1
|
Pakhomov O, Posokhov Y. Detecting changes of testicular interstitial cell membranes with a fluorescent probe after incubation and cryopreservation with cryoprotective agents. Cryobiology 2025; 118:105194. [PMID: 39755163 DOI: 10.1016/j.cryobiol.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Membrane alterations are among central factors predetermining cell survival during cryopreservation. In the present research, we tested some serum-/xeno-free cryoprotective compositions including dimethyl sulfoxide (Me2SO) and polymers for their osmotic impact and toxicity towards testicular interstitial cells (ICs). IC survival was determined after their contact with Me2SO, dextran (D40), hydroxyethyl starch (HES), polyethylene glycols (PEG1500 and PEG400), or after cryopreservation and cryoprotective agent (CPA) removal. A ratiometric fluorescent membrane probe 2-(2'-hydroxyphenyl)-5-phenyl-1,3-oxazole (probe O1O) was applied to assess changes in the plasma membrane of ICs. The cell survival study has shown that Me2SO decreased IC survival in a time- and dosage-dependent manner. The CPA decreased the metabolic activity of ICs, thus implying its toxic effect on the living cell as a whole. Using probe O1O, we have demonstrated that the toxic effect also influenced the plasma membrane. IC membranes were not altered after incubation with 0.7 M Me2SO. The presence of D40, HES, or PEGs in such Me2SO containing media resulted in plasma membrane hydration and damage to the membranes of cells incubated with PEGs. Cryopreservation caused pronounced membrane dehydration of the survived ICs even after CPA removal in PEG-containing media and low indicators of IC survival. Interestingly, cryopreservation with the best cryoprotective media supplemented with 0.7 M Me2SO and 100 mg/ml D40 resulted in minimal membrane alterations, thus implying its higher ability to protect membranes during cryopreservation.
Collapse
Affiliation(s)
- Oleksandr Pakhomov
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61016 Kharkiv, Ukraine.
| | - Yevgen Posokhov
- The National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova st, 61000 Kharkiv, Ukraine; Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 6 Trinklera st, 61022 Kharkiv, Ukraine.
| |
Collapse
|
2
|
Ausilio C, Lubrano C, Rana D, Matrone GM, Bruno U, Santoro F. Concealing Organic Neuromorphic Devices with Neuronal-Inspired Supported Lipid Bilayers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305860. [PMID: 38702931 PMCID: PMC11251551 DOI: 10.1002/advs.202305860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/16/2024] [Indexed: 05/06/2024]
Abstract
Neurohybrid systems have gained large attention for their potential as in vitro and in vivo platform to interrogate and modulate the activity of cells and tissue within nervous system. In this scenario organic neuromorphic devices have been engineered as bioelectronic platforms to resemble characteristic neuronal functions. However, aiming to a functional communication with neuronal cells, material synthesis, and surface engineering can yet be exploited for optimizing bio-recognition processes at the neuromorphic-neuronal hybrid interface. In this work, artificial neuronal-inspired lipid bilayers have been assembled on an electrochemical neuromorphic organic device (ENODe) to resemble post-synaptic structural and functional features of living synapses. Here, synaptic conditioning has been achieved by introducing two neurotransmitter-mediated biochemical signals, to induce an irreversible change in the device conductance thus achieving Pavlovian associative learning. This new class of in vitro devices can be further exploited for assembling hybrid neuronal networks and potentially for in vivo integration within living neuronal tissues.
Collapse
Affiliation(s)
- Chiara Ausilio
- Center for Advanced Biomaterials for HealthCare@CRIBIstituto Italiano di TecnologiaNaples80125Italy
- Dipartimento di ChimicaMateriali e Produzione IndustrialeUniversità di Napoli Federico IINaples80125Italy
| | - Claudia Lubrano
- Faculty of Electrical Engineering and Information TechnologyRWTH Aachen52072AachenGermany
- Institute of Biological Information Processing – BioelectronicsIBI‐3 Forschungszentrum Juelich52428JuelichGermany
| | - Daniela Rana
- Faculty of Electrical Engineering and Information TechnologyRWTH Aachen52072AachenGermany
- Institute of Biological Information Processing – BioelectronicsIBI‐3 Forschungszentrum Juelich52428JuelichGermany
| | - Giovanni Maria Matrone
- Center for Advanced Biomaterials for HealthCare@CRIBIstituto Italiano di TecnologiaNaples80125Italy
- Present address:
Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Ugo Bruno
- Center for Advanced Biomaterials for HealthCare@CRIBIstituto Italiano di TecnologiaNaples80125Italy
- Dipartimento di ChimicaMateriali e Produzione IndustrialeUniversità di Napoli Federico IINaples80125Italy
| | - Francesca Santoro
- Center for Advanced Biomaterials for HealthCare@CRIBIstituto Italiano di TecnologiaNaples80125Italy
- Faculty of Electrical Engineering and Information TechnologyRWTH Aachen52072AachenGermany
- Institute of Biological Information Processing – BioelectronicsIBI‐3 Forschungszentrum Juelich52428JuelichGermany
| |
Collapse
|
3
|
Krok E, Franquelim HG, Chattopadhyay M, Orlikowska-Rzeznik H, Schwille P, Piatkowski L. Nanoscale structural response of biomimetic cell membranes to controlled dehydration. NANOSCALE 2023; 16:72-84. [PMID: 38062887 DOI: 10.1039/d3nr03078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Although cell membranes exist in excess of water under physiological conditions, there are a number of biochemical processes, such as adsorption of biomacromolecules or membrane fusion events, that require partial or even complete transient dehydration of lipid membranes. Even though the dehydration process is crucial for understanding all fusion events, still little is known about the structural adaptation of lipid membranes when their interfacial hydration layer is perturbed. Here, we present the study of the nanoscale structural reorganization of phase-separated, supported lipid bilayers (SLBs) under a wide range of hydration conditions. Model lipid membranes were characterised using a combination of fluorescence microscopy and atomic force microscopy and, crucially, without applying any chemical or physical modifications that have previously been considered essential for maintaining the membrane integrity upon dehydration. We revealed that decreasing the hydration state of the membrane leads to an enhanced mixing of lipids characteristic of the liquid-disordered (Ld) phase with those forming the liquid-ordered (Lo) phase. This is associated with a 2-fold decrease in the hydrophobic mismatch between the Ld and Lo lipid phases and a 3-fold decrease in the line tension for the fully desiccated membrane. Importantly, the observed changes in the hydrophobic mismatch, line tension, and lipid miscibility are fully reversible upon subsequent rehydration of the membrane. These findings provide a deeper insight into the fundamental processes, such as cell-cell fusion, that require partial dehydration at the interface of two membranes.
Collapse
Affiliation(s)
- Emilia Krok
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland.
| | - Henri G Franquelim
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Leipzig University, Research and Transfer Center for Bioactive Matter, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Madhurima Chattopadhyay
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland.
| | - Hanna Orlikowska-Rzeznik
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland.
