1
|
Pandey Y, Ingold A, Kumar N, Zenobi R. Nanoscale visualization of phase separation in binary supported lipid monolayer using tip-enhanced Raman spectroscopy. NANOSCALE 2024; 16:10578-10583. [PMID: 38767416 PMCID: PMC11154864 DOI: 10.1039/d4nr00816b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Supported lipid membranes are an important model system to study the phase separation behavior at the nanoscale. However, the conventional nanoanalytical tools often fail to provide reliable chemical characterization of the phase separated domains in a non-destructive and label-free manner. This study demonstrates the application of scanning tunneling microscopy-based tip-enhanced Raman spectroscopy (TERS) to study the nanoscale phase separation in supported d62-DPPC : DOPC lipid monolayers. Hyperspectral TERS imaging successfully revealed a clear segregation of the d62-DPPC-rich and DOPC-rich domains. Interestingly, nanoscale deposits of d62-DPPC were observed inside the DOPC-rich domains and vice versa. High-resolution TERS imaging also revealed the presence of a 40-120 nm wide interfacial region between the d62-DPPC-rich and DOPC-rich domains signifying a smooth transition rather than a sharp boundary between them. The novel insights obtained in this study demonstrate the effectiveness of TERS in studying binary lipid monolayers at the nanoscale.
Collapse
Affiliation(s)
- Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Andrea Ingold
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.
| |
Collapse
|
2
|
Weakly HMJ, Keller SL. Coupling liquid phases in 3D condensates and 2D membranes: Successes, challenges, and tools. Biophys J 2024; 123:1329-1341. [PMID: 38160256 PMCID: PMC11163299 DOI: 10.1016/j.bpj.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
This review describes the major experimental challenges researchers meet when attempting to couple phase separation between membranes and condensates. Although it is well known that phase separation in a 2D membrane could affect molecules capable of forming a 3D condensate (and vice versa), few researchers have quantified the effects to date. The scarcity of these measurements is not due to a lack of intense interest or effort in the field. Rather, it reflects significant experimental challenges in manipulating coupled membranes and condensates to yield quantitative values. These challenges transcend many molecular details, which means they impact a wide range of systems. This review highlights recent exciting successes in the field, and it lays out a comprehensive list of tools that address potential pitfalls for researchers who are considering coupling membranes with condensates.
Collapse
Affiliation(s)
- Heidi M J Weakly
- Department of Chemistry, University of Washington - Seattle, Seattle, Washington
| | - Sarah L Keller
- Department of Chemistry, University of Washington - Seattle, Seattle, Washington.
| |
Collapse
|
3
|
Goodchild J, Walsh DL, Laurent H, Connell SD. PDMS as a Substrate for Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10843-10854. [PMID: 37494418 PMCID: PMC10413950 DOI: 10.1021/acs.langmuir.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/13/2023] [Indexed: 07/28/2023]
Abstract
PDMS (polydimethylsiloxane) is a cheap, optically clear polymer that is elastic and can be easily and quickly fabricated into a wide array of microscale and nanoscale architectures, making it a versatile substrate for biophysical experiments on cell membranes. It is easy to imagine many new experiments will be devised that require a bilayer to be placed upon a substrate that is flexible or easily cast into a desired geometry, such as in lab-on-a-chip, organ-on-chip, and microfluidic applications, or for building accurate membrane models that replicate the surface structure and elasticity of the cytoskeleton. However, PDMS has its limitations, and the extent to which the behavior of membranes is affected on PDMS has not been fully explored. We use AFM and fluorescence optical microscopy to investigate the use of PDMS as a substrate for the formation and study of supported lipid bilayers (SLBs). Lipid bilayers form on plasma-treated PDMS and show free diffusion and normal phase transitions, confirming its suitability as a model bilayer substrate. However, lipid-phase separation on PDMS is severely restricted due to the pinning of domains to surface roughness, resulting in the cessation of lateral hydrodynamic flow. We show the high-resolution porous structure of PDMS and the extreme smoothing effect of oxygen plasma treatment used to hydrophilize the surface, but this is not flat enough to allow domain formation. We also observe bilayer degradation over hour timescales, which correlates with the known hydrophobic recovery of PDMS, and establish a critical water contact angle of 30°, above which bilayers degrade or not form at all. Care must be taken as incomplete surface oxidation and hydrophobic recovery result in optically invisible membrane disruption, which will also be transparent to fluorescence microscopy and lipid diffusion measurements in the early stages.
Collapse
Affiliation(s)
- James
A. Goodchild
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Danielle L. Walsh
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Harrison Laurent
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Simon D. Connell
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
- Bragg
Centre for Materials Research, William Henry Bragg Building, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
4
|
Šako M, Staniscia F, Schneck E, Netz RR, Kanduč M. Conditions for the stable adsorption of lipid monolayers to solid surfaces. PNAS NEXUS 2023; 2:pgad190. [PMID: 37383024 PMCID: PMC10299894 DOI: 10.1093/pnasnexus/pgad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Lipid monolayers are ubiquitous in biological systems and have multiple roles in biotechnological applications, such as lipid coatings that enhance colloidal stability or prevent surface fouling. Despite the great technological importance of surface-adsorbed lipid monolayers, the connection between their formation and the chemical characteristics of the underlying surfaces has remained poorly understood. Here, we elucidate the conditions required for stable lipid monolayers nonspecifically adsorbed on solid surfaces in aqueous solutions and water/alcohol mixtures. We use a framework that combines the general thermodynamic principles of monolayer adsorption with fully atomistic molecular dynamics simulations. We find that, very universally, the chief descriptor of adsorption free energy is the wetting contact angle of the solvent on the surface. It turns out that monolayers can form and remain thermodynamically stable only on substrates with contact angles above the adsorption contact angle, θads. Our analysis establishes that θads falls into a narrow range of around 60∘-70∘ in aqueous media and is only weakly dependent on the surface chemistry. Moreover, to a good approximation, θads is roughly determined by the ratio between the surface tensions of hydrocarbons and the solvent. Adding small amounts of alcohol to the aqueous medium lowers θads and thereby facilitates monolayer formation on hydrophilic solid surfaces. At the same time, alcohol addition weakens the adsorption strength on hydrophobic surfaces and results in a slowdown of the adsorption kinetics, which can be useful for the preparation of defect-free monolayers.
Collapse
Affiliation(s)
- Marin Šako
- Department of Theoretical Physics, Jožef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Fabio Staniscia
- Department of Theoretical Physics, Jožef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Emanuel Schneck
- Department of Physics, Technische Universität Darmstadt, Hochschulstrasse 8, Darmstadt 64289, Hesse, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, Berlin 14195, Germany
| | | |
Collapse
|
5
|
Chan FY, Kurosaki R, Ganser C, Takeda T, Uchihashi T. Tip-scan high-speed atomic force microscopy with a uniaxial substrate stretching device for studying dynamics of biomolecules under mechanical stress. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:113703. [PMID: 36461522 DOI: 10.1063/5.0111017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/09/2022] [Indexed: 06/17/2023]
Abstract
High-speed atomic force microscopy (HS-AFM) is a powerful tool for studying the dynamics of biomolecules in vitro because of its high temporal and spatial resolution. However, multi-functionalization, such as combination with complementary measurement methods, environment control, and large-scale mechanical manipulation of samples, is still a complex endeavor due to the inherent design and the compact sample scanning stage. Emerging tip-scan HS-AFM overcame this design hindrance and opened a door for additional functionalities. In this study, we designed a motor-driven stretching device to manipulate elastic substrates for HS-AFM imaging of biomolecules under controllable mechanical stimulation. To demonstrate the applicability of the substrate stretching device, we observed a microtubule buckling by straining the substrate and actin filaments linked by α-actinin on a curved surface. In addition, a BAR domain protein BIN1 that senses substrate curvature was observed while dynamically controlling the surface curvature. Our results clearly prove that large-scale mechanical manipulation can be coupled with nanometer-scale imaging to observe biophysical effects otherwise obscured.
