1
|
Cheng Y, Hay CD, Mahuttanatan SM, Hindley JW, Ces O, Elani Y. Microfluidic technologies for lipid vesicle generation. LAB ON A CHIP 2024; 24:4679-4716. [PMID: 39323383 PMCID: PMC11425070 DOI: 10.1039/d4lc00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Encapsulating biological and non-biological materials in lipid vesicles presents significant potential in both industrial and academic settings. When smaller than 100 nm, lipid vesicles and lipid nanoparticles are ideal vehicles for drug delivery, facilitating the delivery of payloads, improving pharmacokinetics, and reducing the off-target effects of therapeutics. When larger than 1 μm, vesicles are useful as model membranes for biophysical studies, as synthetic cell chassis, as bio-inspired supramolecular devices, and as the basis of protocells to explore the origin of life. As applications of lipid vesicles gain prominence in the fields of nanomedicine, biotechnology, and synthetic biology, there is a demand for advanced technologies for their controlled construction, with microfluidic methods at the forefront of these developments. Compared to conventional bulk methods, emerging microfluidic methods offer advantages such as precise size control, increased production throughput, high encapsulation efficiency, user-defined membrane properties (i.e., lipid composition, vesicular architecture, compartmentalisation, membrane asymmetry, etc.), and potential integration with lab-on-chip manipulation and analysis modules. We provide a review of microfluidic lipid vesicle generation technologies, focusing on recent advances and state-of-the-art techniques. Principal technologies are described, and key research milestones are highlighted. The advantages and limitations of each approach are evaluated, and challenges and opportunities for microfluidic engineering of lipid vesicles to underpin a new generation of therapeutics, vaccines, sensors, and bio-inspired technologies are presented.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Callum D Hay
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Suchaya M Mahuttanatan
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - James W Hindley
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Oscar Ces
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Yuval Elani
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
2
|
Xiao Y, Xu K, Zhao P, Ji L, Hua C, Jia X, Wu X, Diao L, Zhong W, Lyu G, Xing M. Microgels sense wounds' temperature, pH and glucose. Biomaterials 2024; 314:122813. [PMID: 39270627 DOI: 10.1016/j.biomaterials.2024.122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Wound healing concerns almost all bed-side related diseases. With our increasing comprehension of healing nature, the physical and chemical natures behind the wound microenvironment have been decoupled. Wound care demands timely screening and prompt diagnosis of wound complications such as infection and inflammation. Biosensor by the way of exhaustive collection, delivery, and analysis of data, becomes indispensable to arrive at an ideal healing upshot and controlling complications by capturing in-situ wound status. Electrochemical based sensors carry some potential unstable performance subjected to the electrical circuitry and power access and contamination. The colorimetric sensors are free from those concerns. We report that microsensors designed from O/W/O of capillary fluids can continuously monitor wound temperature, pH and glucose concentration. We combined three different types of microgels to encapsulate liquid crystals of cholesterol, nontoxic fuel litmus and two glucose-sensitizing enzymes. A smartphone applet was then developed to convert wound healing images to RGB of digitalizing data. The microgel dressing effectively demonstrates the local temperature change, pH and glucose levels of the wound in high resolution where a microgel is a 'pixel'. They are highly responsive, reversible and accurate. Monitoring multiple physicochemical and physiological indicators provides tremendous potential with insight into healing processing.
Collapse
Affiliation(s)
- Yuqin Xiao
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Peng Zhao
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Leilei Ji
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Chao Hua
- Medical School of Nantong University, Nantong, 226019, China
| | - Xiaoli Jia
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xiaozhuo Wu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Ling Diao
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Guozhong Lyu
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China; Medical School of Nantong University, Nantong, 226019, China; National Research Center for Emergency Medicine, Beijing, China.
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, R3T 2N2, Canada.
| |
Collapse
|
3
|
Mika T, Kalnins M, Spalvins K. The use of droplet-based microfluidic technologies for accelerated selection of Yarrowia lipolytica and Phaffia rhodozyma yeast mutants. Biol Methods Protoc 2024; 9:bpae049. [PMID: 39114747 PMCID: PMC11303513 DOI: 10.1093/biomethods/bpae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Microorganisms are widely used for the industrial production of various valuable products, such as pharmaceuticals, food and beverages, biofuels, enzymes, amino acids, vaccines, etc. Research is constantly carried out to improve their properties, mainly to increase their productivity and efficiency and reduce the cost of the processes. The selection of microorganisms with improved qualities takes a lot of time and resources (both human and material); therefore, this process itself needs optimization. In the last two decades, microfluidics technology appeared in bioengineering, which allows for manipulating small particles (from tens of microns to nanometre scale) in the flow of liquid in microchannels. The technology is based on small-volume objects (microdroplets from nano to femtolitres), which are manipulated using a microchip. The chip is made of an optically transparent inert to liquid medium material and contains a series of channels of small size (<1 mm) of certain geometry. Based on the physical and chemical properties of microparticles (like size, weight, optical density, dielectric constant, etc.), they are separated using microsensors. The idea of accelerated selection of microorganisms is the application of microfluidic technologies to separate mutants with improved qualities after mutagenesis. This article discusses the possible application and practical implementation of microfluidic separation of mutants, including yeasts like Yarrowia lipolytica and Phaffia rhodozyma after chemical mutagenesis will be discussed.
Collapse
Affiliation(s)
- Taras Mika
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Martins Kalnins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| | - Kriss Spalvins
- Institute of Energy Systems and Environment, Riga Technical University, 12 – K1 Āzene street, Riga, LV-1048, Latvia
| |
Collapse
|
4
|
Mohseni A, Azimi AA, Bijarchi MA. Formation of magnetic double emulsions under steady and variable magnetic fields from a 3D-printed coaxial capillary device. Anal Chim Acta 2024; 1309:342573. [PMID: 38772651 DOI: 10.1016/j.aca.2024.342573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Double emulsions (DEs) have attracted researchers' attention to be utilized as a promising platform in biomedical and chemical applications. Several actuation mechanisms have been proposed for the generation of DEs. The conventional DE formation approaches (e.g. two-stage emulsification) suffer from low monodispersity. The electric actuation (i.e. coaxial electrospray technology) has been demonstrated as a controllable method for the DE formation, while the capability of magnetic actuation has not been studied yet. RESULT In the present study, the generation of ferrofluid double emulsions (FDEs), made from water-based ferrofluid as a core and oil as a shell, under the magnetic actuation of a permanent magnet with a steady magnetic field and an electromagnet with DC and pulse width modulation (PWM) magnetic fields was investigated with a simple controllable setup fabricated using 3D printing. The effect of various parameters affecting the FDE formation, such as the fluid flow rates, the magnetic field type, the magnetic flux density, and the PWM frequency and duty cycle, on the FDE formation characteristics, including the inner and outer equivalent diameters, and the formation frequency was studied. Under the steady magnetic field, two regimes of the FDE formation were identified: inertia-dominated and magnet-dominated. SIGNIFICANCE Wireless power-free magnetic actuation provides better control over the FDE formation, enhancing this process by increasing the FDE formation frequency with high monodispersity. The PWM magnetic field offers excellent controllability over the FDE formation with low-volume or no, in some cases, satellite droplets by tuning the PWM frequency and the duty cycle.
