a Perspective to Study Transport and Translocation Phenomena. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100777. [PMID: 33955694 DOI: 10.1002/smll.202100777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Solid state nanopores are single-molecular devices governed by nanoscale physics with a broad potential for technological applications. However, the control of translocation speed in these systems is still limited. Ionic liquids are molten salts which are commonly used as alternate solvents enabling the regulation of the chemical and physical interactions on solid-liquid interfaces. While their combination can be challenging to the understanding of nanoscopic processes, there has been limited attempts on bringing these two together. While summarizing the state of the art and open questions in these fields, several major advances are presented with a perspective on the next steps in the investigations of ionic-liquid filled nanopores, both from a theoretical and experimental standpoint. By analogy to aqueous solutions, it is argued that ionic liquids and nanopores can be combined to provide new nanofluidic functionalities, as well as to help resolve some of the pertinent problems in understanding transport phenomena in confined ionic liquids and providing better control of the speed of translocating analytes.
Collapse
Affiliation(s)
- Sanjin Marion
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015, Lausanne, Switzerland
| | - Nataša Vučemilović-Alagić
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
- PULS Group, Physics Department, Interdisciplinary Center for Nanostructured Films, FAU Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Mario Špadina
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
| | - Aleksandra Radenović
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015, Lausanne, Switzerland
| | - Ana-Sunčana Smith
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
- PULS Group, Physics Department, Interdisciplinary Center for Nanostructured Films, FAU Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
19
|
Liu A, Zhang H, Xing C, Wang Y, Zhang J, Zhang X, Zhang S. Intensified Energy Storage in High-Voltage Nanohybrid Supercapacitors via the Efficient Coupling between TiNb 2O 7/Holey-rGO Nanoarchitectures and Ionic Liquid-Based Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21349-21361. [PMID: 33905225 DOI: 10.1021/acsami.1c03266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Obtaining a comprehensive understanding of the energy storage mechanisms, interface compatibility, electrode-electrolyte coupling, and synergistic effects in carefully programmed nanoarchitectural electrodes and complicated electrolyte systems will provide a shortcut for designing better supercapacitors. Here, we report the intrinsic relationships between the electrochemical performances and microstructures or composition of complex nanoarchitectures and formulated electrolytes. We observed that isolated TiNb2O7 nanoparticles provided both a Faradaic intercalation contribution and a surface pseudocapacitance. The holey graphenes partitioned by nanoparticles not only fostered the fast transport of both electrons and ions but also provided additional electrical double-layer capacitance. The charge contributions from the diffusion-controlled intercalation process and capacitive behaviors, double-layer charging, and pseudocapacitance, were quantitatively distinguished in different electrolytes including a formulated ionic-liquid mixture, various nanocomposite ionogel electrolytes, and an organic LiPF6 electrolyte. A steered molecular dynamics simulation method was used to unveil the underlying principles governing the high-rate capability of holey nanoarchitectures. High energy density and high rate capability in solid-state supercapacitors were achieved using the Faradaic contributions from the lithium-ion insertion process and its surface charge-transfer process in combination with the non-Faradaic contribution from the double-layer effects. The work suggests that practical high-voltage supercapacitors with programmed performances and high safety can be realized via the efficient coupling between emerging nanoarchitectural electrodes and formulated high-voltage electrolytes.
Collapse
Affiliation(s)
- Ao Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haitao Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunxian Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Junwei Zhang
- King Abdullah University of Science and Technology, Division of Physical Science & Engineering, Thuwal 23955-6900, Saudi Arabia
| | - Xixiang Zhang
- King Abdullah University of Science and Technology, Division of Physical Science & Engineering, Thuwal 23955-6900, Saudi Arabia
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
20
|
Shao C, Ong WL, Shiomi J, McGaughey AJH. Nanoconfinement between Graphene Walls Suppresses the Near-Wall Diffusion of the Ionic Liquid [BMIM][PF 6]. J Phys Chem B 2021; 125:4527-4535. [PMID: 33885322 DOI: 10.1021/acs.jpcb.1c02562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We identify two distinct regimes for the diffusion of the ionic liquid [BMIM][PF6] confined between parallel graphene walls using molecular dynamics simulations. Within 2 nm of the wall, the cations and anions form a well-defined layered structure. In this region, the in-plane diffusion coefficients are suppressed when compared to their bulk values and increase monotonically with the distance away from the wall. Beyond 2 nm from the wall, the density profile and in-plane diffusion coefficients recover their bulk values. The channel-averaged in-plane diffusion coefficients increase monotonically with wall separation and recover the bulk values at a separation of 15 nm. A simple semianalytical model is proposed that mirrors this trend. The results also highlight the importance of applying a finite-size correction to molecular dynamics-predicted diffusion coefficients of confined liquids, which may otherwise be unusually larger than their bulk values.