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Lukasz Piatkowski
- Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Institute of Physics, Piotrowo 3, 60-965 Poznan, Poland.
| |
Collapse
|
4
|
Structural diversity of photoswitchable sphingolipids for optodynamic control of lipid microdomains. Biophys J 2023:S0006-3495(23)00135-2. [PMID: 36869591 DOI: 10.1016/j.bpj.2023.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/22/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Sphingolipids are a structurally diverse class of lipids predominantly found in the plasma membrane of eukaryotic cells. These lipids can laterally segregate with other rigid lipids and cholesterol into liquid-ordered domains that act as organizing centers within biomembranes. Owing the vital role of sphingolipids for lipid segregation, controlling their lateral organization is of utmost significance. Hence, we made use of the light-induced trans-cis isomerization of azobenzene-modified acyl chains to develop a set of photoswitchable sphingolipids with different headgroups (hydroxyl, galactosyl, phosphocholine) and backbones (sphingosine, phytosphingosine, tetrahydropyran-blocked sphingosine) that are able to shuttle between liquid-ordered and liquid-disordered regions of model membranes upon irradiation with UV-A (λ = 365 nm) and blue (λ = 470 nm) light, respectively. Using combined high-speed atomic force microscopy, fluorescence microscopy, and force spectroscopy, we investigated how these active sphingolipids laterally remodel supported bilayers upon photoisomerization, notably in terms of domain area changes, height mismatch, line tension, and membrane piercing. Hereby, we show that the sphingosine-based (Azo-β-Gal-Cer, Azo-SM, Azo-Cer) and phytosphingosine-based (Azo-α-Gal-PhCer, Azo-PhCer) photoswitchable lipids promote a reduction in liquid-ordered microdomain area when in the UV-adapted cis-isoform. In contrast, azo-sphingolipids having tetrahydropyran groups that block H-bonding at the sphingosine backbone (lipids named Azo-THP-SM, Azo-THP-Cer) induce an increase in the liquid-ordered domain area when in cis, accompanied by a major rise in height mismatch and line tension. These changes were fully reversible upon blue light-triggered isomerization of the various lipids back to trans, pinpointing the role of interfacial interactions for the formation of stable liquid-ordered domains.
Collapse
|
5
|
Iriarte-Alonso MA, Bittner AM, Chiantia S. Influenza A virus hemagglutinin prevents extensive membrane damage upon dehydration. BBA ADVANCES 2022; 2:100048. [PMID: 37082591 PMCID: PMC10074934 DOI: 10.1016/j.bbadva.2022.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
While the molecular mechanisms of virus infectivity are rather well known, the detailed consequences of environmental factors on virus biophysical properties are poorly understood. Seasonal influenza outbreaks are usually connected to the low winter temperature, but also to the low relative air humidity. Indeed, transmission rates increase in cold regions during winter. While low temperature must slow degradation processes, the role of low humidity is not clear. We studied the effect of relative humidity on a model of Influenza A H1N1 virus envelope, a supported lipid bilayer containing the surface glycoprotein hemagglutinin (HA), which is present in the viral envelope in very high density. For complete cycles of hydration, dehydration and rehydration, we evaluate the membrane properties in terms of structure and dynamics, which we assess by combining confocal fluorescence microscopy, raster image correlation spectroscopy, line-scan fluorescence correlation spectroscopy and atomic force microscopy. Our findings indicate that the presence of HA prevents macroscopic membrane damage after dehydration. Without HA, fast membrane disruption is followed by irreversible loss of lipid and protein mobility. Although our model is principally limited by the membrane composition, the macroscopic effects of HA under dehydration stress reveal new insights on the stability of the virus at low relative humidity.
Collapse
|
6
|
Lateral organization of biomimetic cell membranes in varying pH conditions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Chattopadhyay M, Krok E, Orlikowska H, Schwille P, Franquelim HG, Piatkowski L. Hydration Layer of Only a Few Molecules Controls Lipid Mobility in Biomimetic Membranes. J Am Chem Soc 2021; 143:14551-14562. [PMID: 34342967 PMCID: PMC8447254 DOI: 10.1021/jacs.1c04314] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Self-assembly of
biomembranes results from the intricate interactions
between water and the lipids’ hydrophilic head groups. Therefore,
the lipid–water interplay strongly contributes to modulating
membrane architecture, lipid diffusion, and chemical activity. Here,
we introduce a new method of obtaining dehydrated, phase-separated,
supported lipid bilayers (SLBs) solely by controlling the decrease
of their environment’s relative humidity. This facilitates
the study of the structure and dynamics of SLBs over a wide range
of hydration states. We show that the lipid domain structure of phase-separated
SLBs is largely insensitive to the presence of the hydration layer.
In stark contrast, lipid mobility is drastically affected by dehydration,
showing a 6-fold decrease in lateral diffusion. At the same time,
the diffusion activation energy increases approximately 2-fold for
the dehydrated membrane. The obtained results, correlated with the
hydration structure of a lipid molecule, revealed that about six to
seven water molecules directly hydrating the phosphocholine moiety
play a pivotal role in modulating lipid diffusion. These findings
could provide deeper insights into the fundamental reactions where
local dehydration occurs, for instance during cell–cell fusion,
and help us better understand the survivability of anhydrobiotic organisms.
Finally, the strong dependence of lipid mobility on the number of
hydrating water molecules opens up an application potential for SLBs
as very precise, nanoscale hydration sensors.
Collapse
Affiliation(s)
- Madhurima Chattopadhyay
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Emilia Krok
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Hanna Orlikowska
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Henri G Franquelim
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Lukasz Piatkowski
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| |
Collapse
|
8
|
Karanth S, Azinfar A, Helm CA, Delcea M. Identification of a critical lipid ratio in raft-like phases exposed to nitric oxide: An AFM study. Biophys J 2021; 120:3103-3111. [PMID: 34197799 PMCID: PMC8390956 DOI: 10.1016/j.bpj.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022] Open
Abstract
Lipid rafts are discrete, heterogeneous domains of phospholipids, sphingolipids, and sterols that are present in the cell membrane. They are responsible for conducting cell signaling and maintaining lipid-protein functionality. Redox-stress-induced modifications to any of their components can severely alter the mechanics and dynamics of the membrane causing impairment to the lipid-protein functionality. Here, we report on the effect of sphingomyelin (SM) in controlling membrane permeability and its role as a regulatory lipid in the presence of nitric oxide (NO). Force spectroscopy and atomic force microscopy imaging of raft-like phases (referring here to the coexistence of "liquid-ordered" and "liquid-disordered" phases in model bilayer membranes) prepared from lipids: 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC):SM:cholesterol (CH) (at three ratios) showed that the adhesion forces to pull the tip out of the membrane increased with increasing SM concentration, indicating decreased membrane permeability. However, in the presence of NO radical (1 and 5 μM), the adhesion forces decreased depending on SM concentration. The membrane was found to be stable at the ratio POPC:SM:CH (2:1:1) even when exposed to 1 μM NO. We believe that this is a critical ratio needed by the raft-like phases to maintain homeostasis under stress conditions. The stability could be due to an interplay existing between SM and CH. However, at 5 μM NO, membrane deteriorations were detected. For POPC:SM:CH (2:2:1) ratio, NO displayed a pro-oxidant behavior and damaged the membrane at both radical concentrations. These changes were reflected by the differences in the height profiles of the raft-like phases observed by atomic force microscopy imaging. Malondialdehyde (a peroxidation product) detection suggests that lipids may have undergone lipid nitroxidation. The changes were instantaneous and independent of radical concentration and incubation time. Our study underlines the need for identifying appropriate ratios in the lipid rafts of the cell membranes to withstand redox imbalances caused by radicals such as NO.
Collapse
Affiliation(s)
- Sanjai Karanth
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany; ZIK-HIKE, Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen", Greifswald, Germany
| | - Amir Azinfar
- Institute of Physics, University of Greifswald, Greifswald, Germany
| | | | - Mihaela Delcea
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany; ZIK-HIKE, Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei kardiovaskulären Erkrankungen", Greifswald, Germany; DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung), partnersite Greifswald, Germany.
| |
Collapse
|
9
|
Hibshman JD, Clegg JS, Goldstein B. Mechanisms of Desiccation Tolerance: Themes and Variations in Brine Shrimp, Roundworms, and Tardigrades. Front Physiol 2020; 11:592016. [PMID: 33192606 PMCID: PMC7649794 DOI: 10.3389/fphys.2020.592016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Water is critical for the survival of most cells and organisms. Remarkably, a small number of multicellular animals are able to survive nearly complete drying. The phenomenon of anhydrobiosis, or life without water, has been of interest to researchers for over 300 years. In this review we discuss advances in our understanding of protectants and mechanisms of desiccation tolerance that have emerged from research in three anhydrobiotic invertebrates: brine shrimp (Artemia), roundworms (nematodes), and tardigrades (water bears). Discovery of molecular protectants that allow each of these three animals to survive drying diversifies our understanding of desiccation tolerance, and convergent themes suggest mechanisms that may offer a general model for engineering desiccation tolerance in other contexts.