Collapse
Affiliation(s)
- Alireza Mohseni
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ali Abbas Azimi
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohamad Ali Bijarchi
- Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
5
|
Kumar H, Tiwari M, Dugyala VR, Basavaraj MG. Single-Step Formation of Pickering Double Emulsions by Exploiting Differential Wettability of Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7860-7870. [PMID: 38557075 DOI: 10.1021/acs.langmuir.3c03374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We present a modular single-step strategy for the formation of single and Pickering double emulsions (DEs). To this end, we consider the role of surface modification of particles and their dispersibility in different phases in the context of the design of Pickering emulsions by varying the volume fraction of oil in the oil-water mixture (ϕoil) used for emulsification. In particular, the experiments are performed by considering (a) model spherical and nonspherical colloids of different wettabilities which are tailored by oleic acid treatment, (b) immiscible liquids with or without particles, and (c) varying ϕoil from 0.1 to 0.9. We show that it is possible to affect a transition from (i) oil-in-water (O/W) emulsion to water-in-oil (W/O) emulsion and (ii) oil-in-water (O/W) to oil-in-water-in-oil (O/W/O) to water-in-oil (W/O) as ϕoil is systematically varied. We elucidate that the range of ϕoil at which particle stabilized DEs of the O/W/O type form can be tuned by engineering surface modification of particles to different extents. Furthermore, the arrangement of particles on the surface of droplets in the Pickering DEs is discussed. Our results conclusively establish that the differential wettability of particles is the key for the design of Pickering DEs. The versatility of the proposed strategy is established by developing DEs using a number of model colloidal systems.
Collapse
Affiliation(s)
- Hemant Kumar
- Polymer Engineering and Colloid Science (PECS) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Madhvi Tiwari
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Venkateshwar Rao Dugyala
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science (PECS) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
6
|
Wu Q, Huang X, Liu R, Yang X, Xiao G, Jiang N, Weitz DA, Song Y. Multichannel Multijunction Droplet Microfluidic Device to Synthesize Hydrogel Microcapsules with Different Core-Shell Structures and Adjustable Core Positions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1950-1960. [PMID: 37991242 DOI: 10.1021/acs.langmuir.3c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Core-shell hydrogel microcapsules have sparked great interest due to their unique characteristics and prospective applications in the medical, pharmaceutical, and cosmetic fields. However, complex synthetic procedures and expensive costs have limited their practical application. Herein, we designed and prepared several multichannel and multijunctional droplet microfluidic devices based on soft lithography for the effective synthesis of core-shell hydrogel microcapsules for different purposes. Additionally, two different cross-linking processes (ultraviolet (UV) exposure and interfacial polymerization) were used to synthesize different types of core-shell structured hydrogel microcapsules. Hydrogel microcapsules with gelatin methacryloyl (GelMA) as the core and polyacrylamide (PAM) as the thin shell were synthesized using UV cross-linking. Using an interfacial polymerization process, another core-shell structured microcapsule with GelMA as the core and Ca2+ cross-linked alginate with polyethylenimine (PEI) as the shell was constructed, and the core diameter and total droplet diameter were flexibly controlled by carving. Noteworthy, these hydrogel microcapsules exhibit stimuli-responsiveness and controlled release ability. Overall, a novel technique was developed to successfully synthesize various hydrogel microcapsules with core-shell microstructures. The hydrogel microcapsules possess a multilayered structure that facilitates the coassembly of cells and drugs, as well as the layered assembly of multiple drugs, to develop synergistic therapeutic regimens. These adaptable and controllable hydrogel microdroplets shall held great promise for multicell or multidrug administration as well as for high-throughput drug screening.
Collapse
Affiliation(s)
- Qiong Wu
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xing Huang
- Physics Department, School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Mechanical Engineering, Hangzhou City University, Hangzhou 310015, China
- Zhejiang Provincial Engineering Center of Integrated Manufacturing Technology and Intelligent Equipment, Hangzhou City University, Hangzhou 310015, China
| | - Ran Liu
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Zhengzhou Tianzhao Biomedical Technology Company Ltd., Zhengzhou 451450, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou 310003, China
| | - Xinzhu Yang
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Zhengzhou Tianzhao Biomedical Technology Company Ltd., Zhengzhou 451450, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou 310003, China
| | - Gao Xiao
- Physics Department, School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Environmental Science and Engineering, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Nan Jiang
- Physics Department, School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- JinFeng Laboratory, Chongqing 401329, China
| | - David A Weitz
- Physics Department, School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yujun Song
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Physics Department, School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States
- Zhengzhou Tianzhao Biomedical Technology Company Ltd., Zhengzhou 451450, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou 310003, China
| |
Collapse
|
7
|
Rana M, Ahmad R, Taylor AF. A microfluidic double emulsion platform for spatiotemporal control of pH and particle synthesis. LAB ON A CHIP 2023; 23:4504-4513. [PMID: 37766460 DOI: 10.1039/d3lc00711a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The temporal control of pH in microreactors such as emulsion droplets plays a vital role in applications including biomineralisation and microparticle synthesis. Typically, pH changes are achieved either by passive diffusion of species into a droplet or by acid/base producing reactions. Here, we exploit an enzyme reaction combined with the properties of a water-oil-water (W/O/W) double emulsion to control the pH-time profile in the droplets. A microfluidic platform was used for production of ∼100-200 μm urease-encapsulated double emulsions with a tuneable mineral oil shell thickness of 10-40 μm. The reaction was initiated on-demand by addition of urea and a pulse in base (ammonia) up to pH 8 was observed in the droplets after a time lag of the order of minutes. The pH-time profile can be manipulated by the diffusion timescale of urea and ammonia through the oil layer, resulting in a steady state pH not observed in bulk reactive solutions. This approach may be used to regulate the formation of pH sensitive materials under mild conditions and, as a proof of concept, the reaction was coupled to calcium phosphate precipitation in the droplets. The oil shell thickness was varied to select for either brushite microplatelets or hydroxyapatite particles, compared to the mixture of different precipitates obtained in bulk.
Collapse
Affiliation(s)
- Maheen Rana
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - Raheel Ahmad
- Massachusetts General Hospital Cancer Center and, Harvard Medical School, Boston, Massachusetts, 02129, USA
| | - Annette F Taylor
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
8
|
Jayakumar J, Ballon A, Pallarès J, Vernet A, de Lamo-Castellví S, Güell C, Ferrando M. Lesser mealworm (A. diaperinus) protein as a replacement for dairy proteins in the production of O/W emulsions: Droplet coalescence studies using microfluidics under controlled conditions. Food Res Int 2023; 172:113100. [PMID: 37689864 DOI: 10.1016/j.foodres.2023.113100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Dairy proteins are commonly used to stabilize oil-in-water (O/W) emulsions, which can be replaced by other sustainable sources of proteins, such as insects. This study investigated the potential of lesser mealworm protein concentrate (LMPC) as a sustainable alternative to whey protein isolate (WPI) in stabilizing oil-in-water (O/W) emulsions using microfluidics. The frequency of coalescence (Fcoal) was calculated using images of emulsion droplets obtained near the inlet and outlet of the coalescence channel. The stability of O/W emulsions, produced using sunflower oil (SFO) or hexadecane and stabilized with varying concentrations of LMPC and WPI (0.02% to 0.0005% w/v), was compared under controlled conditions. The dispersed phase fraction (5.3%-14.3% v/v), protein adsorption time onto oil droplets (0.0398-0.158 s), and pH (pH = 3 and pH = 7) were also studied. Fcoal was greatest (0.42 s-1) when the protein concentration was lowest (0.0005%), the oil percentage was highest (14.3%), the adsorption period was shortest (0.0398 s), and the pH was 3. Droplet diameters did not vary significantly, with values between 55 and 118 μm, across protein concentrations or adsorption periods, but a rise in oil fraction resulted in a substantial increase in droplet diameters. Increases in protein content, adsorption duration, and oil percentage all resulted in increased stability (reduction of Fcoal). While LMPC and WPI showed similar results in microfluidic experiments and other test conditions, further research is needed to verify LMPC's efficacy as a replacement for WPI in food emulsification. Nonetheless, the findings suggest that LMPC has potential as a substitute for WPI in this application.