Collapse
Affiliation(s)
- Feng-Yueh Chan
- Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ryo Kurosaki
- Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Christian Ganser
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Tetsuya Takeda
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-Ku, Okayama 700-8558, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
6
|
Jukic N, Perrino AP, Humbert F, Roux A, Scheuring S. Snf7 spirals sense and alter membrane curvature. Nat Commun 2022; 13:2174. [PMID: 35449207 PMCID: PMC9023468 DOI: 10.1038/s41467-022-29850-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/03/2022] [Indexed: 11/25/2022] Open
Abstract
Endosomal Sorting Complex Required for Transport III (ESCRT-III) is a conserved protein system involved in many cellular processes resulting in membrane deformation and scission, topologically away from the cytoplasm. However, little is known about the transition of the planar membrane-associated protein assembly into a 3D structure. High-speed atomic force microscopy (HS-AFM) provided insights into assembly, structural dynamics and turnover of Snf7, the major ESCRT-III component, on planar supported lipid bilayers. Here, we develop HS-AFM experiments that remove the constraints of membrane planarity, crowdedness, and support rigidity. On non-planar membranes, Snf7 monomers are curvature insensitive, but Snf7-spirals selectively adapt their conformation to membrane geometry. In a non-crowded system, Snf7-spirals reach a critical radius, and remodel to minimize internal stress. On non-rigid supports, Snf7-spirals compact and buckle, deforming the underlying bilayer. These experiments provide direct evidence that Snf7 is sufficient to mediate topological transitions, in agreement with the loaded spiral spring model.
Collapse
Affiliation(s)
- Nebojsa Jukic
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alma P Perrino
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Frédéric Humbert
- Department of Biochemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211, Geneva, Switzerland
- Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211, Geneva, Switzerland
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, NY, 14853, USA.
| |
Collapse
|
7
|
Dynamic mechanochemical feedback between curved membranes and BAR protein self-organization. Nat Commun 2021; 12:6550. [PMID: 34772909 PMCID: PMC8589976 DOI: 10.1038/s41467-021-26591-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
In many physiological situations, BAR proteins reshape membranes with pre-existing curvature (templates), contributing to essential cellular processes. However, the mechanism and the biological implications of this reshaping process remain unclear. Here we show, both experimentally and through modelling, that BAR proteins reshape low curvature membrane templates through a mechanochemical phase transition. This phenomenon depends on initial template shape and involves the co-existence and progressive transition between distinct local states in terms of molecular organization (protein arrangement and density) and membrane shape (template size and spherical versus cylindrical curvature). Further, we demonstrate in cells that this phenomenon enables a mechanotransduction mode, in which cellular stretch leads to the mechanical formation of membrane templates, which are then reshaped into tubules by BAR proteins. Our results demonstrate the interplay between membrane mechanics and BAR protein molecular organization, integrating curvature sensing and generation in a comprehensive framework with implications for cell mechanical responses.
Collapse
|
8
|
Peng Z, Shimba K, Miyamoto Y, Yagi T. A Study of the Effects of Plasma Surface Treatment on Lipid Bilayers Self-Spreading on a Polydimethylsiloxane Substrate under Different Treatment Times. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10732-10740. [PMID: 34464138 DOI: 10.1021/acs.langmuir.1c01319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasma-treated poly(dimethylsiloxane) (PDMS)-supported lipid bilayers are used as functional tools for studying cell membrane properties and as platforms for biotechnology applications. Self-spreading is a versatile method for forming lipid bilayers. However, few studies have focused on the effect of plasma treatment on self-spreading lipid bilayer formation. In this paper, we performed lipid bilayer self-spreading on a PDMS surface with different treatment times. Surface characterization of PDMS treated with different treatment times is evaluated by AFM and SEM, and the effects of plasma treatment of the PDMS surface on lipid bilayer self-spreading behavior is investigated by confocal microscopy. The front-edge velocity of lipid bilayers increases with the plasma treatment time. By theoretical analyses with the extended-DLVO modeling, we find that the most likely cause of the velocity change is the hydration repulsion energy between the PDMS surface and lipid bilayers. Moreover, the growth behavior of membrane lobes on the underlying self-spreading lipid bilayer was affected by topography changes in the PDMS surface resulting from plasma treatment. Our findings suggest that the growth of self-spreading lipid bilayers can be controlled by changing the plasma treatment time.
Collapse
Affiliation(s)
- Zugui Peng
- School of Engineering, Tokyo Institute of Technology, 403, Ishikawadai Bldg. 3, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Kenta Shimba
- School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshitaka Miyamoto
- School of Engineering, Tokyo Institute of Technology, 403, Ishikawadai Bldg. 3, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
- Department of Reproductive Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Tohru Yagi
- School of Engineering, Tokyo Institute of Technology, 403, Ishikawadai Bldg. 3, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| |
Collapse
|
9
|
Chand S, Beales P, Claeyssens F, Ciani B. Topography design in model membranes: Where biology meets physics. Exp Biol Med (Maywood) 2018; 244:294-303. [PMID: 30379575 DOI: 10.1177/1535370218809369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPACT STATEMENT Artificial membranes with complex topography aid the understanding of biological processes where membrane geometry plays a key regulatory role. In this review, we highlight how emerging material and engineering technologies have been employed to create minimal models of cell signaling pathways, in vitro. These artificial systems allow life scientists to answer ever more challenging questions with regards to mechanisms in cellular biology. In vitro reconstitution of biology is an area that draws on the expertise and collaboration between biophysicists, material scientists and biologists and has recently generated a number of high impact results, some of which are also discussed in this review.
Collapse
Affiliation(s)
- Sarina Chand
- 1 Centre for Membrane Structure and Dynamics, Krebs Institute and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.,2 The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
| | - Paul Beales
- 3 School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Frederik Claeyssens
- 2 The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
| | - Barbara Ciani
- 1 Centre for Membrane Structure and Dynamics, Krebs Institute and Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| |
Collapse
|
10
|
Miller EJ, Voïtchovsky K, Staykova M. Substrate-led cholesterol extraction from supported lipid membranes. NANOSCALE 2018; 10:16332-16342. [PMID: 30132496 DOI: 10.1039/c8nr03399d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The lipid membrane is a principal building block in biology, technology and industry, where it often occurs supported by other hydrophilic structures. Interactions with the support can affect the physical behavior of the membrane from the local organization and diffusion of lipids and proteins, to phase transitions, and the local mechanical properties. In this study we show that supporting substrates textured with nanoscale hydrophilic and hydrophobic domains can modify the membrane's chemical composition by selectively extracting cholesterol molecules without affecting the remaining phospholipids. Using polydimethylsiloxane (PDMS) substrates with various degrees of plasma oxidation, we are able to trigger dramatic changes in the membrane morphology and biophysical properties, and relate them to the amount of extracted cholesterol. We also show that it is possible to control the cholesterol extraction through mechanical extension of the flexible PDMS support. Given the ubiquity of bio-substrates with textured surface properties and the wide use of PDMS we expect that our results will have implications not only in biological and chemical sciences but also in nanotechnologies such as organ on a chip technologies, biosensors, and stretchable bio-electronics.
Collapse
|
11
|
Bi H, Wang X, Han X, Voïtchovsky K. Impact of Electric Fields on the Nanoscale Behavior of Lipid Monolayers at the Surface of Graphite in Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9561-9571. [PMID: 30028144 DOI: 10.1021/acs.langmuir.8b01631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The nanoscale organization and dynamics of lipid molecules in self-assembled membranes is central to the biological function of cells and in the technological development of synthetic lipid structures as well as in devices such as biosensors. Here, we explore the nanoscale molecular arrangement and dynamics of lipids assembled in monolayers at the surface of highly ordered pyrolytic graphite (HOPG), in different ionic solutions, and under electrical potentials. Using a combination of atomic force microscopy and fluorescence recovery after photobleaching, we show that HOPG is able to support fully formed and fluid lipid membranes, but mesoscale order and corrugations can be observed depending on the type of the lipid considered (1,2-dioleoyl- sn-glycero-3-phosphocholine, 1,2-dioleoyl- sn-glycero-3-phospho-l-serine (DOPS), and 1,2-dioleoyl-3-trimethylammoniumpropane) and the ion present (Na+, Ca2+, Cl-). Interfacial solvation forces and ion-specific effects dominate over the electrostatic changes induced by moderate electric fields (±1.0 V vs Ag/AgCl reference electrode) with particularly marked effects in the presence of calcium, and for DOPS. Our results provide insights into the interplay between the molecular, ionic, and electrostatic interactions and the formation of dynamical ordered structures in fluid lipid membranes.