Collapse
Affiliation(s)
- Cheng Shao
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Wee-Liat Ong
- ZJU-UIUC Institute, College of Energy Engineering, Zhejiang University, Haining, Zhejiang 314400, People's Republic of China.,State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Junichiro Shiomi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Alan J H McGaughey
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
21
|
Mahdisoltani S, Golestanian R. Long-Range Fluctuation-Induced Forces in Driven Electrolytes. PHYSICAL REVIEW LETTERS 2021; 126:158002. [PMID: 33929248 DOI: 10.1103/physrevlett.126.158002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
We study the stochastic dynamics of an electrolyte driven by a uniform external electric field and show that it exhibits generic scale invariance despite the presence of Debye screening. The resulting long-range correlations give rise to a Casimir-like fluctuation-induced force between neutral boundaries that confine the ions; this force is controlled by the external electric field, and it can be both attractive and repulsive with similar boundary conditions, unlike other long-range fluctuation-induced forces. This work highlights the importance of nonequilibrium correlations in electrolytes and shows how they can be used to tune interactions between uncharged biological or synthetic structures at large separations.
Collapse
Affiliation(s)
- Saeed Mahdisoltani
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
| |
Collapse
|
22
|
Philippi F, Welton T. Targeted modifications in ionic liquids - from understanding to design. Phys Chem Chem Phys 2021; 23:6993-7021. [PMID: 33876073 DOI: 10.1039/d1cp00216c] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ionic liquids are extremely versatile and continue to find new applications in academia as well as industry. This versatility is rooted in the manifold of possible ion types, ion combinations, and ion variations. However, to fully exploit this versatility, it is imperative to understand how the properties of ionic liquids arise from their constituents. In this work, we discuss targeted modifications as a powerful tool to provide understanding and to enable design. A 'targeted modification' is a deliberate change in the structure of an ionic liquid. This includes chemical changes in an experiment as well as changes to the parameterisation in a computer simulation. In any case, such a change must be purposeful to isolate what is of interest, studying, as far as is possible, only one concept at a time. The concepts can then be used as design elements. However, it is often found that several design elements interact with each other - sometimes synergistically, and other times antagonistically. Targeted modifications are a systematic way of navigating these overlaps. We hope this paper shows that understanding ionic liquids requires experimentalists and theoreticians to join forces and provides a tool to tackle the difficult transition from understanding to design.
Collapse
Affiliation(s)
- Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
| | | |
Collapse
|
23
|
McEldrew M, Goodwin ZAH, Zhao H, Bazant MZ, Kornyshev AA. Correlated Ion Transport and the Gel Phase in Room Temperature Ionic Liquids. J Phys Chem B 2021; 125:2677-2689. [PMID: 33689352 DOI: 10.1021/acs.jpcb.0c09050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Here we present a theory of ion aggregation and gelation of room temperature ionic liquids (RTILs). Based on it, we investigate the effect of ion aggregation on correlated ion transport-ionic conductivity and transference numbers-obtaining closed-form expressions for these quantities. The theory depends on the maximum number of associations a cation and anion can form and the strength of their association. To validate the presented theory, we perform molecular dynamics simulations on several RTILs and a range of temperatures for one RTIL. The simulations indicate the formation of large clusters, even percolating through the system under certain circumstances, thus forming a gel, with the theory accurately describing the obtained cluster distributions in all cases. However, based on the strength and lifetime of associations in the simulated RTILs, we expect free ions to dominate ionic conductivity despite the presence of clusters, and we do not expect the percolating cluster to trigger structural arrest in the RTIL.