Collapse
Affiliation(s)
- Jitesh Jayakumar
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Aurélie Ballon
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Jordi Pallarès
- Departament d'Enginyeria Mecànica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Anton Vernet
- Departament d'Enginyeria Mecànica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Sílvia de Lamo-Castellví
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Carme Güell
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Montserrat Ferrando
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain.
| |
Collapse
|
9
|
Yazdanparast S, Rezai P, Amirfazli A. Microfluidic Droplet-Generation Device with Flexible Walls. MICROMACHINES 2023; 14:1770. [PMID: 37763933 PMCID: PMC10536617 DOI: 10.3390/mi14091770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Controlling droplet sizes is one of the most important aspects of droplet generators used in biomedical research, drug discovery, high-throughput screening, and emulsion manufacturing applications. This is usually achieved by using multiple devices that are restricted in their range of generated droplet sizes. In this paper, a co-flow microfluidic droplet-generation device with flexible walls was developed such that the width of the continuous (C)-phase channel around the dispersed (D)-phase droplet-generating needle can be adjusted on demand. This actuation mechanism allowed for the adjustment of the C-phase flow velocity, hence providing modulated viscous forces to manipulate droplet sizes in a single device. Two distinct droplet-generation regimes were observed at low D-phase Weber numbers, i.e., a dripping regime at high- and medium-channel widths and a plug regime at low-channel widths. The effect of channel width on droplet size was investigated in the dripping regime under three modes of constant C-phase flow rate, velocity, and Capillary number. Reducing the channel width at a constant C-phase flow rate had the most pronounced effect on producing smaller droplets. This effect can be attributed to the combined influences of the wall effect and increased C-phase velocity, leading to a greater impact on droplet size due to the intensified viscous force. Droplet sizes in the range of 175-913 µm were generated; this range was ~2.5 times wider than the state of the art, notably using a single microfluidic device. Lastly, an empirical model based on Buckingham's Pi theorem was developed to predict the size of droplets based on channel width and height as well as the C-phase Capillary and Reynolds numbers.
Collapse
Affiliation(s)
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada
| | - Alidad Amirfazli
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
10
|
Long F, Guo Y, Zhang Z, Wang J, Ren Y, Cheng Y, Xu G. Recent Progress of Droplet Microfluidic Emulsification Based Synthesis of Functional Microparticles. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300063. [PMID: 37745820 PMCID: PMC10517312 DOI: 10.1002/gch2.202300063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/28/2023] [Indexed: 09/26/2023]
Abstract
The remarkable control function over the functional material formation process enabled by droplet microfluidic emulsification approaches can lead to the efficient and one-step encapsulation of active substances in microparticles, with the microparticle characteristics well regulated. In comparison to the conventional fabrication methods, droplet microfluidic technology can not only construct microparticles with various shapes, but also provide excellent templates, which enrich and expand the application fields of microparticles. For instance, intersection with disciplines in pharmacy, life sciences, and others, modifying the structure of microspheres and appending functional materials can be completed in the preparation of microparticles. The as-prepared polymer particles have great potential in a wide range of applications for chemical analysis, heavy metal adsorption, and detection. This review systematically introduces the devices and basic principles of particle preparation using droplet microfluidic technology and discusses the research of functional microparticle formation with high monodispersity, involving a plethora of types including spherical, nonspherical, and Janus type, as well as core-shell, hole-shell, and controllable multicompartment particles. Moreover, this review paper also exhibits a critical analysis of the current status and existing challenges, and outlook of the future development in the emerging fields has been discussed.
Collapse
Affiliation(s)
- Fei Long
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
| | - Yanhong Guo
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Zhiyu Zhang
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
| | - Jing Wang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
- Department of Electrical and Electronic EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Yong Ren
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Research Group for Fluids and Thermal EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingbo315040P. R. China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Yuchuan Cheng
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Gaojie Xu
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| |
Collapse
|
11
|
Karamikamkar S, Yalcintas EP, Haghniaz R, de Barros NR, Mecwan M, Nasiri R, Davoodi E, Nasrollahi F, Erdem A, Kang H, Lee J, Zhu Y, Ahadian S, Jucaud V, Maleki H, Dokmeci MR, Kim H, Khademhosseini A. Aerogel-Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease-Targeting Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204681. [PMID: 37217831 PMCID: PMC10427407 DOI: 10.1002/advs.202204681] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 05/24/2023]
Abstract
Aerogel-based biomaterials are increasingly being considered for biomedical applications due to their unique properties such as high porosity, hierarchical porous network, and large specific pore surface area. Depending on the pore size of the aerogel, biological effects such as cell adhesion, fluid absorption, oxygen permeability, and metabolite exchange can be altered. Based on the diverse potential of aerogels in biomedical applications, this paper provides a comprehensive review of fabrication processes including sol-gel, aging, drying, and self-assembly along with the materials that can be used to form aerogels. In addition to the technology utilizing aerogel itself, it also provides insight into the applicability of aerogel based on additive manufacturing technology. To this end, how microfluidic-based technologies and 3D printing can be combined with aerogel-based materials for biomedical applications is discussed. Furthermore, previously reported examples of aerogels for regenerative medicine and biomedical applications are thoroughly reviewed. A wide range of applications with aerogels including wound healing, drug delivery, tissue engineering, and diagnostics are demonstrated. Finally, the prospects for aerogel-based biomedical applications are presented. The understanding of the fabrication, modification, and applicability of aerogels through this study is expected to shed light on the biomedical utilization of aerogels.
Collapse
Affiliation(s)
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Elham Davoodi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Fatemeh Nasrollahi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los Angeles (UCLA)Los AngelesCA90095USA
| | - Ahmet Erdem
- Department of Biomedical EngineeringKocaeli UniversityUmuttepe CampusKocaeli41001Turkey
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Junmin Lee
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| | | | - Han‐Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- College of PharmacyKorea UniversitySejong30019Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| |
Collapse
|
12
|
De Nicola A, Montis C, Donati G, Molinaro A, Silipo A, Balestri A, Berti D, Di Lorenzo F, Zhu YL, Milano G. Bacterial lipids drive compartmentalization on the nanoscale. NANOSCALE 2023; 15:8988-8995. [PMID: 37144495 PMCID: PMC10210972 DOI: 10.1039/d3nr00559c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
The design of cellular functions in synthetic systems, inspired by the internal partitioning of living cells, is a constantly growing research field that is paving the way to a large number of new remarkable applications. Several hierarchies of internal compartments like polymersomes, liposomes, and membranes are used to control the transport, release, and chemistry of encapsulated species. However, the experimental characterization and the comprehension of glycolipid mesostructures are far from being fully addressed. Lipid A is indeed a glycolipid and the endotoxic part of Gram-negative bacterial lipopolysaccharide; it is the moiety that is recognized by the eukaryotic receptors giving rise to the modulation of innate immunity. Herein we propose, for the first time, a combined approach based on hybrid Particle-Field (hPF) Molecular Dynamics (MD) simulations and Small Angle X-Ray Scattering (SAXS) experiments to gain a molecular picture of the complex supramolecular structures of lipopolysaccharide (LPS) and lipid A at low hydration levels. The mutual support of data from simulations and experiments allowed the unprecedented discovery of the presence of a nano-compartmentalized phase composed of liposomes of variable size and shape which can be used in synthetic biological applications.
Collapse
Affiliation(s)
- Antonio De Nicola
- Scuola Superiore Meridionale, Via Largo San Marcellino 10, 80132 Napoli, Italy
- Graduate School of Organic Materials Science, Yamagata, University, Jonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
| | - Costanza Montis
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze and CSGI, 50019 Firenze, Italy.
| | - Greta Donati
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy.
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy.
| | - Arianna Balestri
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze and CSGI, 50019 Firenze, Italy.
| | - Debora Berti
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze and CSGI, 50019 Firenze, Italy.