Collapse
Affiliation(s)
- Hongmei Bi
- College of Science , Heilongjiang Bayi Agricultural University , Daqing 163319 , China
| | - Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | | |
Collapse
|
12
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
13
|
Shao J, Wen C, Xuan M, Zhang H, Frueh J, Wan M, Gao L, He Q. Polyelectrolyte multilayer-cushioned fluid lipid bilayers: a parachute model. Phys Chem Chem Phys 2018; 19:2008-2016. [PMID: 28009025 DOI: 10.1039/c6cp06787e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipid bilayer membranes supported on polyelectrolyte multilayers are widely used as a new biomembrane model that connects biological and artificial materials since these ultrathin polyelectrolyte supports may mimic the role of the extracellular matrix and cell skeleton in living systems. Polyelectrolyte multilayers were fabricated by a layer-by-layer self-assembly technique. A quartz crystal microbalance with dissipation was used in real time to monitor the interaction between phospholipids and polyelectrolytes in situ on a planar substrate. The surface properties of polyelectrolyte films were investigated by the measurement of contact angles and zeta potential. Phospholipid charge, buffer pH and substrate hydrophilicity were proved to be essential for vesicle adsorption, rupture, fusion and formation of continuous lipid bilayers on the polyelectrolyte multilayers. The results clearly demonstrated that only the mixture of phosphatidylcholine and phosphatidic acid (4 : 1) resulted in fluid bilayers on chitosan and alginate multilayers with chitosan as a top layer at pH 6.5. A coarse-grained molecular simulation study elucidated that the exact mechanism of the formation of fluid lipid bilayers resembles a "parachute" model. As the closest model to the real membrane, polyelectrolyte multilayer-cushioned fluid lipid bilayers can be appropriate candidates for application in biomedical fields.
Collapse
Affiliation(s)
- Jingxin Shao
- Key Lab for Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Harbin 150080, China.
| | - Caixia Wen
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Mingjun Xuan
- Key Lab for Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Harbin 150080, China.
| | - Hongyue Zhang
- Key Lab for Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Harbin 150080, China.
| | - Johannes Frueh
- Key Lab for Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Harbin 150080, China.
| | - Mingwei Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Lianghui Gao
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Qiang He
- Key Lab for Microsystems and Microstructures Manufacturing, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
14
|
Faysal KMR, Park JS, Nguyen J, Garcia L, Subramaniam AB. Lipid Bilayers Are Long-Lived on Solvent Cleaned Plasma-Oxidized poly(dimethyl)siloxane (ox-PDMS). PLoS One 2017; 12:e0169487. [PMID: 28052115 PMCID: PMC5214066 DOI: 10.1371/journal.pone.0169487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022] Open
Abstract
Although it is well known that phospholipids self-assemble on hydrophilic plasma-oxidized PMDS surfaces (ox-PDMS) to form cell membrane mimetic bilayers, the temporal stability of phospholipid membranes on these surfaces is unknown. Here we report that phospholipid bilayers remain stable on solvent-cleaned ox-PDMS for at least 132 hours after preparation. Absent solvent cleaning, the bilayers were stable for only 36 hours. We characterized the phospholipid bilayers, i) through quantitative comparative analysis of the fluorescence intensity of phospholipid bilayers on ox-PDMS and phospholipid monolayers on native PDMS and, ii) through measurements of the diffusive mobility of the lipids through fluorescence recovery after photobleaching (FRAP). The fluorescence intensity of the phospholipid layer remained consistent with that of a bilayer for 132 hours. The evolution of the diffusive mobility of the phospholipids in the bilayer on ox-PDMS over time was similar to lipids in control bilayers prepared on glass surfaces. Solvent cleaning was essential for the long-term stability of the bilayers on ox-PDMS. Without cleaning in acetone and isopropanol, phospholipid bilayers prepared on ox-PDMS surfaces peeled off in large patches within 36 hours. Importantly, we find that phospholipid bilayers supported on solvent-cleaned ox-PDMS were indistinguishable from phospholipid bilayers supported on glass for at least 36 hours after preparation. Our results provide a link between the two common surfaces used to prepare in vitro biomimetic phospholipid membranes-i) glass surfaces used predominantly in fundamental biophysical experiments, for which there is abundant physicochemical information, with ii) ox-PDMS, the dominant material used in practical, applications-oriented systems to build micro-devices, topographically-patterned surfaces, and biosensors where there is a dearth of information.
Collapse
Affiliation(s)
- K. M. Rifat Faysal
- Department of Physics, School of Natural Sciences, University of California Merced, Merced, CA, United States of America
| | - June S. Park
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States of America
| | - Jonny Nguyen
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States of America
| | - Luis Garcia
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States of America
| | - Anand Bala Subramaniam
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States of America
| |
Collapse
|
15
|
Stubbington L, Arroyo M, Staykova M. Sticking and sliding of lipid bilayers on deformable substrates. SOFT MATTER 2016; 13:181-186. [PMID: 27338177 DOI: 10.1039/c6sm00786d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We examine here the properties of lipid bilayers coupled to deformable substrates. We show that by changing the extent of the substrate hydrophilicity, we can control the membrane-substrate coupling and the response of the bilayer to strain deformation. Our results demonstrate that lipid bilayers coupled to flexible substrates can easily accommodate large strains, form stable protrusions and open reversibly pores. These properties, which differ significantly from those of free standing membranes, can extend the applications of the current lipid technologies. Moreover, such systems better capture the mechanical architecture of the cell interface and can provide insights into the capacity of cells to reshape and respond to mechanical perturbations.
Collapse
Affiliation(s)
| | - M Arroyo
- Universitat Politècnica de Catalunya, Barcelona, Spain
| | | |
Collapse
|
16
|
Ryu YS, Wittenberg NJ, Suh JH, Lee SW, Sohn Y, Oh SH, Parikh AN, Lee SD. Continuity of Monolayer-Bilayer Junctions for Localization of Lipid Raft Microdomains in Model Membranes. Sci Rep 2016; 6:26823. [PMID: 27230411 PMCID: PMC4882513 DOI: 10.1038/srep26823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/09/2016] [Indexed: 11/16/2022] Open
Abstract
We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed between the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.
Collapse
Affiliation(s)
- Yong-Sang Ryu
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600 Korea
| | - Nathan J. Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jeng-Hun Suh
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600 Korea
| | - Sang-Wook Lee
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600 Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Institute of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Atul N. Parikh
- Departments of Biomedical Engineering and Chemical Engineering & Materials Science, University of California, Davis, California 95616, USA
| | - Sin-Doo Lee
- School of Electrical Engineering #032, Seoul National University, Kwanak P.O. Box 34, Seoul 151-600 Korea
| |
Collapse
|
17
|
Fried ES, Luchan J, Gilchrist ML. Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3470-5. [PMID: 26972467 PMCID: PMC4911039 DOI: 10.1021/acs.langmuir.6b00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays.
Collapse
Affiliation(s)
- Eric S. Fried
- Department of Chemical Engineering, The City College of the City University of New York, 140th Street and Convent Avenue, New York, New York 10031, United States
| | - Joshua Luchan
- Department of Biomedical Engineering, The City College of the City University of New York, 140th Street and Convent Avenue, New York, New York 10031, United States
| | - M. Lane Gilchrist
- Department of Chemical Engineering, The City College of the City University of New York, 140th Street and Convent Avenue, New York, New York 10031, United States
- Department of Biomedical Engineering, The City College of the City University of New York, 140th Street and Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
18
|
van Weerd J, Karperien M, Jonkheijm P. Supported Lipid Bilayers for the Generation of Dynamic Cell-Material Interfaces. Adv Healthc Mater 2015; 4:2743-79. [PMID: 26573989 DOI: 10.1002/adhm.201500398] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/03/2015] [Indexed: 12/13/2022]
Abstract
Supported lipid bilayers (SLB) offer unique possibilities for studying cellular membranes and have been used as a synthetic architecture to interact with cells. Here, the state-of-the-art in SLB-based technology is presented. The fabrication, analysis, characteristics and modification of SLBs are described in great detail. Numerous strategies to form SLBs on different substrates, and the means to patteren them, are described. The use of SLBs as model membranes for the study of membrane organization and membrane processes in vitro is highlighted. In addition, the use of SLBs as a substratum for cell analysis is presented, with discrimination between cell-cell and cell-extracellular matrix (ECM) mimicry. The study is concluded with a discussion of the potential for in vivo applications of SLBs.