Collapse
Affiliation(s)
- Jonathan D. Hibshman
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - James S. Clegg
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Bob Goldstein
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Winkler PM, Regmi R, Flauraud V, Brugger J, Rigneault H, Wenger J, García-Parajo MF. Transient Nanoscopic Phase Separation in Biological Lipid Membranes Resolved by Planar Plasmonic Antennas. ACS NANO 2017; 11:7241-7250. [PMID: 28696660 DOI: 10.1021/acsnano.7b03177] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoscale membrane assemblies of sphingolipids, cholesterol, and certain proteins, also known as lipid rafts, play a crucial role in facilitating a broad range of important cell functions. Whereas on living cell membranes lipid rafts have been postulated to have nanoscopic dimensions and to be highly transient, the existence of a similar type of dynamic nanodomains in multicomponent lipid bilayers has been questioned. Here, we perform fluorescence correlation spectroscopy on planar plasmonic antenna arrays with different nanogap sizes to assess the dynamic nanoscale organization of mimetic biological membranes. Our approach takes advantage of the highly enhanced and confined excitation light provided by the nanoantennas together with their outstanding planarity to investigate membrane regions as small as 10 nm in size with microsecond time resolution. Our diffusion data are consistent with the coexistence of transient nanoscopic domains in both the liquid-ordered and the liquid-disordered microscopic phases of multicomponent lipid bilayers. These nanodomains have characteristic residence times between 30 and 150 μs and sizes around 10 nm, as inferred from the diffusion data. Thus, although microscale phase separation occurs on mimetic membranes, nanoscopic domains also coexist, suggesting that these transient assemblies might be similar to those occurring in living cells, which in the absence of raft-stabilizing proteins are poised to be short-lived. Importantly, our work underscores the high potential of photonic nanoantennas to interrogate the nanoscale heterogeneity of native biological membranes with ultrahigh spatiotemporal resolution.
Collapse
Affiliation(s)
- Pamina M Winkler
- Institut de Ciencies Fotoniques (ICFO), The Barcelona Institute of Science and Technology , Barcelona, Spain
| | - Raju Regmi
- Institut de Ciencies Fotoniques (ICFO), The Barcelona Institute of Science and Technology , Barcelona, Spain
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel , Marseille, France
| | - Valentin Flauraud
- Microsystems Laboratory, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Jürgen Brugger
- Microsystems Laboratory, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Hervé Rigneault
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel , Marseille, France
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel , Marseille, France
| | - María F García-Parajo
- Institut de Ciencies Fotoniques (ICFO), The Barcelona Institute of Science and Technology , Barcelona, Spain
- ICREA , Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Effects of chain length and hydrophobicity/charge ratio of AMP on its antimicrobial activity. Sci China Chem 2017. [DOI: 10.1007/s11426-016-0415-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Losensky L, Goldenbogen B, Holland G, Laue M, Petran A, Liebscher J, Scheidt HA, Vogel A, Huster D, Klipp E, Arbuzova A. Micro- and nano-tubules built from loosely and tightly rolled up thin sheets. Phys Chem Chem Phys 2016; 18:1292-301. [PMID: 26659839 DOI: 10.1039/c5cp06084b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tubular structures built from amphiphilic molecules are of interest for nano-sensing, drug delivery, and structuring of oils. In this study, we characterized the tubules built in aqueous suspensions of a cholesteryl nucleoside conjugate, cholesterylaminouridine (CholAU) and phosphatidylcholines (PCs). In mixtures with unsaturated PCs having chain lengths comparable to the length of CholAU, two different types of tubular structures were observed; nano- and micro-tubules had average diameters in the ranges 50-300 nm and 2-3 μm, respectively. Using cryo scanning electron microscopy (cryo-SEM) we found that nano- and micro-tubules differed in their morphology: the nano-tubules were densely packed, whereas micro-tubules consisted of loosely rolled undulated lamellas. Atomic force microscopy (AFM) revealed that the nano-tubules were built from 4 to 5 nm thick CholAU-rich bilayers, which were in the crystalline state. Solid-state (2)H NMR spectroscopy also confirmed that about 25% of the total CholAU, being about the fraction of CholAU composing the tubules, formed the rigid crystalline phase. We found that CholAU/PC tubules can be functionalized by molecules inserted into lipid bilayers and fluorescently labeled PCs and lipophilic nucleic acids inserted spontaneously into the outer layer of the tubules. The tubular structures could be loaded and cross-linked, e.g. by DNA hybrids, and, therefore, are of interest for further development, e.g. as a depot scaffold for tissue regeneration.
Collapse
Affiliation(s)
- Luisa Losensky
- Molecular Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany.
| | - Björn Goldenbogen
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Gudrun Holland
- Robert Koch Institute, ZBS 4, Seestr. 10, 13353 Berlin, Germany
| | - Michael Laue
- Robert Koch Institute, ZBS 4, Seestr. 10, 13353 Berlin, Germany
| | - Anca Petran
- National Institute of Research and Development for Isotopic and Molecular Technologies, Donat 67-103, RO-400293 Cluj-Napoca, Romania
| | - Jürgen Liebscher
- National Institute of Research and Development for Isotopic and Molecular Technologies, Donat 67-103, RO-400293 Cluj-Napoca, Romania
| | - Holger A Scheidt
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Alexander Vogel
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Anna Arbuzova
- Molecular Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany.
| |
Collapse
|
13
|
Molina ML, Giudici AM, Poveda JA, Fernández-Ballester G, Montoya E, Renart ML, Fernández AM, Encinar JA, Riquelme G, Morales A, González-Ros JM. Competing Lipid-Protein and Protein-Protein Interactions Determine Clustering and Gating Patterns in the Potassium Channel from Streptomyces lividans (KcsA). J Biol Chem 2015; 290:25745-55. [PMID: 26336105 DOI: 10.1074/jbc.m115.669598] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence to support the notion that membrane proteins, instead of being isolated components floating in a fluid lipid environment, can be assembled into supramolecular complexes that take part in a variety of cooperative cellular functions. The interplay between lipid-protein and protein-protein interactions is expected to be a determinant factor in the assembly and dynamics of such membrane complexes. Here we report on a role of anionic phospholipids in determining the extent of clustering of KcsA, a model potassium channel. Assembly/disassembly of channel clusters occurs, at least partly, as a consequence of competing lipid-protein and protein-protein interactions at nonannular lipid binding sites on the channel surface and brings about profound changes in the gating properties of the channel. Our results suggest that these latter effects of anionic lipids are mediated via the Trp(67)-Glu(71)-Asp(80) inactivation triad within the channel structure and its bearing on the selectivity filter.