Collapse
Affiliation(s)
- Michael McEldrew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zachary A H Goodwin
- Department of Chemistry, Imperial College of London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.,Thomas Young Centre for Theory and Simulation of Materials, Imperial College of London, South Kensington Campus, London SW7 2AZ, U.K
| | - Hongbo Zhao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexei A Kornyshev
- Department of Chemistry, Imperial College of London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.,Thomas Young Centre for Theory and Simulation of Materials, Imperial College of London, South Kensington Campus, London SW7 2AZ, U.K.,Institute of Molecular Science and Engineering, Imperial College of London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
24
|
Judeinstein P, Zeghal M, Constantin D, Iojoiu C, Coasne B. Interplay of Structure and Dynamics in Lithium/Ionic Liquid Electrolytes: Experiment and Molecular Simulation. J Phys Chem B 2021; 125:1618-1631. [PMID: 33535754 DOI: 10.1021/acs.jpcb.0c09597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite their promising use in electrochemical and electrokinetic devices, ionic-liquid-based electrolytes often exhibit complex behavior arising from a subtle interplay of their structure and dynamics. Here, we report a joint experimental and molecular simulation study of such electrolytes obtained by mixing 1-butyl 3-methylimidazolium tetrafluoroborate with lithium tetrafluoroborate. More in detail, experiments consisting of X-ray scattering, pulsed field gradient NMR, and complex impedance spectroscopy are analyzed in the light of molecular dynamics simulations to probe the structural, dynamical, and electrochemical properties of this ionic-liquid-based electrolyte. Lithium addition promotes the nanostructuration of the liquid as evidenced from the appearance of a scattering prepeak that becomes more pronounced. Microscopically, using the partial structure factors determined from molecular dynamics, this prepeak is shown to correspond to the formation of well-ordered positive/negative charge series and also large aggregates (Lin(BF4)4-m)(4-m+n)-, which develop upon lithium addition. Such nanoscale ordering entails a drastic decrease in both the molecular mobility and ionic conductivity. In particular, the marked association of Li+ cations with four BF4- anions and long ion pairing times, which are promoted upon lithium addition, are found to severely hinder the Li+ transport properties.
Collapse
Affiliation(s)
- Patrick Judeinstein
- Université Paris-Saclay, CEA, CNRS, LLB, 91191 Gif-sur-Yvette, France.,Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Mehdi Zeghal
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Doru Constantin
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Cristina Iojoiu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France
| | - Benoit Coasne
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
25
|
Gu C, Yin L, Li S, Zhang B, Liu X, Yan T. Differential capacitance of ionic liquid and mixture with organic solvent. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Abstract
The extent to which cations and anions in ionic liquids (ILs) and ionic liquid solutions are dissociated is of both fundamental scientific interest and practical importance because ion dissociation has been shown to impact viscosity, density, surface tension, volatility, solubility, chemical reactivity, and many other important chemical and physical properties. When mixed with solvents, ionic liquids provide the unique opportunity to investigate ion dissociation from infinite dilution in the solvent to a completely solvent-free state, even at ambient conditions. The most common way to estimate ion dissociation in ILs and IL solutions is by comparing the molar conductivity determined from ionic conductivity measurements such as electrochemical impedance spectroscopy (EIS) (which measure the movement of only the charged, i.e., dissociated, ions) with the molar conductivity calculated from ion diffusivities measured by pulse field gradient nuclear magnetic resonance spectroscopy (PFG-NMR, which gives movement of all of the ions). Because the NMR measurements are time-consuming, the number of ILs and IL solutions investigated by this method is relatively limited. We have shown that use of the Stokes-Einstein equation with estimates of the effective ion Stokes radii allows ion dissociation to be calculated from easily measured density, viscosity, and ionic conductivity data (ρ, η, λ), which is readily available in the literature for a much larger number of pure ILs and IL solutions. Therefore, in this review, we present values of ion dissociation for ILs and IL solutions (aqueous and nonaqueous) determined by both the traditional molar conductivity/PFG-NMR method and the ρ, η, λ method. We explore the effect of cation and anion alkyl chain length, structure, and interaction motifs of the cation and anion, temperature, and the strength of the solvent in IL solutions.
Collapse
Affiliation(s)
- Oscar Nordness
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joan F Brennecke
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
27
|
Abstract
Solid-state polymer electrolytes and high-concentration liquid electrolytes, such as water-in-salt electrolytes and ionic liquids, are emerging materials to replace the flammable organic electrolytes widely used in industrial lithium-ion batteries. Extensive efforts have been made to understand the ion transport mechanisms and optimize the ion transport properties. This perspective reviews the current understanding of the ion transport and polymer dynamics in liquid and polymer electrolytes, comparing the similarities and differences in the two types of electrolytes. Combining recent experimental and theoretical findings, we attempt to connect and explain ion transport mechanisms in different types of small-molecule and polymer electrolytes from a theoretical perspective, linking the macroscopic transport coefficients to the microscopic, molecular properties such as the solvation environment of the ions, salt concentration, solvent/polymer molecular weight, ion pairing, and correlated ion motion. We emphasize universal features in the ion transport and polymer dynamics by highlighting the relevant time and length scales. Several outstanding questions and anticipated developments for electrolyte design are discussed, including the negative transference number, control of ion transport through precision synthesis, and development of predictive multiscale modeling approaches.