Collapse
Affiliation(s)
- Jasper van Weerd
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| | - Marcel Karperien
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
| | - Pascal Jonkheijm
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| |
Collapse
|
19
|
Shaali M, Lara-Avila S, Dommersnes P, Ainla A, Kubatkin S, Jesorka A. Nanopatterning of mobile lipid monolayers on electron-beam-sculpted Teflon AF surfaces. ACS NANO 2015; 9:1271-1279. [PMID: 25541906 DOI: 10.1021/nn5050867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Direct electron-beam lithography is used to fabricate nanostructured Teflon AF surfaces, which are utilized to pattern surface-supported monolayer phospholipid films with 50 nm lateral feature size. In comparison with unexposed Teflon AF coatings, e-beam-irradiated areas show reduced surface tension and surface potential. For phospholipid monolayer spreading experiments, these areas can be designed to function as barriers that enclose unexposed areas of nanometer dimensions and confine the lipid film within. We show that the effectiveness of the barrier is defined by pattern geometry and radiation dose. This surface preparation technique represents an efficient, yet simple, nanopatterning strategy supporting studies of lipid monolayer behavior in ultraconfined spaces. The generated structures are useful for imaging studies of biomimetic membranes and other specialized surface applications requiring spatially controlled formation of self-assembled, molecularly thin films on optically transparent patterned polymer surfaces with very low autofluorescence.
Collapse
Affiliation(s)
- Mehrnaz Shaali
- Department of Chemical and Biological Engineering and ‡Quantum Device Physics Laboratory, Chalmers University of Technology , 41296 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The current study deals with the self-assembly of phospholipids on flat supports using the Martini coarse grain model.
Collapse
Affiliation(s)
- Anil R. Mhashal
- Physical Chemistry Division
- National Chemical Laboratory
- Pune
- India
| | - Sudip Roy
- Physical Chemistry Division
- National Chemical Laboratory
- Pune
- India
| |
Collapse
|
21
|
Coutable A, Thibault C, Chalmeau J, François JM, Vieu C, Noireaux V, Trévisiol E. Preparation of tethered-lipid bilayers on gold surfaces for the incorporation of integral membrane proteins synthesized by cell-free expression. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3132-3141. [PMID: 24568716 DOI: 10.1021/la5004758] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There is an increasing interest to express and study membrane proteins in vitro. New techniques to produce and insert functional membrane proteins into planar lipid bilayers have to be developed. In this work, we produce a tethered lipid bilayer membrane (tBLM) to provide sufficient space for the incorporation of the integral membrane protein (IMP) Aquaporin Z (AqpZ) between the tBLM and the surface of the sensor. We use a gold (Au)-coated sensor surface compatible with mechanical sensing using a quartz crystal microbalance with dissipation monitoring (QCM-D) or optical sensing using the surface plasmon resonance (SPR) method. tBLM is produced by vesicle fusion onto a thin gold film, using phospholipid-polyethylene glycol (PEG) as a spacer. Lipid vesicles are composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethyleneglycol)-2000-N-[3-(2-pyridyldithio)propionate], so-called DSPE-PEG-PDP, at different molar ratios (respectively, 99.5/0.5, 97.5/2.5, and 95/5 mol %), and tBLM formation is characterized using QCM-D, SPR, and atomic force technology (AFM). We demonstrate that tBLM can be produced on the gold surface after rupture of the vesicles using an α helical (AH) peptide, derived from hepatitis C virus NS5A protein, to assist the fusion process. A cell-free expression system producing the E. coli integral membrane protein Aquaporin Z (AqpZ) is directly incubated onto the tBLMs for expression and insertion of the IMP at the upper side of tBLMs. The incorporation of AqpZ into bilayers is monitored by QCM-D and compared to a control experiment (without plasmid in the cell-free expression system). We demonstrate that an IMP such as AqpZ, produced by a cell-free expression system without any protein purification, can be incorporated into an engineered tBLM preassembled at the surface of a gold-coated sensor.
Collapse
Affiliation(s)
- Angélique Coutable
- Université de Toulouse , INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Roling O, Wendeln C, Kauscher U, Seelheim P, Galla HJ, Ravoo BJ. Layer-by-layer deposition of vesicles mediated by supramolecular interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10174-10182. [PMID: 23898918 DOI: 10.1021/la4011218] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vesicles are dynamic supramolecular structures with a bilayer membrane consisting of lipids or synthetic amphiphiles enclosing an aqueous compartment. Lipid vesicles have often been considered as mimics for biological cells. In this paper, we present a novel strategy for the preparation of three-dimensional multilayered structures in which vesicles containing amphiphilic β-cyclodextrin are interconnected by proteins using cyclodextrin guests as bifunctional linker molecules. We compared two pairs of adhesion molecules for the immobilization of vesicles: mannose-concanavalin A and biotin-streptavidin. Microcontact printing and thiol-ene click chemistry were used to prepare suitable substrates for the vesicles. Successful immobilization of intact vesicles through the mannose-concanavalin A and biotin-streptavidin motifs was verified by fluorescence microscopy imaging and dynamic light scattering, while the vesicle adlayer was characterized by quartz crystal microbalance with dissipation monitoring. In the case of the biotin-streptavidin motif, up to six layers of intact vesicles could be immobilized in a layer-by-layer fashion using supramolecular interactions. The construction of vesicle multilayers guided by noncovalent vesicle-vesicle junctions can be taken as a minimal model for artificial biological tissue.
Collapse
Affiliation(s)
- Oliver Roling
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Chen X, Shojaei-Zadeh S, Gilchrist ML, Maldarelli C. A lipobead microarray assembled by particle entrapment in a microfluidic obstacle course and used for the display of cell membrane receptors. LAB ON A CHIP 2013; 13:3041-3060. [PMID: 23748734 DOI: 10.1039/c3lc50083g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Platforms which can display cell membrane ligands and receptors as a microarray library of probes for screening against a target are essential tools in drug discovery, biomarker identification, and pathogen detection. Membrane receptors and ligands require their native bilayer environment to retain their selectivity and binding affinity, and this complicates displaying them in a microarray platform. In this study, a design is developed in which the probes are first incorporated in supported lipid bilayers formed around micron-sized particles (lipobeads), and the microbeads themselves are then arrayed on a surface by hydrodynamic capture in a microfluidic obstacle course of traps. The traps are "V" shaped open enclosures, which are arranged in a wide channel of a microfluidic device, and capture the lipobeads (slightly smaller than the channel height) as they are streamed through the course. Screening assays are undertaken directly in the device after assembly, by streaming a fluorescently labeled target through the device and detecting the bead fluorescence. Conditions are first established for which the supported bilayers on the bead surface remain intact during the capture and assay steps, using fluorescent tags in the bilayer to infer bilayer integrity. Numerical calculations of the hydrodynamic drag coefficient on the entrapped beads are presented in conjunction with the stability experiments to develop criteria for the bilayer stability as a function of the screening assay perfusion rate. Simulations of the flow streamlines are also presented to quantify the trapping efficiency of the obstacle course. Screening assays are illustrated, assaying fluorescently labeled NeutrAvidin with biotin, and labeled cholera toxin with its ganglioside binding ligand, GM1. Sequential capturing of sets of lipobeads (one at a time, and with each set bearing a different probe), followed by indexing the bead positions after each set is entrapped, allows for the construction of an indexed array of multiple probes without the need for particle encoding and is illustrated using the NeutrAvidin-biotin pair. Finally, the lipobead platform is used for quantitatively measuring the kinetic rate constants for the binding of a probe (biotin) to a target (NeutrAvidin).