Collapse
Affiliation(s)
- M Luisa Molina
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - A Marcela Giudici
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - José A Poveda
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | | | - Estefanía Montoya
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - M Lourdes Renart
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - Asia M Fernández
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - José A Encinar
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - Gloria Riquelme
- the Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 1027 Santiago, Chile, and
| | - Andrés Morales
- the Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain
| | - José M González-Ros
- From the Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain,
| |
Collapse
|
14
|
Han CT, Chao L. Using a patterned grating structure to create lipid bilayer platforms insensitive to air bubbles. LAB ON A CHIP 2015; 15:86-93. [PMID: 25316602 DOI: 10.1039/c4lc00928b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Supported lipid bilayers (SLBs) have been used for various biosensing applications. The bilayer structure enables embedded lipid membrane species to maintain their native orientation, and the two-dimensional fluidity is crucial for numerous biomolecular interactions to occur. The platform integrated with a microfluidic device for reagent transport and exchange has great potential to be applied with surface analytical tools. However, SLBs can easily be destroyed by air bubbles during assay reagent transport and exchange. Here, we created a patterned obstacle grating structured surface in a microfluidic channel to protect SLBs from being destroyed by air bubbles. Unlike all of the previous approaches using chemical modification or adding protection layers to strengthen lipid bilayers, the uniqueness of this approach is that it uses the patterned obstacles to physically trap water above the bilayers to prevent the air-water interface from directly coming into contact with and peeling the bilayers. We showed that our platform with certain grating geometry criteria can provide promising protection to SLBs from air bubbles. The required obstacle distance was found to decrease when we increased the air-bubble movement speed. In addition, the interaction assay results from streptavidin and biotinylated lipids in the confined SLBs suggested that receptors at the SLBs retained the interaction ability after air-bubble treatment. The results showed that the developed SLB platform can preserve both high membrane fluidity and high accessibility to the outside environment, which have never been simultaneously achieved before. Incorporating the built platforms with some surface analytical tools could open the bottleneck of building highly robust in vitro cell-membrane-related bioassays.
Collapse
Affiliation(s)
- Chung-Ta Han
- National Taiwan University, Department of Chemical Engineering, Taipei, Taiwan.
| | | |
Collapse
|
15
|
Möller I, Seeger S. Solid supported lipid bilayers from artificial and natural lipid mixtures – long-term stable, homogeneous and reproducible. J Mater Chem B 2015; 3:6046-6056. [DOI: 10.1039/c5tb00437c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We show the assembly of reproducible, long-term stable, homogeneous solid supported lipid bilayers under flow conditions by the vesicle deposition method from various artificial and natural lipid mixtures.
Collapse
Affiliation(s)
- Isabelle Möller
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Stefan Seeger
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| |
Collapse
|
16
|
The proapoptotic protein tBid forms both superficially bound and membrane-inserted oligomers. Biophys J 2014; 106:2085-95. [PMID: 24853737 DOI: 10.1016/j.bpj.2014.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/13/2014] [Accepted: 03/31/2014] [Indexed: 11/22/2022] Open
Abstract
Bid is a proapopotic activator protein of the Bcl-2 family that plays a pivotal role in controlling mitochondrial outer membrane permeabilization during apoptosis. Here, we characterized the interaction of fluorescently labeled truncated Bid (tBid) with a mitochondria-like supported lipid bilayer at the single-molecule level. The proteins observed at the membrane exhibited a very wide range of mobility. Confocal images of the membrane displayed both diffraction-limited Gaussian spots and horizontal streaks, corresponding to immobile and mobile tBid species, respectively. We observed 1), fast-diffusing proteins corresponding to a loosely, probably electrostatically bound state; 2), slowly diffusing proteins, likely corresponding to a superficially inserted state; and 3), fully immobilized proteins, suggesting a fully inserted state. The stoichiometry of these proteins was determined by normalizing their fluorescence intensity by the brightness of a tBid monomer, measured separately using fluorescence fluctuation techniques. Strikingly, the immobile species were found to be mainly tetramers and higher, whereas the mobile species had on average a significantly lower stoichiometry. Taken together, these results show that as soluble Bid progresses toward a membrane-inserted state, it undergoes an oligomerization process similar to that observed for Bax.
Collapse
|
17
|
Abusharkh SE, Erkut C, Oertel J, Kurzchalia TV, Fahmy K. The role of phospholipid headgroup composition and trehalose in the desiccation tolerance of Caenorhabditis elegans. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12897-12906. [PMID: 25290156 DOI: 10.1021/la502654j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Anhydrobiotic organisms have the remarkable ability to lose extensive amounts of body water and survive in an ametabolic state. Distributed to various taxa of life, these organisms have developed strategies to efficiently protect their cell membranes and proteins against extreme water loss. Recently, we showed that the dauer larva of the nematode Caenorhabditis elegans is anhydrobiotic and accumulates high amounts of trehalose during preparation to harsh desiccation (preconditioning). Here, we have used this genetic model to study the biophysical manifestations of anhydrobiosis and show that, in addition to trehalose accumulation, dauer larvae dramatically reduce their phosphatidylcholine (PC) content. The chemical composition of the phospholipids (PLs) has key consequences not only for their interaction with trehalose, as we demonstrate with Langmuir-Blodgett monolayers, but also, the kinetic response of PLs to hydration transients is strongly influenced as evidenced by time-resolved FTIR spectroscopy. PLs from preconditioned larvae with reduced PC content exhibit a higher trehalose affinity, a stronger hydration-induced gain in acyl chain free volume, and a wider spread of structural relaxation rates of their lyotropic transitions and sub-headgroup H-bond interactions. The different hydration properties of PC and phosphatidylethanolamine (PE) headgroups are crucial for the hydration-dependent rearrangement of the trehalose-mediated H-bond network. As a consequence, the compressibility modulus of PLs from preconditioned larvae is about 2.6-fold smaller than that from non-preconditioned ones. Thus, the biological relevance of reducing the PC:PE ratio by PL headgroup adaptation should be the preservation of plasma membrane integrity by relieving mechanical strain from desiccated trehalose-containing cells during fast rehydration.
Collapse
Affiliation(s)
- Sawsan E Abusharkh
- Biophysics Division, Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf , PF 510119, D-01314 Dresden, Germany
| | | | | | | | | |
Collapse
|
18
|
Han CT, Chao L. Creating air-stable supported lipid bilayers by physical confinement induced by phospholipase A2. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6378-6383. [PMID: 24758306 DOI: 10.1021/am405746g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Supported lipid bilayer platforms have been used for various biological applications. However, the lipid bilayers easily delaminate and lose their natural structure after being exposed to an air-water interface. In this study, for the first time, we demonstrated that physical confinement can be used instead of chemical modifications to create air-stable membranes. Physical confinement was generated by the obstacle network induced by a peripheral enzyme, phospholipase A2. The enzyme and reacted lipids could be washed away from the obstacle network, which was detergent-resistant and strongly bonded to the solid support. On the basis of these properties, the obstacle framework on the solid support was reusable and lipid bilayers with the desired composition could be refilled and formed in the region confined by the obstacle framework. The results of fluorescence recovery after photobleaching (FRAP) indicate that the diffusivities of the lipid bilayers before drying and after rehydration were comparable, indicating the air stability of the physically confined membrane. In addition, we observed that the obstacles could trap a thin layer of water after the air-water interface passed through the lipid bilayer. Because the obstacles were demonstrated to be several times higher than a typical lipid membrane on a support, the obstacles may act as container walls, which can trap water above the lipid membrane. The water layer may have prevented the air-water interface from directly contacting the lipid membrane and, therefore, buffered the interfacial force, which could cause membrane delamination. The results suggest the possibility of using physical confinement to create air-stable membranes without changing local membrane rigidity or covering the membrane with protecting molecules.
