1
|
Santos Gomes B, Masia F. Photochemical approach for multiplexed biofunctionalisation of gallium arsenide. J Colloid Interface Sci 2022; 625:743-749. [PMID: 35772204 DOI: 10.1016/j.jcis.2022.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 10/31/2022]
Abstract
The optoelectronic properties of gallium arsenide (GaAs) hold great promise in biosensing applications, currently being held back by the lack of methodologies reporting the spatially selective functionalisation of this material with multiple biomolecules. Here, we exploit the use of a photoreactive crosslinker - a diazirine derivative - for spatially selective covalent immobilisation of multiple bioreceptors on the GaAs surface. As a proof of principle we show the immobilisation of two proteins: neutravidin and endosulfine alpha protein. X-ray photoelectron spectroscopy results showed the presence of the biomolecules on the GaAs regions selectively exposed to ultraviolet light. The approach presented here is applicable to the covalent attachment of other biomolecules, paving the way for using GaAs as a platform for multiplexed biosensing.
Collapse
Affiliation(s)
| | - Francesco Masia
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
2
|
Thi Thu Huong T, Loan NT, Ung TDT, Tung NT, Han H, Liem NQ. Systematic synthesis of different-sized AgInS 2/GaS xnanocrystals for emitting the strong and narrow excitonic luminescence. NANOTECHNOLOGY 2022; 33:355704. [PMID: 35620843 DOI: 10.1088/1361-6528/ac73e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
This paper presents for the first time the systematic synthesis of AgInS2(AIS) nanocrystals (NCs) with different sizes of 2.6-6.8 nm just by controlling only the reaction temperature. The synthesis of AIS core NCs was carried out in 2 steps: (i) synthesis of Ag2S NCs and then (ii) partial exchange of Ag+with In3+in the template Ag2S NCs. For step (i), Ag2S NCs of different sizes were synthesized by reaction of the Ag and S precursors at different temperatures of 30 °C to 130 °C, for the same reaction time of 30 min. For step (ii), AIS NCs were created by the exchange of Ag+with In3+at 120 °C for 60 min. Finally, GaSxwas shelled on AIS core NCs to produce the AgInS2/GaSxcore/shell structures. The synthesized AIS/GaSxNCs demonstrate the clear excitonic absorptions and strong, narrow excitonic luminescence peaking at 530-606 nm depending on the size of AIS core NCs.
Collapse
Affiliation(s)
- Tran Thi Thu Huong
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thu Loan
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Dieu Thuy Ung
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - HyukSu Han
- Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nguyen Quang Liem
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
3
|
Santos Gomes B, Morgan DJ, Langbein W, Borri P, Masia F. Biofunctionalisation of gallium arsenide with neutravidin. J Colloid Interface Sci 2022; 608:2399-2406. [PMID: 34794804 DOI: 10.1016/j.jcis.2021.10.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 01/09/2023]
Abstract
Gallium arsenide (GaAs) is a promising candidate as a platform for optical biosensing devices due to its enabling optoelectronic properties. However, the biofunctionalisation of the GaAs surface has not received much attention compared to gold, carbon and silicon surfaces. Here we report a study presenting a physicochemical surface characterisation of the GaAs surface along the functionalisation with a high-affinity bioconjugation pair widely explored in the life sciences - biotin and neutravidin. Combined X-ray photoelectron spectroscopy (XPS), wettability measurements and spectroscopic ellipsometry were used for a reliable characterisation of the surface functionalisation process. The results suggest that a film with a thickness lower than 10 nm was formed, with a neutravidin to biotin ratio of 1:25 on the GaAs surface. Reduction of non-specific binding of the protein to the surface was achieved by optimising the protein buffer and rinsing steps. This study shows the feasibility of using GaAs as a platform for specific biomolecular recognition, paving the way to a new generation of optoelectronic biosensors.
Collapse
Affiliation(s)
| | - David J Morgan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Wolfgang Langbein
- School of Physics & Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom
| | - Paola Borri
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Francesco Masia
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
4
|
Tobing LYM, Soehartono AM, Mueller AD, Yong KT, Fan W, Zhang DH. Hybridized surface lattice modes in intercalated 3-disk plasmonic crystals for high figure-of-merit plasmonic sensing. NANOSCALE 2021; 13:4092-4102. [PMID: 33570061 DOI: 10.1039/d0nr07020c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineering the spectral lineshape of plasmonic modes by various electromagnetic couplings and mode interferences enables significant improvements for plasmonic sensing. However, bulk and surface sensitivities remain constrained by a trade-off arising from their respective dependence on the interaction volume and decay length of the plasmonic mode, making higher bulk sensitivity realized at the expense of reduced surface sensitivity. We propose a new approach to overcome this trade-off by combining near-field and far-field coupling in an intercalated 3-disk plasmonic crystal, where ∼10× higher figure of merit (FoM) and ∼2× higher surface sensitivity can be achieved, in comparison with those achievable by localized surface plasmons. A plasmonic mode with a Q-factor up to ∼110 is demonstrated based on gold 3-disk arrays in the visible spectrum, with a bulk FoM of ∼24 and a surface sensitivity prefactor of ∼13.56. The design and fabrication simplicity of the 3-disk structure highlight its potential for a robust plasmonic sensing platform with a high figure of merit.
Collapse
Affiliation(s)
- Landobasa Y M Tobing
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, S639798, Singapore.
| | - Alana M Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, S639798, Singapore.
| | - Aaron D Mueller
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, S639798, Singapore.