Collapse
Affiliation(s)
- Chang Yun Son
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
28
|
Zhang J, Baxter ET, Nguyen MT, Prabhakaran V, Rousseau R, Johnson GE, Glezakou VA. Structure and Stability of the Ionic Liquid Clusters [EMIM] n[BF 4] n+1- ( n = 1-9): Implications for Electrochemical Separations. J Phys Chem Lett 2020; 11:6844-6851. [PMID: 32697088 DOI: 10.1021/acs.jpclett.0c01671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise functionalization of electrodes with size-selected ionic liquid (IL) clusters may improve the application of ILs in electrochemical separations. Herein we report our combined experimental and theoretical investigation of the IL clusters 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM]n[BF4]n+1- (n = 1-9) and demonstrate their selectivity and efficiency toward targeted adsorption of ions from solution. The structures and energies of the IL clusters, predicted with global optimization, agree with and help interpret the ion abundances and stabilities measured by high-mass-resolution electrospray ionization mass spectrometry and collision-induced dissociation experiments. The [EMIM][BF4]2- cluster, which was identified as the most stable IL cluster, was selectively soft-landed onto a working electrode. Electrochemical impedance spectroscopy revealed a lower charge transfer resistance on the soft-landed electrode containing [EMIM][BF4]2- compared with an electrode prepared by drop-casting of an IL solution containing the full range of IL clusters. Our findings indicate that specific IL clusters may be used to increase the efficiency of electrochemical separations by lowering the overpotentials involved.
Collapse
Affiliation(s)
- Jun Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Eric T Baxter
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Manh-Thuong Nguyen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Venkateshkumar Prabhakaran
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Roger Rousseau
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Grant E Johnson
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | |
Collapse
|
29
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
30
|
McEldrew M, Goodwin ZAH, Bi S, Bazant MZ, Kornyshev AA. Theory of ion aggregation and gelation in super-concentrated electrolytes. J Chem Phys 2020; 152:234506. [DOI: 10.1063/5.0006197] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Michael McEldrew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zachary A. H. Goodwin
- Department of Physics, CDT Theory and Simulation of Materials, Imperial College of London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Department of Chemistry, Imperial College of London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
- Thomas Young Centre for Theory and Simulation of Materials, Imperial College of London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Sheng Bi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Martin Z. Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alexei A. Kornyshev
- Department of Chemistry, Imperial College of London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
- Thomas Young Centre for Theory and Simulation of Materials, Imperial College of London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Institute of Molecular Science and Engineering, Imperial College of London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
31
|
Abstract
New experimental technology and theoretical approaches have advanced battery research across length scales ranging from the molecular to the macroscopic. Direct observations of nanoscale phenomena and atomistic simulations have enhanced the understanding of the fundamental electrochemical processes that occur in battery materials. This vast and ever-growing pool of microscopic data brings with it the challenge of isolating crucial performance-decisive physical parameters, an effort that often requires the consideration of intricate interactions across very different length scales and timescales. Effective physics-based battery modeling emphasizes the cross-scale perspective, with the aim of showing how nanoscale physicochemical phenomena affect device performance. This review surveys the methods researchers have used to bridge the gap between the nanoscale and the macroscale. We highlight the modeling of properties or phenomena that have direct and considerable impact on battery performance metrics, such as open-circuit voltage and charge/discharge overpotentials. Particular emphasis is given to thermodynamically rigorous multiphysics models that incorporate coupling between materials' mechanical and electrochemical states.