Collapse
Affiliation(s)
- Chung-Ta Han
- Department of Chemical Engineering, National Taiwan University , Taipei 10617, Taiwan
| | | |
Collapse
|
19
|
Dols-Perez A, Fumagalli L, Gomila G. Structural and nanomechanical effects of cholesterol in binary and ternary spin-coated single lipid bilayers in dry conditions. Colloids Surf B Biointerfaces 2014; 116:295-302. [DOI: 10.1016/j.colsurfb.2013.12.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/26/2013] [Accepted: 12/21/2013] [Indexed: 12/24/2022]
|
20
|
Leutenegger M, Ringemann C, Lasser T, Hell SW, Eggeling C. Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS). OPTICS EXPRESS 2012; 20:5243-63. [PMID: 22418331 DOI: 10.1364/oe.20.005243] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We characterize a novel fluorescence microscope which combines the high spatial discrimination of a total internal reflection epi-fluorescence (epi-TIRF) microscope with that of stimulated emission depletion (STED) nanoscopy. This combination of high axial confinement and dynamic-active lateral spatial discrimination of the detected fluorescence emission promises imaging and spectroscopy of the structure and function of cell membranes at the macro-molecular scale. Following a full theoretical description of the sampling volume and the recording of images of fluorescent beads, we exemplify the performance and limitations of the TIRF-STED nanoscope with particular attention to the polarization state of the laser excitation light. We demonstrate fluorescence correlation spectroscopy (FCS) with the TIRF-STED nanoscope by observing the diffusion of dye molecules in aqueous solutions and of fluorescent lipid analogs in supported lipid bilayers in the presence of background signal. The nanoscope reduced the out-of-focus background signal. A lateral resolution down to 40-50 nm was attained which was ultimately limited by the low lateral signal-to-background ratio inherent to the confocal epi-TIRF scheme. Together with the estimated axial confinement of about 55 nm, our TIRF-STED nanoscope achieved an almost isotropic and less than 1 attoliter small all-optically induced measurement volume.
Collapse
Affiliation(s)
- Marcel Leutenegger
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
21
|
Petrášek Z, Derenko S, Schwille P. Circular scanning fluorescence correlation spectroscopy on membranes. OPTICS EXPRESS 2011; 19:25006-25021. [PMID: 22273893 DOI: 10.1364/oe.19.025006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We discuss circular scanning Fluorescence Correlation Spectroscopy (sFCS) as a simple extension of standard FCS for accurate, robust and fast diffusion measurements on membranes. The implementation is based on a straightforward conversion of a conventional FCS instrument to a sFCS device by mounting a mirror onto a two-axis piezo scanner. The measurement volume is scanned in a circle with sub-micron radius, allowing the determination of diffusion coefficients and concentrations without any a priori knowledge of the size of the detection volume. This is highly important in measurements on two-dimensional surfaces, where the volume size, and therefore the quantitative outcome of the experiment, is determined by the relative position of the surface and the objective focus, a parameter difficult to control in practice. The technique is applied to diffusion measurements on model membrane systems: supported lipid bilayers and giant unilamellar vesicles. We show that the method is insensitive to membrane positioning and to disturbing processes on faster or slower time scales than diffusion, and yields accurate results even for fluctuating or drifting membranes. Its robustness, short measurement times, and small size of the probed area makes this technique particularly attractive for analyzing the properties of membranes and molecules diffusing and interacting within them.
Collapse
Affiliation(s)
- Zdeněk Petrášek
- Biotechnologisches Zentrum, Technische Universitat Dresden, Tatzberg, Dresden, Germany.
| | | | | |
Collapse
|
22
|
Dols-Perez A, Fumagalli L, Simonsen AC, Gomila G. Ultrathin spin-coated dioleoylphosphatidylcholine lipid layers in dry conditions: a combined atomic force microscopy and nanomechanical study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13165-13172. [PMID: 21936555 DOI: 10.1021/la202942j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Atomic force microscopy (AFM) has been used to study the structural and mechanical properties of low concentrated spin-coated dioleoylphosphatidylcholine (DOPC) layers in dry environment (RH ≈ 0%) at the nanoscale. It is shown that for concentrations in the 0.1-1 mM range the structure of the DOPC spin-coated samples consists of an homogeneous lipid monolayer ∼1.3 nm thick covering the whole substrate on top of which lipid bilayer (or multilayer) micro- and nanometric patches and rims are formed. The thickness of the bilayer structures is found to be ∼4.5 nm (or multiples of this value for multilayer structures), while the lateral dimensions range from micrometers to tens of nanometer depending on the lipid concentration. The force required to break a bilayer (breakthrough force) is found to be ∼0.24 nN. No dependence of the mechanical values on the lateral dimensions of the bilayer structures is evidenced. Remarkably, the thickness and breakthrough force values of the bilayers measured in dry environment are very similar to values reported in the literature for supported DOPC bilayers in pure water.
Collapse
Affiliation(s)
- Aurora Dols-Perez
- Nanobioelec group, Institut de Bioenginyeria de Catalunya (IBEC), Baldiri i Reixac 15-21, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
23
|
Abstract
OBJECTIVES 2F5 and 4E10 are two broadly neutralizing monoclonal antibodies (mAbs) targeting the membrane proximal external region (MPER) of HIV-1 gp41 envelope protein. This region, which contacts the viral membrane, is highly conserved and has been regarded as a promising target for vaccine development. We aimed to clarify the basis of 2F5 and 4E10 molecular interactions with epitope cores in MPER and lipid bilayers. DESIGN Microscopy-based approaches were used to infer and quantify the effects of both mAbs on membranes, in the presence and absence of the epitope cores. Supported lipid bilayers (SLBs), with and without phase separation, were used as membrane models. Fluorescent-labeled and nonlabeled MPER-derived peptides containing both 2F5 and 4E10 epitopes were used. METHODS mAbs 2F5 and 4E10 membrane interactions, in the presence or absence of MPER-derived peptides, were evaluated by combined atomic force and confocal microscopies. RESULTS Both mAbs form lipid-segregated aggregates on SLBs and do not induce other significant membrane perturbations. Furthermore, the affinity of MPER toward membranes is differently affected by both mAbs and correlates with the mAbs-epitope core lipid interactions. 2F5 is able to dock the MPER peptide on the membrane, whereas 4E10 extracts the MPER from the lipid bilayer. CONCLUSION The results reveal the molecular details underneath 2F5/4E10 membrane-epitope binding and a model is proposed to explain the differential mAbs neutralization efficacies, which relates to the exposure of the epitopes in the lipid bilayers and the role of the lipids in mAb-epitope binding.
Collapse
|
24
|
Zhong J. From simple to complex: investigating the effects of lipid composition and phase on the membrane interactions of biomolecules using in situ atomic force microscopy. Integr Biol (Camb) 2011; 3:632-44. [DOI: 10.1039/c0ib00157k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Largueze JB, Kirat KE, Morandat S. Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina. Colloids Surf B Biointerfaces 2010; 79:33-40. [DOI: 10.1016/j.colsurfb.2010.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 12/25/2022]
|
26
|
The role of calcium ions in the interactions of PrP106-126 amide with model membranes. Colloids Surf B Biointerfaces 2010; 77:40-6. [DOI: 10.1016/j.colsurfb.2010.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 12/30/2009] [Accepted: 01/03/2010] [Indexed: 11/24/2022]
|
27
|
El Kirat K, Morandat S, Dufrêne YF. Nanoscale analysis of supported lipid bilayers using atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:750-65. [DOI: 10.1016/j.bbamem.2009.07.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/17/2009] [Accepted: 07/23/2009] [Indexed: 12/11/2022]
|
28
|
Lelong G, Howells WS, Brady JW, Talón C, Price DL, Saboungi ML. Translational and rotational dynamics of monosaccharide solutions. J Phys Chem B 2010; 113:13079-85. [PMID: 19739660 DOI: 10.1021/jp905001q] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics computer simulations have been carried out on aqueous solutions of glucose at concentrations bracketing those previously measured with quasi-elastic neutron scattering (QENS), in order to investigate the motions and interactions of the sugar and water molecules. In addition, QENS measurements have been carried out on fructose solutions to determine whether the effects previously observed for glucose apply to monosaccharide solutions. The simulations indicate a dynamical analogy between higher solute concentration and lower temperature that could provide a key explanation of the bioprotective phenomena observed in many living organisms. The experimental results on fructose solutions show qualitatively similar behavior to the glucose solutions. The dynamics of the water molecules are essentially the same, while the translational diffusion of the sugar molecules is slightly faster in the fructose solutions.