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, S639798, Singapore.
| | - Weijun Fan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, S639798, Singapore.
| | - Dao Hua Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, S639798, Singapore.
| |
Collapse
|
5
|
Liu T, Keiper T, Wang X, Yang G, Hallinan D, Zhao J, Xiong P. Molecular Patterning and Directed Self-Assembly of Gold Nanoparticles on GaAs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43363-43369. [PMID: 29140682 DOI: 10.1021/acsami.7b14113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability to create micro-/nanopatterns of organic self-assembled monolayers (SAMs) on semiconductor surfaces is crucial for fundamental studies and applications in a number of emerging fields in nanoscience. Here, we demonstrate the direct patterning of thiolate SAMs on oxide-free GaAs surface by dip-pen nanolithography (DPN) and microcontact printing (μCP), facilitated by a process of surface etching and passivation of the GaAs. A quantitative analysis on the molecular diffusion on GaAs was conducted by examining the writing of nanoscale dot and line patterns by DPN, which agrees well with surface diffusion models. The functionality of the patterned thiol molecules was demonstrated by directed self-assembly of gold nanoparticles (Au NPs) onto a template of 4-aminothiophenol (ATP) SAM on GaAs. The highly selective assembly of the Au NPs was made evident with atomic force microscopy (AFM) and scanning electron microscopy (SEM). The ability to precisely control the assembly of Au NPs on oxide-free semiconductor surfaces using molecular templates may lead to an efficient bottom-up method for the fabrication of nanoplasmonic structures.
Collapse
Affiliation(s)
- Tianhan Liu
- Department of Physics, Florida State University , Tallahassee, Florida 32306, United States
| | - Timothy Keiper
- Department of Physics, Florida State University , Tallahassee, Florida 32306, United States
| | - Xiaolei Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083, China
| | - Guang Yang
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering , Tallahassee, Florida 32310, United States
| | - Daniel Hallinan
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering , Tallahassee, Florida 32310, United States
| | - Jianhua Zhao
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083, China
| | - Peng Xiong
- Department of Physics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
6
|
Juarez MF, Toader AM, Negrila C, Santos E, Lazarescu V. Combined ab initio and XPS Investigations of the Electronic Interactions of L-Cysteine Adsorbed on GaAs(1 0 0). ChemistrySelect 2016. [DOI: 10.1002/slct.201600589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- María F. Juarez
- Institute of Theoretical Chemistry; Ulm University; 89081 Ulm Germany
| | - Ana M. Toader
- Institute of Physical Chemistry Ilie Murgulescu; Splaiul Independentei; Bucharest Romania
| | | | - Elizabeth Santos
- Institute of Theoretical Chemistry; Ulm University; 89081 Ulm Germany
- Instituto de Física Enrique Gaviola (IFEG-CONICET-FaMAF); Universidad de Córdoba; Argentina
| | - Valentina Lazarescu
- Institute of Physical Chemistry Ilie Murgulescu; Splaiul Independentei; Bucharest Romania
| |
Collapse
|
7
|
Preda L, Anastasescu M, Dobrescu G, Negrila C, Lazarescu V. Role of the dithiolate backbone on the passivation of p-GaAs(111)B surface. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Cardinal T, Borca-Tasciuc T, Ramanath G. Tailoring Electrical Transport Across Metal-Thermoelectric Interfaces Using a Nanomolecular Monolayer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4275-4279. [PMID: 26842392 DOI: 10.1021/acsami.5b08990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a 13-fold increase in electrical contact conductivity Σc upon introducing a 1,8-octanedithiol (ODT) monolayer at Cu-Bi2Te3 interfaces. In contrast introducing ODT at Ni-Bi2Te3 interfaces results in a 20% decrease in Σc. Rutherford backscattering spectrometry, X-ray diffraction and electron spectroscopy analyses indicate that metal-sulfur and sulfur-Bi2Te3 bonds at metal-Bi2Te3 interfaces inhibit chemical mixing, curtail metal-telluride formation, and suppress oxidation. Suppressing p-type Cu2Te favors electrical transport across Cu-metallized n-type Bi2Te3, whereas inhibiting the formation of Ohmic-contact-promoting NixTey compromises the electrical conductance at Ni-Bi2Te3 interfaces. Our findings illustrate that molecular nanolayers could be attractive for manipulating interface chemistry and phase formation for tailoring electrical transport across metal-thermoelectric interfaces for solid-state refrigeration applications.