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, 80126 Napoli, Italy.
| | - You-Liang Zhu
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Giuseppe Milano
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering, Piazzale V. Tecchio, 80, 80125 Napoli, Italy.
| |
Collapse
|
13
|
Farokhirad S, Solanky P, Shad MM. Spreading, Breakup, and Rebound Behaviors of Compound Droplets Impacting on Microstructured Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3645-3655. [PMID: 36853952 DOI: 10.1021/acs.langmuir.2c03273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, we numerically investigate the dynamic behaviors of micron-scale compound droplets impacting onto superhydrophobic surfaces patterned by micropillar arrays using a three-dimensional free-energy-based lattice Boltzmann method. We address how the interplay between physical parameters (i.e., Weber number) and geometric parameters (i.e., pillar density and spacing and the droplet core-shell size ratio) affects the spreading, breakup, and rebound behaviors of compound droplets, which remains unknown and unquantified. We identify three flow regimes in which the interfacial morphology between the core and shell evolves and breaks up in distinct ways: namely, hole nucleation at the substrate, rupture of the film at the apex of the shell, and toroidal formation of the core droplet before its detachment from the pillars. We demonstrate that the transition between the three regimes and the maximum spreading factor of compound droplets can be changed by varying the core-shell size ratio, the pillar density, and the Weber number. The non-wetting behavior of the pillar structures eventually forms a new suspended pure droplet or a new suspended compound droplet, which can be characterized by the core-shell size ratio, pillar density, and Weber number.
Collapse
Affiliation(s)
- Samaneh Farokhirad
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, New Jersey 07114, United States
| | - Priyanjali Solanky
- Department of Computer Science, Cornell University, Ithaca, New York 14853, United States
| | - Mahmood M Shad
- Harvard Research Computing, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
14
|
Advances in unusual interfacial polymerization techniques. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
15
|
Huang X, Saadat M, Ali Bijarchi M, Behshad Shafii M. Ferrofluid double emulsion generation and manipulation under magnetic fields. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Schot M, Araújo-Gomes N, van Loo B, Kamperman T, Leijten J. Scalable fabrication, compartmentalization and applications of living microtissues. Bioact Mater 2023; 19:392-405. [PMID: 35574053 PMCID: PMC9062422 DOI: 10.1016/j.bioactmat.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 10/27/2022] Open
Abstract
Living microtissues are used in a multitude of applications as they more closely resemble native tissue physiology, as compared to 2D cultures. Microtissues are typically composed of a combination of cells and materials in varying combinations, which are dictated by the applications' design requirements. Their applications range wide, from fundamental biological research such as differentiation studies to industrial applications such as cruelty-free meat production. However, their translation to industrial and clinical settings has been hindered due to the lack of scalability of microtissue production techniques. Continuous microfluidic processes provide an opportunity to overcome this limitation as they offer higher throughput production rates as compared to traditional batch techniques, while maintaining reproducible control over microtissue composition and size. In this review, we provide a comprehensive overview of the current approaches to engineer microtissues with a focus on the advantages of, and need for, the use of continuous processes to produce microtissues in large quantities. Finally, an outlook is provided that outlines the required developments to enable large-scale microtissue fabrication using continuous processes.
Collapse
Affiliation(s)
- Maik Schot
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Nuno Araújo-Gomes
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Bas van Loo
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Tom Kamperman
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Jeroen Leijten
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| |
Collapse
|
17
|
Jia F, Gao Y, Wang H. Recent Advances in Drug Delivery System Fabricated by Microfluidics for Disease Therapy. Bioengineering (Basel) 2022; 9:625. [PMID: 36354536 PMCID: PMC9687342 DOI: 10.3390/bioengineering9110625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
Traditional drug therapy faces challenges such as drug distribution throughout the body, rapid degradation and excretion, and extensive adverse reactions. In contrast, micro/nanoparticles can controllably deliver drugs to target sites to improve drug efficacy. Unlike traditional large-scale synthetic systems, microfluidics allows manipulation of fluids at the microscale and shows great potential in drug delivery and precision medicine. Well-designed microfluidic devices have been used to fabricate multifunctional drug carriers using stimuli-responsive materials. In this review, we first introduce the selection of materials and processing techniques for microfluidic devices. Then, various well-designed microfluidic chips are shown for the fabrication of multifunctional micro/nanoparticles as drug delivery vehicles. Finally, we describe the interaction of drugs with lymphatic vessels that are neglected in organs-on-chips. Overall, the accelerated development of microfluidics holds great potential for the clinical translation of micro/nanoparticle drug delivery systems for disease treatment.
Collapse
Affiliation(s)
- Fuhao Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbing Gao
- Troop 96901 of the Chinese People’s Liberation Army, Beijing 100094, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Lai YK, Opalski AS, Garstecki P, Derzsi L, Guzowski J. A double-step emulsification device for direct generation of double emulsions. SOFT MATTER 2022; 18:6157-6166. [PMID: 35770691 DOI: 10.1039/d2sm00327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In microfluidic step emulsification, the size of droplets generated in the dripping regime is predominantly determined by the nozzle's height and only weakly depends on the applied flow rates or liquid properties. While the generation of monodisperse emulsions at high throughput using step emulsifiers has been well established, the generation of double emulsions, i.e., liquid core-shell structures, is still challenging. Here, we demonstrate a novel double-step emulsification method for the direct generation of multi-core double-emulsions and provide a predictive model for the number of cores. While the mechanism of the formation of the core droplets or empty shell droplets follows the well-established scenario of simple step emulsification, the formation of double-emulsion droplets is strongly affected by the presence of the cores. Passing of the cores through the narrowing neck of the shell postpones shell pinch-off. In particular, we demonstrate that our system can be used for the generation of arbitrary large, tightly packed droplet clusters consisting of a controllable number of droplets. Finally, we discuss the options of upscaling the system for high-throughput generation of tailored double emulsions.
Collapse
Affiliation(s)
- Yu-Kai Lai
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Adam S Opalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Ladislav Derzsi
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
19
|
Fan Q, Guo Y, Zhao S, Bao B. Generation of liquid metal double emulsion droplets using gravity-induced microfluidics. RSC Adv 2022; 12:20686-20695. [PMID: 35919154 PMCID: PMC9295136 DOI: 10.1039/d2ra04120k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Several microfluidic applications are available for liquid metal droplet generation, but the surface oxidation of liquid metal has placed limitations on its application. Multiphase microfluidics makes it possible to protect the inner droplets by producing the structure of double emulsion droplets. Thus, the generation of liquid metal double emulsion droplets has been developed to prevent the surface oxidation of Galinstan. However, the generation using common methods faces considerable challenges due to the gravity effect introduced from the high density of liquid metal, making it difficult for the shell phase to wrap the inner phase. To overcome this obstacle, we introduce an innovative method - a gravity-induced microfluidic device - to creatively generate controllable liquid metal double emulsion droplets, achieved by altering the measurable inclination angle of the plane. It is found that when the inclination angle ranges from 30° to 45°, the device manages to generate liquid metal double emulsion droplets with perfect double sphere-type configuration. Additionally, the core-shell liquid metal hydrogel capsules present potential applications as multifunctional materials for controlled release systems in drug delivery and biomedical applications. By regulating pH or imposing mechanical force, the hydrogel shell can be dissolved to recover the electrical conductivity of Galinstan for applications in flexible electronics, self-healing conductors, elastomer electronic skin, and tumor therapy.