Collapse
Affiliation(s)
- Gérald Lelong
- Centre de Recherche sur la Matiere Divisee, Universite d'Orleans/CNRS-UMR 6619, 45071 Orleans, France.
| | | | | | | | | | | |
Collapse
|
29
|
Park BJ, Abu-Lail NI. Variations in the Nanomechanical Properties of Virulent and Avirulent Listeria monocytogenes. SOFT MATTER 2010; 6:3898-3909. [PMID: 20871743 PMCID: PMC2944262 DOI: 10.1039/b927260g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Atomic force microscopy (AFM) was used to quantify both the nanomechanical properties of pathogenic (ATCC 51776 & EGDe) and non-pathogenic (ATCC 15313 & HCC25) Listeria monocytogenes strains and the conformational properties of their surface biopolymers. The nanomechanical properties of the various L. monocytogenes strains were quantified in terms of Young's moduli of cells. To estimate Young's moduli, the classic Hertz model of contact mechanics and a modified version of it that takes into account substrate effects were used to fit the AFM nanoindentation-force measurements collected while pushing onto the bacterial surface biopolymer brush. When compared, the classic Hertz model always predicted higher Young's moduli values of bacterial cell elasticity compared to the modified Hertz model. On average, the modified Hertz model showed that virulent strains are approximately twice as rigid (88.1 ± 14.5 KPa) as the avirulent strains (47.3 ± 7.6 kPa). To quantify the conformational properties of L. monocytogenes' strains surface biopolymers, two models were used. First, the entropic-based, statistical mechanical, random walk formulation, the wormlike chain (WLC) model was used to estimate the elastic properties of the bacterial surface molecules. The WLC model results indicated that the virulent strains are characterized by a more flexible surface biopolymers as indicated by shorter persistence lengths (L(p) = 0.21 ± 0.08 nm) compared to the avirulent strains (L(p) = 0.24 ± 0.14 nm). Second, a steric model developed to describe the repulsive forces measured between the AFM tip and bacterial surface biopolymers indicated that the virulent strains are characterized by crowded and longer biopolymer brushes compared to those of the avirulent strains. Finally, scaling relationships developed for grafted polyelectrolyte brushes indicated L. monocytogenes strains' biopolymer brushes are charged. Collectively, our data indicate that the conformational properties of the bacterial surface biopolymers and their surface densities play an important role in controlling the overall bacterial cell elasticity.
Collapse
Affiliation(s)
| | - Nehal I. Abu-Lail
- Corresponding Author: Nehal I. Abu-Lail, Ph.D., Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710, United States, , 509-335-4961
| |
Collapse
|
30
|
Tanvir S, Morandat S, Frederic N, Adenier H, Pulvin S. Activity of immobilised rat hepatic microsomal CYP2E1 using alumina membrane as a support. N Biotechnol 2009; 26:222-8. [DOI: 10.1016/j.nbt.2009.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 08/03/2009] [Accepted: 08/16/2009] [Indexed: 11/24/2022]
|
31
|
Effects of lipid composition and phase on the membrane interaction of the prion peptide 106-126 amide. Biophys J 2009; 96:4610-21. [PMID: 19486683 DOI: 10.1016/j.bpj.2009.01.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 11/17/2008] [Accepted: 01/23/2009] [Indexed: 12/27/2022] Open
Abstract
Lipid rafts are specialized liquid-ordered (L(o)) phases of the cell membrane that are enriched in sphingolipids and cholesterol (Chl), and surrounded by a liquid-disordered (L(d)) phase enriched in glycerophospholipids. Lipid rafts are involved in the generation of pathological forms of proteins that are associated with neurodegenerative diseases. To investigate the effects of lipid composition and phase on the generation of pathological forms of proteins, we constructed an L(d)-gel phase-separated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/sphingomyelin (from bovine brain (BSM))-supported lipid bilayer (SLB) and an L(d)-L(o) phase-separated POPC/BSM/Chl SLB. We used in situ time-lapse atomic force microscopy to study the interactions between these SLBs and the prion peptide K(106)TNMKHMAGAAAAGAVVGGLG(126) (PrP106-126) amide, numbered according to the human prion-peptide sequence. Our results show that: 1), with the presence of BSM in the L(d) phase, the PrP106-126 amide induces fully penetrated porations in the L(d) phase of POPC/BSM SLB and POPC/BSM/Chl SLB; 2), with the presence of both BSM and Chl in the L(d) phase, the PrP106-126 amide induces the disintegration of the L(d) phase of POPC/BSM/Chl SLB; and 3), with the presence of both BSM and Chl in the L(o) phase, PrP106-126 amide induces membrane thinning in the L(o) phase of POPC/BSM/Chl SLB. These results provide comprehensive insight into the process by which the PrP106-126 amide interacts with lipid membranes.
Collapse
|
32
|
Ries J, Chiantia S, Schwille P. Accurate determination of membrane dynamics with line-scan FCS. Biophys J 2009; 96:1999-2008. [PMID: 19254560 DOI: 10.1016/j.bpj.2008.12.3888] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 12/03/2008] [Indexed: 11/28/2022] Open
Abstract
Here we present an efficient implementation of line-scan fluorescence correlation spectroscopy (i.e., one-dimensional spatio-temporal image correlation spectroscopy) using a commercial laser scanning microscope, which allows the accurate measurement of diffusion coefficients and concentrations in biological lipid membranes within seconds. Line-scan fluorescence correlation spectroscopy is a calibration-free technique. Therefore, it is insensitive to optical artifacts, saturation, or incorrect positioning of the laser focus. In addition, it is virtually unaffected by photobleaching. Correction schemes for residual inhomogeneities and depletion of fluorophores due to photobleaching extend the applicability of line-scan fluorescence correlation spectroscopy to more demanding systems. This technique enabled us to measure accurate diffusion coefficients and partition coefficients of fluorescent lipids in phase-separating supported bilayers of three commonly used raft-mimicking compositions. Furthermore, we probed the temperature dependence of the diffusion coefficient in several model membranes, and in human embryonic kidney cell membranes not affected by temperature-induced optical aberrations.
Collapse
Affiliation(s)
- Jonas Ries
- Technical University of Dresden, Biotechnologisches Zentrum, Dresden, Germany
| | | | | |
Collapse
|
33
|
De Laporte L, Yan AL, Shea LD. Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury. Biomaterials 2009; 30:2361-8. [PMID: 19144400 DOI: 10.1016/j.biomaterials.2008.12.051] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 12/17/2008] [Indexed: 12/18/2022]
Abstract
Tissue engineering scaffolds with complex geometries can provide an architecture that directs tissue formation. Drug delivery from these scaffolds to promote regeneration is often challenging due to the complex fabrication processes. Surface-mediated DNA delivery from multiple channel bridges was applied to deliver lipoplexes in vivo to the injured spinal cord. The surface properties of the polymer, DNA deposition with or without drying, and the presence of ECM components were investigated. In vitro studies revealed that fibronectin produced greater expression levels and immobilization efficiencies compared with collagen, laminin, and no coating. In addition, lipoplex incubation on ECM-coated PLG increased expression relative to either of the drying methods. Additionally, the incubation method had more homogeneously distributed lipoplexes and a higher number of transfected cells relative to the dried conditions. Translation to three-dimensional bridges led to high levels of transgene expression in vitro. In vivo, lipoplexes immobilized to the bridge produced transgene expression levels in a rat spinal cord hemisection model that were 2-fold greater than naked plasmid. Additionally, expression with lipoplexes persisted for at least three weeks. Surface-mediated delivery can be applied to scaffolds with complex geometries to promote transgene expression in vivo.