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Levich Institute and Department of Chemical Engineering, The City College of the City University of New York, New York, New York 10031, USA
| | | | | | | |
Collapse
|
24
|
Piper-Feldkamp AR, Wegner M, Brzezinski P, Reed SM. Mixtures of supported and hybrid lipid membranes on heterogeneously modified silica nanoparticles. J Phys Chem B 2013; 117:2113-22. [PMID: 23387352 PMCID: PMC3935798 DOI: 10.1021/jp308305y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Simple supported lipid bilayers do not accurately reflect the complex heterogeneity of cellular membranes; however, surface modification makes it possible to tune membrane properties to better mimic biological systems. Here, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (DETAS), a silica modifier, facilitated formation of supported lipid bilayers on silica nanoparticles. Evidence for a stable supported bilayer came from the successful entrapment of a soluble fluorophore within an interstitial water layer. A fluorescence-quenching assay that utilized a pore-forming peptide was used to demonstrate the existence of two separate lipid leaflets. In this assay, fluorescence was quenched by dithionite in roughly equal proportions prior to and after addition of melittin. When a hydrophobic modifier, octadecyltriethoxysilane, was codeposited on the nanoparticles with DETAS, there was a decrease in the amount of supported bilayer on the nanoparticles and an increase in the quantity of hybrid membrane. This allowed for a controlled mixture of two distinct types of membranes on a single substrate, one separated by a water cushion and the other anchored directly on the surface, thereby providing a new mimic of cellular membranes.
Collapse
Affiliation(s)
- Aundrea R. Piper-Feldkamp
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217 3364, Office: 303.556.6260, Fax: 303.556.4776,
| | - Maria Wegner
- Department of Biochemistry and Biophysics, Stockholm Univ., Svante Arrhenius väg 16, SE-106 91, Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm Univ., Svante Arrhenius väg 16, SE-106 91, Stockholm, Sweden
| | - Scott M. Reed
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO 80217 3364, Office: 303.556.6260, Fax: 303.556.4776,
| |
Collapse
|
25
|
Torres AJ, Contento RL, Gordo S, Wucherpfennig KW, Love JC. Functional single-cell analysis of T-cell activation by supported lipid bilayer-tethered ligands on arrays of nanowells. LAB ON A CHIP 2013; 13:90-9. [PMID: 23070211 PMCID: PMC3522575 DOI: 10.1039/c2lc40869d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Supported lipid bilayers are an important biomolecular tool for characterizing immunological synapses. Immobilized bilayers presenting tethered ligands on planar substrates have yielded both spatio-temporal and structural insights into how T cell receptors (TCRs) reorganize during the initial formation of synapses upon recognition of peptide antigens bound to major histocompatibility complex (MHC) molecules. The prototypical configuration of these assays, however, limits the extent to which the kinetics and structure of the supramolecular activation clusters of the synapse (that occur in seconds or minutes) can be related to subsequent complex cellular responses, such as cytokine secretion and proliferation, occurring over hours to days. Here we describe a new method that allows correlative measures of both attributes with single-cell resolution by using immobilized lipid bilayers and tethered ligands on the surface of dense arrays of subnanoliter wells. This modification allows each nanowell to function as an artificial antigen-presenting cell (APC), and the synapses formed upon contact can be imaged by fluorescence microscopy. We show that the lipid bilayers remain stable and mobile on the surface of the PDMS, and that modifying the ligands tethered to the bilayer alters the structure of the resulting synapses in expected ways. Finally, we demonstrate that this approach allows the subsequent characterization of secreted cytokines from the activated human T cell clones by microengraving in both antigen- and pan-specific manners. This new technique should allow detailed investigations on how biophysical and structural aspects of the synapse influence the activation of individual T cells and their complex functional responses.
Collapse
Affiliation(s)
- Alexis J. Torres
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Rita Lucia Contento
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Susana Gordo
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
- Program in Immunology, Harvard Medical School, Boston, MA 02115
| | - J. Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
26
|
Substrate Effects on the Formation Process, Structure and Physicochemical Properties of Supported Lipid Bilayers. MATERIALS 2012. [PMCID: PMC5449048 DOI: 10.3390/ma5122658] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Supported lipid bilayers are artificial lipid bilayer membranes existing at the interface between solid substrates and aqueous solution. Surface structures and properties of the solid substrates affect the formation process, fluidity, two-dimensional structure and chemical activity of supported lipid bilayers, through the 1–2 nm thick water layer between the substrate and bilayer membrane. Even on SiO2/Si and mica surfaces, which are flat and biologically inert, and most widely used as the substrates for the supported lipid bilayers, cause differences in the structure and properties of the supported membranes. In this review, I summarize several examples of the effects of substrate structures and properties on an atomic and nanometer scales on the solid-supported lipid bilayers, including our recent reports.
Collapse
|
27
|
Voskuhl J, Wendeln C, Versluis F, Fritz EC, Roling O, Zope H, Schulz C, Rinnen S, Arlinghaus HF, Ravoo BJ, Kros A. Immobilisierung von Liposomen und Vesikeln auf strukturierten Oberflächen mithilfe eines Coiled-Coil-Peptidbindungsmotivs. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Voskuhl J, Wendeln C, Versluis F, Fritz EC, Roling O, Zope H, Schulz C, Rinnen S, Arlinghaus HF, Ravoo BJ, Kros A. Immobilization of Liposomes and Vesicles on Patterned Surfaces by a Peptide Coiled-Coil Binding Motif. Angew Chem Int Ed Engl 2012; 51:12616-20. [DOI: 10.1002/anie.201204836] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Indexed: 11/10/2022]
|
29
|
Stanglmaier S, Hertrich S, Fritz K, Moulin JF, Haese-Seiller M, Rädler JO, Nickel B. Asymmetric distribution of anionic phospholipids in supported lipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10818-10821. [PMID: 22789026 DOI: 10.1021/la3019887] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Lipid bilayers with a controlled content of anionic lipids are a prerequisite for the quantitative study of hydrophobic-electrostatic interactions of proteins with lipid bilayers. Here, the asymmetric distribution of zwitterionic and anionic lipids in supported lipid bilayers is studied by neutron reflectometry. We prepare POPC/POPS (3:1) unilamellar vesicles in a high-salt-concentration buffer. Initially, no fusion of the vesicles to a SiO(2) surface is observed over hours and days. Once the isotonic buffer is exchanged with hypotonic buffer, vesicle fusion and bilayer formation occur by osmotic shock. Neutron reflectivity on the bilayers formed this way reveals the presence of anionic lipids (d(31)-POPS) in the outer bilayer leaflet only, and no POPS is observed in the leaflet facing the SiO(2) substrate. We argue that this asymmetric distribution of POPS is induced by the electrostatic repulsion of the phosphatidylserines from the negatively charged hydroxy surface groups of the silicon block. Such bilayers with controlled and high contents of anionic lipids in the outer leaflet are versatile platforms for studying anionic lipid protein interactions that are key elements in signal transduction pathways in the cytoplasmic leaflet of eukaryotic cells.
Collapse
Affiliation(s)
- S Stanglmaier
- Ludwig-Maximilians-Universität, Fakultät für Physik & CeNS, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Zagnoni M. Miniaturised technologies for the development of artificial lipid bilayer systems. LAB ON A CHIP 2012; 12:1026-1039. [PMID: 22301684 DOI: 10.1039/c2lc20991h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Artificially reproducing cellular environments is a key aim of synthetic biology, which has the potential to greatly enhance our understanding of cellular mechanisms. Microfluidic and lab-on-a-chip (LOC) techniques, which enable the controlled handling of sub-microlitre volumes of fluids in an automated and high-throughput manner, can play a major role in achieving this by offering alternative and powerful methodologies in an on-chip format. Such techniques have been successfully employed over the last twenty years to provide innovative solutions for chemical analysis and cell-, molecular- and synthetic- biology. In the context of the latter, the formation of artificial cell membranes (or artificial lipid bilayers) that incorporate membrane proteins within miniaturised LOC architectures offers huge potential for the development of highly sensitive molecular sensors and drug screening applications. The aim of this review is to give a comprehensive and critical overview of the field of microsystems for creating and exploiting artificial lipid bilayers. Advantages and limitations of three of the most popular approaches, namely suspended, supported and droplet-based lipid bilayers, are discussed. Examples are reported that show how artificial cell membrane microsystems, by combining together biological procedures and engineering techniques, can provide novel methodologies for basic biological and biophysical research and for the development of biotechnology tools.