Collapse
Affiliation(s)
- Qiyue Fan
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yaohao Guo
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology Shanghai 200237 China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
| | - Bo Bao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
20
|
Calhoun SGK, Brower KK, Suja VC, Kim G, Wang N, McCully AL, Kusumaatmaja H, Fuller GG, Fordyce PM. Systematic characterization of effect of flow rates and buffer compositions on double emulsion droplet volumes and stability. LAB ON A CHIP 2022; 22:2315-2330. [PMID: 35593127 PMCID: PMC9195911 DOI: 10.1039/d2lc00229a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Double emulsion droplets (DEs) are water/oil/water droplets that can be sorted via fluorescence-activated cell sorting (FACS), allowing for new opportunities in high-throughput cellular analysis, enzymatic screening, and synthetic biology. These applications require stable, uniform droplets with predictable microreactor volumes. However, predicting DE droplet size, shell thickness, and stability as a function of flow rate has remained challenging for monodisperse single core droplets and those containing biologically-relevant buffers, which influence bulk and interfacial properties. As a result, developing novel DE-based bioassays has typically required extensive initial optimization of flow rates to find conditions that produce stable droplets of the desired size and shell thickness. To address this challenge, we conducted systematic size parameterization quantifying how differences in flow rates and buffer properties (viscosity and interfacial tension at water/oil interfaces) alter droplet size and stability, across 6 inner aqueous buffers used across applications such as cellular lysis, microbial growth, and drug delivery, quantifying the size and shell thickness of >22 000 droplets overall. We restricted our study to stable single core droplets generated in a 2-step dripping-dripping formation regime in a straightforward PDMS device. Using data from 138 unique conditions (flow rates and buffer composition), we also demonstrated that a recent physically-derived size law of Wang et al. can accurately predict double emulsion shell thickness for >95% of observations. Finally, we validated the utility of this size law by using it to accurately predict droplet sizes for a novel bioassay that requires encapsulating growth media for bacteria in droplets. This work has the potential to enable new screening-based biological applications by simplifying novel DE bioassay development.
Collapse
Affiliation(s)
- Suzanne G K Calhoun
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Kara K Brower
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Vineeth Chandran Suja
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- School of Engineering and Applied Sciences, Harvard University, MA - 01234, USA
| | - Gaeun Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Ningning Wang
- School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Alexandra L McCully
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg BioHub, San Francisco, CA 94158, USA
| |
Collapse
|
21
|
Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Bio-hybrid technologies aim to replicate the unique capabilities of biological systems that could surpass advanced artificial technologies. Soft bio-hybrid robots consist of synthetic and living materials and have the potential to self-assemble, regenerate, work autonomously, and interact safely with other species and the environment. Cells require a sufficient exchange of nutrients and gases, which is guaranteed by convection and diffusive transport through liquid media. The functional development and long-term survival of biological tissues in vitro can be improved by dynamic flow culture, but only microfluidic flow control can develop tissue with fine structuring and regulation at the microscale. Full control of tissue growth at the microscale will eventually lead to functional macroscale constructs, which are needed as the biological component of soft bio-hybrid technologies. This review summarizes recent progress in microfluidic techniques to engineer biological tissues, focusing on the use of muscle cells for robotic bio-actuation. Moreover, the instances in which bio-actuation technologies greatly benefit from fusion with microfluidics are highlighted, which include: the microfabrication of matrices, biomimicry of cell microenvironments, tissue maturation, perfusion, and vascularization.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Thomas Buchner
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Stefan Weirich
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
22
|
Chen Z, Kheiri S, Young EWK, Kumacheva E. Trends in Droplet Microfluidics: From Droplet Generation to Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6233-6248. [PMID: 35561292 DOI: 10.1021/acs.langmuir.2c00491] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the past decade, droplet microfluidics has attracted growing interest in biology, medicine, and engineering. In this feature article, we review the advances in droplet microfluidics, primarily focusing on the research conducted by our group. Starting from the introduction to the mechanisms of microfluidic droplet formation and the strategies for cell encapsulation in droplets, we then focus on droplet transformation into microgels. Furthermore, we review three biomedical applications of droplet microfluidics, that is, 3D cell culture, single-cell analysis, and in vitro organ and disease modeling. We conclude with our perspective on future directions in the development of droplet microfluidics for biomedical applications.
Collapse
Affiliation(s)
- Zhengkun Chen
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada, M5S 3G8
| | - Edmond W K Young
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada, M5S 3G8
- Institute of Biomedical Engineering, University of Toronto, Roseburgh Building, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
- Institute of Biomedical Engineering, University of Toronto, Roseburgh Building, 164 College Street, Toronto, Ontario, Canada M5S 3G9
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
| |
Collapse
|
23
|
Breakup Dynamics of Droplets in Symmetric Y-Junction Microchannels. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The experimental method is used to study the droplet breaking characteristics of an immiscible liquid–liquid t8wo-phase fluid in symmetric Y-junction microchannels. Silicone oil is used as the dispersed phase and distilled water containing 0.5% SDS is used as the continuous phase. Three breakup behaviors were observed: breakup with permanent obstruction, breakup with gaps, and no breakup. Two stages of the change of the neck width of the sub-droplet during the breakup process were discovered: a rapid breakup stage and a thread breakup stage. The effect of the breakup behavior on the flow pattern was investigated and it was found that the breakup behavior of the droplets made the slug flow area smaller; further, a new flow pattern was observed, being droplet flow. The length of the sub-droplet increases with an increase of the volume flow rate of the dispersed phase and the ratio of the volume flow rate of the dispersed phase to the continuous phase, while decreasing with an increase of the volume flow rate and the capillary number of the continuous phase. Based on the influence of the two-phase flow parameters on the length of the sub-droplet, a correlation formula for the length of the sub-droplet with good predictive performance is proposed.
Collapse
|
24
|
Lian X, Song C, Wang Y. Regulating the Oil-Water Interface to Construct Double Emulsions: Current Understanding and Their Biomedical Applications. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2019-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Yang Z, Ma X, Wang S, Liu D. Generation and Evolution of Double Emulsions in a Circular Microchannel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Bogdan M, Montessori A, Tiribocchi A, Bonaccorso F, Lauricella M, Jurkiewicz L, Succi S, Guzowski J. Stochastic Jetting and Dripping in Confined Soft Granular Flows. PHYSICAL REVIEW LETTERS 2022; 128:128001. [PMID: 35394304 DOI: 10.1103/physrevlett.128.128001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
We report new dynamical modes in confined soft granular flows, such as stochastic jetting and dripping, with no counterpart in continuum viscous fluids. The new modes emerge as a result of the propagation of the chaotic behavior of individual grains-here, monodisperse emulsion droplets-to the level of the entire system as the emulsion is focused into a narrow orifice by an external viscous flow. We observe avalanching dynamics and the formation of remarkably stable jets-single-file granular chains-which occasionally break, resulting in a non-Gaussian distribution of cluster sizes. We find that the sequences of droplet rearrangements that lead to the formation of such chains resemble unfolding of cancer cell clusters in narrow capillaries, overall demonstrating that microfluidic emulsion systems could serve to model various aspects of soft granular flows, including also tissue dynamics at the mesoscale.