Collapse
Affiliation(s)
- Laura De Laporte
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, E156 Evanston, IL 60208-3120, USA.
| | | | | |
Collapse
|
34
|
Bennun SV, Faller R, Longo ML. Drying and rehydration of DLPC/DSPC symmetric and asymmetric supported lipid bilayers: a combined AFM and fluorescence microscopy study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:10371-10381. [PMID: 18707144 DOI: 10.1021/la8016694] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This work characterizes the impact of lipid symmetry/asymmetry on drying/rehydration reorganization in phase-separated dilauroylphosphatidylcholine (DLPC)/distearoylphosphatidylcholine (DSPC) supported lipid bilayers (SLBs) at the submicron and micron-scale. In addition the prevention of major drying/rehydration reorganization by the use of trehalose is demonstrated. Even though it was found using fluorescence microscopy that micrometer scale structure is preserved in the presence and absence of trehalose upon drying/rehydration, AFM and FRAP experiments successfully revealed major changes in the phase-separated structure such as defects, obstructions, lipid condensation, collapse structures, and complex incomplete DLPC-DSPC mixing/exchange in the absence of trehalose. In the presence of trehalose the membrane preserves its structure at the nanometer scale and mobility. We found that SLBs with asymmetric domain configurations underwent major rearrangements during drying and rehydration, whereas the symmetric domain configuration mainly rearranged during rehydration, that we hypothesize is related to lower transmembrane cohesiveness or lack of anchoring to the substrate in the case of the asymmetric domains.
Collapse
Affiliation(s)
- Sandra V Bennun
- Department of Chemical Engineering and Materials Science, University of California-Davis, CA 95616, USA
| | | | | |
Collapse
|
35
|
Han JH, Taylor JD, Phillips KS, Wang X, Feng P, Cheng Q. Characterizing stability properties of supported bilayer membranes on nanoglassified substrates using surface plasmon resonance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:8127-8133. [PMID: 18605744 DOI: 10.1021/la800484k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Supported bilayer membranes (SBMs) formed on solid substrates, in particular glass, provide an ideal cell mimicking model system that has been found to be highly useful for biosensing applications. Although the stability of the membrane structures is known to determine the applicability, the subject has not been extensively investigated, largely because of the lack of convenient methods to monitor changes of membrane properties on glass in real time. This work reports the evaluation of the stability properties of a series of SBMs against chemical and air damage by use of surface plasmon resonance spectroscopy and nanoglassified gold substrates. Seven SBMs composed of phosphatidylcholine and DOPC+, including single-component, mixed, protein-reinforced SBMs (rSBMs) and protein-tethered bilayer membranes (ptBLMs), are studied. The stability properties under various conditions, especially the effects of surfactants, organic solvents, and dehydration damage on the bilayers, are compared. PC membranes are found to be easily removed from the glassy surfaces using relatively low concentrations of the surfactants, while DOPC+ is markedly more stable toward nonionic surfactant. DOPC+ membranes also demonstrated remarkable air stability while PC films exhibited considerable damage from dehydration. Doping of cholesterol does not improve PC's stability against SDS and Triton but changes the lipid membrane packing enough to protect against dehydration damage. Although rSBMs and ptBLMs improve air stability to a certain degree, they are still quite susceptible to significant damage/removal from ionic and nonionic surfactants at lower concentrations. Overall, DOPC+ has noted higher stability on glass, likely due to the favorable electrostatic interaction between the silicate surface and the lipid headgroup, making it a good candidate for application. Nanoglassy SPR proves to be an attractive platform capable of rapidly screening film stability in real-time, providing critical information for future work using supported membranes for sensing applications.
Collapse
Affiliation(s)
- Jong Ho Han
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zhang L, Zhong J, Huang L, Wang L, Hong Y, Sha Y. Parallel-Oriented Fibrogenesis of a β-Sheet Forming Peptide on Supported Lipid Bilayers. J Phys Chem B 2008; 112:8950-4. [DOI: 10.1021/jp802424h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lan Zhang
- Single-Molecule and Nanobiology Laboratory, Department of Biophysics, School of Basic Medical Sciences, Biomed-X Center, and Center for Protein Science, Peking University, Beijing 100083, China
| | - Jian Zhong
- Single-Molecule and Nanobiology Laboratory, Department of Biophysics, School of Basic Medical Sciences, Biomed-X Center, and Center for Protein Science, Peking University, Beijing 100083, China
| | - Lixin Huang
- Single-Molecule and Nanobiology Laboratory, Department of Biophysics, School of Basic Medical Sciences, Biomed-X Center, and Center for Protein Science, Peking University, Beijing 100083, China
| | - Lijun Wang
- Single-Molecule and Nanobiology Laboratory, Department of Biophysics, School of Basic Medical Sciences, Biomed-X Center, and Center for Protein Science, Peking University, Beijing 100083, China
| | - Yuankai Hong
- Single-Molecule and Nanobiology Laboratory, Department of Biophysics, School of Basic Medical Sciences, Biomed-X Center, and Center for Protein Science, Peking University, Beijing 100083, China
| | - Yinlin Sha
- Single-Molecule and Nanobiology Laboratory, Department of Biophysics, School of Basic Medical Sciences, Biomed-X Center, and Center for Protein Science, Peking University, Beijing 100083, China
| |
Collapse
|
37
|
Equinatoxin II permeabilizing activity depends on the presence of sphingomyelin and lipid phase coexistence. Biophys J 2008; 95:691-8. [PMID: 18390598 DOI: 10.1529/biophysj.108.129981] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Equinatoxin II is a pore-forming protein of the actinoporin family. After membrane binding, it inserts its N-terminal alpha-helix and forms a protein/lipid pore. Equinatoxin II activity depends on the presence of sphingomyelin in the target membrane; however, the role of this specificity is unknown. On the other hand, sphingomyelin is considered an essential ingredient of lipid rafts and promotes liquid-ordered/liquid-disordered phase separation in model membranes that mimic raft composition. Here, we used giant unilamellar vesicles to simultaneously investigate the effect of sphingomyelin and phase separation on the membrane binding and permeabilizing activity of Equinatoxin II. Our results show that Equinatoxin II binds preferentially to the liquid-ordered phase over the liquid-disordered one and that it tends to concentrate at domain interfaces. In addition, sphingomyelin strongly enhances membrane binding of the toxin but is not sufficient for membrane permeabilization. Under the same experimental conditions, Equinatoxin II formed pores in giant unilamellar vesicles containing sphingomyelin only when liquid-ordered and -disordered phases coexisted. Our observations demonstrate the importance of phase boundaries for Equinatoxin II activity and suggest a double role of sphingomyelin as a specific receptor for the toxin and as a promoter of the membrane organization necessary for Equinatoxin II action.
Collapse
|
38
|
Albertorio F, Chapa VA, Chen X, Diaz AJ, Cremer PS. The alpha,alpha-(1-->1) linkage of trehalose is key to anhydrobiotic preservation. J Am Chem Soc 2007; 129:10567-74. [PMID: 17676844 PMCID: PMC2551324 DOI: 10.1021/ja0731266] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study compares the efficacy of six disaccharides and glucose for the preservation of solid supported lipid bilayers (SLBs) upon exposure to air. Disaccharide molecules containing an alpha,alpha-(1-->1) linkage, such as alpha,alpha-trehalose and alpha,alpha-galacto-trehalose, were found to be effective at retaining bilayer structure in the absence of water. These sugars are known to crystallize in a clam shell conformation. Other saccharides, which are found to crystallize in more open structures, did not preserve the SLB structure during the drying process. These included the nonreducing sugar, sucrose, as well as maltose, lactose, and the monosaccharide, glucose. In fact, even close analogs to alpha,alpha-trehalose, such as alpha,beta-trehalose, which connects its glucopyranose rings via a (1-->1) linkage in an axial, equatorial fashion, permitted nearly complete delamination and destruction of supported bilayers upon exposure to air. Lipids with covalently attached sugar molecules such as ganglioside GM1, lactosyl phosphatidylethanolamine, and glucosylcerebroside were also ineffective at preserving bilayer structure. The liquid crystalline-to-gel phase transition temperature of supported phospholipid bilayers was tested in the presence of sugars in a final set of experiments. Only alpha,alpha-trehalose and alpha,alpha-galacto-trehalose depressed the phase transition temperature, whereas the introduction of other sugar molecules into the bulk solution caused the phase transition temperature of the bilayer to increase. These results point to the importance of the axial-axial linkage of disaccharides for preserving SLB structure.