Collapse
Affiliation(s)
- Michele Zagnoni
- Centre for Microsystems and Photonics, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
31
|
Goertz MP, Marks LE, Montaño GA. Biomimetic monolayer and bilayer membranes made from amphiphilic block copolymer micelles. ACS NANO 2012; 6:1532-1540. [PMID: 22251101 DOI: 10.1021/nn204491q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The deposition of amphiphilic poly(ethylene oxide)-block-poly(butadiene) (PEO-b-PBD) copolymer micelles is demonstrated on solid substrates. Depending upon surface chemistry, micelle adsorption creates either monolayer or bilayer films. Lateral diffusion measurements reveal that strong coupling between hydrophilic surfaces and PEO blocks creates immobile bilayers, while monolayers retain the fluidity previously observed in vesicular assemblies.
Collapse
Affiliation(s)
- Matthew P Goertz
- Center for Integrated Nanotechnologies, Los Alamos National Laboratories, Los Alamos, New Mexico 87545, United States.
| | | | | |
Collapse
|
32
|
Lazzara TD, Carnarius C, Kocun M, Janshoff A, Steinem C. Separating attoliter-sized compartments using fluid pore-spanning lipid bilayers. ACS NANO 2011; 5:6935-6944. [PMID: 21797231 DOI: 10.1021/nn201266e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Anodic aluminum oxide (AAO) is a porous material having aligned cylindrical compartments with 55-60 nm diameter pores, and being several micrometers deep. A protocol was developed to generate pore-spanning fluid lipid bilayers separating the attoliter-sized compartments of the nanoporous material from the bulk solution, while preserving the optical transparency of the AAO. The AAO was selectively functionalized by silane chemistry to spread giant unilamellar vesicles (GUVs) resulting in large continuous membrane patches covering the pores. Formation of fluid single lipid bilayers through GUV rupture could be readily observed by fluorescence microscopy and further supported by conservation of membrane surface area, before and after GUV rupture. Fluorescence recovery after photobleaching gave low immobile fractions (5-15%) and lipid diffusion coefficients similar to those found for bilayers on silica. The entrapment of molecules within the porous underlying cylindrical compartments, as well as the exclusion of macromolecules from the nanopores, demonstrate the barrier function of the pore-spanning membranes and could be investigated in three-dimensions using confocal laser scanning fluorescence imaging.
Collapse
Affiliation(s)
- Thomas D Lazzara
- Institute of Organic and Biomolecular Chemistry, Tammannstrasse 2, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
33
|
Andreasson-Ochsner M, Romano G, Håkanson M, Smith ML, Leckband DE, Textor M, Reimhult E. Single cell 3-D platform to study ligand mobility in cell-cell contact. LAB ON A CHIP 2011; 11:2876-2883. [PMID: 21773619 DOI: 10.1039/c1lc20067d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lateral mobility and dimensionality have both been shown to influence cellular behavior, but have yet to be combined and applied in a single in vitro platform to address, e.g., cell adhesion in a setting mimicking the three-dimensional environment of neighboring cells in a reductionist way. To study the effect of the lateral mobility of cell adhesive ligands in three dimensions we present and characterize a platform, which enables patterning of single cells into microwells presenting a cell membrane mimetic interface pre-patterned to its walls. Soluble E-cadherin extracellular domains coupled through an optimized streptavidin-antibody linkage to lipids in a supported lipid bilayer (SPB) were presented on the microwell walls as either laterally mobile or immobile ligands. The fluidity was controlled through a small change in temperature by choosing phospholipids for the SPB with a lipid phase transition temperature around 30 °C. The platform thus enabled the investigation of cell adhesion to either laterally immobile or mobile E-cadherin ligands presented on the same cell membrane mimetic surface. Chinese hamster ovary (CHO) cells engineered to express E-cadherin that were cultured on the platform demonstrated that enhanced cadherin lateral mobility significantly decreased the formation of actin bundles and resulted in more diffuse actin organization, while constraining the cell shape to that of the microwell. This example highlights the potential to use in vitro cell culture platforms to mimic direct cell-cell interaction in a controlled environment that nevertheless captures the dynamic nature of the native cell environment.
Collapse
Affiliation(s)
- Mirjam Andreasson-Ochsner
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
34
|
Nellis BA, Satcher JH, Risbud SH. Phospholipid bilayer formation on a variety of nanoporous oxide and organic xerogel films. Acta Biomater 2011; 7:380-6. [PMID: 20674809 DOI: 10.1016/j.actbio.2010.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/22/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
Lipid bilayers supported by nanoporous xerogel materials are being explored as models for cell membranes. In order to better understand and characterize the nature of the surface-bilayer interactions, several oxide and organic nanoporous xerogel films (alumina, titania, iron oxide, phloroglucinol-formaldehyde, resorcinol-formaldehyde and cellulose acetate) have been investigated as a scaffold for vesicle-fused 1,2-dioleoyl-glycero-3-phosphocholine (DOPC) lipid bilayer formation and mobility. The surface topography of the different substrates was analyzed using contact and tapping-mode atomic force microscopy and the surface energy of the substrates was determined using contact angle goniometry. Lipid bilayer formation has been observed with fluorescence microscopy and lateral lipid diffusion coefficients have been determined using fluorescence recovery after photobleaching. Titania xerogel films were found to be a robust and convenient support for formation of a two-phase DOPC/1,2-distearoyl-glycero-3-phosphocholine bilayer and domains were observed with this system. It was found that the cellulose acetate xerogel film support produced the slowest lipid lateral diffusion.
Collapse
|
35
|
Yu CH, Groves JT. Engineering supported membranes for cell biology. Med Biol Eng Comput 2010; 48:955-63. [PMID: 20559751 PMCID: PMC2944960 DOI: 10.1007/s11517-010-0634-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/07/2010] [Indexed: 11/19/2022]
Abstract
Cell membranes exhibit multiple layers of complexity, ranging from their specific molecular content to their emergent mechanical properties and dynamic spatial organization. Both compositional and geometrical organizations of membrane components are known to play important roles in life processes, including signal transduction. Supported membranes, comprised of a bilayer assembly of phospholipids on the solid substrate, have been productively served as model systems to study wide range problems in cell biology. Because lateral mobility of membrane components is readily preserved, supported lipid membranes with signaling molecules can be utilized to effectively trigger various intercellular reactions. The spatial organization and mechanical deformation of supported membranes can also be manipulated by patterning underlying substrates with modern micro- and nano-fabrication techniques. This article focuses on various applications and methods to spatially patterned biomembranes by means of curvature modulations and spatial reorganizations, and utilizing them to interface with live cells. The integration of biological components into synthetic devices provides a unique approach to investigate molecular mechanisms in cell biology.
Collapse
Affiliation(s)
- Cheng-han Yu
- Research Centre of Excellence in Mechanobiology, National University of Singapore, Singapore
| | | |
Collapse
|
36
|
Satriano C, Edvardsson M, Ohlsson G, Wang G, Svedhem S, Kasemo B. Plasma oxidized polyhydroxymethylsiloxane--a new smooth surface for supported lipid bilayer formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5715-25. [PMID: 20170173 DOI: 10.1021/la903826d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A novel substrate for preparation of supported lipid bilayers (SLBs), smooth at the subnanometer scale and of variable thickness from ten to several hundred nanometers, was developed by surface oxidation of spin-coated poly(hydroxymethylsiloxane) (PHMS) films. The deposited polymeric thin films were modified by a combination of oxygen plasma and thermal treatment (PHMS(ox)), in order to convert the outermost surface layer of the polymer film to a stable SiO(2) film, suitable for SLB formation. The hydrophilic, SiO(2)-like surfaces were characterized by XPS, wetting angle, ellipsometry, and AFM. Lipid bilayers were formed on this surface using the well-known vesicle adsorption-rupture-fusion process, usually performed on glass or vapor-deposited SiO(2). Reproducible formation of homogeneous SLBs of different compositions (POPC, DOEPC, and POPC/DOPS) was demonstrated on the new SiO(2) surface by quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), and optical reflectometry measurements. The SLB formation kinetics on the PHMS(ox)-coated sensors showed very similar characteristics, for all investigated PHMS thicknesses, as on reference sensors coated with vapor-deposited SiO(2). The good adhesive properties of the PHMS to gold allows for the preparation of thin PHMS(ox) layers compatible with SPR. The much smaller roughness at the nanometer scale of the PHMS(ox) surfaces, compared to standard vapor-deposited SiO(2)-coated sensors, makes them advantageous for AFM and optical experiments and promising for patterning. To benefit optical experiments with the PHMS(ox) surfaces, it was also investigated how the PHMS film thickness influences the SPR and reflectometry responses upon SLB formation.