Collapse
Affiliation(s)
- Michał Bogdan
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Andrea Montessori
- Dipartimento di Ingegneria, Universit degli Studi Roma tre, via Vito Volterra 62, Rome 00146, Italy
| | - Adriano Tiribocchi
- Istituto per le Applicazioni del Calcolo del Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy
| | - Fabio Bonaccorso
- Istituto per le Applicazioni del Calcolo del Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy
- Department of Physics and National Institute for Nuclear Physics, University of Rome "Tor Vergata", Via Cracovia, 50, 00133 Rome, Italy
| | - Marco Lauricella
- Istituto per le Applicazioni del Calcolo del Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy
| | - Leon Jurkiewicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Sauro Succi
- Istituto per le Applicazioni del Calcolo del Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy
- Center for Life Nanoscience at la Sapienza, Istituto Italiano di Tecnologia, viale Regina Elena 295, 00161 Rome, Italy
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
27
|
Du Y, Liu Y, Wang D, Bai H, Wang Z, He X, Zhang P, Tian J, Wang J. Peptidic microarchitecture-trapped tumor vaccine combined with immune checkpoint inhibitor or PI3Kγ inhibitor can enhance immunogenicity and eradicate tumors. J Immunother Cancer 2022; 10:jitc-2021-003564. [PMID: 35217574 PMCID: PMC8883272 DOI: 10.1136/jitc-2021-003564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 12/30/2022] Open
Abstract
Background With the rapid development of immune checkpoint inhibitors and neoantigen (NeoV)-based personalized tumor vaccines, tumor immunotherapy has shown promising therapeutic results. However, the limited efficacy of available tumor vaccines impedes the development of personalized tumor immunotherapy. In this study, we developed a novel tumor vaccine system and proposed combined therapeutic strategies for improving treatment effects. Methods We developed a novel tumor vaccine system comprising a newly synthesized peptidic microarchitecture (PMA) with high assembly efficacy. The PMA-trapped neoantigen vaccine was developed to codeliver tumor neoantigen and the Toll-like receptor 9 agonist CpG (NeoV), abbreviated as PMA-NeoV. A microfluidic chip was used to produce PMA particles in a uniform and precise manner. Vaccine effectiveness was investigated both in vitro and in vivo. The combined immunotherapeutic effect of PMA-NeoV with anti-programmed cell death ligand 1 antibody (aPD-L1) or with the phosphatidylinositol 3‑kinase γ (PI3Kγ) inhibitor IPI-549 was further tested in MC38 mouse tumor model. Results PMA-NeoV not only promoted codelivery of the tumor vaccine but also potentiated vaccine immunogenicity. Moreover, compared with free NeoV, PMA-NeoV significantly increased the number of tumor-infiltrating lymphocytes, promoted the neoantigen-specific systemic immune response, and suppressed murine colon MC38 tumor growth. Furthermore, PMA-NeoV increased the expression of programmed cell death receptor-1 on T lymphocytes, and in combination with aPD-L1 eradicated seven of eight MC38 tumors by rescuing exhausted T lymphocytes. Moreover, we combined the PMA-NeoV with the IPI-549, a molecular switch that controls immune suppression, and found that this combination significantly suppressed tumor growth and eradicated five of eight inoculated tumors, by switching suppressive macrophages to their active state and activating T cells to prime a robust tumor immune microenvironment. Conclusions We developed a tumor vaccine delivery system and presented a promising personalized tumor vaccine-based therapeutic regimen in which a tumor vaccine delivery system is combined with an aPD-L1 or PI3Kγ inhibitor to improve tumor immunotherapy outcomes.
Collapse
Affiliation(s)
- Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,The University of Chinese Academy of Sciences, Beijing, China
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Di Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Bai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhijie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiran He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pei Zhang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China .,The University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China.,School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
A novel microfluidic device for double emulsion formation: The effects of design parameters on droplet production performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Zhao H, Yang Y, Chen Y, Li J, Wang L, Li C. A review of multiple Pickering emulsions: Solid stabilization, preparation, particle effect, and application. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117085] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Chen Z, Song S, Ma J, Ling SD, Wang YD, Kong TT, Xu JH. Fabrication of magnetic core/shell hydrogels via microfluidics for controlled drug delivery. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Dannenberg PH, Wang J, Zhuo Y, Cho S, Kim KH, Yun SH. Droplet microfluidic generation of a million optical microparticle barcodes. OPTICS EXPRESS 2021; 29:38109-38118. [PMID: 34808870 PMCID: PMC8687102 DOI: 10.1364/oe.439143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 05/19/2023]
Abstract
Micron-scale barcode particles enable labelling of small objects. Here, we demonstrate high-throughput barcode fabrication inside a microfluidic chip that can embed multiple, dye-doped high quality-factor whispering gallery mode cavities inside aqueous droplets at kilohertz rates. These droplets are then cured to form polyacrylamide hydrogel beads as small as 30 μm in diameter. Optical resonance spectra of the embedded cavities provide the hydrogels with unique barcodes with their diversity combinatorically scaled with the number of embedded cavities. Using 3 cavities per hydrogel, we obtain approximately one million uniquely identifiable, optically readable barcode microparticles.
Collapse
Affiliation(s)
- Paul H. Dannenberg
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Co-first authors with equal contribution
| | - Jie Wang
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
- Co-first authors with equal contribution
| | - Yue Zhuo
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Sangyeon Cho
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Kwon-Hyeon Kim
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
32
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021; 60:24368-24387. [PMID: 33539653 PMCID: PMC8596820 DOI: 10.1002/anie.202016154] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Evolution is essential to the generation of complexity and ultimately life. It relies on the propagation of the properties, traits, and characteristics that allow an organism to survive in a challenging environment. It is evolution that shaped our world over about four billion years by slow and iterative adaptation. While natural evolution based on selection is slow and gradual, directed evolution allows the fast and streamlined optimization of a phenotype under selective conditions. The potential of directed evolution for the discovery and optimization of enzymes is mostly limited by the throughput of the tools and methods available for screening. Over the past twenty years, versatile tools based on droplet microfluidics have been developed to address the need for higher throughput. In this Review, we provide a chronological overview of the intertwined development of microfluidics droplet-based compartmentalization methods and in vivo directed evolution of enzymes.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Jaicy Vallapurackal
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
33
|
Yan J, Mangolini F. Engineering encapsulated ionic liquids for next-generation applications. RSC Adv 2021; 11:36273-36288. [PMID: 35492767 PMCID: PMC9043619 DOI: 10.1039/d1ra05034f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Ionic liquids (ILs) have attracted considerable attention in several sectors (from energy storage to catalysis, from drug delivery to separation media) owing to their attractive properties, such as high thermal stability, wide electrochemical window, and high ionic conductivity. However, their high viscosity and surface tension compared to conventional organic solvents can lead to unfavorable transport properties. To circumvent undesired kinetics effects limiting mass transfer, the discretization of ILs into small droplets has been proposed as a method to increase the effective surface area and the rates of mass transfer. In the present review paper, we summarize the different methods developed so far for encapsulating ILs in organic or inorganic shells and highlight characteristic features of each approach, while outlining potential applications. The remarkable tunability of ILs, which derives from the high number of anions and cations currently available as well as their permutations, combines with the possibility of tailoring the composition, size, dispersity, and properties (e.g., mechanical, transport) of the shell to provide a toolbox for rationally designing encapsulated ILs for next-generation applications, including carbon capture, energy storage devices, waste handling, and microreactors. We conclude this review with an outlook on potential applications that could benefit from the possibility of encapsulating ILs in organic and inorganic shells. Encapsulated ionic liquids (ILs) are candidate materials for several applications owing to the attractive properties of ILs combined with the enhanced mass transfer rate obtained through the discretization of ILs in small capsules.![]()
Collapse
Affiliation(s)
- Jieming Yan
- Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA.,Materials Science and Engineering Program, The University of Texas at Austin Austin TX 78712 USA
| | - Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin Austin TX 78712 USA.,Walker Department of Mechanical Engineering, The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
34
|
Jin Jia S, Liang Y, Chen J, Tan HW, Yang N. Synthesis of Nano-polypyrrole/Reduced Graphene Oxide via Double Emulsion Method. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21350078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Fabrication of Microparticles with Front-Back Asymmetric Shapes Using Anisotropic Gelation. MICROMACHINES 2021; 12:mi12091121. [PMID: 34577764 PMCID: PMC8466830 DOI: 10.3390/mi12091121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/13/2023]
Abstract
Droplet-based microfluidics is a powerful tool for producing monodispersed micrometer-sized droplets with controlled sizes and shapes; thus, it has been widely applied in diverse fields from fundamental science to industries. Toward a simpler method for fabricating microparticles with front–back asymmetry in their shapes, we studied anisotropic gelation of alginate droplets, which occurs inside a flow-focusing microfluidic device. In the proposed method, sodium alginate (NaAlg) aqueous phase fused with a calcium chloride (CaCl2) emulsion dispersed in the organic phase just before the aqueous phase breaks up into the droplets. The fused droplet with a front–back asymmetric shape was generated, and the asymmetric shape was kept after geometrical confinement by a narrow microchannel was removed. The shape of the fused droplet depended on the size of prefused NaAlg aqueous phase and a CaCl2 emulsion, and the front–back asymmetry appeared in the case of the smaller emulsion size. The analysis of the velocity field inside and around the droplet revealed that the stagnation point at the tip of the aqueous phase also played an important role. The proposed mechanism will be potentially applicable as a novel fabrication technique of microparticles with asymmetric shapes.