Collapse
Affiliation(s)
- Guanchen Li
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom; .,The Faraday Institution, Harwell Campus, Didcot OX11 0RA, United Kingdom
| | - Charles W Monroe
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom; .,The Faraday Institution, Harwell Campus, Didcot OX11 0RA, United Kingdom
| |
Collapse
|
32
|
Khaknejad Z, Mehdipour N, Eslami H. Molecular Dynamics Simulation of the Ionic Liquid 1-n-Butyl-3-Methylimidazolium Methylsulfate [Bmim][MeSO 4 ]: Interfacial Properties at the Silica and Vacuum Interfaces. Chemphyschem 2020; 21:1134-1145. [PMID: 32255269 DOI: 10.1002/cphc.202000197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/29/2020] [Indexed: 11/09/2022]
Abstract
Molecular dynamics simulations are done to investigate the structure and dynamics of a thin [Bmim][MeO4 ] film in contact with a hydroxylated silica surface on one side and with vacuum on the other. An examination of the microscopic structure of ionic liquid (IL) film shows that strong layered anionic/cationic structures are formed at both interfaces. At the silica interface, the imidazolium rings are closer to the silica surface (compared to anions) and are coplanar with it. At the vacuum interface, the charged imidazolium ring more concentrates in the interior of the film, but the butyl side chain stretches out toward the vacuum interface. While there exists an excess concentration of the cations at the silica interface, at the vacuum interface an excess concentration of anions (dissolved in the butyl chain) is found. The influence of the interface on the dynamical properties is shown to depend on their time scales. A short-time dynamical property, such as hydrogen bond formation is not noticeably perturbed at the interface. In contrary, long-time properties such as ion-pair formation/rupture and translation of ions across the film are largely decelerated at the silica interface but are accelerate at the vacuum interface. Our findings indicate that the structural relaxation time of ion-pairs, is comparable to diffusion time scale in the IL film. Therefore, ion-pairs are not stable species; the IL is composed of short-lived ion-pairs and freely diffusing ions. However, the structural relaxation times of ion-pairs is still long enough (comparable to the time scale of diffusion) to conclude that correlated motions of counterions influence the macroscopic properties of IL, such as diffusion and ionic conductivity. In this respect, we have shown that correcting the Nernst-Einstein equation for the joint translation of ion-pairs considerably improves the accuracy of calculated ionic conductivities.
Collapse
Affiliation(s)
- Zeynab Khaknejad
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr, 75168, Iran
| | - Nargess Mehdipour
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr, 75168, Iran
| | - Hossein Eslami
- Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr, 75168, Iran
| |
Collapse
|
33
|
Reddy TDN, Mallik BS. Ionic Dynamics of Hydroxylammonium Ionic Liquids: A Classical Molecular Dynamics Simulation Study. J Phys Chem B 2020; 124:4960-4974. [PMID: 32452686 DOI: 10.1021/acs.jpcb.0c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Th. Dhileep N. Reddy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502285 Sangareddy, Telangana, India
| | - Bhabani S. Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502285 Sangareddy, Telangana, India
| |
Collapse
|
34
|
Funari R, Matsumoto A, de Bruyn JR, Shen AQ. Rheology of the Electric Double Layer in Electrolyte Solutions. Anal Chem 2020; 92:8244-8253. [DOI: 10.1021/acs.analchem.0c00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Riccardo Funari
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Atsushi Matsumoto
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - John R. de Bruyn
- Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
35
|
Yuan H, Liu G. Ionic effects on synthetic polymers: from solutions to brushes and gels. SOFT MATTER 2020; 16:4087-4104. [PMID: 32292998 DOI: 10.1039/d0sm00199f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ionic effects on synthetic polymers have attracted extensive attention due to the crucial role of ions in the determination of the properties of synthetic polymers. This review places the focus on specific ion effects, multivalent ion effects, and ionic hydrophilicity/hydrophobicity effects in synthetic polymer systems from solutions to brushes and gels. The specific ion effects on neutral polymers are determined by both the direct and indirect specific ion-polymer interactions, whereas the ion specificities of charged polymers are mainly dominated by the specific ion-pairing interactions. The ionic cross-linking effect exerted by the multivalent ions is widely used to tune the properties of polyelectrolytes, while the reentrant behavior of polyelectrolytes in the presence of multivalent ions still remains poorly understood. The ionic hydrophilicity/hydrophobicity effects not only can be applied to make strong polyelectrolytes thermosensitive, but also can be used to prepare polymeric nano-objects and to control the wettability of polyelectrolyte brush-modified surfaces. The not well-studied ionic hydrogen bond effects are also discussed in the last section of this review.