Collapse
Affiliation(s)
- C Satriano
- Department of Chemical Sciences, Catania University, Viale A. Doria, 6, 95125 Catania, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Templating membrane assembly, structure, and dynamics using engineered interfaces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:839-50. [PMID: 20079336 DOI: 10.1016/j.bbamem.2009.12.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 12/22/2009] [Accepted: 12/28/2009] [Indexed: 11/20/2022]
Abstract
The physical and chemical properties of biological membranes are intimately linked to their bounding aqueous interfaces. Supported phospholipid bilayers, obtained by surface-assisted rupture, fusion, and spreading of vesicular microphases, offer a unique opportunity, because engineering the substrate allows manipulation of one of the two bilayer interfaces as well. Here, we review a collection of recent efforts, which illustrates deliberate substrate-membrane coupling using structured surfaces exhibiting chemical and topographic patterns. Vesicle fusion on chemically patterned substrates results in co-existing lipid phases, which reflect the underlying pattern of surface energy and wettability. These co-existing bilayer/monolayer morphologies are useful both for fundamental biophysical studies (e.g., studies of membrane asymmetry) as well as for applied work, such as synthesizing large-scale arrays of bilayers or living cells. The use of patterned, static surfaces provides new models to design complex membrane topographies and curvatures. Dynamic switchable-topography surfaces and sacrificial trehalose based-substrates reveal abilities to dynamically introduce membrane curvature and change the nature of the membrane-substrate interface. Taken together, these studies illustrate the importance of controlling interfaces in devising model membrane platforms for fundamental biophysical studies and bioanalytical devices.
Collapse
|
38
|
What Is the Difference Between a Supported and a Free Bilayer? Insights from Molecular Modeling on Different Scales. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1554-4516(10)11007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Segura JJ, Verdaguer A, Cobián M, Hernández ER, Fraxedas J. Amphiphillic Organic Crystals. J Am Chem Soc 2009; 131:17853-9. [DOI: 10.1021/ja905961h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J. J. Segura
- Centre d’Investigació en Nanociència i Nanotecnologia, CIN2 (CSIC-ICN), Edifici CM7, Esfera UAB, Campus de Bellaterra, E-08193 Barcelona, Spain, and Institut de Ciència de Materials de Barcelona ICMAB (CSIC), Campus de Bellaterra, E-08193 Barcelona, Spain
| | - A. Verdaguer
- Centre d’Investigació en Nanociència i Nanotecnologia, CIN2 (CSIC-ICN), Edifici CM7, Esfera UAB, Campus de Bellaterra, E-08193 Barcelona, Spain, and Institut de Ciència de Materials de Barcelona ICMAB (CSIC), Campus de Bellaterra, E-08193 Barcelona, Spain
| | - M. Cobián
- Centre d’Investigació en Nanociència i Nanotecnologia, CIN2 (CSIC-ICN), Edifici CM7, Esfera UAB, Campus de Bellaterra, E-08193 Barcelona, Spain, and Institut de Ciència de Materials de Barcelona ICMAB (CSIC), Campus de Bellaterra, E-08193 Barcelona, Spain
| | - E. R. Hernández
- Centre d’Investigació en Nanociència i Nanotecnologia, CIN2 (CSIC-ICN), Edifici CM7, Esfera UAB, Campus de Bellaterra, E-08193 Barcelona, Spain, and Institut de Ciència de Materials de Barcelona ICMAB (CSIC), Campus de Bellaterra, E-08193 Barcelona, Spain
| | - J. Fraxedas
- Centre d’Investigació en Nanociència i Nanotecnologia, CIN2 (CSIC-ICN), Edifici CM7, Esfera UAB, Campus de Bellaterra, E-08193 Barcelona, Spain, and Institut de Ciència de Materials de Barcelona ICMAB (CSIC), Campus de Bellaterra, E-08193 Barcelona, Spain
| |
Collapse
|
40
|
Kam LC. Capturing the nanoscale complexity of cellular membranes in supported lipid bilayers. J Struct Biol 2009; 168:3-10. [PMID: 19500676 DOI: 10.1016/j.jsb.2009.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/24/2009] [Accepted: 05/27/2009] [Indexed: 11/28/2022]
Abstract
The lateral mobility of cell membranes plays an important role in cell signaling, governing the rate at which embedded proteins can interact with other biomolecules. The past two decades have seen a dramatic transformation in understanding of this environment, as the mechanisms and potential implications of nanoscale structure of these systems has become accessible to theoretical and experimental investigation. In particular, emerging micro- and nano-scale fabrication techniques have made possible the direct manipulation of model membranes at the scales relevant to these biological processes. This review focuses on recent advances in nanopatterning of supported lipid bilayers, capturing the impact of membrane nanostructure on molecular diffusion and providing a powerful platform for further investigation of the role of this spatial complexity on cell signaling.
Collapse
Affiliation(s)
- Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
41
|
Werner JH, Montaño GA, Garcia AL, Zurek NA, Akhadov EA, Lopez GP, Shreve AP. Formation and dynamics of supported phospholipid membranes on a periodic nanotextured substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:2986-2993. [PMID: 19437708 DOI: 10.1021/la802249f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have studied and modeled the morphology and dynamics of fluid planar lipid bilayer membranes supported on a textured silicon substrate. The substrate is fabricated to have channels on its surface that are a few hundred nanometers across, with a channel depth of a few hundred nanometers perpendicular to the plane of observation. Using atomic force microscopy and quantitative fluorescence microscopy, we have shown that the bilayer assemblies conform to the underlying nanostructured substrate. As far as dynamics is concerned, when observed over length scales exceeding the dimensions of the nanostructured features, the macroscopic diffusion is anisotropic. However, the macroscopic anisotropy is well simulated using models of diffusion on the nanostructured surface that consider the lipids to diffuse homogeneously and isotropically on the supporting substrate. Consistent with previous observations on less well characterized or less periodic nanostructures, we find that the nanostructured substrate produces an effective anisotropy in macroscopic diffusion of the conformal membrane. More importantly, we demonstrate how quantitative analysis of dynamics probed by larger-scale fluorescence imaging can yield information on nanoscale thin-film morphology.
Collapse
Affiliation(s)
- James H Werner
- Center for Integrated Nanotechnologies, Materials Physics and Application Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Ujihara T, Suzuki S, Yamauchi Y, Tero R, Takeda Y. Local concentration of gel phase domains in supported lipid bilayers under light irradiation in binary mixture of phospholipids doped with dyes for photoinduced activation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:10974-10980. [PMID: 18781791 DOI: 10.1021/la801332a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recently, lipid bilayers supported on solid substrates are considered to offer potential as biological devices utilizing biological membranes and membrane proteins. In particular, artificially patterned supported bilayers hold great promise for the development of biological devices. In this study, we show control of the formation and location of phase-separated domain structures by light irradiation for gel phase and liquid-crystalline phase separation structures in a DMPC-DOPC binary lipid bilayer tagged with dye molecules on SiO2/Si substrates. Upon light irradiation, the gel phase domain structures disappeared from the phase-separated bilayers. This disappearance indicates that the light irradiation causes a local increase in the temperature of the lipid bilayer. In this disappearance phenomenon, the photoinduced activation of dye lipids, e.g. fluorescent lipids, is considered to play an important role, since the same phenomenon does not occur in lipid bilayers that have a low concentration of dye lipids. Thus, the local increase in temperature is propagated by light absorption of the dye lipid and subsequent photoinduced activation of nonradiative molecular vibrations. Subsequent interruption of the photoinduced activation for molecular motion allowed the gel phase domain structures to precipitate and grow again. Moreover, the domain area fraction remaining after the photoinduced activation was higher than that before the photoinduced activation. This result indicates that the local increase in temperature propagated by dye-excitation enhances formation of the gel phase domains. By utilizing this phenomenon, we could preferentially induce formation of domain structures within the light-irradiated regions. This technique could be the basis for a new patterning technique based on domain structures. Moreover, these domain structure patterns can be eliminated by increasing the temperature, allowing rewritable patterning.