Collapse
Affiliation(s)
- Thomas Cardinal
- Department of Materials Science and Engineering and ‡Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute , 110 Eighth Street, Troy, New York 12180, United States
| | - Theodorian Borca-Tasciuc
- Department of Materials Science and Engineering and ‡Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute , 110 Eighth Street, Troy, New York 12180, United States
| | - Ganpati Ramanath
- Department of Materials Science and Engineering and ‡Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute , 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
9
|
Lazarescu V, Toader AM, Enache M, Preda L, Anastasescu M, Dobrescu G, Negrila C, Lazarescu MF. Field - dipole interactions in L-cysteine-thiolate self assembled at p- and n-GaAs(100) electrodes. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.06.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Lazarescu V, Enache M, Anastasescu M, Dobrescu G, Negrila C, Lazarescu MF. Electrochemical impedance spectroscopy investigations on the L-cysteine-thiolate self-assembled monolayers formed at p-GaAs(100) electrodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.11.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Influence of a Thiolate Chemical Layer on GaAs (100) Biofunctionalization: An Original Approach Coupling Atomic Force Microscopy and Mass Spectrometry Methods. MATERIALS 2013; 6:4946-4966. [PMID: 28788369 PMCID: PMC5452766 DOI: 10.3390/ma6114946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/29/2013] [Accepted: 10/18/2013] [Indexed: 11/17/2022]
Abstract
Widely used in microelectronics and optoelectronics; Gallium Arsenide (GaAs) is a III-V crystal with several interesting properties for microsystem and biosensor applications. Among these; its piezoelectric properties and the ability to directly biofunctionalize the bare surface, offer an opportunity to combine a highly sensitive transducer with a specific bio-interface; which are the two essential parts of a biosensor. To optimize the biorecognition part; it is necessary to control protein coverage and the binding affinity of the protein layer on the GaAs surface. In this paper; we investigate the potential of a specific chemical interface composed of thiolate molecules with different chain lengths; possessing hydroxyl (MUDO; for 11-mercapto-1-undecanol (HS(CH₂)11OH)) or carboxyl (MHDA; for mercaptohexadecanoic acid (HS(CH₂)15CO₂H)) end groups; to reconstitute a dense and homogeneous albumin (Rat Serum Albumin; RSA) protein layer on the GaAs (100) surface. The protein monolayer formation and the covalent binding existing between RSA proteins and carboxyl end groups were characterized by atomic force microscopy (AFM) analysis. Characterization in terms of topography; protein layer thickness and stability lead us to propose the 10% MHDA/MUDO interface as the optimal chemical layer to efficiently graft proteins. This analysis was coupled with insitu MALDI-TOF mass spectrometry measurements; which proved the presence of a dense and uniform grafted protein layer on the 10% MHDA/MUDO interface. We show in this study that a critical number of carboxylic docking sites (10%) is required to obtain homogeneous and dense protein coverage on GaAs. Such a protein bio-interface is of fundamental importance to ensure a highly specific and sensitive biosensor.
Collapse
|
12
|
Yan L, You W. Real function of semiconducting polymer in GaAs/polymer planar heterojunction solar cells. ACS NANO 2013; 7:6619-6626. [PMID: 23815301 DOI: 10.1021/nn306047q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We systematically investigated GaAs/polymer hybrid solar cells in a simple planar junction, aiming to fundamentally understand the function of semiconducting polymers in GaAs/polymer-based heterojunction solar cells. A library of semiconducting polymers with different band gaps and energy levels were evaluated in GaAs/polymer planar heterojunctions. The optimized thickness of the active polymer layer was discovered to be ultrathin (~10 nm). Further, the open-circuit voltage (Voc) of such GaAs/polymer planar heterojunctions was fixed around 0.6 V, regardless of the HOMO energy level of the polymer employed. On the basis of this evidence and others, we conclude that n-type GaAs/polymer planar heterojunctions are not type II heterojunctions as originally assumed. Instead, n-type GaAs forms a Schottky barrier with its corresponding anode, while the semiconducting polymer of appropriate energy levels can function as hole transport layer and/or electron blocking layer. Additionally, we discover that both GaAs surface passivation and thermal annealing can improve the performance of GaAs/polymer hybrid solar cells.
Collapse
Affiliation(s)
- Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | | |
Collapse
|
13
|
Pujari SP, Scheres L, van Lagen B, Zuilhof H. Organic monolayers from 1-alkynes covalently attached to chromium nitride: alkyl and fluoroalkyl termination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10393-10404. [PMID: 23919532 DOI: 10.1021/la401978h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Strategies to modify chromium nitride (CrN) surfaces are important because of the increasing applications of these materials in various areas such as hybrid electronics, medical implants, diffusion barrier layers, corrosion inhibition, and wettability control. The present work presents the first surface immobilization of alkyl and perfluoro-alkyl (from C6 to C18) chains onto CrN substrates using appropriately functionalized 1-alkynes, yielding covalently bound, high-density organic monolayers with excellent hydrophobic properties and a high degree of short-range order. The obtained monolayers were characterized in detail by water contact angle, X-ray photoelectron spectroscopy (XPS), ellipsometry, and infrared reflection absorption spectroscopy (IRRAS).
Collapse
Affiliation(s)
- Sidharam P Pujari
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
14
|
|
15
|
Cho E, Brown A, Kuech TF. Chemical characterization of DNA-immobilized InAs surfaces using X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:11890-11898. [PMID: 22809291 DOI: 10.1021/la302313v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Single-stranded DNA immobilized on an III-V semiconductor is a potential high-sensitivity biosensor. The chemical and electronic changes occurring upon the binding of DNA to the InAs surface are essential to understanding the DNA-immobilization mechanism. In this work, the chemical properties of DNA-immobilized InAs surfaces were determined through high-resolution X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS). Prior to DNA functionalization, HF- and NH(4)OH- based aqueous etches were used to remove the native oxide from the InAs surface. The initial chemical state of the surface resulting from these etches were characterized prior to functionalization. F-tagged thiolated single-stranded DNA (ssDNA) was used as the probe species under two different functionalization methods. The presence of DNA immobilized on the surface was confirmed from the F 1s, N 1s, and P 2p peaks in the XPS spectra. The presence of salt had a profound effect on the density of immobilized DNA on the InAs surface. To study the interfacial chemistry, the surface was treated with thiolated ssDNA with and without the mercaptohexanol molecule. An analysis of the As 3d and In 3d spectra indicates that both In-S and As-S are present on the surface after DNA functionalization. The amount of In-S and As-S was determined by the functionalization method as well as the presence of mercaptohexanol during functionalization. The orientation of the adsorbed ssDNA is determined by polarization-dependent NEXAFS utilizing the N K-edge. The immobilized ssDNA molecule has a preferred tilt angle with respect to the substrate normal, but with a random azimuthal distribution.