Collapse
Affiliation(s)
- Haiyang Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026, P. R. China.
| | | |
Collapse
|
36
|
Wang Y, Jarošová R, Swain GM, Blanchard GJ. Characterizing the Magnitude and Structure-Dependence of Free Charge Density Gradients in Room-Temperature Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3038-3045. [PMID: 32148037 DOI: 10.1021/acs.langmuir.0c00237] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have reported previously on the existence of charge-induced long-range organization in the room-temperature ionic liquid (RTIL), BMIM+BF4-. The induced organization is in the form of a free charge density gradient (ρf) that exists over ca. 100 μm into the RTIL in contact with a charged surface. The fluorescence anisotropy decay of a trace-level charged chromophore in the RTIL is measured as a function of distance from the indium-doped tin oxide support surface to probe this free charge density gradient. We report here on the characterization of the free charge density gradient in five different imidazolium RTILs and use these data to evaluate the magnitude of the induced free charge density gradient. Both the extent and magnitude of this gradient depend on the chemical structures of the cationic and anionic constituents of the RTIL used. Control over the magnitude of ρf has implications for the utility of RTILs for a host of applications that remain to be explored fully.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Romana Jarošová
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Greg M Swain
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Gary J Blanchard
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
37
|
Avni Y, Adar RM, Andelman D. Charge oscillations in ionic liquids: A microscopic cluster model. Phys Rev E 2020; 101:010601. [PMID: 32069538 DOI: 10.1103/physreve.101.010601] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Indexed: 06/10/2023]
Abstract
In spite of their enormous applications as alternative energy storage devices and lubricants, room-temperature ionic liquids (ILs) still pose many challenges from a pure scientific viewpoint. We develop an IL microscopic theory in terms of ionic clusters, which describes the IL behavior close to charged interfaces. The full structure factor of finite-size clusters is considered and allows us to retain fine and essential details of the system as a whole. Beside the reduction in the screening, it is shown that ionic clusters cause the charge density to oscillate near charged boundaries, with alternating ion-size thick layers, in agreement with experiments. We distinguish between short-range oscillations that persist for a few ionic layers close to the boundary, as opposed to long-range damped oscillations that hold throughout the bulk. The former can be captured by finite-size ion pairs, while the latter is associated with larger clusters with a pronounced quadrupole (or higher) moment. The long-wavelength limit of our theory recovers the well-known Bazant-Storey-Kornyshev (BSK) equation in the linear regime, and elucidates the microscopic origin of the BSK phenomenological parameters.
Collapse
Affiliation(s)
- Yael Avni
- Raymond and Beverly Sackler School of Physics and Astronomy, and Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Ram M Adar
- Raymond and Beverly Sackler School of Physics and Astronomy, and Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - David Andelman
- Raymond and Beverly Sackler School of Physics and Astronomy, and Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| |
Collapse
|
38
|
Ma K, Lian C, Woodward CE, Qin B. Classical density functional theory reveals coexisting short-range structural decay and long-range force decay in ionic liquids. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Ntim S, Sulpizi M. Role of image charges in ionic liquid confined between metallic interfaces. Phys Chem Chem Phys 2020; 22:10786-10791. [DOI: 10.1039/d0cp00409j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atomistic molecular dynamics simulations unveil a minor role of metal polarisation at ionic liquid/gold interface and provide a novel description of the interface where long range effects are seen in dynamical properties up to 10 nm from surface.
Collapse
Affiliation(s)
- Samuel Ntim
- Institut für Physik
- Johannes Gutenberg Universität
- 55128-Mainz
- Germany
| | | |
Collapse
|
40
|
Matsumoto R, Thompson MW, Cummings PT. Ion Pairing Controls Physical Properties of Ionic Liquid-Solvent Mixtures. J Phys Chem B 2019; 123:9944-9955. [DOI: 10.1021/acs.jpcb.9b08509] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ray Matsumoto
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Multiscale Modeling and Simulation Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Matthew W. Thompson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Multiscale Modeling and Simulation Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Peter T. Cummings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Multiscale Modeling and Simulation Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
41
|
Sha M, Ma X, Li N, Luo F, Zhu G, Fayer MD. Dynamical properties of a room temperature ionic liquid: Using molecular dynamics simulations to implement a dynamic ion cage model. J Chem Phys 2019; 151:154502. [PMID: 31640381 DOI: 10.1063/1.5126231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transport behavior of ionic liquids (ILs) is pivotal for a variety of applications, especially when ILs are used as electrolytes. Many aspects of the transport dynamics of ILs remain to be understood. Here, a common ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimNTf2), was studied with molecular dynamics simulations. The results show that BmimNTf2 displays typical structural relaxation, subdiffusive behavior, and a breakdown of the Stokes-Einstein diffusion relation as in glass-forming liquids. In addition, the simulations show that the translational dynamics, reorientation dynamics, and structural relaxation dynamics are well described by the Vogel-Fulcher-Tammann equation like fragile glass forming liquids. Building on previous work that employed ion cage models, it was found that the diffusion dynamics of the cations and anions were well described by a hopping process random walk where the step time is the ion cage lifetime obtained from the cage correlation function. Detailed analysis of the ion cage structures indicated that the electrostatic potential energy of the ion cage dominates the diffusion dynamics of the caged ion. The ion orientational relaxation dynamics showed that ion reorientation is a necessary step for ion cage restructuring. The dynamic ion cage model description of ion diffusion presented here may have implications for designing ILs to control their transport behavior.