Collapse
|
36
|
Droplet formation in oval microchannels with a double T junction: a CFD and experimental study. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Montessori A, Tiribocchi A, Bogdan M, Bonaccorso F, Lauricella M, Guzowski J, Succi S. Translocation Dynamics of High-Internal Phase Double Emulsions in Narrow Channels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9026-9033. [PMID: 34291636 PMCID: PMC8503876 DOI: 10.1021/acs.langmuir.1c01026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/18/2021] [Indexed: 06/13/2023]
Abstract
We numerically study the translocation dynamics of double emulsion drops with multiple close-packed inner droplets within constrictions. Such liquid architectures, which we refer to as HIPdEs (high-internal phase double emulsions), consist of a ternary fluid, in which monodisperse droplets are encapsulated within a larger drop in turn immersed in a bulk fluid. Extensive two-dimensional lattice Boltzmann simulations show that if the area fraction of the internal drops is close to the packing fraction limit of hard spheres and the height of the channel is much smaller than the typical size of the emulsion, the crossing yields permanent shape deformations persistent over long periods of time. Morphological changes and rheological response are quantitatively assessed in terms of the structure of the velocity field, circularity of the emulsion, and rate of energy dissipated by viscous forces. Our results may be used to improve the design of soft mesoscale porous materials, which employ HIPdEs as templates for tissue engineering applications.
Collapse
Affiliation(s)
- Andrea Montessori
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, Rome 00185, Italy
| | - Adriano Tiribocchi
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, Rome 00185, Italy
- Center
for Life Nanoscience at la Sapienza, Istituto
Italiano di Tecnologia, Viale Regina Elena 295, Rome 00161, Italy
| | - Michał Bogdan
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Fabio Bonaccorso
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, Rome 00185, Italy
- Center
for Life Nanoscience at la Sapienza, Istituto
Italiano di Tecnologia, Viale Regina Elena 295, Rome 00161, Italy
- Dipartimento
di Fisica, Università degli Studi
di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Marco Lauricella
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, Rome 00185, Italy
| | - Jan Guzowski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Sauro Succi
- Istituto
per le Applicazioni del Calcolo CNR, Via dei Taurini 19, Rome 00185, Italy
- Center
for Life Nanoscience at la Sapienza, Istituto
Italiano di Tecnologia, Viale Regina Elena 295, Rome 00161, Italy
- Institute
for Applied Computational Science, Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
38
|
Stucki A, Jusková P, Nuti N, Schmitt S, Dittrich PS. Synchronized Reagent Delivery in Double Emulsions for Triggering Chemical Reactions and Gene Expression. SMALL METHODS 2021; 5:e2100331. [PMID: 34927870 DOI: 10.1002/smtd.202100331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Indexed: 06/14/2023]
Abstract
Microfluidic methods for the formation of single and double emulsion (DE) droplets allow for the encapsulation and isolation of reactants inside nanoliter compartments. Such methods have greatly enhanced the toolbox for high-throughput screening for cell or enzyme engineering and drug discovery. However, remaining challenges in the supply of reagents into these enclosed compartments limit the applicability of droplet microfluidics. Here, a strategy is introduced for on-demand delivery of reactants in DEs. Lipid vesicles are used as reactant carriers, which are co-encapsulated in double emulsions and release their cargo upon addition of an external trigger, here the anionic surfactant sodium dodecyl sulfate (SDS). The reagent present inside the lipid vesicles stays isolated from the remaining content of the DE vessel until SDS enters the DE lumen and solubilizes the vesicles' lipid bilayer. The versatility of the method is demonstrated with two critical applications chosen as representative assays for high-throughput screening: the induction of gene expression in bacteria and the initiation of an enzymatic reaction. This method not only allows for the release of the lipid vesicle content inside DEs to be synchronized for all DEs but also for the release to be triggered at any desired time.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Petra Jusková
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Nicola Nuti
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Steven Schmitt
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| |
Collapse
|
39
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Jaicy Vallapurackal
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Thomas R. Ward
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| |
Collapse
|
40
|
Misra N, Bhatt S, Arefi‐Khonsari F, Kumar V. State of the art in nonthermal plasma processing for biomedical applications: Can it help fight viral pandemics like COVID-19? PLASMA PROCESSES AND POLYMERS (PRINT) 2021; 18:2000215. [PMID: 34220401 PMCID: PMC8237024 DOI: 10.1002/ppap.202000215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/07/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Plasma processing finds widespread biomedical applications, such as the design of biosensors, antibiofouling surfaces, controlled drug delivery systems, and in plasma sterilizers. In the present coronavirus disease (COVID-19) situation, the prospect of applying plasma processes like surface activation, plasma grafting, plasma-enhanced chemical vapor deposition/plasma polymerization, surface etching, plasma immersion ion implantation, crosslinking, and plasma decontamination to provide timely solutions in the form of better antiviral alternatives, practical diagnostic tools, and reusable personal protective equipment is worth exploring. Herein, the role of nonthermal plasmas and their contributions toward healthcare are timely reviewed to engage different communities in assisting healthcare associates and clinicians, not only to combat the current COVID-19 pandemic but also to prevent similar kinds of future outbreaks.
Collapse
Affiliation(s)
- Nilanjal Misra
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
| | - Sudhir Bhatt
- Department of Engineering and Physical SciencesInstitute of Advanced ResearchGandhinagarGujaratIndia
| | | | - Virendra Kumar
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
- Department of Chemical SciencesHomi Bhabha National InstituteAnushaktinagarMumbaiMaharashtraIndia
| |
Collapse
|
41
|
Torbensen K, Baroud CN, Ristori S, Abou-Hassan A. Tip Streaming of a Lipid-Stabilized Double Emulsion Generated in a Microfluidic Channel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7442-7448. [PMID: 34110835 DOI: 10.1021/acs.langmuir.1c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water/oil/water (w/o/w) double emulsions (DEs) are multicompartment structures which can be used in many technological applications and in fundamental studies as models of cell like microreactors or templates for other materials. Herein, we study the flow dynamics of water/oil/water double emulsions generated in a microfluidic device and stabilized with the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). We show that by varying the concentration of lipids in the oil phase (chloroform) or by modulating the viscosity of the aqueous continuous phase, the double emulsions under flow exhibit a rich dynamic behavior. An initial deformation of the double emulsions is followed by tube extraction at the rear end, relative to the flow direction, resulting in pinch off at the tube extremity by which small aqueous compartments are released. These compartments are phospholipid vesicles as deduced from fluorescence experiments. The overall process can thus be of help to shed light on the mechanical aspects of phenomena such as the budding and fusion in cell membranes.
Collapse
Affiliation(s)
- Kristian Torbensen
- Sorbonne Université, CNRS UMR 8234, Laboratoire PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX, PHENIX, F-75005 Paris, France
| | - Charles N Baroud
- Physical Microfluidics & Bioengineering, Institut Pasteur, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Sandra Ristori
- Chemistry Department & CSGI, University of Florence, via Della Lastruccia 3, 50019 Sesto Fioretino, Italy
| | - Ali Abou-Hassan
- Sorbonne Université, CNRS UMR 8234, Laboratoire PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX, PHENIX, F-75005 Paris, France
| |
Collapse
|
42
|
Del Giudice F, D'Avino G, Maffettone PL. Microfluidic formation of crystal-like structures. LAB ON A CHIP 2021; 21:2069-2094. [PMID: 34002182 DOI: 10.1039/d1lc00144b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Crystal-like structures find application in several fields ranging from biomedical engineering to material science. For instance, droplet crystals are critical for high throughput assays and material synthesis, while particle crystals are important for particles and cell encapsulation, Drop-seq technologies, and single-cell analysis. Formation of crystal-like structures relies entirely on the possibility of manipulating with great accuracy the micrometer-size objects forming the crystal. In this context, microfluidic devices offer versatile tools for the precise manipulation of droplets and particles, thus enabling fabrication of crystal-like structures that form due to hydrodynamic interactions among droplets or particles. In this review, we aim at providing an holistic representation of crystal-like structure formation mediated by hydrodynamic interactions in microfluidic devices. We also discuss the physical origin of these hydrodynamic interactions and their relation to parameters such as device geometry, fluid properties, and flow conditions.