Collapse
Affiliation(s)
- EunKyung Cho
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
16
|
Electronic effects at self-assembled 4,4′-thio-bis-benzenethiolate protected Au nanoparticles on p-GaAs (100) electrodes. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.04.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Peczonczyk SL, Mukherjee J, Carim AI, Maldonado S. Wet chemical functionalization of III-V semiconductor surfaces: alkylation of gallium arsenide and gallium nitride by a Grignard reaction sequence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4672-4682. [PMID: 22372474 DOI: 10.1021/la204698a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Crystalline gallium arsenide (GaAs) (111)A and gallium nitride (GaN) (0001) surfaces have been functionalized with alkyl groups via a sequential wet chemical chlorine activation, Grignard reaction process. For GaAs(111)A, etching in HCl in diethyl ether effected both oxide removal and surface-bound Cl. X-ray photoelectron (XP) spectra demonstrated selective surface chlorination after exposure to 2 M HCl in diethyl ether for freshly etched GaAs(111)A but not GaAs(111)B surfaces. GaN(0001) surfaces exposed to PCl(5) in chlorobenzene showed reproducible XP spectroscopic evidence for Cl-termination. The Cl-activated GaAs(111)A and GaN(0001) surfaces were both reactive toward alkyl Grignard reagents, with pronounced decreases in detectable Cl signal as measured by XP spectroscopy. Sessile contact angle measurements between water and GaAs(111)A interfaces after various levels of treatment showed that GaAs(111)A surfaces became significantly more hydrophobic following reaction with C(n)H(2n-1)MgCl (n = 1, 2, 4, 8, 14, 18). High-resolution As 3d XP spectra taken at various times during prolonged direct exposure to ambient lab air indicated that the resistance of GaAs(111)A to surface oxidation was greatly enhanced after reaction with Grignard reagents. GaAs(111)A surfaces terminated with C(18)H(37) groups were also used in Schottky heterojunctions with Hg. These heterojunctions exhibited better stability over repeated cycling than heterojunctions based on GaAs(111)A modified with C(18)H(37)S groups. Raman spectra were separately collected that suggested electronic passivation by surficial Ga-C bonds at GaAs(111)A. Specifically, GaAs(111)A surfaces reacted with alkyl Grignard reagents exhibited Raman signatures comparable to those of samples treated with 10% Na(2)S in tert-butanol. For GaN(0001), high-resolution C 1s spectra exhibited the characteristic low binding energy shoulder demonstrative of surface Ga-C bonds following reaction with CH(3)MgCl. In addition, 4-fluorophenyl groups were attached and detected after reaction with C(6)H(4)FMgBr, further confirming the susceptibility of Cl-terminated GaN(0001) to surface alkylation. However, the measured hydrophobicities of alkyl-terminated GaAs(111)A and GaN(0001) were markedly distinct, indicating differences in the resultant surface layers. The results presented here, in conjunction with previous studies on GaP, show that atop Ga atoms at these crystallographically related surfaces can be deliberately functionalized and protected through Ga-C surface bonds that do not involve thiol/sulfide chemistry or gas-phase pretreatments.
Collapse
Affiliation(s)
- Sabrina L Peczonczyk
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | | | | | | |
Collapse
|
18
|
Stolichnov I, Riester SWE, Mikheev E, Setter N, Rushforth AW, Edmonds KW, Campion RP, Foxon CT, Gallagher BL, Jungwirth T, Trodahl HJ. Ferroelectric polymer gates for non-volatile field effect control of ferromagnetism in (Ga, Mn)As layers. NANOTECHNOLOGY 2011; 22:254004. [PMID: 21572188 DOI: 10.1088/0957-4484/22/25/254004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
(Ga, Mn)As and other diluted magnetic semiconductors (DMS) attract a great deal of attention for potential spintronic applications because of the possibility of controlling the magnetic properties via electrical gating. Integration of a ferroelectric gate on the DMS channel adds to the system a non-volatile memory functionality and permits nanopatterning via the polarization domain engineering. This topical review is focused on the multiferroic system, where the ferromagnetism in the (Ga, Mn)As DMS channel is controlled by the non-volatile field effect of the spontaneous polarization. Use of ferroelectric polymer gates in such heterostructures offers a viable alternative to the traditional oxide ferroelectrics generally incompatible with DMS. Here we review the proof-of-concept experiments demonstrating the ferroelectric control of ferromagnetism, analyze the performance issues of the ferroelectric gates and discuss prospects for further development of the ferroelectric/DMS heterostructures toward the multiferroic field effect transistor.