Collapse
Affiliation(s)
- Maolin Sha
- Department of Physics and Materials Engineering, Hefei Normal University, Hefei 230061, China
| | - Xiaohang Ma
- Department of Physics and Materials Engineering, Hefei Normal University, Hefei 230061, China
| | - Na Li
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China
| | - Fabao Luo
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China
| | - Guanglai Zhu
- Institute of Atomic and Molecular Physics, Anhui Normal University, Wuhu 241000, China
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
42
|
Ye J, Wu YC, Xu K, Ni K, Shu N, Taberna PL, Zhu Y, Simon P. Charge Storage Mechanisms of Single-Layer Graphene in Ionic Liquid. J Am Chem Soc 2019; 141:16559-16563. [PMID: 31588740 DOI: 10.1021/jacs.9b07134] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Graphene-based carbon materials are promising candidates for electrical double-layer (EDL) capacitors, and there is considerable interest in understanding the structure and properties of the graphene/electrolyte interface. Here, electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (EQCM) are used to characterize the ion fluxes and adsorption on single-layer graphene in neat ionic liquid (EMI-TFSI) electrolyte. It is found that a positively charged ion-species desorption and ion reorganization dominate the double-layer charging during positive and negative polarizations, respectively, leading to the increase in EDL capacitance with applied potential.
Collapse
Affiliation(s)
- Jianglin Ye
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China.,CIRIMAT UMR CNRS 5085 , Université Paul Sabatier , 118 route de Narbonne , 31062 Toulouse , France
| | - Yih-Chyng Wu
- CIRIMAT UMR CNRS 5085 , Université Paul Sabatier , 118 route de Narbonne , 31062 Toulouse , France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , CNRS FR3459 , 80039 Amiens , France
| | - Kui Xu
- CIRIMAT UMR CNRS 5085 , Université Paul Sabatier , 118 route de Narbonne , 31062 Toulouse , France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , CNRS FR3459 , 80039 Amiens , France
| | - Kun Ni
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Na Shu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Pierre-Louis Taberna
- CIRIMAT UMR CNRS 5085 , Université Paul Sabatier , 118 route de Narbonne , 31062 Toulouse , France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , CNRS FR3459 , 80039 Amiens , France
| | - Yanwu Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Patrice Simon
- CIRIMAT UMR CNRS 5085 , Université Paul Sabatier , 118 route de Narbonne , 31062 Toulouse , France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , CNRS FR3459 , 80039 Amiens , France
| |
Collapse
|
43
|
Chen Z, Li Z, Ma X, Wang Y, Zhou Q, Zhang S. A new DMF-derived ionic liquid with ultra-high conductivity for high-capacitance electrolyte in electric double-layer capacitor. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Zhao M, Wu B, Lall-Ramnarine SI, Ramdihal JD, Papacostas KA, Fernandez ED, Sumner RA, Margulis CJ, Wishart JF, Castner EW. Structural analysis of ionic liquids with symmetric and asymmetric fluorinated anions. J Chem Phys 2019; 151:074504. [PMID: 31438705 DOI: 10.1063/1.5111643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ionic liquids (ILs) with relatively low viscosities and broad windows of electrochemical stability are often constructed by pairing asymmetric cations with bisfluorosulfonylimide (FSI-) or bistriflimide (NTf2 -) anions. In this work, we systematically studied the structures of ILs with these anions and related perfluorobis-sulfonylimide anions with asymmetry and/or longer chains: (fluorosulfonyl)(trifluoromethylsulfonyl)imide (BSI0,1 -), bis(pentafluoroethylsulfonyl)imide (BETI-), and (trifluoromethylsulfonyl) (nonafluorobutylsulfonyl)imide (BSI1,4 -) using high energy X-ray scattering and molecular dynamics simulation methods. 1-alkyl-3-methylimidazolium cations with shorter (ethyl, Im2,1 +) and longer (octyl, Im1,8 +) hydrocarbon chains were selected to examine how the sizes of nonpolar hydrocarbon and fluorous chains affect IL structures and properties. In comparison with these, we also computationally explored the structure of ionic liquids with anions having longer fluorinated tails.