Collapse
|
39
|
Zhong J, Zheng W, Huang L, Hong Y, Wang L, Qiu Y, Sha Y. PrP106–126 amide causes the semi-penetrated poration in the supported lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1420-9. [PMID: 17451641 DOI: 10.1016/j.bbamem.2007.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 02/27/2007] [Accepted: 03/02/2007] [Indexed: 11/17/2022]
Abstract
A major hallmark of prion diseases is the cerebral amyloid accumulation of the pathogenic PrP(Sc), an abnormally misfolded, protease-resistant, and beta-sheet rich protein. PrP106-126 is the key domain responsible for the conformational conversion and aggregation of PrP. It shares important physicochemical characteristics with PrP(Sc) and presents similar neurotoxicity as PrP(Sc). By combination of fluorescence polarization, dye release assay and in situ time-lapse atomic force microscopy (AFM), we investigated the PrP106-126 amide interacting with the large unilamellar vesicles (LUVs) and the supported lipid bilayers (SLBs). The results suggest that the interactions involve a poration-mediated process: firstly, the peptide binding results in the formation of pores in the membranes, which penetrate only half of the membranes; subsequently, PrP106-126 amide undergoes the poration-mediated diffusion in the SLBs, represented by the formation and expansion of the flat high-rise domains (FHDs). The possible mechanisms of the interactions between PrP106-126 amide and lipid membranes are proposed based on our observations.
Collapse
Affiliation(s)
- Jian Zhong
- Single-molecule and Nanobiology Laboratory, Department of Biophysics, School of Basic Medical Sciences and Biomed-X Center, Peking University, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
40
|
García-Sáez AJ, Chiantia S, Salgado J, Schwille P. Pore formation by a Bax-derived peptide: effect on the line tension of the membrane probed by AFM. Biophys J 2007; 93:103-12. [PMID: 17416629 PMCID: PMC1914428 DOI: 10.1529/biophysj.106.100370] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bax is a critical regulator of physiological cell death that increases the permeability of the outer mitochondrial membrane and facilitates the release of the so-called apoptotic factors during apoptosis. The molecular mechanism of action is unknown, but it probably involves the formation of partially lipidic pores induced by Bax. To investigate the interaction of Bax with lipid membranes and the physical changes underlying the formation of Bax pores, we used an active peptide derived from helix 5 of this protein (Bax-alpha5) that is able to induce Bax-like pores in lipid bilayers. We report the decrease of line tension due to peptide binding both at the domain interface in phase-separated lipid bilayers and at the pore edge in atomic force microscopy film-rupture experiments. Such a decrease in line tension may be a general strategy of pore-forming peptides and proteins, as it affects the energetics of the pore and stabilizes the open state.
Collapse
|
41
|
Chiantia S, Ries J, Kahya N, Schwille P. Combined AFM and Two-Focus SFCS Study of Raft-Exhibiting Model Membranes. Chemphyschem 2006; 7:2409-18. [PMID: 17051578 DOI: 10.1002/cphc.200600464] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dioleoylphosphatidylcholine/sphingomyelin/cholesterol (DOPC/SM/cholesterol) model membranes exhibit liquid-liquid phase separation and therefore provide a physical model for the putative liquid-ordered domains present in cells. Here we present a combination of atomic force microscopy (AFM) imaging, force measurements, confocal fluorescence imaging and two-focus scanning fluorescence correlation spectroscopy (two-focus SFCS) to obtain structural and dynamical information about this model membrane system. Partition coefficients and diffusion coefficients in the different phases were measured with two-focus SFCS for numerous fluorescent lipid analogues and proteins, while being directly related to the lateral organization of the membrane and its mechanical properties probed by AFM. Moreover we show how the combination of these different approaches is effective in reducing artifacts resulting from the use of a single technique.
Collapse
Affiliation(s)
- Salvatore Chiantia
- Biotechnologisches Zentrum, Technical University of Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
42
|
Ries J, Schwille P. Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 2006; 91:1915-24. [PMID: 16782786 PMCID: PMC1544284 DOI: 10.1529/biophysj.106.082297] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Here we discuss the application of scanning fluorescence correlation spectroscopy (SFCS) using continuous wave excitation to analyze membrane dynamics. The high count rate per molecule enables the study of very slow diffusion in model and cell membranes, as well as the application of two-foci fluorescence cross-correlation spectroscopy for parameter-free determination of diffusion constants. The combination with dual-color fluorescence cross-correlation spectroscopy with continuous or pulsed interleaved excitation allows binding studies on membranes. Reduction of photobleaching, higher reproducibility, and stability compared to traditional FCS on membranes, and the simple implementation in a commercial microscopy setup make SFCS a valuable addition to the pool of fluorescence fluctuation techniques.
Collapse
Affiliation(s)
- Jonas Ries
- Technical University of Dresden, Dresden, Germany
| | | |
Collapse
|
43
|
Izawa Y, Matsuo T, Uchida T, Shimamura K, Ohtsuki H. Atomic Force Microscopic Observation of Trehalose-treated and Dried Corneal Epithelial Surface. ACTA ACUST UNITED AC 2006. [DOI: 10.1089/cpt.2006.4.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yuko Izawa
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Natural Science and Technology, Okayama City, Japan
| | - Toshihiko Matsuo
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Natural Science and Technology, Okayama City, Japan
| | - Tetsuya Uchida
- Division of Chemical and Biological Technology, Okayama University Graduate School of Natural Science and Technology, Okayama City, Japan
| | - Kaoru Shimamura
- Division of Chemical and Biological Technology, Okayama University Graduate School of Natural Science and Technology, Okayama City, Japan
| | - Hiroshi Ohtsuki
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Natural Science and Technology, Okayama City, Japan
| |
Collapse
|
44
|
Chiantia S, Kahya N, Ries J, Schwille P. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys J 2006; 90:4500-8. [PMID: 16565041 PMCID: PMC1471841 DOI: 10.1529/biophysj.106.081026] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The sphingolipid ceramides are known to influence lipid lateral organization in biological membranes. In particular, ceramide-induced alterations of microdomains can be involved in several cell functions, ranging from apoptosis to immune response. We used a combined approach of atomic force microscopy, fluorescence correlation spectroscopy, and confocal fluorescence imaging to investigate the effects of ceramides in model membranes of biological relevance. Our results show that physiological quantities of ceramide in sphingomyelin/dioleoylphosphatidylcholine/cholesterol supported bilayers lead to a significant rearrangement of lipid lateral organization. Our experimental setup allowed a simultaneous characterization of both structural and dynamic modification of membrane microdomains, induced by the presence of ceramide. Formation of similar ceramide-enriched domains and, more general, alterations of lipid-lipid interactions can be of crucial importance for the biological function of cell membranes.
Collapse
Affiliation(s)
- Salvatore Chiantia
- Biotechnologisches Zentrum, Dresden University of Technology, Tatzberg, Dresden, Germany
| | | | | | | |
Collapse
|