Collapse
Affiliation(s)
- I Stolichnov
- Ceramics Laboratory, EPFL-Swiss Federal Institute of Technology, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Marshall GM, Lopinski GP, Bensebaa F, Dubowski JJ. Electro-optic investigation of the surface trapping efficiency in n-alkanethiol SAM passivated GaAs(001). NANOTECHNOLOGY 2011; 22:235704. [PMID: 21490389 DOI: 10.1088/0957-4484/22/23/235704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The electro-optic characteristics of the semi-insulating and n(+)-type GaAs(001) surfaces passivated with n-alkanethiol self-assembled monolayers were investigated using Kelvin probe surface photovoltage (SPV) and photoluminescence (PL) techniques. Referencing the equilibrium surface barrier height established in an earlier report, SPV measurements demonstrated a significant (>100 mV) increase in the non-equilibrium band-bending potential observed under low-level photo-injection. Modeling of the SPV accounts for these observations in terms of a large (>10(4)) decrease in the hole/electron ratio of surface carrier capture cross-sections, which is suggested to result from the electrostatic potential of the interfacial dipole layer formed upon thiol chemisorption. The cross-section effects are verified in the high-injection regime based on carrier transport modeling of the PL enhancement manifested as a reduction of the surface recombination velocity.
Collapse
Affiliation(s)
- Gregory M Marshall
- Department of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
20
|
Zdyrko B, Luzinov I. Polymer Brushes by the “Grafting to” Method. Macromol Rapid Commun 2011; 32:859-69. [DOI: 10.1002/marc.201100162] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Indexed: 11/08/2022]
|
21
|
Photoactive SAM surface for control of cell attachment. J Colloid Interface Sci 2010; 348:71-9. [DOI: 10.1016/j.jcis.2010.04.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/10/2010] [Accepted: 04/13/2010] [Indexed: 12/13/2022]
|
22
|
McGuiness CL, Diehl GA, Blasini D, Smilgies DM, Zhu M, Samarth N, Weidner T, Ballav N, Zharnikov M, Allara DL. Molecular self-assembly at bare semiconductor surfaces: cooperative substrate-molecule effects in octadecanethiolate monolayer assemblies on GaAs(111), (110), and (100). ACS NANO 2010; 4:3447-3465. [PMID: 20481546 DOI: 10.1021/nn1004638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The structures of self-assembled monolayers formed by chemisorption of octadecanethiol onto the surfaces of GaAs(001), (110), (111-A)-Ga, and (111-B)-As have been characterized in detail by a combination of X-ray photoelectron, near-edge X-ray absorption fine structure, and infrared spectroscopies and grazing incidence X-ray diffraction. In all cases, the molecular lattices are ordered with hexagonal symmetry, even for the square and rectangular intrinsic substrate (001) and (110) lattices, and the adsorbate lattice spacings are all incommensurate with their respective intrinsic substrate lattices. These results definitively show that the monolayer organization is driven by intermolecular packing forces to assemble in a hexagonal motif, such as would occur in the approach to a limit for an energetically featureless surface. The accompanying introduction of strain into the soft substrate surface lattice via strong S substrate bonds forces the soft substrate lattice to compliantly respond, introducing quasi-2D strain. A notably poorer organization for the (111-A)-Ga case compared to the (111-B)-As and other faces indicates that that the Ga-terminated surface lattice is more resistant to adsorbate packing-induced stress. Overall, the results show that surface molecular self-assembly must be considered as a strongly cooperative process between the substrate surface and the adsorbate and that inorganic substrate surfaces should not be considered as necessarily rigid when strong intermolecular adsorbate packing forces are operative.
Collapse
Affiliation(s)
- Christine L McGuiness
- Departments of Chemistry and Materials Science & Engineering, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ardalan P, Sun Y, Pianetta P, Musgrave CB, Bent SF. Reaction mechanism, bonding, and thermal stability of 1-alkanethiols self-assembled on halogenated Ge surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8419-8429. [PMID: 20433151 DOI: 10.1021/la904864c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have employed synchrotron radiation photoemission spectroscopy to study the reaction mechanism, surface bonding, and thermal stability of 1-octadecanethiolate (ODT) self-assembled monolayers (SAMs) at Cl- and Br-terminated Ge(100) surfaces. Density functional theory (DFT) calculations were also carried out for the same reactions. From DFT calculations, we have found that adsorption of 1-octadecanethiol on the halide-terminated surface via hydrohalogenic acid elimination is kinetically favorable on both Cl- and Br-terminated Ge surfaces at room temperature, but the reactions are more thermodynamically favorable at Cl-terminated Ge surfaces. After ODT SAM formation at room temperature, photoemission spectroscopy experiments show that Ge(100) and (111) surfaces contain monothiolates and possibly dithiolates together with unbound thiol and atomic sulfur. Small coverages of residual halide are also observed, consistent with predictions by DFT. Annealing studies in ultrahigh vacuum show that the Ge thiolates are thermally stable up to 150 degrees C. The majority of the surface thiolates are converted to sulfide and carbide upon annealing to 350 degrees C. By 430 degrees C, no sulfur remains on the surface, whereas Ge carbide is stable to above 470 degrees C.