Collapse
Affiliation(s)
- Francesco Del Giudice
- System and Process Engineering Centre, College of Engineering, Fabian Way, Swansea, SA1 8EN, UK.
| | - Gaetano D'Avino
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Universitá degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Universitá degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
43
|
He S, Joseph N, Feng S, Jellicoe M, Raston CL. Application of microfluidic technology in food processing. Food Funct 2021; 11:5726-5737. [PMID: 32584365 DOI: 10.1039/d0fo01278e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microfluidic technology is interdisciplinary with a diversity of applications including in food processing. The rapidly growing global population demands more advanced technologies in food processing to produce more functional and safer food, and for such processing microfluidic devices are a popular choice. This review critically critiques the state-of-the-art designs of microfluidic devices and their applications in food processing, and identifies the key research trends and future research directions for maximizing the value of microfluidic technology. Capillary, planar, and terrace droplet generation systems are currently used in the design of microfluidic devices, each with their strengths and weaknesses as applied in food processing, for emulsification, food safety measurements, and bioactive compound extraction. Conventional channel-based microfluidic devices are prone to clogging, and have high labor costs and low productivity, and their "directional pressure" restricts scaling-up capabilities. These disadvantages can be overcome by using "inside-out centrifugal force" and the new generation continuous flow thin-film microfluidic Vortex Fluidic Device (VFD) which facilitates translating laboratory processing into commercial products. Also highlighted is controlling protein-polysaccharide interactions and the applications of the produced ingredients in food formulations as targets for future development in the field.
Collapse
Affiliation(s)
- Shan He
- Department of Food Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China. and Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Nikita Joseph
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Shilun Feng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| |
Collapse
|
44
|
Aghlmandi A, Nikshad A, Safaralizadeh R, Warkiani ME, Aghebati-Maleki L, Yousefi M. Microfluidics as efficient technology for the isolation and characterization of stem cells. EXCLI JOURNAL 2021; 20:426-443. [PMID: 33746671 PMCID: PMC7975637 DOI: 10.17179/excli2020-3028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 01/09/2023]
Abstract
The recent years have been passed with significant progressions in the utilization of microfluidic technologies for cellular investigations. The aim of microfluidics is to mimic small-scale body environment with features like optical transparency. Microfluidics can screen and monitor different cell types during culture and study cell function in response to stimuli in a fully controlled environment. No matter how the microfluidic environment is similar to in vivo environment, it is not possible to fully investigate stem cells behavior in response to stimuli during cell proliferation and differentiation. Researchers have used stem cells in different fields from fundamental researches to clinical applications. Many cells in the body possess particular functions, but stem cells do not have a specific task and can turn into almost any type of cells. Stem cells are undifferentiated cells with the ability of changing into specific cells that can be essential for the body. Researchers and physicians are interested in stem cells to use them in testing the function of the body's systems and solving their complications. This review discusses the recent advances in utilizing microfluidic techniques for the analysis of stem cells, and mentions the advantages and disadvantages of using microfluidic technology for stem cell research.
Collapse
Affiliation(s)
- Afsoon Aghlmandi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Aylin Nikshad
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Majid Ebrahimi Warkiani
- The School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
45
|
Abstract
Giant unilamellar vesicles (GUVs) have gained great popularity as mimicries for cellular membranes. As their sizes are comfortably above the optical resolution limit, and their lipid composition is easily controlled, they are ideal for quantitative light microscopic investigation of dynamic processes in and on membranes. However, reconstitution of functional proteins into the lumen or the GUV membrane itself has proven technically challenging. In recent years, a selection of techniques has been introduced that tremendously improve GUV-assay development and enable the precise investigation of protein-membrane interactions under well-controlled conditions. Moreover, due to these methodological advances, GUVs are considered important candidates as protocells in bottom-up synthetic biology. In this review, we discuss the state of the art of the most important vesicle production and protein encapsulation methods and highlight some key protein systems whose functional reconstitution has advanced the field.
Collapse
Affiliation(s)
- Thomas Litschel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; ,
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried 82152, Germany; ,
| |
Collapse
|
46
|
Maktabi S, Malmstadt N, Schertzer JW, Chiarot PR. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions. BIOMICROFLUIDICS 2021; 15:024112. [PMID: 33912267 PMCID: PMC8064763 DOI: 10.1063/5.0047265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
We present a microfluidic technique that generates asymmetric giant unilamellar vesicles (GUVs) in the size range of 2-14 μm. In our method, we (i) create water-in-oil emulsions as the precursors to build synthetic vesicles, (ii) deflect the emulsions across two oil streams containing different phospholipids at high throughput to establish an asymmetric architecture in the lipid bilayer membranes, and (iii) direct the water-in-oil emulsions across the oil-water interface of an oscillating oil jet in a co-flowing confined geometry to encapsulate the inner aqueous phase inside a lipid bilayer and complete the fabrication of GUVs. In the first step, we utilize a flow-focusing geometry with precisely controlled pneumatic pressures to form monodisperse water-in-oil emulsions. We observed different regimes in forming water-in-oil multiphase flows by changing the applied pressures and discovered a hysteretic behavior in jet breakup and droplet generation. In the second step of GUV fabrication, an oil stream containing phospholipids carries the emulsions into a separation region where we steer the emulsions across two parallel oil streams using active dielectrophoretic and pinched-flow fractionation separations. We explore the effect of applied DC voltage magnitude and carrier oil stream flow rate on the separation efficiency. We develop an image processing code that measures the degree of mixing between the two oil streams as the water-in-oil emulsions travel across them under dielectrophoretic steering to find the ideal operational conditions. Finally, we utilize an oscillating co-flowing jet to complete the formation of asymmetric giant unilamellar vesicles and transfer them to an aqueous phase. We investigate the effect of flow rates on properties of the co-flowing jet oscillating in the whipping mode (i.e., wavelength and amplitude) and define the phase diagram for the oil-in-water jet. Assays used to probe the lipid bilayer membrane of fabricated GUVs showed that membranes were unilamellar, minimal residual oil remained trapped between the two lipid leaflets, and 83% asymmetry was achieved across the lipid bilayers of GUVs.
Collapse
Affiliation(s)
| | - Noah Malmstadt
- Departments of Chemical Engineering & Materials Science, Biomedical Engineering, and Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | - Paul R. Chiarot
- Author to whom correspondence should be addressed:. Tel.: +1 607 777 3208
| |
Collapse
|
47
|
Multiple Emulsions for Enhanced Delivery of Vitamins and Iron Micronutrients and Their Application for Food Fortification. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02586-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Zhang T, Zou X, Xu L, Pan D, Huang W. Numerical investigation of fluid property effects on formation dynamics of millimeter-scale compound droplets in a co-flowing device. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
|
50
|
Yao YM, Joo P, Jana SC. A Surfactant-Free Microfluidic Process for Fabrication of Multi-Hollow Polyimide Aerogel Particles. INT POLYM PROC 2020. [DOI: 10.3139/217.3989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Y. M. Yao
- Department of Polymer Engineering, The University of Akron, Akron, OH, USA
| | - P. Joo
- Department of Polymer Engineering, The University of Akron, Akron, OH, USA
| | - S. C. Jana
- Department of Polymer Engineering, The University of Akron, Akron, OH, USA
| |
Collapse
|