Collapse
Affiliation(s)
- Toru Ujihara
- Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
43
|
Shahal T, Melzak KA, Lowe CR, Gizeli E. Poly(dimethylsiloxane)-coated sensor devices for the formation of supported lipid bilayers and the subsequent study of membrane interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11268-11275. [PMID: 18729340 DOI: 10.1021/la800211v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The development of smooth hydrophilic surfaces that act as substrates for supported lipid bilayers (SLBs) is important for membrane studies in biology and biotechnology. In this article, it is shown that thin films of poly(dimethylsiloxane) (PDMS) formed on a sensor surface can be used as a substrate for the deposition of reproducible and homogeneous zwitterionic SLBs by the direct fusion of vesicles. Poly(dimethylsiloxane) solution (1% w/v) was spin coated on Love acoustic wave and surface plasmon resonance devices to form a thin PDMS layer. Acoustic, fluorescence, and contact angle measurements were used for the optimization of the PDMS film properties as a function of plasma etching time; parameters of interest involve the thickness and hydrophilicity of the film and the ability to induce the formation of homogeneous SLBs without adsorbed vesicles. The application of PDMS-coated sensor devices to the study membrane of interactions was demonstrated during the acoustic and fluorescence detection of the binding of melittin and defensin Crp4 peptides to model supported lipid bilayers.
Collapse
Affiliation(s)
- Tamar Shahal
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | | | | | | |
Collapse
|
44
|
Jackson BL, Nye JA, Groves JT. Electrical manipulation of supported lipid membranes by embedded electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:6189-6193. [PMID: 18491927 DOI: 10.1021/la800040w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Alkanethiol modified gold electrodes patterned over a silica surface provided a dual hydrophobic/hydrophilic surface suitable for phospholipid monolayer and bilayer formation over the alkylated gold and glass surfaces, respectively. The phospholipid monolayer and bilayer were connected, allowing free diffusion of lipids within both leaflets of the glass-supported bilayer over the alkanethiol/gold-to-glass interface. Application of large alternating current fields to these electrodes irreversibly switched the gold electrodes to diffusion barriers. Enclosure of the electrode devices within protein barriers revealed a resting state surface potential driven reorganization of the charged fluorescent probes. Application of lower magnitude direct current fields resulted in electrophoretic redistribution of the membrane probes and electro-osmotic reorganization of membrane associated proteins.
Collapse
Affiliation(s)
- Bryan L Jackson
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
45
|
|
46
|
Membrane-substrate interface: Phospholipid bilayers at chemically and topographically structured surfaces. Biointerphases 2008; 3:FA22. [DOI: 10.1116/1.2889055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Native supported membranes: Creation of two-dimensional cell membranes on polymer supports (Review). Biointerphases 2008; 3:FA12. [DOI: 10.1116/1.2905233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Smith AS, Sengupta K, Goennenwein S, Seifert U, Sackmann E. Force-induced growth of adhesion domains is controlled by receptor mobility. Proc Natl Acad Sci U S A 2008; 105:6906-11. [PMID: 18463289 PMCID: PMC2383988 DOI: 10.1073/pnas.0801706105] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Indexed: 01/08/2023] Open
Abstract
In living cells, adhesion structures have the astonishing ability to grow and strengthen under force. Despite the rising evidence of the importance of this phenomenon, little is known about the underlying mechanism. Here, we show that force-induced adhesion-strengthening can occur purely because of the thermodynamic response to the elastic deformation of the membrane, even in the absence of the actively regulated cytoskeleton of the cell, which was hitherto deemed necessary. We impose pN-forces on two fluid membranes, locally pre-adhered by RGD-integrin binding. One of the binding partners is always mobile whereas the mobility of the other can be switched on or off. Immediate passive strengthening of adhesion structures occurs in both cases. When both binding partners are mobile, strengthening is aided by lateral movement of intact bonds as a transient response to force-induced membrane-deformation. By extending our microinterferometric technique to the suboptical regime, we show that the adhesion, as well as the resistance to force-induced de-adhesion, is greatly enhanced when both, rather than only one, of the binding partners are mobile. We formulate a theory that explains our observations by linking the macroscopic shape deformation with the microscopic formation of bonds, which further elucidates the importance of receptor mobility. We propose this fast passive response to be the first-recognition that triggers signaling events leading to mechanosensing in living cells.
Collapse
Affiliation(s)
- Ana-Suncana Smith
- II. Institut für Theoretische Physik II, Universität Stuttgart, Pfaffenwaldring 57/III, D-70550 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
49
|
Vendamme R, Kunitake T. Supramolecular assemblies of surfactants and lipid derivatives on free-standing hybrid nanofilms. SOFT MATTER 2008; 4:797-804. [PMID: 32907185 DOI: 10.1039/b714480f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A large, free-standing hybrid nanofilm (thickness 35 nm) of zirconia and cross-linked acrylate is stably dispersed in aqueous media via assembly with surfactants and lipid derivatives. These amphiphiles showed three different behaviours. Category 1 is represented by single-chain ionic surfactants of SDS and CTAB and by non-ionic surfactant of Triton X100. In this case, the amphiphile is adsorbed onto the surface of the nanofilm to stably disperse the supramolecular assembly in water but it is desorbed upon further transfer to pure water. Similar behavior is found for double-chain ionic amphiphiles of 2C12N+Br- and 2C10sucSO3-Na+. In Category 2 of non-ionic surfactants of poly(oxyethylene)-based C18En and TWEEN 20, the amphiphile-nanofilm assembly, once formed in aqueous amphiphile solution, remains intact even after transfer to pure water. A similar result is obtained, when 2C12sucSO3-Na+ is used. In the third category, the nanofilm cannot be dispersed in aqueous amphiphiles, as the supramolecular assembly is apparently not formed. Double-chain amphiphiles of 2C18N+Br-, 2C14sucSO3-Na+ and egg yolk lecithin show this behaviour. Although amphiphile-nanofilm assemblies are formed invariably under amphiphile concentrations above their CMCs (Category 1 and 2), some of them show quite slow desorption rate in water (Category 2). This situation is desirable in the design of useful amphiphile-nanofilm assemblies equipped with certain properties of biomembranes, such as fluid molecular ordering on surface and robust nanofilm structure.
Collapse
Affiliation(s)
- Richard Vendamme
- Topochemical Design Laboratory, Spatio-Temporal Function Materials Group, Frontier Research System (FRS), The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.
| | - Toyoki Kunitake
- Topochemical Design Laboratory, Spatio-Temporal Function Materials Group, Frontier Research System (FRS), The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
50
|
Sanii B, Smith AM, Butti R, Brozell AM, Parikh AN. Bending membranes on demand: fluid phospholipid bilayers on topographically deformable substrates. NANO LETTERS 2008; 8:866-871. [PMID: 18271562 DOI: 10.1021/nl073085b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We combine hierarchical surface wrinkling of elastomers with lipid membrane deposition techniques to dynamically template complex three-dimensional topographies onto supported lipid bilayers. The real-time introduction of corresponding nano- to micrometer scale curvatures triggers spatially periodic, elastic bending of the bilayer, accompanied by molecular-level reorganizations. This ability to dynamically impose curvatures on supported bilayers and the ensuing re-equilibration promises fundamental material and biophysical investigations of curvature-dependent, static heterogeneities and dynamic reorganizations pervasive in biological membranes.
Collapse
Affiliation(s)
- Babak Sanii
- Department of Applied Science and, Biophysics Graduate Group, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|