Collapse
Affiliation(s)
- Pendar Ardalan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
24
|
Bruno G, Babudri F, Operamolla A, Bianco GV, Losurdo M, Giangregorio MM, Hassan Omar O, Mavelli F, Farinola GM, Capezzuto P, Naso F. Tailoring density and optical and thermal behavior of gold surfaces and nanoparticles exploiting aromatic dithiols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8430-8440. [PMID: 20433150 DOI: 10.1021/la101082t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Self-assembled monolayers (SAMs) derived of 4-methoxy-terphenyl-3'',5''-dimethanethiol (TPDMT) and 4-methoxyterphenyl-4''-methanethiol (TPMT) have been prepared by chemisorption from solution onto gold thin films and nanoparticles. The SAMs have been characterized by spectroscopic ellipsometry, Raman spectroscopy and atomic force microscopy to determine their optical properties, namely the refractive index and extinction coefficient, in an extended spectral range of 0.75-6.5 eV. From the analysis of the optical data, information on SAMs structural organization has been inferred. Comparison of SAMs generated from the above aromatic thiols to well-known SAMs generated from the alkanethiol dodecanethiol revealed that the former aromatic SAMs are densely packed and highly vertically oriented, with a slightly higher packing density and a absence of molecular inclination in TPMT/Au. The thermal behavior of SAMs has also been monitored using ellipsometry in the temperature range 25-500 degrees C. Gold nanoparticles functionalized by the same aromatic thiols have also been discussed for surface enhanced Raman spectroscopy applications. This study represents a step forward tailoring the optical and thermal behavior of surfaces as well as nanoparticles.
Collapse
Affiliation(s)
- Giovanni Bruno
- Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Petrovykh DY, Smith JC, Clark TD, Stine R, Baker LA, Whitman LJ. Self-assembled monolayers of alkanethiols on InAs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12185-12194. [PMID: 19778053 DOI: 10.1021/la804314j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We describe the deposition and properties of self-assembled monolayers (SAMs) of methyl-terminated alkanethiols on InAs(001) surface. For these model hydrophobic films, we used water contact angle measurements to survey the preparation of alkanethiol monolayers from base-activated ethanolic solutions as a function of the solution and deposition parameters, including chain length of alkanethiols, deposition time, and solution temperature and pH. We then used X-ray photoelectron spectroscopy (XPS), ellipsometry, and electrochemistry to characterize the composition and structure of octadecanethiol (ODT) monolayers deposited on InAs under optimized conditions. When applied to a thoroughly degreased InAs(001) wafer surface, the basic ODT solution removes the native oxide without excessively etching the underlying InAs(001) substrate. The resulting film contains approximately one monolayer of ODT molecules, attached to the InAs surface almost exclusively via thiolate bonds to In atoms, with organic chains extended away from the surface. These ODT monolayers are stable against degradation and oxidation in air, organic solvents, and aqueous buffers. The same base-activated ODT treatment can also be used to passivate exposed InAs/AlSb quantum well (QW) devices, preserving the unique electronic properties of InAs surfaces and allowing the operation of such passivated devices as continuous flow pH-sensors.
Collapse
Affiliation(s)
- Dmitri Y Petrovykh
- Physics Department, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Chan YH, Chen J, Wark SE, Skiles SL, Son DH, Batteas JD. Using Patterned Arrays of Metal Nanoparticles to Probe Plasmon Enhanced Luminescence of CdSe Quantum Dots. ACS NANO 2009; 3:1735-1744. [PMID: 19499906 DOI: 10.1021/nn900317n] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Here we present a simple platform for probing plasmon enhanced photoluminescence (PL) of quantum dots by confocal microscopy. In this study, self-assembled monolayers of silane-derivative molecules were patterned onto the oxidized GaAs surfaces to direct the attachment of Au or Ag nanoparticles onto the surface. Following the directed binding of metal nanoparticles (MNPs), a layer-by-layer deposition of oppositely charged polymers was used to create films with varying thickness by controlling the numbers of deposited layers. CdSe quantum dots (QDs) of ∼4 and 5.5 nm in diameter with 16-mercaptohexadecanoic acid as a surfactant were then adsorbed onto the outermost polymer layer via electrostatic interactions. Using confocal fluorescence microscopy, the enhanced PL from the CdSe over the Au or Ag nanoparticle patterns could be imaged directly and scaled against the regions with no Au or Ag nanoparticles, and the luminescence of the GaAs (as an internal standard) for different CdSe-metal separations. By using a pattern, PL enhancement as a function of particle-CdSe spacing can be readily probed all on a single platform, where the QDs over MNPs and not over MNPs can be directly compared in the same dielectric environment. The observed luminescence as a function of metal-QD separation can be readily fit to a combined model of metal-fluorophore fluorescence quenching and local electric field enhancement.
Collapse
Affiliation(s)
- Yang-Hsiang Chan
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012
| | | | | | | | | | | |
Collapse
|
27
|
Saavedra M, Buljan A, Muñoz M. Theoretical study of methanethiol adsorbed on GaAs(100) surface. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2009.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Chemical modification of chromium oxide surfaces using organosilanes. J Colloid Interface Sci 2009; 331:138-42. [DOI: 10.1016/j.jcis.2008.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/01/2008] [Accepted: 11/04/2008] [Indexed: 11/19/2022]
|
29
|
Ardalan P, Musgrave CB, Bent SF. Formation of alkanethiolate self-assembled monolayers at halide-terminated Ge surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:2013-2025. [PMID: 19152272 DOI: 10.1021/la803468e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have studied Ge halide passivation and formation of 1-octadecanethiolate self-assembled monolayers (SAMs) at Cl- and Br-terminated Ge(100) and Ge(111) surfaces. The results of water contact angle measurements, ellipsometry, transmission infrared spectroscopy, X-ray photoelectron spectroscopy, and Auger electron spectroscopy show that good quality 1-alkanethiolate SAMs can be achieved at both Cl- and Br-terminated surfaces via direct Ge-S bonds. The quality of the SAMs depends on the concentration and the solvent of the 1-alkanethiol solution. Moreover, SAMs formed at Ge(100) surfaces have higher water contact angles, thicknesses, and ambient stability than those formed at Ge(111) surfaces. Surface passivation and light are found to play an important role in the packing and stability of the SAMs. Furthermore, well-packed SAMs can be retrieved by repassivation after degradation due to ambient exposure. This work presents novel routes for Ge surface passivation.