Collapse
Affiliation(s)
- Man Zhao
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Boning Wu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Sharon I Lall-Ramnarine
- Chemistry Department, Queensborough Community College of the City University of New York, Bayside, New York 11364, USA
| | - Jasodra D Ramdihal
- Chemistry Department, Queensborough Community College of the City University of New York, Bayside, New York 11364, USA
| | - Kristina A Papacostas
- Chemistry Department, Queensborough Community College of the City University of New York, Bayside, New York 11364, USA
| | - Eddie D Fernandez
- Chemistry Department, Queensborough Community College of the City University of New York, Bayside, New York 11364, USA
| | - Rawlric A Sumner
- Chemistry Department, Queensborough Community College of the City University of New York, Bayside, New York 11364, USA
| | - Claudio J Margulis
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | - James F Wishart
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Edward W Castner
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
45
|
Matsubara Y, Koide Y. Boundary Temperatures at Which Ionic Liquid Solutions Dissolving an Electroactive Ion Start to Exhibit a Colligative Behavior. CHEM LETT 2019. [DOI: 10.1246/cl.190265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasuo Matsubara
- Department of Material and Life Chemistry, Kanagawa University, Rokkakubashi, Yokohama, Kanagawa 221-8686, Japan
| | - Yoshihiro Koide
- Department of Material and Life Chemistry, Kanagawa University, Rokkakubashi, Yokohama, Kanagawa 221-8686, Japan
| |
Collapse
|
46
|
Gaddam P, Ducker W. Electrostatic Screening Length in Concentrated Salt Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5719-5727. [PMID: 30945875 DOI: 10.1021/acs.langmuir.9b00375] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thin films (0-30 nm) of very concentrated aqueous monovalent salt solutions (2-10 M of LiCl, NaCl, and CsCl) were examined to determine how ionic strength affects the screening length of the electrostatic potential. Measurements were consistent with a screening length in the range of 3-12 nm. The screening length increased monotonically as a function of salt concentration, and the rate of increase was a function of the monovalent salt type. The results were incompatible with the Debye length of Poisson-Boltzmann theory but consistent with previous measurements of surface forces. The screening length was determined from the surface excess of fluorescein, a dianion under basic conditions, which was present in trace amounts in the thin film and detected via its fluorescence emission. That is, we directly observed that the ion concentration in very concentrated solutions is perturbed far from an interface.
Collapse
Affiliation(s)
- Prudhvidhar Gaddam
- Department of Chemical Engineering and Center for Soft Matter, Biological Physics , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - William Ducker
- Department of Chemical Engineering and Center for Soft Matter, Biological Physics , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
47
|
Matsumoto A, Del Giudice F, Rotrattanadumrong R, Shen AQ. Rheological Scaling of Ionic-Liquid-Based Polyelectrolytes in Ionic Liquid Solutions. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Atsushi Matsumoto
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Francesco Del Giudice
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
- Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Sewansea SA1 8EN, U.K
| | - Rachapun Rotrattanadumrong
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
48
|
Radiom M. Ionic liquid–solid interface and applications in lubrication and energy storage. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Abstract
The acidity ladder scale in [BMPY][NTf2] was successfully expanded toward the weak acidity region for about five more p K units compared to the previously established one. This allows the acidities of a series of 13 aliphatic and aromatic nitroalkanes to be determined accurately by the UV-vis spectroscopic method. The acidity of nitroalkane in [BMPY][NTf2] covers ∼8 p K units and is significantly weaker than those in DMSO and water. The Hammett plot for 4-substituted phenylnitromethanes shows an excellent linearity with a slope of 2.06, which is rather close to that in DMSO but significantly larger than that in water (0.80). The regression analyses reveal that the solvation behavior of [BMPY][NTf2] on the acidic dissociations of C-H acids is similar to that of DMSO.
Collapse
Affiliation(s)
- Feixiang Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Pengju Ji
- Center of Basic Molecular Science (CBMS), Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry , Tsinghua University , Beijing 100084 , China.,State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , China
| |
Collapse
|
50
|
McDaniel JG, Son CY. Ion Correlation and Collective Dynamics in BMIM/BF4-Based Organic Electrolytes: From Dilute Solutions to the Ionic Liquid Limit. J Phys Chem B 2018; 122:7154-7169. [DOI: 10.1021/acs.jpcb.8b04886] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jesse G. McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Chang Yun Son
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|