Collapse
Affiliation(s)
- Pendar Ardalan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
30
|
Rosu DM, Jones JC, Hsu JWP, Kavanagh KL, Tsankov D, Schade U, Esser N, Hinrichs K. Molecular orientation in octanedithiol and hexadecanethiol monolayers on GaAs and Au measured by infrared spectroscopic ellipsometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:919-923. [PMID: 19105790 DOI: 10.1021/la8026557] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Infrared spectroscopic ellipsometry was used for determination of molecular orientation and for lateral homogeneity studies of organic monolayers on GaAs and Au, the organic layer being either octanedithiol or hexadecanethiol (HDT). The laterally resolved measurements were performed with the infrared mapping ellipsometer at the synchrotron storage ring BESSY II. The molecular orientation within the monolayers was determined by optical model simulations of the measured ellipsometric spectra. Different tilt angles were obtained for the monolayers of HDT and octanedithiol on GaAs: 19 degrees and >30 degrees , respectively. The tilt angle of the methylene chains for HDT on Au substrate (22 degrees ) is similar to the 19 degrees tilt which was obtained for the HDT monolayers on GaAs, thus suggesting similar molecular ordering of the thiolates on both substrates.
Collapse
Affiliation(s)
- Dana M Rosu
- ISAS-Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Passivation of GaAs by octadecanethiol self-assembled monolayers deposited from liquid and vapor phases. ACTA ACUST UNITED AC 2009. [DOI: 10.1116/1.3100266] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Voznyy O, Dubowski JJ. Structure of thiol self-assembled monolayers commensurate with the GaAs (001) surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:13299-13305. [PMID: 18975925 DOI: 10.1021/la8010635] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Observed properties of thiol self-assembled monolayers (SAMs) on GaAs (001) surfaces can be explained by the presence of surface reconstructions, but their exact form is generally unknown. We propose a new approach to modeling the SAM-surface interface based on using alkanethiol dense packing structures as a starting point and adjusting the surface reconstruction to accommodate them. Obtained in such a way, model SAMs adsorb along the trenches in the [110] direction and exhibit a 19 degrees tilt and +/- 45 degrees twist angles, in agreement with available experimental data. The molecules of the SAM bind to both Ga and As, and cover only 50% of the available surface sites. The requirements for the SAM formation process to achieve the proposed structures are discussed.
Collapse
Affiliation(s)
- Oleksandr Voznyy
- Department of Electrical and Computer Engineering, Centre of Excellence for Information Engineering, Universitt de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | | |
Collapse
|
33
|
|
34
|
Hamers RJ. Formation and characterization of organic monolayers on semiconductor surfaces. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:707-736. [PMID: 20636095 DOI: 10.1146/annurev.anchem.1.031207.112916] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Organic-semiconductor interfaces are playing increasingly important roles in fields ranging from electronics to nanotechnology to biosensing. The continuing decrease in microelectronic device feature sizes is raising an especially great interest in understanding how to integrate molecular systems with conventional, inorganic microelectronic materials, particularly silicon. The explosion of interest in the biological sciences has provided further impetus for learning how to integrate biological molecules and systems with microelectronics to form true bioelectronic systems. Organic monolayers present an excellent opportunity for surmounting many of the practical barriers that have hindered the full integration of microelectronics technology with organic and biological systems. Of all the semiconductor materials, silicon and diamond stand out as unique. This review focuses upon the preparation and characterization of organic and biomolecular layers on semiconductor surfaces, with special emphasis on monolayers formed on silicon and diamond.
Collapse
Affiliation(s)
- Robert J Hamers
- Department of Chemistry, University of Wisconsin at Madison, 53706, USA.
| |
Collapse
|
35
|
McGuiness CL, Blasini D, Masejewski JP, Uppili S, Cabarcos OM, Smilgies D, Allara DL. Molecular self-assembly at bare semiconductor surfaces: characterization of a homologous series of n-alkanethiolate monolayers on GaAs(001). ACS NANO 2007; 1:30-49. [PMID: 19203128 DOI: 10.1021/nn7000596] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Structural trends for a homologous series of n-alkanethiolate self-assembled monolayers (SAMs), C(n)H(2n+1)S- with 12 < or = n < or = 19, on GaAs(001), studied by a combination of grazing incidence X-ray diffraction and infrared spectroscopy, along with ancillary probes, show an overall decay in organization with decreasing n, with the largest changes occurring below n = 15-16. The long-chain monolayers form a mosaic structure with < or =10 nm domains of molecules organized in an incommensurate pseudo-hcp arrangement with nearest neighbor distances of 4.70 and 5.02 A, a 21.2 A(2) area per chain, two chains per subcell in a herringbone packing with a chain tilt angle of 14 degrees , and preferential domain alignment along the substrate [110]([110]) step edge direction. In contrast, for n < 14 no evidence of translational ordering is seen and the alkyl chains exhibit a loss of conformational ordering and coverage relative to the n > 16 cases. A 4'-methyl-biphenyl-4-thiolate companion SAM shows evidence for ordered structures but with lattice parameters close to those expected for a structure commensurate with the intrinsic GaAs(001) square lattice. These trends are explained on the basis of competitions between lattice, interfacial, and intermolecular forces controlling the nanoscale structures of the SAMs. Overall these results provide an important aspect of understanding the effects of SAM formation on surface properties such as electronic and chemical passivation.
Collapse
Affiliation(s)
- Christine L McGuiness
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16801-6300, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Rodríguez LM, Gayone JE, Sánchez EA, Grizzi O, Blum B, Salvarezza RC, Xi L, Lau WM. Gas Phase Formation of Dense Alkanethiol Layers on GaAs(110). J Am Chem Soc 2007; 129:7807-13. [PMID: 17550246 DOI: 10.1021/ja069007s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a study of the growth and thermal stability of hexanethiol (C6) films on GaAs(110) by direct recoil spectroscopy with time-of-flight analysis. We compare our results with the better known case of C6 adsorption on Au(111). In contrast to the two-step adsorption kinetics observed for Au surfaces after lengthy exposures, data for C6 adsorption on the GaAs(110) surface are consistent with the formation of a single dense phase of C6 molecules at lower exposures. On the contrary, in solution preparation, dense phases can only be obtained on GaAs for long alkanethiols and after lengthy immersions. The C6 layer has a first desorption peak at 325 K, where partial desorption of the alkanethiol molecules takes place. Fits to the desorption curves result in a 1 eV adsorption energy, in agreement with a chemisorption process. Increasing the temperature to 500 K results in the S-C bond scission with only S remaining on the GaAs(110) surface. The possibility of forming dense, short-alkanethiol layers on semiconductor surfaces from the vapor phase could have a strong impact for a wide range of self-assembled monolayer applications, with only minimal care not to surpass room temperature once the layer has been formed in order to avoid molecular desorption.
Collapse
Affiliation(s)
- Luis M Rodríguez
- Centro Atómico Bariloche, CNEA, I. Balseiro, UNC & CONICET, Bustillo 9500, R8402AGP Bariloche, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
37
|
De Palma R, Laureyn W, Frederix F, Bonroy K, Pireaux JJ, Borghs G, Maes G. Formation of dense self-assembled monolayers of (n-decyl)trichlorosilanes on Ta/Ta2O5. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:443-51. [PMID: 17209592 DOI: 10.1021/la061951e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tantalum pentoxide (Ta2O5) is a promising material for the realization of biological interfaces because of its high dielectric constant, its high chemical stability, and its excellent passivating properties. Nevertheless, the deposition of highly organized silane SAMs to realize well-defined and tailored Ta2O5-based (bio)interfaces, has not been studied in great detail as of yet. In this work, we have investigated the formation of a highly ordered, dense monolayer of trichlorosilanes on Ta2O5 surfaces. Specifically, two different cleaning procedures for Ta2O5 were compared and (n-decyl)trichlorosilane (DTS) was used to study the effect of both cleaning methods on the silanization of Ta2O5. Both types of cleaning allowed the formation of complete and crystalline DTS monolayers on Ta2O5, in contrast with the incomplete, disordered silane layer assembled on uncleaned Ta2O5. The deposited self-assembled monolayers were studied by means of contact angle goniometry, Brewster angle FTIR, X-ray photoelectron spectroscopy, cyclic voltammetry, and ellipsometry. Infrared analysis exhibited a highly ordered DTS silane film on Ta2O5 and indicated a larger tilt angle of the alkyl chains on this substrate by comparison to DTS on SiO2. Furthermore, with use of ellipsometry and XPS, the silane film thickness on Ta2O5 was determined to be substantially smaller than that reported in the literature for DTS on SiO2, supporting the observations of an increased tilt angle (approximately 45 degrees ) on Ta2O5 than on SiO2 (approximately 10 degrees ). By means of cyclic voltammetry, the formation of a dense, essentially pinhole-free, silane film was observed on the cleaned samples. In conclusion, the fully characterized and optimized procedure for the silanization of Ta2O5 surfaces with trichlorosilanes will allow the formation of well-defined, reproducible, and controllable chemical interfaces on Ta2O5.
Collapse
Affiliation(s)
- Randy De Palma
- Physical and Quantum Chemistry, Catholic University Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
38
|
Quiñones R, Raman A, Gawalt ES. An approach to differentiating between multi- and monolayers using MALDI-TOF MS. SURF INTERFACE ANAL 2007. [DOI: 10.1002/sia.2561] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Voznyy O, Dubowski JJ. Structure, Bonding Nature, and Binding Energy of Alkanethiolate on As-Rich GaAs (001) Surface: A Density Functional Theory Study. J Phys Chem B 2006; 110:23619-22. [PMID: 17125316 DOI: 10.1021/jp064675l] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemisorption of alkanethiols on As-rich GaAs (001) surface under a low coverage condition was studied using first principles density functional calculations in a periodic supercell approach. The thiolate adsorption site, tilt angle and its direction are dictated by the high directionality of As dangling bond and sulfur 3p orbital participating in bonding and steric repulsion of the first three CH2 units from the surface. Small charge transfer between thiolate and surface, strong dependence of total energy on tilt angle, and a relatively short length of 2.28 A of the S-As bond indicate the highly covalent nature of the bonding. Calculated binding energy of 2.1 eV is consistent with the available experimental data.
Collapse
|